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Abstract. Increasing demand for agricultural land resources
and changing climate conditions require strategic land-
use planning and the development of adaptation strategies.
Therefore, information about the suitability of agricultural
land is a prerequisite. Current suitability approaches often
focus on single crops, can only be applied regionally, and
usually neglect the impact of climate variability on crop suit-
ability. Here, we introduce CropSuite, a new, comprehensive,
and easy-to-use crop suitability model that allows us to over-
come these shortcomings. It provides a graphical user inter-
face (GUI) and a wide range of pre- and postprocessing op-
tions, including a tool for data analysis, which allows users to
easily apply the model and analyze the results. Further, it in-
cludes a spatial downscaling approach to climate data, which
enables crop suitability analysis at very high spatial reso-
lution. CropSuite uses a fuzzy-logic approach and is based
on the assumption of Liebig’s law of the minimum. An ex-
pandable number of environmental and socioeconomic fac-
tors that affect crop suitability can be flexibly integrated into
CropSuite by determining membership functions. CropSuite
allows for the consideration of irrigated and rainfed agricul-
tural systems, vernalization requirements for winter crops,
lethal temperature thresholds, photoperiodic sensitivity, and
several other limitations for crop growth. The model endoge-
nously calculates and outputs climate, soil, and crop suitabil-
ity, the optimal sowing and harvest dates, the potential for
multiple cropping, the (most-)limiting factor(s), and the re-
currence rate of potential crop failure according to the inter-
annual climate variability.

In this study, we apply CropSuite to 48 crops at a spa-
tial resolution of 30 arcsec (1 km at the Equator) for Africa.
Thereby, we consider regionally important staple and cash

crops that are usually understudied, such as coffee, cassava,
banana, oil palm, cocoa, cowpea, groundnuts, mango, mil-
let, papaya, rubber, sesame, sorghum, sugar cane, tobacco,
and yam. We find that the consideration of climate variability
when calculating crop suitability makes a significant differ-
ence to suitable areas but also affects optimal sowing dates
and multiple cropping potentials. The most vulnerable re-
gions for climate variability are identified in Somalia, Kenya,
Ethiopia, South Africa, and the Maghreb countries. The re-
sults provide valuable crop-specific information that can be
further used for climate impact assessments, adaptation, and
land-use planning at the global, regional, or local scale. Crop-
Suite is provided as open-source code and could be of interest
for model developers, scientists, and a wide range of poten-
tial users and stakeholders, such as farmers, companies, gov-
ernmental organizations (GOs), and non-governmental orga-
nizations (NGOs).

1 Introduction

Climate change poses major challenges for agricultural pro-
duction and food security. With a warming climate, agri-
cultural suitability changes, and suitable areas shift towards
higher latitudes (Franke et al., 2021; Zabel et al., 2014). Crop
suitability models allow for a quantitative evaluation of land
for crop cultivation and can therefore assess how the suit-
ability of land changes with changing climate. Contrary to
mechanistic crop models (Jägermeyr et al., 2021; Jägermeyr
et al., 2020; Müller et al., 2024), crop suitability models are
based on empirical approaches but are less computationally
intensive and thus allow for the consideration of more crops
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at a higher spatial resolution (Zabel et al., 2014). As a re-
sult, crop suitability models provide important insights into
sustainable land-use planning and climate change adaptation,
e.g., through cultivar change or land-use change. Akpoti et
al. (2019) give an overview of existing crop suitability ap-
proaches. Most studies are applied at a regional scale (Maleki
et al., 2017; Bonfante et al., 2015; Ranjitkar et al., 2016),
while just a few global approaches exist (Akpoti et al., 2019).
In addition, most studies focus only on single crops and do
not cover a variety of different crops (Ramirez-Villegas et al.,
2013; Akpoti et al., 2020). Particularly for Africa, domes-
tically consumed staple crops such as yam and cassava are
often overlooked in current studies due to their minor eco-
nomic relevance, despite their regional importance for food
security (Chapman et al., 2020; Chemura et al., 2024; Van
Zonneveld et al., 2023; Karl et al., 2024). So far, none of
the existing approaches systematically considers the impact
of climate variability on crop suitability, which is a major
shortcoming since climate variability is expected to increase
with climate warming and has a strong impact on agriculture
(Vogel et al., 2019; Goulart et al., 2021; IPCC, 2021).

The aim of this study is to introduce the CropSuite model,
which is based on the crop suitability approach developed
by Zabel et al. (2014) and has been further developed by
Cronin et al. (2020) and Schneider et al. (2022a). The model
has previously been applied globally to 23 crops under dif-
ferent climate scenarios (Zabel, 2022). The model applies
Liebig’s law of the minimum, assuming that the scarcest re-
source limits the crop growth. CropSuite is based on a fuzzy-
logic approach where, in contrast to Boolean logic, the truth
value of variables can be any real number between 0 and
1. In fuzzy logic, fuzzy sets consist of elements whose de-
grees of membership are described by membership functions
(Zadeh, 1965). In our approach, we apply fuzzy logic to
create crop-specific membership functions (Fig. 1) describ-
ing the abiotic crop requirements between 0 (not suitable)
and 100 (highly suitable), according to various climatic, soil,
and topographic variables (Zabel et al., 2014). Using a value
range between 0 and 100 (instead of 0 and 1) enables the
use of an 8-bit-integer data type for the internal calculation
and storage of the results, which allows efficient use of the
computer’s memory and hard-disk space. This approach is
adopted, fundamentally redesigned, and expanded, with the
goal of providing a comprehensive but easy-to-use and flex-
ible open-source model that can be applied, e.g., by scien-
tists, farmers, companies, national or international govern-
mental organizations (GOs), and non-governmental organi-
zations (NGOs). Therefore, CropSuite has now been com-
pletely reprogrammed in Python and consists of a graphi-
cal user interface (GUI) as well as several preprocessing and
analysis tools, e.g., for selecting a simulation domain, statis-
tically downscaling the climate data, interpolating the mem-
bership functions, and automatically analyzing and mapping
the results. In addition, CropSuite is complemented by a new
approach to consider the impact of climate variability on crop

suitability. It includes a user manual, which is provided to-
gether with the source code (Knüttel and Zabel, 2024a).

2 Methods and data

For this study, we apply CropSuite to Africa at a 30 arcsec
spatial resolution (approximately 1 km2 at the Equator), with
the goal of simulating relevant but often overlooked crops for
this continent (Van Zonneveld et al., 2023). Table 1 shows the
48 crops that have been parameterized and simulated with
CropSuite.

We simulate a 20-year time period from 1991 to 2010 us-
ing the Climate Hazards Group Infrared Precipitation with
Stations (CHIRPS) v2.0 daily data for precipitation (Funk et
al., 2015) and the Climate Hazards Center Infrared Tempera-
ture with Stations (CHIRTS) v1.0 data for temperature (Funk
et al., 2019; Verdin et al., 2020) at a 2.5 arcmin spatial resolu-
tion over Africa. Both datasets provide climatologies at daily
to monthly resolution based on a combination of satellite re-
mote sensing and climate stations. They benefit from long-
term geostationary satellite observations, delivering consis-
tent data since the 1980s at the quasi-global (50° S–50° N)
scale.

In addition, soil and terrain information is required. Ta-
ble 2 gives an overview of the soil and terrain data used for
this study. Soil data are mainly based on the International
Soil Reference and Information Centre (ISRIC) SoilGrids
(Hengl et al., 2017), which have a spatial resolution of 250 m
but are also provided at a 1000 m spatial resolution. These
data are reprojected to WGS84 and spatially interpolated
to the spatial resolution of 30 arcsec applied in this study
using a nearest-neighbor approach. Base saturation, gyp-
sum, and exchangeable sodium content (ESP, sodicity) are
taken from the World Inventory of Soil Emission Potentials
(WISE) database at a spatial resolution of 30 arcsec (Batjes,
2016). For electric conductivity, the ISRIC Global Soil Salin-
ity Map with a resolution of 250 m is used (Ivushkin et al.,
2019). In contrast to the Harmonized World Soil Database
(HWSD) (FAO et al., 2012), the ISRIC soil datasets do not
contain a layer for texture class. For this reason, the texture
class is determined using the sand and clay layer from Soil-
Grids according to the United States Department of Agricul-
ture (USDA) triangular diagram of soil texture classes (FAO
et al., 2012). For soil depths greater than 200 cm and up to
50 m, the ISRIC dataset on absolute depth to bedrock (Hengl
et al., 2017) is complemented by the dataset from Pelletier et
al. (2016), which covers soil depths up to 200 cm.

Available soil layers can be weighted in CropSuite as re-
quired. The SoilGrids datasets provide information for six
depths: 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm
(Hengl et al., 2017, 2014). According to Sys et al. (1991), soil
properties have different effects on crop suitability depend-
ing on the soil layer. Accordingly, we use weighting factors
as proposed by Sys et al. (1991) (see Table 2). The different
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Table 1. List of the 48 crops considered in this study and simulated with CropSuite. Binomial names are given in brackets.

Alfalfa (Medicago sativa)
Arabica coffee (Coffea arabica)
Avocado (Persea americana)
Banana (Musea spp.)
Barley (Hordeum vulgare)
Beans (Phaseolus vulgaris)
Cabbage (Brassica oleracca)
Carrot (Daucus carota)
Cashew (Anacardium occidentale)
Cassava (Manihot esculenta)
Castor bean (Ricinus commuis)
Chickpea (Cicer arietinum)
Citrus (Citrus spp.)
Cocoa (Theobroma cacao)
Coconut (Cocos nucifera)
Cotton (Gossypium hirsutum)
Cowpea (Vigna unguiculata)
Green pepper (Capsium annuum)
Groundut (Arachis hypogaea)
Guava (Psidium guijava)
Maize (Zea mais)
Mango (Mangifera indica)
Millet (Pennisetum americanum)
Oil palm (Elaeis guineensis)

Olive (Olea europacae)
Onion (Allium cepa)
Papaya (Carica papaya)
Pea (Pisum sativum)
Pineapple (Ananas comosus)
Potato (Solanum tuberosum)
Rapeseed (Brassica napus)
Rice (Oryza sativa)
Robusta coffee (Coffea canephora)
Rubber tree (Hevea brasiliensis)
Rye (Secale cereale)
Safflower (Carthamus tinctorius)
Sesame (Sesamum indicum)
Sorghum (Sorghum bicolor)
Soy (Glycine maximum)
Sugar cane (Saccharum officinarum)
Sunflower (Helianthus annus)
Sweet potato (Ipomoea batatas)
Tea (Camellia senesis)
Tobacco (Nicotiana tabacum)
Tomato (Solanum lycopersicum esculentum)
Watermelon (Colocynthis citrullus)
Wheat (Triticum aesticum)
Yam (Dioscorea)

distribution of the soil depths between the SoilGrids data and
the weighting factors by Sys et al. (1991) is taken into ac-
count using a proportional weighting of the SoilGrids layers.
Terrain data are taken from the Shuttle Radar Topography
Mission (SRTM) dataset (Farr et al., 2007), which are used to
calculate the slope at the spatial resolution applied. Please be
aware that a coarser spatial resolution generally reduces the
slope, which could result in an underestimation of possible
slope limitations in mountainous regions. Possible terracing
could remove the restriction due to the slope, but usually ter-
races are too small to be considered at the aggregated spatial
resolution of 30 arcsec of the SRTM data used in this study.

Membership functions for temperature, precipitation,
slope, soil depth, texture class, coarse fragments, gypsum,
base saturation, pH, organic carbon, electric conductivity,
and sodicity (Fig. 1) are defined for the 48 crops consid-
ered, relying on information from Sys et al. (1993), who pro-
vide membership functions for most of the crops considered.
Additionally, data from the EcoCrop database, which pro-
vides crop ecological requirements for more than 2500 plant
species (FAO, 2024), are used for cowpea, rye, and yam.
CropSuite in principle allows the flexible addition of any fur-
ther membership function and dataset that is relevant for the
use case.

Nutrient deficits, such as nitrogen content, are not consid-
ered in our approach since according to our definition of crop
suitability, they are not a decisive factor for the suitability of
crops but rather depend on the crop management. Accord-

ingly, we do not consider any soil tillage that can affect the
soil properties, such as liming, which can influence the pH
value.

Sys et al. (1993) use a classification system with six
classes, ranging from N2 (unsuitable) to S0 (highly suitable).
In this study, we dismiss the N1 class due to a vague defi-
nition and differentiate three suitability classes: marginally,
moderately, and highly suitable (Table 3).

2.1 The CropSuite model

Figure 2 shows the workflow and outputs of CropSuite,
which first calculates the climate suitability (considering all
climate constraints) and then calculates the soil suitability
(considering all soil and topography constraints). Both data
records can be output separately. Thereby, CropSuite applies
Liebig’s law of the minimum for both the climate and the
soil suitability by choosing the lowest suitability value be-
tween the different soil parameters and climate variables. Fi-
nally, the crop suitability is calculated from the combination
of climate and soil suitability by again following Liebig’s
law of the minimum, which means that the lowest suitabil-
ity value between climate and soil suitability is chosen since
it restricts overall crop suitability. The most-limiting factor is
identified as the parameter that imposes the greatest growth
constraint on a specific crop. In addition, the magnitude of
the constraint is output for each input factor. Overall, Crop-
Suite allows for a variety of outputs for optimal sowing and
harvest dates, suitable sowing days, multiple cropping poten-
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Table 2. Soil and terrain data used in this study and the applied weighting of the different soil layers.

Parameter Source Weighting

Base saturation ISRIC Harmonized Dataset of Derived Soil Properties for the World
(WISE30sec) (Batjes, 2016)

Only top soil

Coarse fragments ISRIC SoilGrids 250m (Hengl et al., 2017) 0–25 cm – 2.0
25–50 cm – 1.5
50–75 cm – 1.0
75–100 cm – 0.75
100–125 cm – 0.5
125–150 cm – 0.25

Electric conductivity ISRIC Global Soil Salinity Map (Ivushkin et al., 2019) Only top soil

Gypsum content ISRIC Harmonized Dataset of Derived Soil Properties for the World
(WISE30sec) (Batjes, 2016)

Only top soil

Organic carbon content ISRIC SoilGrids 250m (Hengl et al., 2017) 0–25 cm – 2.0
25–50 cm – 1.5
50–75 cm – 1.0
75–100 cm – 0.75
100–125 cm – 0.5
125–150 cm – 0.25

Soil pH ISRIC SoilGrids 250m (Hengl et al., 2017) 0–5 cm – 0.33
5–15 cm – 0.33
15–30 cm – 0.33

Sodicity ISRIC Harmonized Dataset of Derived Soil Properties for the World
(WISE30sec) (Batjes, 2016)

Only top soil

Soil depth ISRIC SoilGrids 2017 (soil depth <= 200 cm) (Hengl et al., 2017)
Pelletier et al. (2016) (soil depth > 200 cm)

No weighting

Texture class Texture class calculated from ISRIC SoilGrids 250 m clay and sand content
(Hengl et al., 2017) according to the USDA (FAO et al., 2012)

0–25 cm – 2.0
25–50 cm – 1.5
50–75 cm – 1.0
75–100 cm – 0.75
100–125 cm – 0.5
125–150 cm – 0.25

Slope SRTM aggregated to 30 arcsec (Farr et al., 2007) No weighting

Table 3. The crop suitability classification system used in this study compared to that of Sys et al. (1991, 1993).

Suitability classes according to Sys et al. (1991, 1993) Suitability range Suitability classes used in this study

S0 (highly suitable) 100
75–100 (highly suitable)

S1 (very suitable) 80–99

S2 (moderately suitable) 60–79 33–74 (moderately suitable)

S3 (marginally suitable) 40–59 1–32 (marginally suitable)

N1 (actually unsuitable and potentially suitable) 20–39
0 (unsuitable)

N2 (unsuitable) 0–19
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Figure 1. Membership functions for maize as an example, with a growing cycle of 110 d for the climatic (mean temperature over the growing
cycle, total precipitation over the growing cycle), topographic (slope), and soil constraints (soil depth, texture class, coarse fragments,
gypsum, base saturation, pH, organic carbon, salinity, sodicity) considered.

tial, the limiting factor, and the recurrence rate of potential
crop failure. The output data format can be set to GeoTIFF
or NetCDF.

CropSuite includes a preprocessing procedure that cre-
ates intermediate results for climate variability. Since climate
model data are usually available at a relatively coarse spatial
resolution, CropSuite has implemented a spatial downscaling
module for the climate data, which allows the model to be ap-
plied at a very high spatial resolution from the global to the
regional to the local scale. In this study, we apply a statistical
downscaling to the climate data, refining the spatial resolu-
tion from 2.5 arcmin to 30 arcsec. In principle, the targeted
spatial resolution can be set in CropSuite but is limited to the
available resolution of the additional input data, such as the
soil data, whereas for the climate data, two different statisti-
cal spatial downscaling methods are implemented, requiring
little computational effort. The first methodology is based on
an altitude regression for temperature (Marke et al., 2014),
where the temperature gradients are extracted from the cli-
mate model data via a moving window that can be set in size.
Thereby, the extracted gradients must remain within the nat-
ural boundaries for wet and dry adiabatic temperature gra-
dients. The second downscaling methodology uses the his-
torical high-resolution spatial patterns for monthly tempera-

ture and precipitation taken from WorldClim at a 30 arcsec
spatial resolution (Fick and Hijmans, 2017). To downscale
a coarse-resolution grid cell, all fine-resolution WorldClim
grid cells within the coarse-resolution cell are selected and
aggregated per month. On this basis, additive factors are cal-
culated for temperature, and multiplicative factors are cal-
culated for precipitation separately for each month. Thereby
the sum (mean) of these additive (multiplicative) factors
within the coarse-resolution cell amounts to 0 (1). Consid-
ering the monthly seasonality, these factors are applied to
the coarse-resolution climate data, imprinting the spatial pat-
tern of the high-resolution reference data onto the coarse cli-
mate data at a daily time step. Both downscaling methods
conserve mass and energy from the climate input data by it-
eratively minimizing residuals over the simulation domain.
For a more advanced statistical downscaling to the kilometer
scale, the expert user may apply more complex topographical
downscaling methods (Daly et al., 1994; Fiddes et al., 2022;
Karger et al., 2023) or downscaling based on machine learn-
ing (Damiani et al., 2024; Wang et al., 2021) outside of Crop-
Suite. Furthermore, we do not recommend applying down-
scaling methods implemented with high scaling factors from
very coarse (hundreds of kilometers) to very high (single-
kilometer) resolutions.
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Figure 2. The CropSuite workflow. Input data in blue, intermediate results in red, and output data in green. The processing steps are shown
in white.

CropSuite requires daily climate data as an input for tem-
perature and precipitation. As climate models tend to pro-
duce too many days with low-intensity precipitation, called
“drizzle bias” (Chen et al., 2021), days with aggregated daily
precipitation values below 1 mm d−1 are considered dry days
(Sun et al., 2006). This threshold can be set in the model.
Both downscaled temperature and precipitation data and the
datasets calculated for climate variability are used to calcu-
late the climate suitability. Therefore, the crop-specific mem-
bership functions determine the suitability according to the
average temperature, total precipitation, and the recurrence
rate of potential crop failure over the length of the growing
cycle (time from sowing till maturity) for each day of the year
(DOY). Thereby, the suitability value for each DOY refers to
the average conditions during the growing cycle from that
DOY, which corresponds to the sowing date, until maturity,
determined by the length of the growing cycle, which is set in
the crop parameterization for each crop. For perennial crops,
the length of the growing cycle is set to 365 d. Climate suit-
ability throughout the year is then identified by selecting the
minimum (most-limiting) value of the three individual suit-
ability values for temperature, precipitation, and climate vari-
ability. As shown in Fig. 3, the DOY with the highest climate

suitability value over the year finally determines the optimal
sowing date for annual crops (optimal planting date for rice,
which is not sown but is planted as a seedling in wet rice
cultivation). For perennial crops this is set to 1.

For annual crops, CropSuite also calculates the potential
for multiple harvests without considering crop rotation. Be-
tween harvest and reseeding, we assume a certain time period
(21 d in this study) for fieldwork and processing, which can
be set flexibly in the model. Accordingly, all possible combi-
nations of sowing dates are tested with the aim of maximiz-
ing climatic suitability to achieve the highest sum of climatic
suitability within a year. The optimal sowing dates are se-
lected from the best sowing date combinations, resulting in
one, two, or three sowing dates per year. A multiple cropping
layer that shows how often a crop can be harvested within 1
year is output.

CropSuite distinguishes between rainfed and irrigated
agricultural systems, which can be selected before starting
the simulation. For the irrigated case, precipitation is not
considered a constraining factor, with consequences for all
further calculations, affecting, e.g., the climate variability,
the optimal sowing date, and the multiple cropping. For this
study, we simulated both rainfed and irrigated options sepa-
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Figure 3. Schematic illustration of the determination of climate
suitability, the optimal sowing date, and the limiting factor. The
input data show the annual course of temperature and precipita-
tion and the recurrence rate of potential crop failure, indicating
whether it is too cold, too dry, or too wet. The crop parameteri-
zations show the membership functions resulting in the individual
suitability values for each DOY for temperature (red line), precipi-
tation (blue line), and climate variability (green line). Climate suit-
ability throughout the year (dashed black line) results from the low-
est of the three curves (most limiting) on any day. The highest value
of climate suitability over the year finally determines the optimal
sowing date. The limiting factor is the most constraining factor at
this point.

rately for all crops. In the postprocessing, we combined both
datasets according to the irrigated areas dataset by Meier et
al. (2018) (Fig. S1 in the Supplement), which is available at
a 30 arcsec spatial resolution.

For germination, crop-specific temperature and soil water
requirements can be set in the model. The latter can be con-
sidered for rainfed conditions by defining a certain amount
of precipitation within a certain period of time after sowing.

Some crops, such as soybeans, have a high photoperiodic
sensitivity that can limit their suitability (Cober and Mor-
rison, 2010; Abdulai et al., 2012). Therefore, crop-specific
photoperiodic sensitivity can be considered in CropSuite by
defining a maximum and minimum day length on average
over the growing cycle.

Additional lethal climatic limitations can be taken into ac-
count in CropSuite. We assume permafrost in areas with an
average annual temperature below 0 °C, which is computed
from the downscaled climate input data. A maximum lethal
temperature threshold of > 40 °C on average over the grow-
ing cycle is set for all crops (Asseng et al., 2021). In addition,
a minimum and maximum threshold for the lethal tempera-
ture over a certain consecutive number of days can be set in
the model per crop. Further, the maximum number of consec-
utive dry days can be set dependent on the crop. CropSuite
allows for the consideration of vernalization requirements for
winter crops. Therefore, crop-specific temperature require-
ments with minimum and maximum temperature thresholds
for a certain number of effective vernalization days can be
configured in the model. Accordingly, CropSuite simulates,
for each location, if and when these vernalization require-
ments are fulfilled, which impacts the length of the vernal-
ization period and the optimal sowing date. An offset of days
from sowing to the start of the vernalization period can op-
tionally be added.

A GUI is available for CropSuite that allows users to easily
set the model up, parameterize the crop requirements and the
membership functions (Fig. 4a–e), and start the simulations.
Further, new membership functions can be created, an un-
limited number of crop-specific requirements can be defined,
and any additional data can be added, which can be flexibly
assigned to the predefined membership functions (Fig. 4e).
Moreover, new crops or crop varieties can be added. The GUI
also allows for the visualization, analysis, and comparison of
the results (Fig. 4f).

2.2 Climate variability

In addition to several improvements and redesigns, one of the
most important advancements in CropSuite is the considera-
tion of climate variability in the assessment of crop suitabil-
ity. Usually, crop suitability models consider long-term cli-
mate averages, e.g., 10-, 20-, or 30-year periods and climatic
trends that affect crop suitability (Ramirez-Villegas et al.,
2013; Schneider et al., 2022b). They are not designed to sim-
ulate seasonal yields, as, for instance, mechanistic crop mod-
els do (Jägermeyr et al., 2021). However, existing crop suit-
ability approaches may overestimate crop suitability when
only long-term averages are considered because high cli-
matic variability may result in a high frequency of unsuitable
years, which would result in crop failure. This would, how-
ever, significantly increase the risk for farmers, who require
stable conditions that can be planned around. As a result, a
farmer may conclude that the risk of crop failure due to un-
stable climate conditions in a certain region is too high for
crop cultivation. As such, climate variability is not a purely
ecological limitation but depends on the socioeconomic cir-
cumstances of how farmers deal with the risk of crop fail-
ure. We developed an approach that allows for the considera-
tion of climate variability and thus the implicit integration of
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Figure 4. The graphical user interface of CropSuite. Panel (a) shows the main screen, panel (b) shows an example of available model
settings, panel (c) shows the available options for crop parameterizations for the example of maize, panel (d) shows the window to set up the
simulation domain, panel (e) shows the setup of a parameter dataset for soil pH as an example, and panel (f) shows the integrated data viewer
in CropSuite.

socioeconomic limitations into the suitability assessment for
crops.

Therefore, we specify a crop-specific lower and upper
threshold for temperature and precipitation. We recommend
using these thresholds between the higher and lower 5 % and
10 % of the suitability values of the crop-specific member-
ship function (Figs. 1, 4c). If the suitability of the member-
ship function does not approach 0 at its higher (lower) limit,
we recommend setting the threshold to the highest (lowest)
value of the membership function. This is the case for the wet
limit of the precipitation membership function for maize (see
Fig. 1c). For each year within a given period of time (here
we use 20-year time periods), how often these thresholds are
surpassed during the growing cycle for all possible sowing
dates (1 January until 31 December) is tested and totaled. As
a result, a variability dataset is generated for each DOY, in-
dicating the number of years in which at minimum either the

temperature or the precipitation surpasses the threshold val-
ues. The number of years is divided by the length of the time
period (here 20 years) to obtain the recurrence rate of poten-
tial crop failure. This data can be stored as a two-dimensional
raster file for perennial crops or as a three-dimensional raster
file for non-perennial crops, with each of the 365 DOYs rep-
resenting the conditions for the respective sowing day.

For rainfed agricultural systems, the cases that are consid-
ered for climate variability include excessively high or low
temperatures and precipitation, while for irrigated agricul-
tural systems, only excessively high or low temperatures and
excessively high precipitation are considered, to address po-
tential water logging, plant diseases, or root rotting. Due to
computational limitations, the preprocessing of the climate
variability is carried out at the resolution of the input climate
data (2.5 arcmin) and is further interpolated bilinearly to the
output resolution of 30 arcsec.
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Figure 5. The membership function for climate variability, showing
the impact of the recurrence rate of potential crop failure on crop
suitability. The seasonal recurrence rate is shown in percent.

Finally, we introduce a membership function defining the
impact of climate variability on crop suitability. As shown in
Fig. 5, a sigmoid is adopted for the course of the function.
According to expert knowledge, we set this sigmoid function
in a way that reduces the suitability to 0 when the recurrence
rate of potential crop failure is greater than once every 4 years
(25 %). However, this function may be different in different
parts of the world and different between crops (see Discus-
sion section).

3 Model evaluation

Crop suitability is difficult to validate or measure, and it is not
equivalent to agricultural yields or production values. How-
ever, a comparison with other studies and data can provide
valuable information and build confidence in the approach.

3.1 Comparison with harvested area

In principle, a crop should be suitable where it is already cul-
tivated. According to this premise, we compare the suitable
area simulated with CropSuite to the harvested areas from
the global spatially disaggregated crop production statistics
data for 2020 (MapSPAM 2020 v1.0) produced by the In-
ternational Food Policy Research Institute (IFPRI) using the
Spatial Production Allocation Model (SPAM) (IFPRI, 2024).
The CropSuite results for Africa consider climate variabil-
ity and are combined for irrigated and rainfed areas accord-
ing to Meier et al. (2018). While MapSPAM is related to the
year 2020, our simulations refer to the 1991–2010 time pe-
riod, which could be a source of uncertainty. Nevertheless,
we used MapSPAM 2020 instead of other available versions
of MapSPAM since it includes 32 crops from our investiga-
tion and is the latest version of MapSPAM released. A com-
parison between CropSuite and different MapSPAM versions
is shown for maize as an example in Fig. S2, revealing a con-

siderably better fit with CropSuite in the MapSPAM 2020
version. For comparison, harvested areas below 10 ha per
pixel are excluded from the calculation, and the high spa-
tial resolution of the CropSuite model output is resampled
to the same spatial resolution (5 arcmin) as the MapSPAM
2020 data. Figure 6 depicts the results of this analysis for all
crops, where green and purple bars represent areas that are
suitable, and orange and green areas represent harvested ar-
eas in MapSPAM. Purple bars indicate suitable areas that are
currently not used by the respective crop. While green areas
are also identified as being suitable in our approach, orange
areas are not suitable in CropSuite despite the respective crop
being harvested according to MapSPAM. The crops with the
largest mismatching areas are rice, maize, and onion (Fig. 6).
Most crops show a small proportion of orange to green areas,
except for onions, rapeseed, cocoa, pea, rubber, tea, coffee,
and rice (Fig. S3). This can have various causes, such as un-
certainty in climate, soil, and irrigation data (Avellan et al.,
2012); incorrect membership functions; the use of different
crop varieties; or an incorrect localization of the cultivation
areas in MapSPAM due to high uncertainties in the under-
lying national statistical data, especially in African countries
(Yu et al., 2020), or due to crop management practices that
could level out ecological limitations.

Figure 7a shows the spatial comparison between crop suit-
ability and harvested areas for maize. Areas where maize is
harvested according to MapSPAM, even though CropSuite
has identified these areas as unsuitable, are found mainly
in Egypt, the northern Sahel, and the Congo Basin, as well
as parts of Cameroon, Gabon, Kenya, Tanzania, Zimbabwe,
and South Africa. Figure 7b shows the comparison when ig-
noring the impact of climate variability on crop suitability.
Disregarding climate variability results in large (blue) areas
that are considered suitable but are no-harvest areas accord-
ing to MapSPAM, especially along the dry belts (15° N and
20° S). Our approach considering climate variability (Fig. 7a)
reduces these blue areas but induces some mismatches where
MapSPAM indicates harvested areas and CropSuite shows
no suitability (red areas). We find that the mismatching areas
along the dry belts (including the Sahel) and in eastern Africa
(Tanzania, Kenya) are often associated with limits due to cli-
mate variability. This indicates that the thresholds for climate
variability (Sect. 2.2) and the membership function (Fig. 5)
might be parameterized slightly too exclusively. However,
some of these regions might be used as cropland by small-
holders or subsistence farmers despite the high risk of crop
failure.

In the inner tropics, the limited crop suitability can pri-
marily be attributed to soil acidity (pH), indicating possible
uncertainties with the SoilGrids dataset used; differences in
Egypt mainly result from discrepancies according to differ-
ent assumptions for irrigated areas.
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Figure 6. Comparison of CropSuite and MapSPAM 2020 for all matching crops. CropSuite results combine irrigated and rainfed areas
according to Meier et al. (2018) and consider climate variability. Areas in which the respective crop is harvested according to MapSPAM
and which are suitable according to CropSuite are shown in green; areas that are suitable but in which the crop is not harvested are shown in
purple. Areas that are unsuitable but are harvested according to MapSPAM are shown in orange, while unsuitable areas that are not harvested
according to MapSPAM are shown in gray.

3.2 Comparison with GAEZ

A state-of-the-art climate-edaphic suitability assessment for
crops is provided by the Global Agro-Ecological Zones
(GAEZ) v4 (Fischer et al., 2021). For comparison with Crop-
Suite, we used GAEZ data for the time period of 1981–2010
for a high input level, rainfed conditions, and the option “all
land in grid cell”. The high input level refers to advanced
management assumptions (fully mechanized; optimum ap-
plication of nutrients; and chemical pest, disease, and weed
control) (Fischer et al., 2021), which correspond best to the
assumptions made in CropSuite for this study. The suitabil-
ity range of the GAEZ data is transformed into the classi-
fication system, as shown in Table 3. The CropSuite data
for rainfed conditions are resampled (using the average) to
the same spatial resolution of 5 arcmin as the GAEZ data.
For this comparison, we use CropSuite data without climate
variability since the GAEZ approach does not consider cli-
mate variability. Coffee was compared against the best type
(either robusta or arabica), as was done in the GAEZ data
(Fischer et al., 2021). Overall, there are large overlaps be-
tween GAEZ and CropSuite (Fig. 8). Generally, CropSuite

identifies larger suitable areas than GAEZ for Africa (pur-
ple bars in Fig. 8), particularly for barley, cabbage, chick-
pea, rapeseed, rye, and wheat. A main reason for differences
may be due to different underlying soil data: GAEZ uses the
HWSD, while CropSuite uses the SoilGrids data. As an ex-
ample, we found abrupt changes in the GAEZ results, espe-
cially between borders (e.g., between Angola and Zambia),
which follows the patterns of a known issue in the underlying
HWSD (Dewitte et al., 2013). The consideration of climate
variability in CropSuite mainly results in larger areas that are
unsuitable in CropSuite but still suitable in GAEZv4 (orange
bars) (Fig. S4).

3.3 Comparison of optimal sowing dates with the
GGCMI crop calendar

Another method of validation involves comparing the opti-
mal sowing dates computed with CropSuite to the crop cal-
endar from the Global Gridded Crop Model Intercompari-
son (GGCMI), which is available globally for a variety of
different crops at a 0.5° spatial resolution (Jägermeyr et al.,
2021). Figure 9 illustrates the average differences in the sow-
ing dates across Africa, averaged for the matching crops in
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Figure 7. Comparison of CropSuite and MapSPAM 2020 for maize. Panel (a) shows the comparison when considering climate variability
in CropSuite, while climate variability is not considered in (b). Areas in which the respective crop is harvested according to MapSPAM and
which are suitable according to CropSuite are shown in green; areas that are suitable but in which the crop is not harvested are shown in blue.
Areas that are not suitable but are harvested according to MapSPAM are shown in red. Unsuitable areas that are not harvested according to
MapSPAM are shown in white.

the two datasets. The comparison is performed at a spatial
resolution of 30 arcsec (Fig. 9) and at a half degree resolu-
tion (see Fig. S5). For the high spatial resolution, the GGCMI
data are interpolated to 30 arcsec using the nearest-neighbor
method. Unlike CropSuite, which displays the optimal sow-
ing date, the GGCMI data show the actual sowing date based
on extrapolated statistics. Thus, there might be differences
between the optimal and actual sowing dates. We must also
consider that the GGCMI crop calendar is based on statistics
that apply to discrete areas at a relatively coarse half degree
spatial resolution, while CropSuite was simulated at a pixel
accuracy of a 30 arcsec spatial resolution. In fact, the median
differences are mostly within 1 month of the GGCMI crop
calendar, which generally indicates high agreement. Gener-
ally, we found that a greater distance to the Equator poten-
tially increased the discrepancy between the two datasets. As
an example, in tropical climates with dry and rainy seasons,
a shift from one rainy season to another rainy season might
result in a greater discrepancy. Also, we found that the distri-
bution of sowing dates over the year was less concentrated in
CropSuite, which could be a result of the higher spatial res-
olution (see Fig. S6). At the coarse resolution, the difference
between the two datasets and the spread is smaller (Fig. S5).

4 Simulation results

Crop suitability is simulated for historical climate conditions
(1991–2010) for rainfed and irrigated conditions. Figure 10a

illustrates the overall crop suitability, showing for each lo-
cation the value for the most suitable of all crops consid-
ered. Irrigation is considered according to the currently ir-
rigated areas for Africa (Meier et al., 2018), such as along
the Nile river in Egypt (see Fig. S1 for irrigated areas in
Africa). In total for Africa, 5.7×106 km2 is highly suit-
able, 10.6×106 km2 is moderately suitable, 3.3×106 km2 is
marginally suitable, and 10.4×106 km2 is not suitable for
crop cultivation. Mainly between 10° N and 10° S, a high po-
tential for multiple cropping exists, with the possibility of
two or three harvests per year (Fig. 10b). Looking at the
number of crops suitable for cultivation (Fig. 10c), a large
proportion of the crops considered can grow along the wet
savannahs in particular, which gives these regions plenty of
opportunities for cultivation. In contrast, only a few crops are
suitable for the inner tropics and the dry savannahs, which
limits the possibilities for switching between crops.

Figure 11 shows the suitable area for each of the sim-
ulated crops in Africa. The five crops with the largest
suitable areas in Africa are safflower (16.82×106 km2),
sesame (15.76×106 km2), guava (14.15×106 km2), cowpea
(13.61×106 km2), and mango (13.39×106 km2).

Figure 12a shows the crop suitability simulated for maize
as an example. The maps for all crops are provided via Zen-
odo (see “Data availability” section). Maize is highly suit-
able along a strip of the 10° N and the 20° S parallel, as
well as in large parts of Mozambique and Madagascar. In to-
tal, 0.49×106 km2 is highly suitable, 4.34×106 km2 is mod-

https://doi.org/10.5194/gmd-18-1067-2025 Geosci. Model Dev., 18, 1067–1087, 2025



1078 F. Zabel et al.: CropSuite v1.0

Figure 8. Comparison between CropSuite and GAEZv4 suitability data for all matching crops. CropSuite results are shown without consider-
ing climate variability. Areas that are suitable in both CropSuite and GAEZv4 are shown in green; areas suitable in CropSuite but not suitable
in GAEZv4 are shown in purple. Unsuitable area in CropSuite that is suitable in GAEZv4 is shown in orange. Areas that are unsuitable in
both datasets are shown in gray.

erately suitable, 3.97×106 km2 is marginally suitable, and
21.23×106 km2 is unsuitable.

The optimal sowing date for single cropping (Fig. 12b)
for maize shifts with latitude from the Northern Hemisphere
across the Equator to the Southern Hemisphere. Figure 12c
shows the number of potential harvests per year for maize.
Climate conditions allow up to two harvests per year in some
parts of Congo and Cameroon and in the irrigated areas,
e.g., along the Nile river. Optimal sowing dates for first and
second sowing in areas suitable for multiple cropping are
shown in Fig. S8.

Figure 12d shows the climate suitability for maize, which
only considers climatic constraints for the suitability of
maize. In comparison to the crop suitability map (Fig. 12a),
more areas are suitable, and suitability is substantially higher
if soil and topography are not considered and therefore do
not limit or reduce crop suitability.

The most-limiting factor is shown in Fig. 13a. While low
precipitation prevents maize from being suitable in large
parts of Africa in the arid deserts, soil predominantly restricts
suitability in tropical regions. In particular, pH is the most-
limiting factor in the humid tropics, such as the Congo Basin,
where soils are too acidic to grow maize. A large band along

the drylands highlights regions where inter-annual climate
variability is limiting maize suitability the most (in orange,
Fig. 13a). Here, climate conditions are unstable for maize
cultivation, and the recurrence rate of potential crop failure
is larger than 25 % (every fourth year). For maize, climate
variability limits crop suitability over 4.4×106 km2 in Africa
(Fig. 13a).

Figure 13b shows the degree of limitation for all climate,
soil, and terrain factors considered along a transect following
20° E from north to south. In the Sahara, several factors, in-
cluding temperature, organic carbon content, and soil pH, are
not in an optimal range, while precipitation and the climate
variability are the most-limiting factors (note that climate
variability is by definition a limiting factor if precipitation
and/or temperature are limiting factors). Due to the unfavor-
able soil conditions, irrigation would only slightly improve
maize suitability here. Between 15 and 5° N, the limitations
of all factors are relatively low. Here, coarse fragments and
base saturation are the most-limiting factors. The tropical ar-
eas along the transect between 5° N and 10° S are mainly
constrained by soil pH. Accordingly, soil management or
practices that increase pH in these regions would have a sig-
nificantly positive impact on crop suitability in this region
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Figure 9. Comparison of the optimal sowing dates from Crop-
Suite and the actual sowing dates from the GGCMI crop calendars.
The area-weighted shift in the sowing date in days is shown for
all matching crops. Negative values mean an earlier sowing date
in CropSuite; positive values mean a later sowing date in Crop-
Suite compared to the GGCMI crop calendar. The bars show the
5th and 95th percentiles; the orange marker shows the median. The
color of the bars indicates the climatically suitable area for the
whole of Africa. Irrigated areas are considered according to Meier
et al. (2018). The comparison is performed at a 30 arcsec spatial
resolution for both datasets.

since no other factor has such a strong impact on maize suit-
ability. Further south, low precipitation again mostly limits
maize suitability.

Consideration of climate variability significantly reduces
climate suitability for maize, as shown in Fig. 14a, mainly
in the transition area between dry savannah and desert in the
Sahel zone; in Burundi and Tanzania in eastern Africa; and
in the southern part of Africa in Angola, Zambia, Zimbabwe,
Mozambique, South Africa, and the southern part of Mada-
gascar. In total, climate variability reduces climate suitability
over more than 5.4×106 km2.

Optimal sowing dates also shift when considering climate
variability since the algorithm identifies the most suitable
time window for the growing cycle over the year (Fig. S10).
As a result, optimal sowing for maize considerably shifts in
Tanzania, Mozambique, and Madagascar.

Figure 14b shows the impact of climate variability on the
overall crop suitability for all crops. In this case, overall crop
suitability is reduced over 2.2×106 km2, mainly in Somalia;
Kenya; Ethiopia; South Africa; and the Maghreb countries of
Morocco, Algeria, Tunisia, and Libya. These regions gener-
ally show high vulnerability to climatic variability. Climate
variability also reduces the potential for multiple cropping in
general for all crops over more than 2.3×106 km2 (Fig. S11).

5 Discussion

We found that consideration of climate variability signifi-
cantly affects crop suitability, multiple cropping, and opti-

mal sowing dates in Africa. Our approach allows us to ad-
just the risk aversion of farmers by adjusting the thresholds
for climate variability (Sect. 2.2.) and the membership func-
tion (Fig. 5). The shape of this function may differ between
crops and regions and might be influenced by several so-
cioeconomic factors, such as the degree of mechanization,
financial possibilities, and the availability of crop insurance,
which is likely to reduce the risk aversion of farmers. We
suggest that the function shown in Fig. 5 is a broad and gen-
eral solution, which is primarily designed to represent risk
aversion of commercial farms. In our comparison analysis
for maize (Sect. 3), reference data showed some cultivation
in the regions we identified as unsuitable due to the high re-
currence rate of potential crop failure caused by high climate
variability (Fig. 7). In some regions, despite the high risk of
crop failure, land might be cultivated by smallholders or sub-
sistence farmers who have no other choice but to cultivate
these lands. However, we admit that the tuning of the climate
variability thresholds and the membership function requires
more research, and the optimal results will vary depending
on the crop and region. CropSuite offers the platform and the
possibility to conduct such assessments.

The results of CropSuite (Sect. 4) are subject to uncertain-
ties in the climate, soil, terrain, and irrigation data applied,
as well as the membership functions (Fig. 1). Soil and terrain
data are assumed to be static, although management could
influence soil properties such as pH, and terracing could re-
duce slope limitations. The climate data from CHIRPS and
CHIRTS applied here are found to be particularly valuable
in regions where climate stations are sparse. Over Africa,
CHIRPS is successfully validated (Dinku et al., 2018), show-
ing good performance (Lemma et al., 2019; Muthoni et al.,
2019). Verdin et al. (2020) also report good agreement of
CHIRTS over Africa, with poor performance, however, over
central Africa, the Horn of Africa, and parts of northern
Mali. Generally, both datasets rely on station data to cor-
rect the satellite estimations, which is why uncertainties for
very data-scarce regions remain. To apply CropSuite to re-
gions outside 50° S–50° N or to longer time periods before
the 1980s, the user of CropSuite could also rely on global
high-resolution climate reanalysis, such as ERA5 (Hersbach
et al., 2020). For the African continent, the ERA5 reanal-
ysis shows large improvements over its predecessor, ERA-
Interim (Gleixner et al., 2020). Still, considerable deviations
in precipitation from CHIRPS are reported, e.g., wet biases
over Uganda (Gleixner et al., 2020) and a dry bias over the
western Sahel (Gbode et al., 2023), where CHIRPS is ap-
plied as a reference. We therefore assume that CHIRPS and
CHIRTS are very suitable climatic datasets to investigate our
example of maize suitability in Africa. The soil profiles used
for the generation of the SoilGrids show a heterogeneous dis-
tribution with large gaps over central Africa, which is why
Hengl et al. (2017) attribute uncertainty in the data to the un-
dersampling. They argue that a few hundred additional pro-
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Figure 10. (a) Overall crop suitability, (b) potential multiple cropping, and (c) number of suitable crops under historical climate conditions
from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). The overall crop suitability (a) and the potential multiple
cropping (b) are each shown for the most suitable crop at each location. The maximum number of suitable crops is a result of the 48 crops
considered (see Table 1) in this paper. Figure 10a is shown with a different color map in the Supplement (Fig. S7).

Figure 11. Marginally, moderately, and highly suitable areas for all 48 crops under historical climate conditions from 1991 to 2010 in Africa.
Suitability classes are chosen according to Table 3. Irrigated areas are considered according to Meier et al. (2018).

files in undersampled areas could massively improve the re-
sulting SoilGrids.

The membership functions derived by Sys et al. (1993) are
widely applied but are also governed by inherent uncertain-
ties. Herzberg et al. (2019) argue that the assessment by Sys
et al. (1993) is not detailed enough to capture specific fea-
tures of small areas. They find that Sys et al. (1993) would
consider a hilly area in tropical Vietnam unsuitable due to
too acidic soils and steep slopes, whereas the local farmers
can cultivate the land. Furthermore, the approach cannot ac-

count for compound effects and interactions of the climate
and soil variables (Elsheikh et al., 2013). The membership
functions cover the general behavior in a univariate manner,
while real plant physiology is a more complex interplay of
climatic variables and soil conditions (Joswig et al., 2022).
This also applies specifically to compound extremes, for ex-
ample the combination of hot and dry climatic conditions
(Goulart et al., 2023) that limits water availability and favors
evaporation, which can trigger water and temperature stress
in plants. This is relevant in the course of a warming climate,
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Figure 12. (a) Crop suitability, (b) optimal sowing date for single cropping, (c) potential multiple cropping, and (d) climate suitability for
maize under historical climate conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018). Figure 12a is
shown with a different color map in the Supplement (Fig. S9).

as the joint probability of hot and dry conditions is projected
to increase in many regions of the world (Bevacqua et al.,
2022; Felsche et al., 2024). This is, however, not a specific
drawback of CropSuite but rather a lack of bivariate, multi-
variate, or interactive membership functions. The assessment
of the membership functions by Sys et al. (1993) is also out-
dated for new crop varieties that might be more resilient to
climatic and environmental stressors (Peter et al., 2020). Fur-
thermore, we argue that the uncertainty in the temperature
and precipitation membership functions is by design larger
at its low and high ends, as the functions are derived empir-

ically. Since our consideration of climate variability is based
on the 5 % to 10 % suitability values (see Sect. 2.2), the un-
certainties in the membership functions are propagated to the
assessment of climate variability. More research and updated
functions could support the results by CropSuite.

The sampling of climate variability within 20-year peri-
ods is limited, as variability can cover wide time ranges.
There, the application of single-model initial-condition large
ensembles can help to robustly assess the variability based
on decadal or multidecadal time periods (Deser et al., 2020).
This is especially important for precipitation and precipita-
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Figure 13. Limiting factors. (a) the most-limiting factor for suitability for maize under historical climate conditions from 1991 to 2010.
Panel (b) shows the degree of limitation of all factors along a transect of 20° E from 30° N to 30° S. The most-limiting factors are displayed
with priority according to the order in the legend in (a) if more than one factor fully limits the suitability. For visualization, the shapes in (b)
are smoothed using a moving average. Irrigated areas are considered according to Meier et al. (2018) in (a) and are not considered in (b).

Figure 14. Impact of the consideration of climate variability on crop suitability (a) for maize and (b) for the overall crop suitability of all
crops under historical climate conditions from 1991 to 2010. Irrigated areas are considered according to Meier et al. (2018).
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tion extremes, which show high sensitivity to climate vari-
ability (Lang and Poschlod, 2024; Tebaldi et al., 2021). Fur-
thermore, for the assessment of climate variability, we only
capture the occurrence of growing seasons exceeding the per-
centile thresholds, but we do not consider the intensity of
the events. Single days with extreme precipitation can in-
duce flooding that leads to crop failure (Balgah et al., 2023;
Müller et al., 2023), even though the average precipitation
for the growing season is still within the suitable range of
the membership function. This drawback, however, also ap-
plies to most of the mechanistic crop models at the global
scale (Ruane et al., 2017), while regional applications evolve
incorporating crop losses due to waterlogging and flooding
(Li et al., 2016; Monteleone et al., 2023; Pasley et al., 2020).
This is why we claim to assess climate variability and not
climate extremes inducing potential crop failure.

6 Conclusions

CropSuite is a new, easy-to-use comprehensive open-source
model that provides a complete processing chain (prepro-
cessing, spatial downscaling, suitability simulations, data
analysis, and visualization) for carrying out crop suitability
and climate change impact analysis. CropSuite allows users
to easily parameterize different varieties of the same crops or
additional crops by determining the membership functions in
the GUI. Thereby, the fuzzy-logic approach makes it easy to
use expert knowledge for the parameterization of the mem-
bership functions. Besides all data and the compiled maps
generated, we provide a user manual for CropSuite (Knüt-
tel and Zabel, 2024a) and the parameterizations of the 48
crops considered in this study. Furthermore, the model al-
lows the flexible addition of further parameters and member-
ship functions that might affect suitability if the required data
are provided. For the future, this allows the consideration of
further ecological and socioeconomic limitations (such as ac-
cess to fertilizers; available labor, know-how, infrastructure,
and transportation; and heat stress impacts on labor) that have
not yet been sufficiently considered in crop suitability assess-
ments (Orlov et al., 2024; Akpoti et al., 2019).

For this study, we simulated 48 crops in Africa under the
consideration of climate variability in historical climate con-
ditions. Thus, we created a huge dataset, providing detailed
high-resolution information on climate, soil, and crop suit-
ability; optimal sowing dates; multiple cropping potential;
and the limiting factors, which can be used for follow-up
studies and climate impact assessments. Additionally, the
data include substantial information to develop strategies for
efficient land use (Schneider et al., 2024; Molina Bacca et al.,
2023; Delzeit et al., 2019). The consideration of future cli-
mate change scenarios will allow for the investigation of ef-
ficient strategies for climate change adaptation through shift-
ing sowing dates or cultivar and land-use change. Further,
information about the limiting factors can be helpful to opti-

mize crop management since it identifies the parameter that
most efficiently improves crop suitability.

Code availability. The CropSuite (v1.0) code is written in Python
and is available open-source (CC BY-SA 4.0), together with the
GUI, on Zenodo (https://doi.org/10.5281/zenodo.13285635,
Knüttel and Zabel, 2024b) and GitHub (https://github.
com/flozabel/CropSuite, last access: 15 February 2025).
A user manual is provided separately on Zenodo
(https://doi.org/10.5281/zenodo.14196314, Knüttel and Zabel,
2024a).

Data availability. The data results are avail-
able for download as GeoTIFF files on Zenodo
(https://doi.org/10.5281/zenodo.13285541, Zabel et al., 2024). In
addition to the figures shown as examples for maize in this paper,
the compiled figures for all 48 crops considered are provided
for download, including a separation of rainfed and irrigated
agricultural systems and a comparison with MapSPAM 2020
(https://doi.org/10.5281/zenodo.13285541, Zabel et al., 2024).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/gmd-18-1067-2025-supplement.
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