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Abstract. Machine learning (ML) models are commonly
used to generate predictions, but these models can also sup-
port the discovery of new science. Generating accurate pre-
dictions necessitates that a model captures the structure of
the underlying data. If the structure is properly extracted, ML
could be a useful exploratory and evidential tool. In this pa-
per, we present a case study that demonstrates the use of ML
for exploratory data analysis (EDA) in the climate space. We
apply the ML explainability method of spatiotemporal ze-
roed feature importance (stZFI) to understand how climate-
variable associations evolve over space and time. Our anal-
yses focus on data from ensembles of Earth system models
(ESMs) which provide data on different climate states and
conditions. We elect to work with ESM ensembles since they
allow us to compare feature importance across alternative
scenarios not available with observed data. The ensembles
also account for natural variability so that we can distinguish
between signal and noise due to natural climate variability
when computing feature importance. The use of perturbed
initial condition ensembles introduces variability mimick-
ing the natural variability in the atmosphere; thus the sig-
nals emerging using feature importance (FI) can be evaluated
against the natural variability in the climate system. For our
analyses, we consider the 1991 volcanic eruption of Mount
Pinatubo, which was a large stratospheric aerosol injection.
We explore the climate pathway associated with the eruption
from aerosols to radiation to temperature at both the near-
surface and stratospheric levels. In addition to applying the
method to data generated from two different ESMs, we apply
stZFI to reanalysis data to compare the associations identi-
fied by stZFI. We show how stZFI tracks the importance of
aerosol optical depth over time on forecasting temperatures.
This case study illustrates usefulness of an ML tool (stZFI)
for EDA on a well-studied climate exemplar.

1 Introduction

Climate science questions are often studied using ensembles
of Earth system models (ESMs). Since we cannot conduct
global controlled-climate experiments to understand cause
and effect, ESMs allow climate scientists to explore the
effects of different climate conditions on the climate sys-
tem. However, ESMs generate large quantities of data (con-
sidering the number of ensemble members, spatial resolu-
tion, temporal resolution, etc.) which can be difficult to pro-
cess and understand. Therefore, methods that summarize
and identify trends are valuable for working with data from
ESMs. Exploratory data analysis (EDA) is the general ap-
proach to exploring, analyzing, and summarizing patterns
in data. EDA includes the computation of simple summary
statistics such as means, standard deviations, and correla-
tions, along with data visualizations. These approaches pro-
vide a high-level view of trends but can overlook important
details. More sophisticated EDA techniques allow scientists
and practitioners to understand detailed trends in the data,
which promotes the ability to draw conclusions and propose
new hypotheses. Our objective in this paper is to present
a case study showing the utility of a new EDA technique
that leverages the data-driven modeling approach of machine
learning (ML) and ESMs to gain insights into climate prob-
lems.

ESMs provide a mathematical representation of the com-
plex and chaotic nature of Earth’s climate. When these mod-
els are run with different initial states, parameter values, ex-
ternal forcings, and so on, the models produce an ensemble
of simulations that represent different possible climate sce-
narios. The ensemble members provide an estimate of model
and natural variability given a particular forcing and enable
investigation of possible climate outcomes that are not re-
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alized in the observational record. From a ML perspective,
these ensemble members represent a set of temporal “repli-
cates”, where the true underlying relationships are known.
In contrast, observational climate data only provide a sin-
gle instance in space–time. Observed data are also limited
to events in the past, which may not include all events that
researchers and policymakers are interested in studying. For
example, no major stratospheric aerosol injection experiment
has been conducted in the field, but we are still interested in
the impact that such a scenario would produce. ESMs pro-
vide a way to understand variable relationships not seen in
observational data and capture natural climate variability.

There is a rich history of using ML and statistical mod-
els for analyses with ensembles of ESMs. Examples of these
analyses include Tebaldi et al. (2005) and Smith et al. (2009),
who built statistical models to quantify the uncertainty in
replicates from different ESMs. Going in the other direction,
many approaches have been developed which use observa-
tional data to calibrate climate model replicates (e.g., Reich-
ler and Kim, 2008; Armour et al., 2013, and Baker et al.,
2016). More recently, ML models are used to provide insight
into climate processes by quantifying relationships between
ESM variables (e.g., Hart et al., 2023; de Burgh-Day and
Leeuwenburg, 2023). McClernon et al. (2024) considered the
assessment of ML models used in such situations and de-
veloped a cross-validation procedure using ESM ensemble
members to obtain a true “replicate hold-out” set to assess the
commonly used “repeated hold-out” cross-validation process
for time series data (Cerqueira et al., 2020). Replicate hold-
out uses many independently generated full time series from
the same ESM for the same period, with one series chosen
as the training set and another as the testing set, while re-
peated hold-out splits single timer series into training and
testing sets. Notably for replicate hold-out, the train and test
set cover the same time span, whereas in repeated hold-out,
the test set always covers the future relative to the training
set.

While ML models are commonly used for prediction ap-
plications, their ability goes beyond simple prediction. Data-
driven models are capable of finding new patterns and veri-
fying known relationships. As Toms et al. (2020) point out,
“the ultimate objective of using a neural network can also be
the interpretation of what the network has learned rather than
the output itself”. However, many ML models are black-box
algorithms whose mathematical formulas are too complex
for interpreting variable relationships captured by the model.
Explainability methods applied to ML models provide a link
from the predictive power of the ML model to an understand-
ing of the underlying processes. Goode et al. (2024) defined
a model as being “explainable” if it is possible to implement
post hoc investigations on a trained model that infer how the
model inputs relate to the model outputs.

The climate science community has recently recognized
the utility of explainable ML methods. To find variables that
best discover model errors in an ESM, Silva et al. (2022)

use an explainable ML method, namely the SHapley Addi-
tive exPlanation (SHAP) values. Toms et al. (2020) use back-
ward optimization and layer-wise relevance propagation to
discover scientifically meaningful connections with respect
to an El Niño–Southern Oscillation (ENSO) phase detection
and prediction. McGovern et al. (2019) provide an overview
of potential explainability for ML applied to meteorology.
Clare et al. (2022) apply Bayesian neural networks with
layer-wise relevance propagation (LRP) and SHAP values
to better characterize and quantify ocean circulation dynam-
ics. On the ESMs ARISE-SAI, Mamalakis et al. (2023) ex-
plore the impacts of stratospheric aerosol injections on differ-
ent variables with the explainability method of Deep SHAP
(Lundberg and Lee, 2017).

Explainability techniques possess the potential for pro-
viding insight into patterns in data captured by a black-box
model, but research has also identified pitfalls with current
methods (e.g., Rudin, 2019; Hooker et al., 2021; Ancona
et al., 2018). Mamalakis et al. (2022) compare different con-
volutional neural network explainability methods by utiliz-
ing synthetic data so the “true explanations” are known a pri-
ori. Their analysis highlights the strengths and weaknesses of
various methods, and they conclude “that no optimal method
exists for all prediction settings”. They recommend applying
and comparing results from various explainability methods,
while more rigorous assessments of explainability techniques
are needed. We believe the case study in this paper will con-
tribute to this body of understanding.

In this paper, we present a case study that demonstrates the
explainability technique of spatiotemporal zeroed feature im-
portance (stZFI; Goode et al., 2024) as an EDA tool for a cli-
mate problem that leverages Earth system model (ESM) en-
sembles. Goode et al. (2024) developed stZFI for echo state
networks (ESNs), which are computationally fast, yet pow-
erful, ML models for spatiotemporal data. stZFI measures
the relative gain in predictive performance for each input, or
predictor, variable over time. This allows users to see how
“important” input variables are for the predictive ability of
the ML model and provides insight into the dynamic nature
of the relationships. We use stZFI to explore relationships
between pathway variables associated with a stratospheric
aerosol injection climate event. We apply stZFI to ensem-
ble members of ESMs, which allows us to measure uncer-
tainties in the variable importances that effectively account
for variability. Our analyses are intended to showcase the ap-
plicability of stZFI as an exploratory and evidential tool for
climate-related problems.

1.1 Motivating application

Stratospheric aerosol injection (SAI) is being studied as a
possible way of mitigating climate change (Irvine et al.,
2016), but there is concern over its potential side effects
(MacMartin et al., 2016; McCormack et al., 2016). Although
there is an abundance of computer model experiments look-
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ing at SAI (Ferraro et al., 2015; Banerjee et al., 2021; Bed-
narz et al., 2022), we are unaware of any physical SAI ex-
periments. In lieu of SAI experiments, the 1991 eruption
of Mount Pinatubo provides a natural exemplar of a large
SAI event. The eruption released 18–19 Tg of sulfur dioxide
into the atmosphere, causing changes to aerosol optical depth
(AOD), transporting partially through the Brewer–Dobson
circulation (Butchart, 2014), and consequently changes to
stratospheric temperatures (Sato et al., 1993; Guo et al.,
2004). The increase in AOD scatters short-wave radiation
(Twomey, 1991) and absorbs and re-emits long-wave radi-
ation (Zhou and Savijärvi, 2014). The increase in short-wave
scattering tends to cool the Earth’s surface by reflecting more
incoming solar radiation, while the increase in long-wave ab-
sorption tends to warm the lower stratosphere. As a conse-
quence of Mount Pinatubo’s eruption, temperatures at pres-
sure levels of 30 (T030) to 50 mb (T050) rose between 2.5
and 3.5° C (Labitzke and McCormick, 1992), while tempera-
tures at the surface (T2M) decreased by 0.5° C (Parker et al.,
1996). Figure 8 shows how T050 and T2M propagate over
this time.

We purposely examine the well-studied eruption of Mount
Pinatubo since our goal is to demonstrate the usefulness of
stZFI as an EDA tool. By picking a well-known event and
phenomenon, we can compare relationships identified by
stZFI with previously identified relationships in the scientific
literature. An agreement in identified relationships could pro-
vide confidence in the proposed approach. We apply stZFI
to data generated from a simplified ESM and a fully coupled
(i.e., allowing for interactions between atmosphere, land, and
ocean) ESM. We additionally consider one reanalysis dataset
(i.e., the combination of observed and model data) to demon-
strate the ability of stZFI to find interesting relationships and
quantify how they evolve over time. When used as an EDA
tool, these analyses show how stZFI can be a useful way to
understand the complex relationships in the data.

The remainder of this article is structured as follows. Sec-
tion 2 introduces the ML model and explainability method
used in this paper, the ensemble echo state network (EESN)
and stZFI, respectively. Section 3 introduces the datasets,
namely HSW-V v1.0 (Hollowed et al., 2024b), the Energy
Exascale Earth System Model (E3SM) (Rasch et al., 2019;
Golaz et al., 2022), and the Modern-Era Retrospective Anal-
ysis for Research and Applications, Version 2 (MERRA-
2) (Gelaro et al., 2017), reanalysis. This section addition-
ally quantifies the variable relationship using stZFI for each
dataset. Section 4 makes comparisons between E3SM and
MERRA-2 results. Finally, Sect. 5 discusses results, conclu-
sions, and future directions.

2 Data model

This section reviews the EESN and stZFI approaches used to
measure climate-variable relationships. The EESN and stZFI

assume data are centered and scaled prior to model training
to improve model performance and make interpretations of
importances easier. The data throughout this section are as-
sumed to be centered and scaled according to a preprocessing
procedure of the modeler’s choice.

2.1 Ensemble echo state network

Echo state networks (ESNs) (Jaeger, 2001; Lukoševičius and
Jaeger, 2009) are known to provide good predictions for
chaotic systems (Alao et al., 2021). ESNs are also computa-
tionally efficient in comparison to recurrent neural networks,
which represent their sibling ML model for temporal data.
The ESN applied to the spatiotemporal climate data was
first explored by McDermott and Wikle (2017) and improved
upon in McDermott and Wikle (2019). We follow the nota-
tion of Goode et al. (2024) and McClernon et al. (2024), since
it allows for an easier presentation of feature importance (FI)
in the next section. Let

ZY ,t =
(
ZY,t (s1),ZY,t (s2), . . .,ZY,t (sN )

)′ (1)

be the vector of preprocessed responses at locations {si ∈
D ⊂ R2

; i = 1, . . .,N} over times t = 1, . . .,T . The prepro-
cessed model inputs are also spatiotemporal processes, rep-
resented as

Zk,t =
(
Zk,t (s1),Zk,t (s2), . . .,Zk,t (sN )

)′ (2)

for k = 1, . . .,K . The locations of all variables are assumed
to be the same, which is expected for climate model sim-
ulations. To reduce spatial dimensionality, we use empiri-
cal orthogonal functions (EOFs) to decompose the variable
anomalies such that

ZY,t ≈8Yyt , (3)
Zk,t ≈8kxk,t (4)

for k = 1, . . .,K , where8Y is an N×Qmatrix of EOFs cor-
responding to ZY,t , and 8k is an N ×Pk matrix of EOFs
corresponding to Zk,t . yt and xk,t are vectors of the lengths
Q and Pk , respectively, which are the scores from the EOF
decomposition. Q and Pk are user-chosen hyperparameters
corresponding to the number of EOFs for the output and kth
input, respectively. These values can be chosen using hyper-
parameter tuning or considering computational complexity.
Without any loss of generality, we will assume P1 = P2 =

. . .= Pk = P throughout.
McDermott and Wikle (2019) introduced the EESN as

a way to quantify uncertainty and improve predictions by
averaging over different initializations of the reservoir. The
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EESN is given by the following:

Output stage: yt = V(r)ht + ε(r)t , (5)

Hidden stage: ht = gh

(
ν

|λw|
W(r)ht−τ−τ∗ +U(r)x̃t−τ

)
, (6)

Regression error: ε(r)t ∼ Gaussian
(

0,σ 2
ε
(r)I
)
, (7)

where r = 1,2, . . .,R represents the EESN ensemble mem-
ber. We omit the quadratic term included by McDermott
and Wikle (2019). During our initial tuning of the models,
we found increasing the size of the EESN was more ben-
eficial than including additional terms, although this could
be treated as part of model selection. Input variables are in-
cluded in the embedding vector, x̃t−τ , which is defined by

x̃t−τ =
[
x′t−τ ,x

′
t−τ−τ∗ , . . .,x

′
t−τ−mτ∗

]′
. (8)

τ is the forecast period (i.e., how many steps ahead in time
the EESN will make predictions) and should be chosen based
on the goals of the modeler. τ ∗ is the embedding vector
lag, and m is the number of embedding lags. Both are pre-
specified and can be selected either during hyperparameter
tuning or based on subject matter expertise.
ht contains the nh hidden units which include information

on the inputs beyond the immediate past, where nh is a tuning
parameter. The matrices W(r) and U(r) contain the reservoir
weights with dimensions of nh× nh and nh×P(m+ 1), re-
spectively. W(r) and U(r) are not estimated but rather are ran-
domly sampled R times from their respective distributions as
follows:

W(r)
[h,cw] = γ

w
h,cw

Unif(−aw,aw)+ (1− γwh,cw )δ0, (9)

U(r)[h,cu] = γ uh,cuUnif(−au,au)+ (1− γ uh,cu)δ0, (10)

where W(r)
[h,cw] represents the element row h and col-

umn cw of W(r), and similarly, U(r)[h,cu] represents the el-
ement in row h and column cu of U(r). γwh,cw ∼ Bern(πw),
γ uh,cu ∼ Bern(πu), and δ0 is a Dirac function. Sampling mul-
tiple times from reservoir distributions allows us to have a
distribution of predictions over which to average and cal-
culate uncertainty. aw, au, πw, and πu serve as regulariza-
tion hyperparameters to prevent overfitting. ν is a value in
[0,1] that helps control the amount of memory in the system
through ht . λw is the spectral radius of W. gh is a nonlin-
ear activation function for which we use a hyperbolic tan-
gent function. The only parameters estimated in the model
are contained in the matrix V(r) and the error term σ

2,(r)
ε .

V(r) is a Q× nh parameter matrix of coefficients estimated
using a ridge regression with a penalty parameter of λr. This
ridge regression adds another layer of regularization to the
model to prevent overfitting. Lukoševičius (2012) and Goode
et al. (2024) provide recommendations and results for tuning
ESNs.

2.2 Feature importance

Goode et al. (2024) introduced stZFI as a feature importance
(FI) metric for assessing variable importance and its evolu-
tion over time for spatiotemporal data. Feature importance
is a quantitative measure of how important an input variable
is for accurately predicting an output variable at a particu-
lar time. stZFI provides a quantitative measure of importance
for an input variable over time by measuring the increase in a
predictive metric when the variable is removed at each time.
Goode et al. (2024) computed stZFI for individual ESNs. We
adjust the approach for an ensemble of ESNs. In particular,
we compute stZFI using the ensemble prediction (i.e., the av-
erage of the predictions produced by each ensemble member
in the EESN). This is in contrast to an approach that com-
putes stZFI for each member of the EESN and average the
stZFI results across ensembles, which is less in line with how
EESNs would be used in practice to obtain the “final” predic-
tion.

2.2.1 stZFI global metric

stZFI measures the importance of input variables over a
block of times, {t, t−1, . . ., t−b+1}, b ∈ N, on the forecasts
of the spatiotemporal output variable, at time t+ τ , averaged
over locations. To simplify the notation, and without a loss of
generality, we assume τ ∗ = 1. Let f (r)(xt ,xt−1, . . .,x1)=

ŷ
(r)
t+τ represent the vector of forecasts from the rth ensemble

member of the EESN, at time t + τ , given xt ,xt−1, . . .,x1,
and let ŷt+τ =

1
R

∑R
r=1ŷ

(r)
t+τ be the aggregated forecast from

the EESN. Define the root mean squared error (RMSE) on
the spatial scale as

RMSEt+τ =Q−1/2
‖ZY,t+τ −8Y ŷt+τ‖. (11)

The procedure for stZFI also computes an “zeroed”
RMSE, RMSE∗(k)t+τ , that captures model predictive perfor-
mance when zeroing all EOF scores for an input fea-
ture k. First, replace the vectors of xk,t ,xk,t−1, . . .,xk,t−b+1
within xt ,xt−1, . . .,xt−b+1 with zeros. Denote these as
x
(k)
t ,x

(k)
t−1, . . .,x

(k)
t−b+1, respectively. Next, compute forecasts

using the zeroed inputs as

f (r)
(
x
(k)
t ,x

(k)
t−1, . . .x

(k)
t−b+1,xt−b, . . .,x1

)
= ŷ

(r,k,b)
t+τ . (12)

Similarly, let ŷ
(k,b)

t+τ =
1
R

∑R
r=1ŷ

(r,k,b)
t+τ be the aggregate fore-

cast from the EESN when variable k is zeroed at time t with
block size b. The RMSE after zeroing relevant variable k
EOF scores on the spatial scale is

RMSE∗(k)t+τ =Q
−1/2
‖ZY,t+τ −8Y ŷ

(k,b)

t+τ ‖. (13)

The stZFI metric for forecasting time t + τ , for variable k,
and for block size b is computed as

I(k,b)t,t+τ = RMSE∗(k)t+τ −RMSEt+τ . (14)
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Larger values of the stZFI mean variable k are relatively
more important to the model for making predictions and
therefore important for describing the pathway from input to
output. Values of stZFI near zero imply that the variable has
little impact on predictions and, therefore, does not show a
strong association with the output variable. The values of the
feature importance metric itself are reductions in predictive
RMSE and can be interpreted as such. For example, a fea-
ture importance of I(k,b)t,t+τ = 2 for variable k at time t means
the RMSE increases by two units with variable k at time t
removed from the model.

2.2.2 stZFI regional metric

The stZFI metric in Eq. (14) is a “global” metric; it mea-
sures the impact an input variable has on an output variable
on a globally averaged scale. The metric can be decomposed
regionally by calculating the contributions to I(k,b)t,t+τ by spa-
tial regions such as latitude bands. Regional contributions to
stZFI provide the ability to quantify the impact of a global
input variable on a regional output variable. In this paper,
we only consider latitude bands for regional contributions to
stZFI, so we incorporate this in our notation, but more gen-
erally, other spatial regions could be considered.

Let the regional feature importance metric be represented
by

I(k,b)t,t+τ [lat] = RMSE∗(k)t+τ [lat] −RMSEt+τ [lat], (15)

where lat represents all locations si in the latitude band or
lat for output variables and where lat indicates the average
measure across all locations si in the defined latitude band.
We focus on latitudinal bands since they account for the most
variation in surface and stratospheric temperatures. The first
RMSE on the right-hand side of Eq. (15) is the RMSE for the
latitude band, lat, when the variable k is zeroed globally as
follows:

RMSE∗(k)t+τ [lat] =Q−1/2
‖ZY,t+τ [lat] −8Y ŷ

(k,b)

t+τ [lat]‖. (16)

The second RMSE in Eq. (15) is the RMSE for all locations
si with latitudes equal to lat, much like the RMSE in Eq. (11),
except it only considers data with latitude equal to lat as fol-
lows:

RMSEt+τ [lat] =Q−1/2
‖ZY,t+τ [lat] −8Y ŷt+τ [lat]‖. (17)

3 Stratospheric aerosol injection applications

We apply stZFI to data from two climate models (HSW-V
v1.0 and E3SM; Sect. 3.1 and 3.2, respectively) and one re-
analysis dataset (MERRA-2; Sect. 3.3). We consider these
three data sources in order to compare the behavior of fea-
ture importance across different techniques for data acqui-
sition associated with the same SAI climate event. HSW-V
v1.0 is a simplified climate model, while E3SM is a fully

coupled model. HSW-V v1.0 and E3SM have counterfactual
runs which allow us to compute stZFI when no major injec-
tion of aerosols occurs. MERRA-2 gives us a representation
of the observed climate and allows us to compare reanalysis
values to values generated by ESMs. Details on each dataset,
data preprocessing, and FI results are presented in this sec-
tion.

First, standardization is performed to ensure all input vari-
ables in the EESN are on the same scale, such that feature
importances are comparable between variables. Specifics for
each dataset are described within each data subsection. For
ease of illustration and comparison, we trained EESNs on
all datasets with the same τ , τ ∗, m, and b values. We use
τ = 1 since we are interested in relatively short-lead forecast-
ing, and we set m= 3 and τ ∗ = 1 as an example of a model
where the emphasis is placed on the past quarter of a year for
a prediction. For the stZFI block size, we elect to use b = 4
since, with HSW-V v1.0, E3SM, and MERRA-2 data for the
Pinatubo eruption application, we have found that block sizes
larger than this often do not change results much, potentially
indicating the sufficient removal of auto-correlation in the
importance. Several other values were kept constant across
datasets. We set R = 10 and use the first 20 EOFs from each
climate variable for training the EESN. We will use R = 10
ensemble members for all EESNs to balance the computa-
tional complexity of stZFI and predictive performance. We
use 20 EOFs for all variables in this paper to keep compar-
isons simple and fair. We select 20 EOFs for computational
convenience, but this value could also be tuned as part of
hyperparameter optimization. The remaining EESN hyper-
parameters were optimized using a grid search. The proce-
dure was implemented separately for each dataset. The data
were split into training and test sets, and the hyperparame-
ter set giving the lowest test set predictive performance was
used to compute the feature importances presented in this
section. Details on the EESN hyperparameter selection and
tuning process is in Appendix A. A predictive assessment of
the EESNs for each dataset with their best-performing hyper-
parameters is provided in Appendix B.

3.1 HSW-V v1.0

We first consider a simplified ESM with a single stratospheric
injection of aerosols referred to as HSW-V v1.0 (Hollowed
et al., 2024b). The primary use for this simplified climate
model is to verify that stZFI finds relationships built into the
ESM that are less likely to be entangled with higher-order ef-
fects. This makes it easier to verify how the method behaves
in an intuitive and predictable scenario. Held and Suarez
(1994) created an idealized forcing without topography and
seasonality; this is combined with the modified temperature
equation of Williamson et al. (1998), which allows model-
ing stratospheric temperatures that are necessary when con-
sidering an SAI. HSW-V v1.0 further modifies the tempera-
ture equation by making adjustments based on the observed
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aerosols at a given pressure level. HSW-V v1.0 runs approxi-
mately 168 times faster than E3SM (McClernon et al., 2024),
making it useful for initial model evaluations.

The aerosol injection is meant to resemble Mount
Pinatubo’s eruption in size, space, and time. Model outputs
are remapped to a 2°× 2° structured latitude/longitude grid
with 72 vertical levels up to 0.1 mb/∼ 60 km. The temporal
resolution of the output is 48 h. The simulations begin at day
0 and run for 1200 d, with the injection on day 179. There is
no seasonality in the model, and the background radiation is
prescribed to be in balance. Aerosols come only from the sin-
gle Pinatubo-like injection of the sulfate precursor and vol-
canic ash, meaning that AOD is fully driven by the prescribed
injection. Surface and stratospheric temperatures are then pa-
rameterized through AOD. We build two models predicting
temperature for HSW-V v1.0.

– HSW-V v1.0 stratosphere model. It predicts T050 (tem-
perature at 50 mb), given the AOD and T050.

– HSW-V v1.0 surface model. It predicts T1000 (tempera-
ture at 1000 mb), given the AOD and T1000.

All input variables are time-lagged. An ensemble of sim-
ulations with the HSW-V v1.0 configuration is used here,
with five ensemble members (each with perturbed initial con-
ditions) with Pinatubo forcing and a single counterfactual
(without Pinatubo) simulation. We note that McClernon et al.
(2024) also explored fitting an EESN on the HSW-V v1.0
data to forecast temperatures, but the model in McClernon
et al. (2024) used AOD, T050, and T1000 to predict T1000.
We make a distinction here from McClernon et al. (2024) in
that we focus on distinct climatic pathways for the surface
and stratosphere in an attempt to isolate the affects.

3.1.1 Normalized anomalies

Let ZOk,t (si) be the measured value for variable k = 1,2, at
time t = 1,2, . . .,T , and for location si , i = 1,2, . . .,N . The
HSW-V v1.0 normalized anomaly for each HSW-V v1.0 en-
semble member for variable k, time t , and location si , de-
noted Zk,t (si), is calculated by

Zk,t (si)=
ZOk,t (si)−Z

CF
k (si)

sd(ZCF
k (si))

, (18)

where Z
CF
k (si) and sd(ZCF

k (si)) are the mean and standard
deviation, respectively, computed from the counterfactual
run across all times for variable k at location si . Normal-
ized anomalies for the temperature response, ZY,t (si), are
calculated similarly. For HSW-V v1.0, k = 1 refers to AOD,
and k = 2 refers to T050 or T1000, depending on which
model is being discussed. The counterfactual in HSW-V v1.0
has AOD equal to zero for all times and locations, so we
set Z

CF
1 (si)= 0∀i, and instead of sd(ZCF

1 (si)), we calculate
sd(ZO1 (si)) as the standard deviation across measured AOD.

Because AOD is zero for all times and locations for the coun-
terfactual, we replace it with random realizations from a stan-
dard Gaussian distribution (mean of 0; standard deviation of
1) to correspond to normalized data.

The injection of aerosols at time t = 179 and how it propa-
gates in space and time is seen in Figs. 1 and 2. The injection
and spread of aerosols is due, in part, to the Brewer–Dobson
circulation and is clear in latitude and time. The shaded re-
gions in Fig. 2, and throughout the remainder of the paper,
represent ±1 standard deviation between model ensemble
members. T050 and T1000 are directly related to AOD by
construction in the HSW-V v1.0 simulations, with increases
in AOD contributing to the long-wave heating of the up-
per levels and short-wave cooling by increased scattering of
incoming solar radiation in the lower levels. This radiative
heating is parameterized in HSW-V v1.0 by introducing tem-
perature tendency terms parameterized by AOD, since HSW-
V v1.0 does not include an explicit radiative transfer model
(Hollowed et al., 2024b). Increased stratospheric AOD re-
sults in a positive temperature anomaly in T050 due to ther-
mal absorption and a negative anomaly in T1000 due to in-
creased scattering/reflection of short-wave radiation. AOD is
advected by the stratosphere circulation faster in the North-
ern Hemisphere due to the fact that the injection occurs in the
Northern Hemisphere, and the mean stratosphere circulation
tends to be poleward. In the counterfactual, there is a small
spike in T050 around day 270 that is unrelated to an aerosol
injection (counterfactual AOD is zero). This spike is due to
normal variation. Had there been more than one counterfac-
tual, then taking the average would likely have smoothed
over this effect.

3.1.2 Feature importance

After the hyperparameter selection, the HSW-V v1.0 mod-
els were trained using all 1200 d, and stZFI was computed.
Figure 3 shows results from applying stZFI to HSW-V v1.0
(using the methodology described in Sect. 2.2.1). The top
plot shows stZFI for the model predicting T050. The bot-
tom plot shows stZFI for the model predicting T1000. The
vertical dashed line denotes the injection time. Note that the
y-axis scale is different for the two plots. The importance of
AOD increases sharply for the T050 at the time of injection
and slowly decays thereafter, as expected. Time-lagged T050
follows a similar trend. The increased importance for AOD
when forecasting T1000 is less pronounced though present.
The importance for AOD is higher for the T050 model com-
pared to T1000 model, and the decay of importance is steeper
from its peak for the T050 model compared to the T1000
model. This makes sense since T1000 is noisier than T050,
and the true relationship between AOD and T050 is stronger
than AOD with T1000. Thus, the FI results agree with our
expectation that the impact AOD has on T1000 is less pro-
nounced compared to T050.
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Figure 1. Latitudinal means over time for the HSW-V v1.0 ensemble 1 normalized anomalies. Vertical dashed lines on day 179 denote the
aerosol injection.

Figure 2. Globally averaged normalized anomalies for HSW-V v1.0 for the aerosol injection ensemble member and counterfactual. The
solid line is the mean across ensemble members. Vertical dashed lines on day 179 denote the aerosol injection. Shaded regions represent ±1
standard deviation of the ensemble variability. There is only one counterfactual run.

The counterfactual run allows us to consider how stZFI re-
sponds when there is no aerosol injection. The yellow lines
in Fig. 3 show stZFI for the counterfactual of HSW-V v1.0.
Feature importance for AOD is relatively flat for both mod-
els when considering the variation over time, which provides
evidence that the peaks in stZFI for the runs with an aerosol
injection are due to the EESN making use of the increase
in aerosols for predicting temperatures. For the T050 model
counterfactual, there is a small decline in AOD importance
after the injection. This likely corresponds to the small spike
in T050 previously identified in Fig. 2 that is known to be un-
related to the aerosol injection. Negative feature importance
implies that the inclusion of the feature in question makes
predictions worse than if it had not been included. However,
small periods of negative stZFI are not a concern because it
is a spatiotemporal metric, so it is not unreasonable to expect
some time or spatial periods to not be helpful for prediction.

Figure 4 shows the latitudinal contributions to stZFI for
the two predictive models on HSW-V v1.0 (as described in
Sect. 2.2.2). The T050 model shows the impact of AOD on
T050 after the aerosol injection around the Equator. The im-
portance of AOD lasts longer in the Northern Hemisphere
than the Southern Hemisphere. This is interesting since in
Fig. 1 the AOD anomalies are higher for a longer period
of time in the Southern Hemisphere. Thus, even though the
Southern Hemisphere sees higher-AOD anomalies for longer

than the Northern Hemisphere, they are not identified as im-
portant for predicting T050 at the same location. Lagged
T050 are important around the Equator after the eruption,
which matches the increased anomalies in Fig. 1. For the
model predicting T1000, AOD is most important at the high
northern latitudes. This is also where we see the largest neg-
ative anomalies in T1000 in Fig. 1 (however, recall that the
importance does not indicate a sign of a relationship).

By applying stZFI to HSW-V v1.0 ensemble members, we
were able to assess the importance of each variable to the
model in terms of predictive ability. For example, when pre-
dicting T050, we identified that AOD quickly increases in
importance after the aerosol injection and then slowly de-
cays, and stZFI is near zero when AOD is near zero. From an
EDA perspective, this suggests that an SAI event is at least
associated with changes in T050. Insights such as this could
inspire additional hypotheses to explore and additional set-
tings on the ESM to run. For example, given that we see this
effect for a Pinatubo-like eruption, how would the impact dif-
fer if we changed the latitude of the aerosol injection? This
simple example is merely a proof of concept since the in-
jection of aerosols was the only change in the system. Next,
we consider the fully coupled E3SM, where the relationships
resulting from Mount Pinatubo are not as obvious.
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Figure 3. stZFI for HSW-V v1.0. Vertical dashed lines denote the injection time. Shaded regions represent ± 1 standard deviation of the
ensemble variability.

Figure 4. Latitudinal contributions to stZFI for models fit to HSW-V v1.0. Vertical dashed lines on day 179 denote the aerosol injection.

3.2 E3SM

E3SM is a fully coupled state-of-the-science ESM capable
of simulation and prediction created by the United States
Department of Energy and its national laboratories (Rasch
et al., 2019). E3SM is a full physics model with active
model components consisting of atmosphere, land, ocean,
sea ice, and river. The data utilized in our numerical ex-

periments were generated by running simulations using an
enhanced fork (available at https://github.com/sandialabs/
CLDERA-E3SM, last access: 20 September 2024) of version
2 of E3SM (E3SMv2) (Golaz et al., 2022). In this new imple-
mentation, aerosol microphysics were modified to prognosti-
cally simulate stratospheric volcanic aerosols and are known
as E3SMv2–Stratospheric Prognostic Aerosols (E3SMv2–
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SPA) (Golaz et al., 2022). Data are mapped to a 1°× 1° struc-
tured latitude/longitude grid for 72 vertical levels.

The Mount Pinatubo eruption in the model occurs on
15 June 1991 at 15.14167° N and 120.35000° E. The mag-
nitude is 10 Tg of the SO2 spread evenly over 6 h at an alti-
tude of 18–20 km. For our analyses, we consider data on the
monthly timescale. Five ensemble members were generated
from the model. Each ensemble member was initialized with
perturbed initial states beginning on 1 January 1985 to ensure
that, by 15 June 1991, all ensemble members are dynami-
cally independent (Brown et al., 2024). Dynamics arise from
the seasonal heating imbalance and additional forcings be-
yond Mount Pinatubo that change global radiation balance.
In addition, there is a positive trending background imbal-
ance due to anthropogenic emissions of greenhouse gases.
There are three aerosol precursor gases and seven aerosol
species from natural and anthropogenic sources which vary
seasonally. The 2 m surface temperature depends on the so-
lar heating rate, which is affected by AOD, cloud cover, sur-
face albedo, and ocean state. Counterfactuals with the Mount
Pinatubo eruption removed were generated for each of the
five ensemble members.

Again, we build two EESN models for modeling tempera-
ture pathways with the E3SM ensembles.

– E3SM stratosphere model. It predicts T050, given the
AOD, long-wave radiative flux net top of atmosphere
(LWTUP), and T050.

– E3SM surface model. It predicts T2M (2 m surface
temperature), given the AOD, short-wave radiative flux
clear sky (SWGDNCLR), and T2M.

All input variables are time-lagged. These variables form the
structure explained in McCormick et al. (1995), where the
Mount Pinatubo eruption injected aerosols which warmed
the stratosphere with upwelling radiation and a cooling of
the surface.

3.2.1 Normalized anomalies

Normalized anomalies for E3SM are calculated slightly dif-
ferently than HSW-V v1.0 since E3SM has seasonality. The
normalized anomaly for each E3SM ensemble member for
variable k, time t , and location si is calculated by

Zk,t (si)=
ZOk,t (si)−Z

CF
k,month(t)(si)

sd(ZCF
k,month(t)(si))

, (19)

where Z
CF
k,month(t)(si) and sd(ZCF

k,month(t)(si)) are the mean
and standard deviation, respectively, computed from an en-
semble member’s corresponding counterfactual run across all
data in the month to which time t belongs (i.e., month(t)
returns the month of time t) for the variable k and loca-
tion si . Normalized anomalies for the temperature response,
ZY,t (si), are calculated similarly. For E3SM, k = 1 refers

to AOD, k = 2 refers to the long-wave radiation net top of
stratosphere (LWTUP) for the T050 stratospheric model or
incoming radiation at surface without clouds (SWGDNCLR)
for the surface (T2M) model, and k = 3 refers to the respec-
tive temperature for each model. Figure 5 shows the latitudi-
nal means of normalized anomalies over time from a single
ensemble member from E3SM. Due to the Pinatubo eruption,
we see large positive anomalies in AOD and T050, with T050
largely focused around the Equator in the years following the
eruption. We also see smaller negative anomalies for T2M
around the Equator and north of the Equator. The large posi-
tive anomaly in T2M around 1996 is due to the spike in tem-
peratures for ensemble member 1 (this heatmap is for ensem-
ble member 1 only). Short-wave radiation also has negative
anomalies after Pinatubo, particularly in the Northern Hemi-
sphere, likely relating to the negative anomalies for T2M.

Figure 6 shows globally averaged normalized anomalies
for E3SM. AOD has the largest spike relative to the counter-
factuals, while T2M sees the smallest change. The impact of
Mount Pinatubo is clear on the radiation measurements and
T050. For the counterfactual case, there is still a small spike
in AOD at the end of 1991, along with small impacts to radi-
ation and temperature, even with Mount Pinatubo removed.
The cause of this signal could be the volcanic eruption of
Cerro Hudson on 8 August 1991, which was smaller than
Mount Pinatubo (Miles et al., 2017).

3.2.2 Feature importance

As with the HSW-V v1.0 data, we performed a hyperparam-
eter optimization for the E3SM data. Details on the hyperpa-
rameter used and tuning is in Appendix A. After the hyperpa-
rameter optimization, we used data from 1991–1998 to train
the EESN to E3SM data and compute stZFI. Since E3SM
is a high-fidelity climate model, the data it produces will be
a more realistic representation of reality than HSW-V v1.0.
The pathways stZFI needs to quantify will be more complex
and involve multiple variables.

Figure 7 shows stZFI for the E3SM ensemble and their
counterfactuals. The vertical dashed line represents Mount
Pinatubo’s eruption. Although the temperature pathway in
E3SM is not as direct as HSW-V v1.0, which contains in-
teractions and confounding variables, the feature importance
results tell the same story. For the E3SM stratospheric (T050)
and surface (T2M) models, the AOD’s feature importance
immediately spikes at the eruption, and is relatively large
compared to other variables, and then tapers off as time pro-
gresses. The importance of LWTUP remains relatively flat.
Importance of SWGDNCLR does see a small increase after
the eruption, although it is within the bounds of the coun-
terfactual stZFI. Although we expected the radiation to have
larger stZFI values, it could be because the radiation has a
lower signal compared to AOD, and its impact is largely cap-
tured through AOD.
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Figure 5. Latitudinal means over time for E3SM ensemble 1 normalized anomalies. Vertical dashed lines denote the 15 June 1991 Mount
Pinatubo eruption. Gray in AOD and SWGDNCLR plots are NA (not available) values.

Figure 6. Globally averaged normalized anomalies for the E3SM ensemble and counterfactuals. Note the y axis is different for each plot. The
shaded area represents the ± 1 standard deviation of the ensemble variability. Vertical dashed lines denote the 15 June 1991 Mount Pinatubo
eruption.

Much like HSW-V v1.0, T050 is important for predicting
itself after the eruption, while T2M is not. There is a spike in
T2M feature importance around 1996, but this is largely be-
cause one of the ensemble members has a dramatic increase
in T2M at that time (as seen by the large variation in Fig. 6).
More than five runs of the ESM ensemble would be neces-
sary to determine if this spike is truly anomalous or part of a
larger trend. There are no major trends in stZFI for the coun-
terfactuals, but all variables retain some degree of importance
since the variables on the respective pathways affect T050
and T2M with or without an eruption. A broader assessment
of stZFI robustness using E3SM is provided in Appendix C.

Much like the HSW-V v1.0 case, we are able to extract
relevant variable relationships from a purely data-driven ML

model. As an EDA tool, this gives us an assessment of the
relationships in the data. Unlike simple summaries such as
means and correlations, the relationships found here are mea-
sured over time and account for complex, nonlinear associa-
tions. The latitudinal contributions to stZFI for the E3SM are
deferred until Sect. 4.

3.3 MERRA-2 application

The last two subsections applied stZFI to ESM simulations.
Now we turn to verifying that the feature importance results
from the ESMs are consistent with results from observed
data products. To do this, we use the Modern-Era Retro-
spective Analysis for Research and Applications, Version 2
(MERRA-2) (Gelaro et al., 2017), reanalysis as our observa-
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Figure 7. stZFI for E3SM ensemble and counterfactuals. The shaded region denotes ± 1 standard deviation of the ensemble variability.
Vertical dashed lines denote the 15 June 1991 Mount Pinatubo eruption.

tional data. As with the E3SM models, we build two EESN
models for modeling temperature pathways with MERRA-2.

– MERRA-2 stratosphere (T050) model. It predicts T050,
given the AOD, long-wave radiative flux net top of at-
mosphere (LWTUP), and T050.

– MERRA-2 surface (T2M) model. It predicts T2M (2 m
surface temperature), given the AOD, short-wave radia-
tive flux clear sky (SWGDNCLR), and T2M.

All input variables are time-lagged. Vertically integrated
AOD is taken from the variable TOTEXTTAU (GMAO,
2015a). We consider the years 1991–1998 using monthly
data, which provide climate information before and after the
eruption of Mount Pinatubo. The spatial resolution is 1°× 1°
on a structured latitude/longitude grid.

3.3.1 Normalized anomalies

Since MERRA-2 does not have a counterfactual, normalized
anomalies are calculated differently for MERRA-2 than for
HSW-V v1.0 and E3SM. The normalized anomaly for each
MERRA-2 variable k at time t and location si is calculated
by

Zk,t (si)=
ZOk,t (si)−Zk,month(t)(si)

sd(Zk,month(t)(si))
, (20)

where Zk,month(t)(si) and sd(Zk,month(t)(si)) are the mean
and standard deviation, respectively, across all data from
1991–1998 for the month in which time t belongs

(i.e., month(t) returns the month of time t) and for vari-
able k at location si , i = 1, . . .,N . Similar to E3SM, k = 1
refers to AOD; k = 2 refers to radiative flux (LWTUP for
T050; SWGDNCLR for T2M); and k = 3 refers to tempera-
ture, T050, or T2M, depending on which model is being dis-
cussed. Figure 8 shows the latitudinal means of normalized
anomalies over time for MERRA-2. Figure 9 shows glob-
ally averaged normalized anomalies for MERRA-2. AOD
and short-wave radiation have the largest relative spikes
post-Pinatubo, while T2M and long-wave radiation see the
smallest change. The impact of Mount Pinatubo is clear on
the short-wave radiation measurements and T050. The large
anomaly for T2M around 1998 is likely due to the 1997–
1998 ENSO, which was the largest recorded at that time, and
led to a significant increase in globally averaged temperature
(Wang and Weisberg, 2000).

3.3.2 Feature importance

After hyperparameter optimization, we used data from 1991–
1998 to train the EESNs on MERRA-2 data and compute
stZFI. Figure 10 shows stZFI for the MERRA-2 data, where
the vertical dashed black line denotes Mount Pinatubo’s
eruption. There is a clear signal in the stZFI for AOD im-
mediately after the eruption for both models, although the
signal is clearer in the T050 model. Short-wave radiation also
has a clear increase in importance after the eruption for the
T2M model corresponding with the decrease seen in Fig. 9.
The importance for T050 predicting itself is more noisy, al-
though it is elevated immediately after the Pinatubo eruption.
The importance for T2M predicting itself shows a steady in-
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Figure 8. Latitudinal means over time for MERRA-2 normalized anomalies. Vertical dashed lines denote the 15 June 1991 Mount Pinatubo
eruption.

Figure 9. Globally averaged normalized anomalies for MERRA-2. Note that the y axis is different for each plot. Vertical dashed lines denote
the 15 June 1991 Mount Pinatubo eruption.

crease from 1991–1996, with a slight dip in 1995. This could
potentially be due to an increase in the auto-correlation of
T2M post-Pinatubo. The importance of long-wave radiation
is relatively flat. Similar to E3SM, we believe the feature im-
portance for radiation is largely flat due to a lower signal-to-
noise ratio compared to AOD, coupled with its correlation
with AOD.

4 Comparing stZFI from E3SM to MERRA-2

The models for E3SM and MERRA-2 in Sect. 3.2 and 3.3,
respectively, are trained on the same time frame and spatial
scale. We cannot compare observations to HSW-V v1.0 since
it is a notional lower-fidelity model. Because the data are

standardized in different ways, we will avoid exact quanti-
tative comparisons and make a qualitative comparison.

When considering effects averaged over the entire globe,
this can hide regional effects, so we consider the latitudinal
contributions to stZFI to explore its importance in space and
time. Figure 11 shows the regional contributions to stZFI for
models predicting T050 using E3SM and MERRA-2. These
contributions show the relative importance of each of the
three variables for predicting T050 by latitude and over time,
thus providing a spatiotemporal feature importance. E3SM
shows a relatively uniform importance for AOD between
30° N and −20° S from July 1991 to November 1993, with
a slight decline in the winter of 1992. MERRA-2 shows the
importance of AOD in the regions from 10 to 30° N and
−30 to −10° S beginning in July 1991 and ending in the
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Figure 10. stZFI for MERRA-2. Vertical dashed lines denote the 15 June 1991 Mount Pinatubo eruption.

late summer of 1992. The FI for MERRA-2 appears to be
more drawn out for T050; this could be due to model mis-
specification in E3SM that does not fully account for the ef-
fects post-Pinatubo. E3SM and MERRA-2 largely agree on
the importance of time-lagged T050 for predicting T050, as
both show high importance near the Equator at similar times.
Trends for long-wave radiation are more difficult to assess,
but it does appear that E3SM and MERRA-2 have higher
variability in FI near the Equator, while towards the poles
FI tends to remain more consistent. There is negative im-
portance for long-wave radiation immediately after Pinatubo
in E3SM and MERRA-2, indicating that its presence hurts
the model. This likely due to long-wave radiation being only
weakly correlated with T050 and combined with a relatively
high noise compared to the signal post-Pinatubo, as shown
in Fig. 6. There is also a negative spike for AOD for E3SM
in mid-1993, which could be due to AOD levels converging
on those of the counterfactual (Fig. 6). Note that E3SM im-
portances appear to be “smoother” since they are averaged
over five ensemble members, whereas MERRA-2 is a single
dataset.

Figure 12 shows the regional contributions to stZFI for
models predicting T2M using E3SM and MERRA-2. E3SM
sees the importance for AOD mostly just north of the Equator
post-Pinatubo, while MERRA-2 sees the importance further
from the Equator in both directions. The importance of short-
wave radiation is spread across all latitudes for E3SM, while
MERRA-2 has a higher importance further from the Equa-
tor. There are not clear trends for importance of T2M, except
during later years. E3SM puts a high importance on T2M on

the Equator at the end of 1995, while MERRA-2 shows the
importance at the end of 1994 just north of the Equator.

5 Discussion

ESMs provide rich information about the physical state of the
climate and its variations. ML and other data-driven mod-
els offer one path to taking advantage of the vast amounts
of data produced by ESMs to advance the understanding of
climate systems. In addition to using ML for predictive rea-
sons, explainability methods allow the ability to discover and
quantify patterns in data via ML models for prediction. In
this article, we provided an example of how an explainable
ML technique, stZFI, can be used as an EDA tool for climate
applications to understand how variable relationships evolve
over space and time. We demonstrated stZFI via a case study
that explored climate-variable relationships associated with
a natural exemplar of an SAI event, namely the 1991 vol-
canic eruption of Mount Pinatubo. We chose this event since
it is well-studied and well-documented, which helps future
users understand how stZFI could be used as an EDA tool.
We leveraged ESMs to study how stZFI quantifies variable
relationships with datasets that are generated with known re-
lationships. Furthermore, we compared stZFI computed from
ESM-generated data to stZFI computed from reanalysis data
to determine if the results were consistent.

We considered two climate pathways previously identified
in the literature that are associated with the Mount Pinatubo
eruption, namely (1) aerosols to long-wave radiative flux to
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Figure 11. Latitudinal contributions to stZFI for E3SM and MERRA-2 for models predicting T050. Note that the importance scales are
different for E3SM and MERRA-2. Vertical dashed lines denote the 15 June 1991 Mount Pinatubo eruption.

Figure 12. Latitudinal contributions to stZFI for E3SM and MERRA-2 for models predicting T2M. Note that the importance scales are
different for E3SM and MERRA-2. Vertical dashed lines denote the 15 June 1991 Mount Pinatubo eruption.

stratospheric temperature changes and (2) aerosols to short-
wave radiative flux to surface temperature changes. We ap-
plied stZFI to EESNs to conduct an EDA with an interest
in understanding how the three pathway variables are related
to the changes in temperature over time after an SAI. We
studied these pathways using three data sources: a simpli-

fied ESM with only the single forcing of aerosols (HSW-V
v1.0), a fully coupled ESM (E3SM), and a reanalysis dataset
(MERRA-2). For all models and data sources, the relation-
ships identified by stZFI were relatively consistent.

– Aerosols had the most consistent FI results. In all cases,
there was a clear increase in stZFI for predicting tem-
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peratures immediately after the SAI, which decreases
over time.

– Radiative flux variables associated with E3SM and
MERRA-2 had relatively similar FI trends. For long-
wave radiative flux, there was no clear trend in FI
with values close to 0 across all times when predict-
ing stratospheric temperatures. For short-wave radiative
flux, there was a slight increase in FI after the SAI when
predicting surface temperatures.

– Temperature FI values agreed between HSW-V v1.0
and E3SM but differed from MERRA-2 results. With
stratospheric temperatures, the HSW-V v1.0 and E3SM
results showed a clear increase in FI after the SAI, but
the MERRA-2 results showed a noisy possible increase
in FI. With surface temperatures, the HSW-V v1.0 and
E3SM results showed no FI trends, but the MERRA-2
results showed a steadily increasing trend in FI.

The consistency in FI results for AOD across data sources
provides evidence of these variable relationships being a part
of the underlying mechanism. It is likely that AOD has the
most consistent FI results due to the strong global signal-
to-noise ratio of AOD after the eruption in all data sources.
That radiation and temperature FI do not agree could par-
tially be due to E3SM model discrepancies. These variables
are changing at least partially due to the increase in AOD,
making them downstream effects of such an event. Addi-
tionally, it is possible that measurements are similar between
MERRA-2 and E3SM, while the relationships that caused
them could vary, manifesting itself in FI. The EESN itself is
a relatively flat predictive model, meaning it will likely not
be able to capture all the complex relationships that exist,
especially if they do not lead to better predictions.

The stZFI results can be used to point to new hypotheses
and research directions. For example, the upward trend in
stZFI for T2M is unlikely due to Mount Pinatubo alone and
could lead to additional research. It is possible that this up-
ward trend is due to a combination of increasing global sur-
face temperatures and a strong ENSO event from May 1997
to May 1998. Another example suggested by the latitudinal
contribution plots is the question of how the latitude of an
SAI event will affect its impacts. It also could help find areas
where climate models do not match observational data. stZFI
shows the variables a model is using, and when, in order to
predict. Therefore, discrepancies between a climate model
and observational data could point modelers to relationships
that an ESM is not currently capturing.

In addition to using the SAI case study to demonstrate the
ability of stZFI as an EDA tool, the analyses in this arti-
cle contribute towards an increased understanding and confi-
dence that the stZFI will return an accurate and reliable re-
sult. ESMs played a key role in this process, since they pro-
vide a specified cause with a known outcome, with an AOD
being a major driver in temperature changes both at the sur-

face and in the stratosphere. In particular, this importance
largely came from equatorial regions, leaning slightly to the
Northern Hemisphere. The ESMs also allowed us to exam-
ine results from counterfactual runs from which the SAI is
removed. When we considered EESNs trained on the coun-
terfactuals, we found no FI patterns associated with the SAI.
This result suggests that the FI trends that appear when SAI
is included in the ESM runs are associated with SAI and not
some other phenomenon. With observational data only, there
would be no way to know for sure whether feature impor-
tance produced the correct effect, since this effect would not
be known.

However, our analyses serve only as a case study for the
assessment of stZFI. A more comprehensive evaluation of
the method should be performed to better understand its
strengths and limitations. For example, the literature on ap-
plying explainable ML methods to climate applications has
been growing recently. A comparison of stZFI to other meth-
ods would be useful for understanding when stZFI is prefer-
able to other methods. Additionally, the current methodology
for stZFI does not fully account for the correlation between
input variables. Previous research suggests that ignoring the
correlation between variables can result in biased feature im-
portance (Hooker et al., 2021). Further studies could be done
to assess the affect of correlation on stZFI, and the methodol-
ogy could be adjusted to better account for correlations. This
future work would allow users to make stronger conclusions
using stZFI without worrying about biases due to correlation.

Another direction for future research is developing a tool
for ML EDA that is able to account for more complicated
variable relationship structures. stZFI already provides an ad-
vantage over simple summary statistics such as means and
correlations since it is applied to EESNs, which are flexible
and not constrained to be linear or even monotonic. How-
ever, an EESN assumes a simple input–output model struc-
ture. We know that the climate pathways, such as the ones
we explore in this article, are more complicated (for exam-
ple, the temperature pathway exploring the effects from an
SAI event and changes in radiation to changes in tempera-
ture happens across multiple mechanisms). For example, the
changes could vary, depending on major climate cycles like
ENSO, or such an event could possibly affect ENSO, mak-
ing it difficult to disentangle causes and effects. The EESN
treats it as a simple prediction problem with temperature as
the output and all other variables as inputs. A method that al-
lows for more structure in the inputs, including interactions,
could result in a more useful and representative explainabil-
ity metric.

In this article, we presented stZFI as a tool for exploratory
analyses. stZFI provides insights into climate events by quan-
tifying variable relationships over space and time, which pro-
vides some insight into the underlying mechanistic relation-
ships. Exploratory analyses are an important aspect of sci-
ence, where new discoveries are made and hypotheses are
generated. An additional objective in the climate science
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community is attribution (Hegerl et al., 2010; Bindoff et al.,
2013). Although showing attribution is a multi-step problem,
we believe stZFI could be used to provide an initial step to-
wards making attribution claims. Regardless, we hope stZFI
inspires ideas for how ML could be used for attribution in the
climate space.

Appendix A: EESN hyperparameter details

This section provides details on the EESN hyperparame-
ter tuning and selection for the models applied to HSW-
V v1.0, E3SM, and MERRA-2. We select hyperparameters
by performing a hyperparameter search over the following
grid of values: nh = {25,50,100,200}, Uwidth = {0.1,0.5},
Wwidth = {0.1,0.5}, Uπ = {0.1,0.5}, Wπ = {0.1,0.5}, ν =
{0.1,0.5}, λr = {0.5,5,50}, where data are split into train-
ing and testing sets. HSW-V v1.0 used days 0–800 as train-
ing, E3SM used dates from 1 January 1991 to 31 Decem-
ber 1994 as training, and MERRA-2 used dates from 1 Jan-
uary 1991 to 31 December 1994 as training. The prediction
metric being optimized for was the root mean squared er-
ror (RMSE). The remaining times in each dataset were used
for testing. We opted to use 20 EOFs for each variable for
each of the datasets for consistency. For HSW-V v1.0, 20
EOFs represents 98 %, 82 %, and 60 % of the variation in
AOD, T050, and T1000, respectively. For E3SM, 20 EOFs
represents 93 %, 92 %, and 73 % of the variation in AOD,
T050, and T1000, respectively. For MERRA-2, 20 EOFs rep-
resents 88 %, 87 %, and 56 % of the variation in AOD, T050,
and T1000, respectively. We acknowledge that the number of
EOFs could differ by model and by variable within a model.
Table A1 shows the optimal hyperparameters for each model
for each dataset based on the hyperparameter search.

Table A1. Hyperparameters used for EESN models based on lowest
test set RMSEs in the hyperparameter search.

Data Model nh Uwidth Wwidth Uπ Wπ ν λr = 5

HSW-V v1.0 T050 200 0.5 0.1 0.1 0.5 0.1 50
HSW-V v1.0 T1000 100 0.1 0.1 0.5 0.5 0.1 50
E3SM T050 50 0.1 0.1 0.5 0.5 0.1 5
E3SM T2M 200 0.1 0.1 0.1 0.1 0.1 5
MERRA-2 T050 200 0.1 0.1 0.5 0.5 0.1 50
MERRA-2 T2M 200 0.1 0.1 0.1 0.1 0.1 5

Appendix B: Predictive performance of EESN on
HSW-V v1.0 and E3SM

Figure B1 shows the predictive performance of the EESN
over time for both HSW-V v1.0 models. The three rows in
each plot show globally weighted RMSEs using different
training sets; for example, the first row corresponds to train-
ing using data using times 1–200 and then testing on data
from 201–1200. Weights are calculated by taking the square

root of the cosine latitude (Huth, 2006). Thus, the weight as-
sociated with location si is

wsi =

√
cos

(
latitude(si)×

π

180

)
, (B1)

where latitude(si) returns the latitude of location si in de-
grees. The EESN RMSE is compared to replicate RMSE,
which uses four E3SM ensemble members’ values as predic-
tions for the remaining member and then averages over the
RMSEs of the four members. This process is repeated five
times (each ensemble member is predicted using the other
four), and the replicate RMSE is the average over those five
results. All averages are calculated on a month-by-month ba-
sis. The EESN’s RMSEs are typically lower than the repli-
cate RMSE, showing that the EESN has a lower prediction
error than the natural variability in the climate system itself.
This shows that the EESN is providing predictive ability be-
yond that due to the ensemble variation, which, when com-
bined with the hyperparameter optimization, provides credi-
bility to stZFI computed from this EESN. Figure B1 shows
that the EESN is able to capture trends better than that due to
the ensemble variability when given enough training data.

Figure B2 shows the predictive performance of the EESN
over time on E3SM using the globally weighted root mean
squared error (RMSE). The three rows in each plot show
globally weighted RMSEs using different training sets; for
example, the first row corresponds to training using data from
1991–1993 and then testing on data from 1994–1998. This
shows that the EESN is able to capture trends better than that
due to the ensemble variability when given enough training
data.

Figure B3 shows the predictive performance of the EESN
over time on MERRA-2 using RMSE. The three rows in each
plot show globally weighted RMSEs using different training
sets; for example, the first row corresponds to training using
data from 1991–1993 and then testing on data from 1994–
1998. This shows that the EESN is able to capture trends
better than that due to the ensemble variability when given
enough training data.
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Figure B1. Time series cross-validation globally weighted average RMSE for both HSW-V v1.0 models. Models are trained through the
time shown in the row label. Bold blue lines are the average RMSE for an EESN, and light blue lines are the individual ensemble members’
RMSEs. The yellow lines represent the replicate RMSE used as a baseline comparison.

Figure B2. Time series cross-validation globally weighted average RMSE for both E3SM models. Models are trained through the row label
year. Bold blue lines are the average RMSE for an EESN, and light blue lines are the individual ensemble members’ RMSEs. The yellow
lines represent the replicate RMSE used as a baseline comparison.
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Figure B3. Time series cross-validation global RMSE for both MERRA-2 models. Models are trained through the year in the row label.

Appendix C: Assessing stZFI robustness on E3SM

Assessing the robustness is important for understanding
the behavior of a method. Here we present several checks
(non-exhaustive) to help illustrate how stZFI behaves un-
der different model specifications. All EESNs in this section
were trained with the same hyperparameters. For the T050
model, nh = 50,ν = 0.1, Uwidth = 0.1, Wwidth = 0.1, Uπ =
0.5, Wπ = 0.5, and λr = 5. For the T2M model nh = 200,
ν = 0.1, Uwidth = 0.1, Wwidth = 0.1, Uπ = 0.1, Wπ = 0.1,
and λr = 5. These are the optimized hyperparameters used
for the E3SM model in the main paper.

C1 Prescribed variation

We consider the impacts of eruptions smaller and larger
than Mount Pinatubo to measure the gradient of the ef-
fects. These simulations are shorter, going from 1991–1995,
and are initialized using historical CMIP6 ensemble. For
these prescribed ensembles, we consider eruptions of 0.0×,
0.5×, 1.0×, and 1.5× the Mount Pinatubo eruption. The
0.0× eruption is the counterfactual and excludes the Mount
Pinatubo and Cerro Hudson eruptions. Five ensemble mem-
bers are generated for each eruption mass condition.

Figure C1 shows globally averaged normalized anoma-
lies for the prescribed variation E3SM ensembles. The col-
ors correspond to the size of the prescribed eruption relative
to Mount Pinatubo (e.g., 0.5 means the simulation replaces
the original Mount Pinatubo eruption with an eruption half
the size). There is a clear gradient in the variable value cor-
responding to the size of eruption for all variables. The two
peaks in AOD result from the standardization process; the
variation in AOD for the early months of 1993 was low rela-
tive to its mean deviation from the counterfactual.

Figure C2 shows stZFI for E3SM with prescribed erup-
tions. The spike in importance is relative to the magni-
tude of the eruption, and larger eruptions have larger spikes
in the feature importance. The importance of LWTUP and
SWGDNCLR is minimal, and T050 and T2M follow similar
trends to the results in Fig. 7.
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Figure C1. Globally averaged normalized anomalies for the prescribed variation E3SM. Note that the y-axis scale is different for each plot.
The shaded area represents ± 1 standard deviation of ensemble variability.

Figure C2. stZFI for E3SM simulations with prescribed eruptions. The color denotes the relative size of the eruption compared to actual
Pinatubo eruption. Note that the y-axis scales are different for the two rows.
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C2 Adding white noise variable

To better convince ourselves that stZFI does not pick up on
unimportant signals, we fit an EESN with an additional vari-
able that is simulated from a standard Gaussian across all
time and locations; we denote this variable as white noise
(WN). Figure C3 shows stZFI for the E3SM ensembles with
WN added as an input for the T050 and T2M models. The
feature importance for WN hovers close to zero for both
models at all times. This result suggests that stZFI is not er-
roneously thinking it is important for predictions.

Figure C3. stZFI for E3SM with WN added as an input. Note that the y-axis scale differs for the two rows.

C3 Adding higher signal-to-noise variables

Figure C4 shows globally averaged normalized anomalies
for two additional variables from E3SM, namely AODSO4,
which is the integrated sulfate aerosol extinction coef-
ficient (absorption+ scattering,; m− 1) at 0.55 µm wave-
lengths through the entire atmosphere, and BURDENSO4,
which is the column burden mass of sulfate aerosol. Both
of these have a cleaner signal due to Mount Pinatubo than
AOD (compare the signal-to-noise ratio of these variables in
Fig. 6).

Figure C5 shows the stZFI for the E3SM ensembles with
extra variables for the T050 and T2M models. Considering
the relative ranking of the signal sizes seen in Fig. C4, the
magnitudes of stZFI in Fig. C5 are consistent, with variables
that change more after the eruption and are related to the out-
come having greater feature importance. This gives evidence
to the idea that the feature importance is a metric that looks
at the changes in degree of association and changes in feature
magnitude. Radiation FI sees a slight decrease compared to
the case without the additional variables; lagged temperature
sees an even bigger attenuation. This points to the additional
variables having a bigger impact. This is potentially due to
collinearity between the variables.
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Figure C4. Globally averaged normalized anomalies for additional E3SM variables. Note that the y axis is different for each plot.

Figure C5. stZFI for EESNs fit using E3SM with additional variables that have a higher signal-to-noise ratio than AOD. Note that the y-axis
scale differs for the two rows.

C4 Excluding AOD from EESN

Figure C6 examines stZFI for a model that does not include
AOD to a model that does include AOD. This moves in the
opposite direction of the previous section, where we remove
an important variable instead of adding one to see the im-
pact on FIs. This will give us an idea of the collinearity of
AOD with the remaining features. Trends between the two
are mostly similar, except that stZFI for the remaining vari-
ables tends to be higher in the model without AOD, likely
meaning that there is collinearity between input variables,
and without AOD, other variables account for that relation-
ship.
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Figure C6. stZFI for E3SM when AOD is not included in EESN. Note that the y-axis scale differs for the two rows.

Code and data availability. The HSW-V v1.0 code and data are
available from Hollowed et al. (2024a, https://doi.org/10.5281/
zenodo.10524801). E3SM data and code are available at https:
//zenodo.org/records/12169924 (Ries et al., 2024). An up-to-date
version of the code and the listenr package is available on
GitHub at https://github.com/sandialabs/listenr/tree/main (last ac-
cess: 20 September 2024). MERRA-2 data are publicly avail-
able (GMAO, 2015a, https://doi.org/10.5067/FH9A0MLJPC7N;
GMAO, 2015c, https://doi.org/10.5067/2E096JV59PK7; GMAO,
2015b, and https://doi.org/10.5067/OU3HJDS973O0).
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Lukoševičius, M.: Neural Networks: Tricks of the Trade – A Prac-
tical Guide to Applying Echo State Networks, Lecture Notes in
Computer Science, 659–686, https://doi.org/10.1007/978-3-642-
35289-8_36, 2012.
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