
Supplement of Geosci. Model Dev., 18, 1001–1015, 2025
https://doi.org/10.5194/gmd-18-1001-2025-supplement
© Author(s) 2025. CC BY 4.0 License.

Supplement of

ICON ComIn – the ICON Community Interface (ComIn version
0.1.0, with ICON version 2024.01-01)
Kerstin Hartung et al.

Correspondence to: Kerstin Hartung (kerstin.hartung@dlr.de)

The copyright of individual parts of the supplement might differ from the article licence.

ComIn - ICON Community Interface
0.1.0

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen
1.9.8

Wed Jul 3 2024 14:50:11

Chapter 1

ICON Community Interface :: Technical
Documentation

The Community Interface (ComIn) organizes the data exchange and simulation events between the ICON model
and "3rd party modules". The concept can be logically divided into an Adapter Library and a Callback Register.

1. Adapter Library: It is included in both, the ICON model and the 3rd party module. It contains descriptive
data structures, and regulates the access to existing and the creation of additional model variables.

2. Callback Register: Subroutines of the 3rd party module may be called at pre-defined events during the
model simulation.

Code contributions from different researchers and institutions ("third-party code") are usually not included in the
main ICON code, but remain confined to project branches. In any case, they add specific switches and calls to
ICON's main loop, making the model code less readable. Additional maintenance is required to keep the third-party
code compatible with new versions of ICON. These problems are solved by providing a unified plugin interface.
While the core model remains unchanged, third-party code can be run alongside ICON, even if it is implemented in
a programming language other than Fortran.

User Guide: This document contains a detailed technical specification of the interfaces. For beginners (users), we
recommend reading the User Guide documentation first.

Usage example: The ComIn library is distributed with a standalone emulator minimalexample. This prototype
implementation can be found in the file minimal_example.F90.

1.1 General remarks

Clarification of terms I: In this document, we use the phrase "3rd party module" and the term "plugin" interchange-
ably.
Clarification of terms II: There is a fundamental difference between this community interface and a coupling software,
e.g. YAC: A coupler technically moves the data between interacting component models. However, this does
not solve the question of how to add this interaction in a non-intrusive way to ICON. This is the purpose of the
community interface, which exposes ICON's data structures in an organized way and controls what, how and when
foreign functions are called and data is exchanged. The concept of a community interface and the coupling software
complement each other: One may think of the coupling software as the technical sub-layer when, for example,
interpolation or parallel communication is required.
The adapter library allows the 3rd party module(s) to be built separately from the ICON model.

• The ComIn library is published separately from the ICON model code. For the sake of simplicity, however, the
library will also be distributed together with ICON.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

2 ICON Community Interface :: Technical Documentation

• The MPI library is a prerequisite for using the ComIn library. Plugins, however do not necessarily have to be
built with MPI support.

• The interfaces of the adapter library support multiple computational domains ("∗logical∗ domain IDs", i.e. the
intrinsic ICON grid refinements).

• The data flow from/to the 3rd party module is a priori known to the ICON model (before the model integration
but not before the simulation). This allows the handling of parallel synchronization.

• The basic guideline for development was that the size of the adapter library should be minimal. Furthermore,
the amount of data that needs to be provided by the ICON model should be minimal.

1.1.1 Language interoperability

The adapter library is implemented in Fortran 2003, but interfaces are provided for plugins that are written in C/C++
and Python.
In order to support this language interoperability, the BIND(C) attribute is required for some publicly accessible
Fortran data structures. This also implies that all public procedures of the ComIn have to be non-type-bound,
because calling type-bound procedures via ISO-bindings is not supported by the Fortran standard. Some internal
types containing POINTERs, ALLOCATABLEs or CHARACTERs are not defined with the BIND(C) attribute.
Instead, access functions to the components of these data type are provided.
Note that combining ICON ComIn with a coupler software already offers another technical solution for language
interoperability: Through an adapter, the ComIn mechanism can be used to feed an externally running receiver
process with ICON data. This software may be written in C.

1.1.2 Limitations

• In the current version, the adapter library allows the access to cell-based ICON data fields, REAL(wp) arrays
only. This implies in particular that data structures and arrays related to interpolated latitude-longitude grids
are not exposed to the adapter library. However, geometrical information of vertices and edges, which is
required for, e.g., interpolation, are provided.

• For each variable the adapter library allows access to the process-local MPI partition only. Furthermore, most
ICON-internal MPI communicators and exchange patterns are not exposed to 3rd party module(s). Only
the MPI communicator which contains all MPI PEs (P∗rocessing ∗E∗lements, is used here synonymously
with the term ∗MPI task) taking part in the primary constructor calls (ICON worker PEs) is exposed via the
interface.

• The implementation of the function callbacks aims at a coarse-grained level with a moderate calling frequency
(i.e. several times per time step but not dozens of times). In particular, callbacks are not intended to be used
below ICON's "block-loop level".

Not yet implemented in the current version of ICON ComIn:

• The negotiation of a processing order between multiple plugins has not yet been implemented. Callbacks are
organized in the order in which they have been registered.

• The synchronization flag COMIN_FLAG_SYNCHRONIZED for the access of variables is currently not sup-
ported. In later versions of ComIn, users may signal by this flag that the host model should perform a halo
exchange.

1.1.3 Versioning information and compatibility

The ComIn library uses semantic versioning (https://semver.org), which encodes a version by a three-part
version number (Major.Minor.Patch). As a convention, the major version has to match between ComIn, the
ICON model, and the 3rd party modules for correct interaction. The minor version should be backward compatible.
Example: A 3rd party module using ComIn v1.1 capabilities should still work with ComIn v1.2.
As many components of the development are still in the testing phase, the initial public release is set to version
number 0.1.0.
Both, the 3rd party modules and the host model (ICON), are built independently and may be related to different
versions of ICON ComIn. ComIn uses the SONAME to ensure that the library that is loaded at runtime is compatible

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.1 General remarks 3

with the version, that was used at compile time. E.g. libcomin.so.1 is the library name of the ComIn version
1.x.y. When loading a 3rd party module, it is explicitly checked that the major versions of the ComIn library that is
used by the host model and the one that is used by the 3rd party library match.
The user can obtain the version information for the ComIn library that is used at runtime (loaded by the host model
at startup) by calling the function comin_setup_get_version(), which returns an object of type t_comin_setup←↩

_version_info:

TYPE :: t_comin_setup_version_info

INTEGER :: version_no_major, version_no_minor, version_no_patch

END TYPE t_comin_setup_version_info

1.1.3.1 API compatibility and ABI compatibility

Data structures for the transfer of data between the host and the plugin are allocated once by the host. A pointer
to these data structures is propagated to each of the plugins. This approach fails if the plugin assumes a different
structure for the data due to a different ComIn version at build time. This means: Changes in the ComIn data state
result in ABI incompatibility, and therefore this requires a change of the major version number.
Of course, there is also the issue of API incompatibility, where functions and/or interfaces change. These also result
in a change of the major revision number.
Note to ComIn developers: Introducing new global module variables with the intention of transferring data between
the host and the plugin outside of the ComIn state module may corrupt the above mechanism! Therefore global
module variables should be generally avoided.

1.1.4 Namespaces and scopes

As a replacement for a namespace functionality, which is not available in the Fortran programming language, ComIn
uses the prefix comin_∗ for all modules and public entities (internally and externally public). The other part of the
name follows this naming convention:

• Procedures are named comin_<scope>_<method>

• Variables are named comin_<scope>_<description>

• Derived Types are named t_comin_<scope>_<description>.

The naming element <scope> classifies the general context the object is used for. List of scopes (non-
exhaustive): setup, current, callback, parallel, descrdata, var, errhandler. The meaning
of these different scopes will become clear from the descriptions below.

1.1.5 Host and plugins

Although ComIn is designed specifically for ICON, the code should remain agnostic of the host model and the
attached third party plugins. Thus, the driving host model (ICON) is simply referred to by host in the code and the
third party plugins are referred to by plugin.

• ComIn interface to ICON A module named ´comin_host_interface´ provides all procedures, variables and
constants that are exposed to ICON. This module does not provide any actual implementation. Thus, it
consists only of USE and PUBLIC statements. The convention is that from the ICON side, no other module
than comin_host_interface must be used.

• ComIn interface to plugins A module named `comin_plugin_interface` provides all procedures, variables
and constants that are exposed to third party plugins. Again, this module does not provide any actual imple-
mentation. Thus, it consists only of USE and PUBLIC statements. The convention is that from the third party
plugin side, no other module than comin_plugin_interface must be used.

1.1.6 Error handling in functions and subroutines

The ComIn library has deliberately not implemented a comprehensive error handling mechanism. However, an
error signalling using error codes defined in `comin_errhandler_constants` is available. The main reasons for the

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

4 ICON Community Interface :: Technical Documentation

decision against a comprehensive error handling are that in many situations runtime errors are not caught by the
caller, cannot be handled automatically, and hinder the direct localization of the faulty code section with a debugger.
In general, high-level routines (callbacks, constructors) do not return an error state, while lower-level helper functions
return erroneous user input, e.g. in the form of an error state ierr. An error code is equal to COMIN_SUCCESS
for a successful operation. However, the existence of an ierr argument does not imply that the function will
always return to the caller in some way. Unrecoverable errors may be handled internally (abort), depending on the
function. Generally, only SUBROUTINEs will return an error state, FUNCTIONs will either return a null pointer or
call comin_plugin_finish() if essential information is not available.
To evaluate an error status into an error message, comin_error() is available. This subroutine takes the error status
and an optional argument to indicate the scope and writes the error message to the standard error stream.
Within their plugin implementation, users can call the finish routine, which is an exposed ICON subrou-
tine (reverse callback): A function pointer to ICON's finish can be retrieved via comin_plugin_finish()
(module comin_plugin_interface). It is initialized by the host model through the subroutine
comin_setup_errhandler(). This setting is mandatory and must be done before calling the comin_setup_check().

1.2 Adapter library

1.2.1 Access to model variables

Access period: Access to model variables is possible in the 3rd party module's secondary constructor (see below)
and all subsequent subroutine callbacks. The contents of the model variables might change between callbacks.
The following information is required to describe (and uniquely identify) a model variable in ICON:

TYPE :: t_comin_var_descriptor

CHARACTER(:),ALLOCATABLE :: name

INTEGER :: id

END TYPE t_comin_var_descriptor
Encapsulation of this information into a (constant) data structure of the data type t_comin_var_descriptor
is necessary for two reasons: a) iterating over the list of available variable is simplified, and b) future extensions,
e.g. to lat-lon variables, are possible without changing 3rd party code.
Remarks:

• The variable descriptor does not contain information about whether the variable is a "standard field" or a
tracer, the latter corresponding to an add_ref in ICON. Unique names are required here, while information
about a variable's nature can be retrieved from its metadata (see section metadata).

• The t_comin_var_descriptor denotes an ICON variable and does not contain information about a
specific 3rd party module. As a consequence, new variables that are added to ICON have to be unique, and
this also applies in the case of multiple active plugins. Conflicting variables between different modules can
result in a runtime abort (more details are described below in the section Creating additional model variables).

• Not all ICON variables are necessarily provided to the 3rd party modules. The set of exposed data fields is
not defined by the adapter library (and its version) but by the ICON model and may even depend on ICON
runtime settings.

The variable descriptor is stored alongside with the data array (pointer) and metadata in a data structure of the
internal type t_comin_var_item:

TYPE :: t_comin_var_item

TYPE(t_comin_var_descriptor) :: descriptor

TYPE(t_comin_var_metadata) :: metadata

TYPE(t_comin_var_ptr), POINTER :: p => null()

END TYPE t_comin_var_item
The list of available (model) variables is managed in an internal data structure of the adapter library (variable
list comin_var_list in t_comin_state). Note that the derived data type t_comin_var_item is not exposed to
the host model or the plugins. ComIn plugins, for example, can access the data members via the subroutines
comin_var_get_descr_list_head(), comin_var_get(), and comin_metadata_get(), see Iteration and Metadata.
The ICON model (host code) accesses the list of exposed variables with procedures for adding variables, and for
removing the entire variable list, freeing the memory.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.2 Adapter library 5

SUBROUTINE comin_var_list_append(descriptor, p, ierr)

TYPE(t_comin_var_descriptor), INTENT(IN) :: descriptor

TYPE(t_comin_var_ptr), POINTER :: p

INTEGER, INTENT(OUT) :: ierr

END SUBROUTINE comin_var_list_append

SUBROUTINE comin_var_list_finalize(ierr)

INTEGER, INTENT(OUT) :: ierr

END SUBROUTINE comin_var_list_finalize

1.2.1.1 Read/Write access

Access to ICON data fields happens via an accessor function comin_var_get. This subroutine is intended to be
called in the secondary constructor of the 3rd party module (see Secondary constructor). It may not be called at an
earlier or later time, and it serves the purpose of associating internal variable pointers of the 3rd party module to
the ICON internal memory.
Basically, comin_var_get(context, var_descriptor, flag, var_pointer) returns a 5-
dimensional REAL(wp) pointer var_pointer. A return value var_pointer /= NULL means "success".
The index ordering is defined within the ICON model and may change between different versions of the community
interface. The interpretation of the different array dimensions is mostly left to the user.
Remark (array blocking). In ICON, for reasons of cache efficiency nearly all DO loops over grid cells, edges, and
vertices are organized in two nested loops: "jb loops" and "jc loops". Often, the outer loop jb is parallelized with
OpenMP. With respect to the data layout, this means that arrays are split into several chunks of a much smaller
length nproma. This array blocking is exposed via ComIn.
The type t_comin_var_ptr provides dimension indices in the range 1,..,5 for the line (jc, nproma) and block
dimension (jb) as well as the vertical dimension (jk). For tracer fields the position index pos_jn hold information
about the tracer slice dimension (see below). Note that the index positions are translated to 0-based indexing for
the C/C++ and the Python interfaces of ComIn.
∗∗Convenience function comin_var_to_3d for accessing 2D/3D fields.∗∗ In practice, access to fields can be sim-
plified, under the condition that the sequence of dimensions is (jc,jk,jb). This exact dimension sequence is
(currently) fulfilled by the ICON model. In this case, a 3D pointer variable REAL(wp) :: slice(:,:,:) can
be generated directly from a variable of type TYPE(t_comin_var_ptr) using the function

FUNCTION comin_var_to_3d(var) RESULT(slice)

TYPE(t_comin_var_ptr), INTENT(IN) :: var

REAL(wp), POINTER :: slice(:,:,:)

END FUNCTION comin_var_to_3d
The Python interface implements this as a field property):

variable = comin.var_get(...)

slice = variable.to_3d
A similar function is available for C/C++:

variable = comin_var_get(...);

double* slice = comin_var_to_3d(variable);
Here, the additional restriction holds that array slices for (jc,jk,jb) have to be stored contiguously in memory,
because only in this case can these variables be expressed by a simple base pointer.
Regarding the data array, the comin_var_get accessor function returns a pointer to an auxiliary data structure t_←↩

comin_var_ptr which wraps the REAL(wp) pointer. This indirection allows to switch between "old" and "new"
time levels: The distinction between "old" and "new" (nnow, nnew) states, which is available in ICON for some data
fields, is not exposed to the adapter library. Instead, for these fields the exposed pointers are always associated
with the latest modified state. To access an "old" time level, 3rd party modules should allocate local buffers.

TYPE, BIND(C) :: t_comin_var_ptr

REAL(wp), POINTER :: ptr(:,:,:,:,:)

INTEGER :: pos_jc = -1, pos_jk = -1, pos_jb = -1, pos_jn = -1

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

6 ICON Community Interface :: Technical Documentation

INTEGER :: ncontained = 0

LOGICAL(kind=c_bool) :: lcontainer = .false.

END TYPE t_comin_var_ptr
An ICON model variable is always requested within a context, i.e. an entry point where the model variable is
accessed (named integer constant, see the section "Entry points" below). The accessor function comin_var_get
accepts a list of (possibly) multiple entry points: INTEGER, INTENT(IN) :: context(:)
Code example:

TYPE(t_comin_var_ptr), POINTER :: p

CALL comin_var_get(context, var_descriptor, flag, p)
Important note: The access for the context EP_SECONDARY_CONSTRUCTOR is excluded for the subroutine
comin_var_get, since the variables of the host model do not have to be formally assigned with meaningful values at
the time of execution of the secondary constructor.
The optional argument flag provides information w.r.t. the data flow. Flags may be combined like flag =
IOR(COMIN_FLAG_READ, COMIN_FLAG_WRITE). Technically, this can be realized as follows:

! (note that these flags represent bit positions!)

ENUM, BIND(C)

ENUMERATOR :: FLAG_NONE = 0, &

& COMIN_FLAG_READ = IBSET(0,1), &

& COMIN_FLAG_WRITE = IBSET(0,2), &

& COMIN_FLAG_SYNCHRONIZED = IBSET(0,3)

end enum
Please note that as described in the section on Limitations above: "The synchronization flag `COMIN_FLAG_←↩

SYNCHRONIZED` for the access of variables is currently not supported." If no flag is provided, read/write access
to a non-synchronized field is assumed, i.e. the values in the halo region of the domain may be uninitialized or
invalid, depending on the entry point and the particular field. Illegal write access to a data field is not detected
by the ICON model due to efficiency reasons. In theory, this could be achieved by a debug version (compile-time
switch) of the adapter library, which would allocate and compare local buffers.

1.2.1.2 Tracers

In some modules of the ICON code, e.g. the tracer module, there is a need for handling multiple variables at once,
located in contiguous storage. These are called model variable containers. For tracer fields (or possibly other
container variables) the subroutine comin_var_get returns an array pointer to the slice of the container in which
the tracer lives. Alternatively, in order to access the container array itself, the subroutine comin_var_get may be
called directly for the container variable "tracer". More precisely, the Fortran language API returns an object of type
TYPE(t_comin_var_ptr). This provides for individual tracer fields, e.g. qv, the slice index ncontained,
corresponding to the tracer's position in the container array. For the container array, indicated by the logical flag
lcontainer=.TRUE., the tracer's slice equals tracerptr(:,:,:,:,qvncontained). The position of
the slice index dimension is provided by tracerpos_jn. Note that tracer variables in ICON have multiple time
levels.

1.2.1.3 Turbulent & convective transport of tracers

By setting the logical metadata switches tracer_turb and tracer_conv (see section on [metadata][#metadata]
for more information), tracers requested by a plugin can be added to the calculation of turbulent or convective trans-
port tendencies. Please note the following remarks:

• ICON's turbulence/convection parameterization needs to be capable of calculating the tendencies for ad-
ditional tracers. This is currently the case for inwp_turb=1/inwp_convection = 1. There are no
checks done for this.

• Updating the mass mixing ratios of tracers requested by a plugin with the tendencies calculated by ICON's
physical parameterizations is neither done by ICON nor ComIn. Dealing with these updates is thus left to the
plugin. A comin_request_add_var with tracer_turb=.TRUE. and/or tracer_conv=.TRUE.
requests an add_var of a variable for the respective tendency in addition. Pointers to these additional

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.2 Adapter library 7

tendency variables can be accessed by plugins like any other variable. The naming conventions are ddt←↩

_<tracername>_turb and ddt_<tracername>_conv. Please note that in ICON these tendency
variables are stored in containers. As a tracer is not necessarily subject to convective or turbulent transport,
the indexing of the different containers might differ.

1.2.1.4 A word of caution: Undefined behavior when accessing output diagnostics

It can be dangerous for a third party module to request an ICON field which is only diagnosed at output time
steps. A known example is the mean sea level pressure pres_msl. If such a field is used as input for additional
computations, results will depend on the output frequency specified in the ICON namelist. Registering such a field
for restart in order to save its state is of course possible, but will not solve the problem. Currently, the only solution
would be to manually set the fields' update frequency in the ICON code. Even worse, there is no metadata flag by
which the third party module could check if the requested field is such a problematic 'output-only' field.

1.2.1.5 Iterating over variables

Variable descriptors can be explicitly specified, but there is also the possibility to iterate over a linked list of exposed
ICON variables. Note that this mechanism is not related to the structure of ICON's internal variable lists. The linked
list is implemented in the module comin_variables as list type t_var_descr_list. The iteration can be
done by starting at the list's head and iterating to the linked list items of type t_comin_var_descr_list_←↩

item and accessing the variable through the t_comin_var_descriptor as defined above.
Code example:

TYPE(t_comin_var_descr_list_item), POINTER :: var_descr_list_ptr

var_descr_list_ptr => comin_var_get_descr_list_head()

DO WHILE (ASSOCIATED(var_descr_list_ptr))

associate(descriptor => var_descr_list_ptr%item_value)

WRITE (0,*) "name = ", trim(descriptor%name)

END associate

var_descr_list_ptr => var_descr_list_ptr%next()

END DO

1.2.2 Creating additional model variables

A list of to-be-created variables is built by the primary constructor of the 3rd party module (see below) and made
known to the ICON model via the adapter library function comin_var_request_add(). The add_var and add_ref
functions from the ICON model are not directly exposed.
Remarks:

• Only cell-based REAL(wp)-valued variables can be requested. These are either surface (2D) variables or
3D variables with nlev levels. The index ordering may change between different versions of the community
interface.

• Variables may be requested exclusively by one 3rd party module, leading to a model abort in case another
3rd party module tries to request the same variable (determined by variable name).

• Requests for the creation of variables that are issued after the primary constructor are ignored by the ICON
model.

• The memory buffers for requested variables are allocated by the ICON model after the primary constructor
has finished (even if they are not used). However, if a 3rd party module requests the creation of a variable
through this subroutine, it is still not guaranteed that this variable is actually created! It might be skipped due
to inconsistencies, it could be a duplicate etc. Therefore, 3rd party modules still have to evaluate the return
code of comin_var_get (a return value var_pointer /= NULL means "success").

• Created variables can be accessed via the standard ICON model output. The ICON-internal interpolation to
regular grids is done with default methods (horizontal: RBF, vertical: linear.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

8 ICON Community Interface :: Technical Documentation

• Considering the return code of the request, the additional variables should then be accessed from ICON via
comin_var_get as described above. In other words: On the side of the plugins it is to be noted that by
the execution of the procedure comin_var_request_add not yet immediately a variable is created, which can
be used afterwards directly by the plugin. Instead this step represents only the registration of a new variable,
which must be queried - like the remaining variables - with the function comin_var_get.

• While it is possible to create variables only for certain domains, ICON has the restriction that tracer variables
have to be present on every domain. For this reason, it is necessary to choose domain id -1 (meaning all
domains) as part of the var_descriptor for variables with tracer = .true..

The syntax for requesting a new variable is

SUBROUTINE comin_var_request_add(var_descriptor, lmodexclusive, ierr)

TYPE (t_comin_var_descriptor), INTENT(IN) :: var_descriptor

LOGICAL, INTENT(IN) :: lmodexclusive

INTEGER, INTENT(OUT) :: ierr

END SUBROUTINE comin_var_request_add
When the requests for add_var/add_ref are processed by the ICON host code, a consistency check is per-
formed which handles conflicts with existing model variables.

1. Variables may also be appended to ICON's container of tracer variables through the tracer flag (part of the
metadata). Apart from that aspect it is not possible to create additional variable containers via the adapter
library. It cannot be assumed (if only because of the "sharing" of variables between multiple ComIn plugins)
that the tracers generated by a module are stored consecutively.

2. During each call to comin_var_request_add by a 3rd party module, a check is performed if the requested
variable is already registered. If this is the case, the subsequent behavior depends on the setting of
lmodexclusive: the model aborts if the variable exists and is either requested exclusively in this call
or was requested exclusively before. Otherwise a new variable, with the properties provided, is added to the
list of requested variables.

3. Newly created fields can be added to ICON's set of restart variables.

The restriction of the restart registration to newly created variables has been a deliberate design decision which
greatly simplifies the interplay between ComIn and the ICON code. If the ComIn allowed to change the restart
flag of existing variables in ICON, this would require additional code in ICON which performs this flag overriding at
an appropriate place in ICON's initialization procedure. Besides, overriding the restart flag could be confusing for
ICON developers due to its "magic behind the scenes" controlled by the ComIn. On the other hand, a workaround
for adding existing variables to the restart could be implemented entirely on the 3rd party side by adding a custom
restart-capable variable and attaching two additional routines after the restart read-in and before the restart write-out
which handle the copy in/out.

1.2.2.1 Iterating over cells

Loops in the 3rd party module can be organized using an auxiliary function comin_descrdata_get_cell_indices()
which replicates the behavior of its ICON model counterpart.
Code example:

DO jb = i_startblk, i_endblk

CALL comin_descrdata_get_cell_indices(jg, jb, &

& i_startblk, i_endblk, &

& is, ie, grf_bdywidth_c+1, &

& min_rlcell_int)

END DO
where jg denotes the logical domain ID.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.2 Adapter library 9

1.2.3 Metadata

Metadata information can be set when requesting additional variables and retrieved for existing and newly created
model variables. The instructions start with introducing which metadata is available and how to retrieve it before
providing some details on how to set new metadata when requesting additional variables.
Metadata are provided read-only to the 3rd party plugins. They are available from the secondary constructor and
do not change over runtime. Examples for information provided as variable metadata are information about if the
variable is a tracer, or if it is a restart variable. Note that some metadata is tracer-specific and therefore prepended
by tracer_. Note that for optimal memory management all strings are provided as pointers. Also note that for
tendency variables (like tendency due to turbulence), the metadata tracer_turb and tracer_conv are not
set.
Currently the metadata information for zaxis_id is incomplete. The interpretation of fields with the property
COMIN_ZAXIS_3D is already possible (includes all fields described by ZA_REFERENCE in ICON), and also
ICON's ZA_SURFACE fields (surface or other 2D fields like 10 m wind) are described by the property COMIN←↩

_ZAXIS_2D. All other vertical axis types are grouped under COMIN_ZAXIS_UNDEF. This includes information
about soil layers. In a future release, the list of zaxis_id options will be expanded to more accurately describe
the underlying data. For now, pos_jk as part of t_comin_var_ptr can be used to determine the vertical axis
and its size.

metadata data type description default

zaxis_id INTEGER gives an interpretation of the
vertical axis (2D = COMIN_←↩

ZAXIS_2D, atmospheric levels =
COMIN_ZAXIS_3D, ...)

COMIN_ZAXIS_3D

restart LOGICAL Flag. TRUE, if this is a restart vari-
able

.FALSE.

tracer LOGICAL Flag. TRUE, if this is a tracer vari-
able

.FALSE.

tracer_turb LOGICAL Flag. TRUE, if this tracer shall take
part in turbulent transport

.FALSE.

tracer_conv LOGICAL Flag. TRUE, if this tracer shall take
part in convective transport

.FALSE.

tracer_hlimit INTEGER horizontal limiter positive definite flux limiter

tracer_vlimit INTEGER vertical limiter semi-monotonous slope limiter

tracer_hadv INTEGER method for horizontal tracer trans-
port

miura horizontal advection
scheme

tracer_vadv INTEGER method for vertical tracer transport PPM vertical advection scheme

units CHARACTER units (as part of CF metadata con-
vention)

empty string

standard_name CHARACTER standard_name (as part of CF
metadata convention)

empty string

long_name CHARACTER long_name (as part of CF meta-
data convention)

empty string

short_name CHARACTER short_name (as part of CF meta-
data convention)

empty string

In the above table the default value refers to the value ICON receives from ComIn when requesting an additional vari-
ables. Please be aware that setting ihadv_tracer, ivadv_tracer, itype_hlimit or itype_vlimit
in ICON's &transport_nml overwrites settings coming from ComIn (for the ComIn metadata tracer_hadv,
tracer_vadv, tracer_hlimit and tracer_vlimit respecively).
The derived data type t_comin_var_metadata storing the metadata internally is not exposed to the
host model or the plugins. ComIn plugins, for example, can access the data members via the subroutine
comin_metadata_get.

SUBROUTINE comin_metadata_get_<val datatype>(var_descriptor, key, val,
ierr)

TYPE(t_comin_var_descriptor), INTENT(IN) :: var_descriptor

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

10 ICON Community Interface :: Technical Documentation

CHARACTER(LEN=*), INTENT(IN) :: key

<val datatype>, INTENT(OUT) :: val

INTEGER, INTENT(OUT) :: ierr

END SUBROUTINE comin_metadata_get_<val datatype>
An error code is equal to 0 for a successful request.
While the Fortran and Python API of the ComIn can handle generic arguments of type INTEGER, LOGICAL, the
C implementation of the interface does not support generic argument data types. Therefore, special variants of this
subroutine exist:

void comin_metadata_get_integer(struct t_comin_var_descriptor*
var_descriptor, const char* key, int* val, int* ierr);

void comin_metadata_get_logical(struct t_comin_var_descriptor*
var_descriptor, const char* key, _Bool* val, int* ierr);

void comin_metadata_get_real(struct t_comin_var_descriptor* var_descriptor,
const char* key, double* val, int* ierr);

void comin_metadata_get_character(struct t_comin_var_descriptor*
var_descriptor, const char* key, const char* val, int* ierr);

Metadata items are identified by a character string key. The data type of a particular metadata item can be retrieved
by calling

INTEGER FUNCTION comin_metadata_get_typeid(key) RESULT(typeid)

CHARACTER(LEN=*), INTENT(IN) :: key

END FUNCTION comin_metadata_get_typeid
This auxiliary function yields one of the IDs TYPEID_UNDEFINED, TYPEID_INTEGER, TYPEID_LOGICAL,
TYPEID_REAL, , TYPEID_CHARACTER.
On the host model side, the comin_var_request_add operations expects information on the properties of the variable
which should be registered. These are provided using the function

SUBROUTINE comin_metadata_set(descriptor, key, val, ierr)

TYPE(t_comin_var_descriptor), INTENT(IN) :: descriptor

CHARACTER(LEN=*), INTENT(IN) :: key

<val data type>, INTENT(IN) :: val

INTEGER, INTENT(OUT) :: ierr

END SUBROUTINE comin_metadata_set
If a metadata value cannot be added to a newly requested field a warning message is thrown (similarly also from
the host model for its variables). The error code can be evaluated in addition and the plugin can decide to abort the
simulation.
For the C implementation, in analogy to the read accessor functions comin_metadata_get_<data type>,
there exist special, type-specific write accessor functions comin_metadata_set_<data type>.
The comin_var_request_add procedure implies the following behavior when the same variable is added
multiple times by different plugins, but with different metadata: In this case, the "first come, first serve" rule applies,
i.e. the metadata will not be overwritten by plugins that are executed later.

1.2.4 Descriptive data structures

The descriptive data structures contain information on the ICON setup (e.g. Fortran KIND values), the computa-
tional grid(s), and the simulation status.
All descriptive data structures are treated as read-only (seen from the perspective of the 3rd party plugins). However,
this read-only nature is (currently) not enforced. For efficiency reasons, the adapter library directly uses pointers
to ICON data structures where possible. This holds mostly for components of p_patch, while non p_patch
descriptive data are copied from the host model.
Date and time information (simulation status) is provided as character strings according to ISO 8601. Note that there
are exceptions to this rule where in ICON time information is stored internally in seconds (timesteplength per domain
from comin_descrdata_get_timesteplength() and dom_start/dom_end from t_comin_descrdata_domain).
All getter functions for descriptive data don't return an code but abort the simulation (call comin_plugin_finish) since
their non-existance points to a larger problem. In general in ComIn functions don't return error codes.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.2 Adapter library 11

The majority of the examples provided cover Fortran. The interface to C are often different and some notes on this
are provided in a section on C/C++ and python interfaces.

1.2.4.1 Global data

Access period: The global data is set by the host as the first descriptive data structure (since it is required for grid
information). Global data is available for the 3rd party module's primary constructor and all subsequent subroutine
callbacks. Global data is never changed or updated. Global data is invariant w.r.t. the computational grid (logical
domain ID).
Global data is encapsulated in a data type t_comin_descrdata_global and can be requested with comin_descrdata_get_global()
(returning a POINTER and aborting the simulation if unsuccessful). It is set up by a call to icon_build_global
in ICON (calling comin_descrdata_set_global) before the primary constructor. Its internal structure may change
between different versions of the adapter library.
List of global data:

name data type description

n_dom INTEGER number of logical domains

max_dom INTEGER maximum number of logical domains

nproma INTEGER block size
wp INTEGER KIND value (REAL)

min_rlcell_int INTEGER block index
min_rlcell INTEGER block index
grf_bdywidth←↩

_c
INTEGER block index

grf_bdywidth←↩

_e
INTEGER block index

lrestartrun LOGICAL if this simulation is a restart
vct_a 1D REAL(dp) array (1:(nlev+1)) param. A of the vertical coordinate (without topog-

raphy)

Some global data, e.g. the Fortran KIND value information wp, are required by the 3rd party module at compile
time. However, due to the loose connection between the 3rd party module and the ICON model via the adapter
library, the following implementation procedure is proposed:

1. The 3rd party module is compiled with a fixed Fortran KIND value.

2. In the module's primary constructor, the ICON model's KIND value is retrieved from the global data of the
adapter library. A consistency check may throw a runtime exception.

The host model can assert the compatibility of its wp value through the subroutine comin_setup_check().

1.2.4.2 Grid information

Access period: Grid information is available for the 3rd party module's primary constructor and all subsequent sub-
routine callbacks. Grid information is never changed or updated. The data structures in this section are replicated
for each computational domain (logical domain ID).

Topological data structures

Topological data is encapsulated in a data type t_comin_descrdata_domain and can be requested for do-
main jg with comin_descrdata_get_domain(jg) (returning a POINTER and aborting the simulation if
unsuccessful). It is set up by a call to comin_descrdata_set_domain() in the host model (ICON) before the primary
constructor. The internal structure may change between different versions of the adapter library.
Structure of type t_comin_descrdata_domain

name data type description

grid_filename CHARACTER horizontal grid file name

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

12 ICON Community Interface :: Technical Documentation

name data type description
grid_uuid CHARACTER alphanumerical binary hash, note that

this UUID field is not the (slightly
longer) hexadecimal UUID string suit-
able for print-out

number_of_grid_used INTEGER number of grid used (GRIB2 key)

id 1D INTEGER array (1:max_dom) ID of current domain

n_childdom INTEGER number of child domains
dom_start REAL(wp) model domain start time in elapsed

seconds
dom_end REAL(wp) model domain end time in elapsed

seconds
nlev INTEGER no. of vertical model levels
nshift INTEGER half level of parent domain that coin-

cides with upper margin of current do-
main

nshift_total INTEGER total shift of model top w.r.t. global do-
main

cells TYPE(t_comin_descrdata_←↩

domain_cells), see below
properties for cells

verts TYPE(t_comin_descrdata_←↩

domain_verts), see below
properties for vertices

edges TYPE(t_comin_descrdata_←↩

domain_edges), see below
properties for edges

Structure of type t_comin_descrdata_domain_cells

name data type description

ncells INTEGER no. of local cells
ncells_global INTEGER no. of global cells

nblks INTEGER no. of blocks for cells
max_connectivity INTEGER

num_edges 2D INTEGER array (nproma, nblks_c) number of edges

refin_ctrl 2D INTEGER array lateral boundary distance index

start_index 1D INTEGER array start index

end_index 1D INTEGER array end index

start_block 1D INTEGER array start block for cells

end_block 1D INTEGER array end block for cells

child_id 2D INTEGER array (nproma, nblks_c) domain id of child triangles

child_idx 3D INTEGER array (nproma, nblks_c, 4) indices of child triangles

child_blk 3D INTEGER array (nproma, nblks_c, 4) blocks of child triangles

parent_glb_idx 2D INTEGER array (nproma, nblks_c) global indices of parent triangles

parent_glb_blk 2D INTEGER array (nproma, nblks_c) global blocks of parent triangles

vertex_idx 3D INTEGER array (nproma, nblks_c, 3) indices of vertices

vertex_blk 3D INTEGER array (nproma, nblks_c, 3) blocks of vertices

neighbor_idx 3D INTEGER array (nproma, nblks_c, 3) indices of neighbors

neighbor_blk 3D INTEGER array (nproma, nblks_c, 3) blocks of neighbors

edge_idx 3D INTEGER array (nproma, nblks_c, 3) indices of edges

edge_blk 3D INTEGER array (nproma, nblks_c, 3) blocks of edges

clon 2D REAL(wp) array (nproma, nblks_c) cell center longitude

clat 2D REAL(wp) array (nproma, nblks_c) cell center latitude

area 2D REAL(wp) array (nproma, nblks_c) triangle area

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.2 Adapter library 13

name data type description
hhl 3D REAL(wp) array (nproma, nlev+1,

nblks_c)
geometrical height of half levels at cell
center

Structure of type t_comin_descrdata_domain_verts

name data type description

nverts INTEGER no. of local verts
nverts_global INTEGER no. of global verts

nblks INTEGER no. of blocks for verts
refin_ctrl 2D INTEGER array lateral boundary distance index

start_index 1D INTEGER array start index

end_index 1D INTEGER array end index

start_block 1D INTEGER array start block

end_block 1D INTEGER array end block

neighbor_idx 3D INTEGER array (nproma, nblks_v, 6) indices of neighbors

neighbor_blk 3D INTEGER array (nproma, nblks_v, 6) blocks of neighbors

cell_idx 3D INTEGER array (nproma, nblks_v, 6) indices of cells

cell_blk 3D INTEGER array (nproma, nblks_v, 6) blocks of cells

edge_idx 3D INTEGER array (nproma, nblks_v, 6) indices of edges

edge_blk 3D INTEGER array (nproma, nblks_v, 6) blocks of edges

vlon 2D REAL(wp) (nproma, nblks_v) longitude vertex

vlat 2D REAL(wp) (nproma, nblks_v) latitude vertex

Structure of type t_comin_descrdata_domain_edges

name data type description

nedges INTEGER no. of local edges

nedges_global INTEGER no. of global edges

nblks INTEGER no. of blocks for edges

refin_ctrl 2D INTEGER array lateral boundary distance index

start_index 1D INTEGER array start index

end_index 1D INTEGER array end index

start_block 1D INTEGER array start block

end_block 1D INTEGER array end block

child_id 2D INTEGER array (nproma, nblks_e) domain id of child edges

child_idx 3D INTEGER array (nproma, nblks_e, 4) indices of child edges

child_blk 3D INTEGER array (nproma, nblks_e, 4) blocks of child edges

parent_glb_idx 2D INTEGER array (nproma, nblks_e) global indices of parent edges

parent_glb_blk 2D INTEGER array (nproma, nblks_e) global blocks of parent edges

cell_idx 3D INTEGER array (nproma, nblks_e, 2) indices of cells

cell_blk 3D INTEGER array (nproma, nblks_e, 2) blocks of cells

vertex_idx 3D INTEGER array (nproma, nblks_e, 4) indices of vertices

vertex_blk 3D INTEGER array (nproma, nblks_e, 4) blocks of vertices

elon 2D REAL(wp) (nproma, nblks_e) longitude edge midpoint

elat 2D REAL(wp) (nproma, nblks_e) latitude edge midpoint

Geometrical information is provided as horizontal (cell-wise) data fields, e.g. clon, clat, area. Instead of
information about the vertical grid, the plugins may access the ICON variable HHL.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

14 ICON Community Interface :: Technical Documentation

Parallelization information

Implicitly, the above tables also contain some information on the parallelization: The data structure contains the
information whether the local PE is a compute process owning prognostic grid points.
Explicit information on the parallelization of cells is contained for domain jg in the type t_comin_descrdata_domain_cells.
List of data structures related to parallelization:

name data type description
glb_index 1D INTEGER array global cell indices

decomp_domain 2D INTEGER array (nproma, nblks_c) domain decomposition flag

In addition, the function comin_descrdata_index_lookup_glb2loc_cell() can be used to determine the local index to
a corresponding global index.

1.2.4.3 Timing information on the simulation

Access period: The simulation timing info is available for the 3rd party module's primary constructor and all subse-
quent subroutine callbacks. It is set by a call to comin_descrdata_set_simulation_interval() from the host.
The simulation timing info is provided as ISO 8601 character strings and can be requested with comin_descrdata_get_simulation_interval()
(returning a POINTER and aborting the simulation if unsuccessful). Its internal structure may change between
different versions of the adapter library.
List of data structures related to the simulation timing info:

name data type description
exp_start CHARACTER simulation start time stamp

exp_stop CHARACTER simulation end time stamp

run_start CHARACTER start of this simulation (-> restart)

run_stop CHARACTER stop of this simulation (-> restart)

1.2.5 Routines to access the current state of ComIn

The current simulation date time stamp can be obtained as an ISO 8601 string from the accessor subroutine

SUBROUTINE comin_current_get_datetime(sim_time_current)

CHARACTER(LEN=:), ALLOCATABLE, INTENT(OUT) :: sim_time_current
During the simulation the current date time stamp is updated by a call to comin_current_set_datetime() from the
host, it is available beginning with the entry point EP_ATM_TIMELOOP_BEFORE.
To access information on the current entry point being processed by ComIn, the currently executing plugin and the
current domain selected in ICON routines are provided from within ComIn. comin_current_get_ep can be called
from within a plugin, for example when one procedure is registered for several entry points but slight deviations in
behavior between the entry points are necessary.

SUBROUTINE comin_current_get_ep(curr_ep, ierr) &

BIND(C)

INTEGER(c_int), INTENT(OUT) :: curr_ep

INTEGER(c_int), INTENT(OUT) :: ierr
comin_current_get_plugin_info() gives access to components of the data type t_comin_plugin_info. It can for ex-
ample be used to access the id of the current plugin. The data type also stores information on the plugin name,
associated options and, if present, its communicator.

SUBROUTINE comin_current_get_plugin_info(comin_current_plugin, ierr)

TYPE(t_comin_plugin_info), INTENT(OUT) :: comin_current_plugin

INTEGER, INTENT(OUT) :: ierr

void comin_current_get_plugin_info(struct t_comin_plugin_info_c*
comin_current_plugin);

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.3 Callback register 15

comin_current_get_domain_id() is provided together with descriptive data as part of the adapter library. A C version
of this routine is also available. Callbacks might be called from ICON from the global domain or from any nested
domain. The currently selected domain can be accessed via this subroutine.

SUBROUTINE comin_current_get_domain_id(domain_id, ierr) &

BIND(C)

INTEGER(c_int), INTENT(OUT) :: domain_id

INTEGER(c_int), INTENT(OUT) :: ierr

1.2.6 Auxiliary procedures

Another small set of auxiliary built-in subroutines does not communicate with the ICON model but provides common
functionality (utilities):
List of auxiliary built-in subroutines and functions:

name description

comin_descrdata_get_index(), comin_descrdata_get_block() convert 1D index into nproma-blocked index

comin_descrdata_get_cell_npromz length of last block

comin_descrdata_get_edge_npromz length of last block

comin_descrdata_get_vert_npromz length of last block

Verbosity level
Following ICON's parameter msg_level, the verbosity of the log output is controlled by an integer value in the
ComIn library as well: By means of the auxiliary routine comin_setup_set_verbosity_level() the host model specifies
whether log outputs are generated by the MPI process 0 e.g. when passing the entry points or when registering the
callback functions. The higher the specified value, the more extensive the output (0=silent, 20=all log messages are
output).

1.3 Callback register

The callback register is part of the ComIn library. It fulfils the following tasks:

1. Subroutines of the 3rd party module may be called at pre-defined events during the model simulation.

2. When multiple 3rd party modules are present, a processing order is negotiated with the ICON model.

1.3.1 Enabling 3rd party plugins through namelist settings

This section describes the mechanism of registering new 3rd party modules. We distinguish between two setup
routines, a primary constructor and a secondary constructor, both described in the following:
The primary constructor is called before the allocation of ICON variable lists and fields. Its call is automatically
triggered by the host model through a call to the subroutine

SUBROUTINE comin_plugin_primaryconstructor(plugin_list, ierr)

TYPE(t_comin_plugin_description), INTENT(IN) :: plugin_list(:)

INTEGER, INTENT(OUT) :: ierr
where

TYPE :: t_comin_plugin_description

CHARACTER(LEN=MAX_LEN_PLUGIN_NAME) :: name

CHARACTER(LEN=MAX_LEN_PLUGIN_LIBRARY) :: plugin_library = ""

CHARACTER(LEN=MAX_LEN_PRIMARY_CONSTRUCTOR) :: primary_constructor =
""

CHARACTER(LEN=MAX_LEN_OPTIONS) :: options = ""

CHARACTER(LEN=MAX_LEN_COMM) :: comm = ""

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

16 ICON Community Interface :: Technical Documentation

END TYPE t_comin_plugin_description
where the maximum character string lengths are defined in a file global.inc (also accessible for C and python
programs).
The rationale behind the type t_comin_plugin_description is to provide a Fortran namelist in the host model, e.g.,

&comin_nml

plugin_list(1)%name = "name"

plugin_list(1)%plugin_library = "libraryname.so"

plugin_list(1)%primary_constructor = "constructorroutine"

!

plugin_list(2)%name = ...

plugin_list(2)%plugin_library = ...

plugin_list(2)%primary_constructor = ...

!

...

/
in order to enable/disable the ComIn plugins at runtime.

• By name we denote a simple string that is used for output purposes related to this plugin.

• By plugin_library we denote the dynamically loaded library (including its file extension .so). If the
plugin has been statically linked to the host model, this argument should be skipped or an empty string should
be provided.

• By primary_constructor we denote the name of the primary constructor subroutine, the default value
is comin_main.

• By comm we denote the name of the MPI communicator that is created for this particular plugin. This is
useful when exchanging data with other running processes, see the section on MPI communicators below.
The parameter comm can be left as an empty string if the application does not require a communicator for
this plugin.

• The options data offers the possibility to pass a character string (e.g. a python script filename) to the
plugin.

If multiple 3rd party modules are enabled, the primary constructor calls will be added in the same order as they
appear in the comin_nml namelist unless specified otherwise (not possible in the first release).
Remark. The runtime configuration of the ComIn callback library is implemented as the simple t_comin_plugin_description
data structure instead of using a special file-based input format, in particular Fortran namelists (or YAML, XML,
etc.). This I/O abstraction is motivated by the fact that the configuration could be read from a restart file as well as
from an ASCII file in ICON. Other ways of reading the configuration could be introduced by the host model in the
future and should not affect the ComIn interfaces.

1.3.2 3rd party primary constructor

The setup routine returns the t_comin_plugin_info info that has been used by the 3rd party module at compile time.

abstract INTERFACE

SUBROUTINE comin_primaryconstructor_fct(ierr)

INTEGER(C_INT), INTENT(OUT) :: ierr

END SUBROUTINE comin_primaryconstructor_fct
During execution,

• the primary constructor registers the plugin and acquires a handle (type t_comin_plugin_info).

• the primary constructor appends subroutines of the 3rd party module to the callback register.

• the 3rd party module may also register additional variables, e.g. tracers (via comin_variable::comin_var_request_add()).

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.3 Callback register 17

The module handle is basically a ComIn-internal ID that is used to identify a specific plugin during the subsequent
operations. Users do not access the module ID explicitly; later on, for example, the calling module for a callback
function can be implicitly identified by the wrapping ComIn handler routine.
The options character string mentioned above becomes available as the optionsmember in t_comin_plugin_description.
Important remark: We strongly advise plugin developers to add proper prefixes to global symbols (variables, func-
tions). This ensures that these symbols remain unique in all variations of library linking.

1.3.3 Secondary constructor

A secondary constructor is called after the allocation of ICON variable lists and fields and before the time loop.

• It obtains readable and/or writable pointers to the ICON data fields: data pointers can be mapped to internal
variables of the 3rd party module.

• The call to the secondary constructor is realized as a callback itself, therefore the description in the following
section applies.

1.3.4 Finalize initialization phase

At the last part of the initialization phase, the callback to a final initialization entry point is called. This gives the
plugins an additional entry point to finish their initialization. The entry point is named EP_<COMP>_INIT_←↩

FINALIZE, reflecting the fact that this is the place to finalize the initial setup in the plugins.

1.3.5 Entry points (callbacks)

Entry points denote events during the ICON model simulation, which can trigger a subroutine call of the 3rd party
module. Entry points are denoted by named integer constants, e.g.

ENUM, BIND(C)

ENUMERATOR :: EP_SECONDARY_CONSTRUCTOR = 1, &

& EP_ATM_INIT_FINALIZE, &

...

& ep_destructor

END ENUM
The set of entry points may change between different versions of the adapter library, but integer constants are
defined in a backward compatible fashion. The name of a entry point based on the named integer constant can be
determined with a call to comin_callback_get_ep_name.

SUBROUTINE comin_current_get_ep_name(iep, out_ep_name, ierr)

INTEGER, INTENT(IN) :: iep

CHARACTER(LEN=:), ALLOCATABLE, INTENT(OUT) :: out_ep_name

INTEGER, INTENT(OUT) :: ierr

void comin_callback_get_ep_name(int iep, char
out_ep_name[MAX_LEN_EP_NAME+1], int* ierr);

Conventions:

• The entry point EP_DESTRUCTOR always denotes the last entry in the enumeration. This easily provides
the total number of entry points to ComIn.

• Apart from this, the entry point IDs may change and thus backward compatibility is not given in this respect.

• Callbacks are not intended to be used below ICON's "block-loop level" but have a rather moderate calling
frequency (i.e. several times per time step but not dozens of times).

• If an entry point is located inside a domain loop the call to comin_callback_context_call() is executed with the
argument DOMAIN_OUTSIDE_LOOP instead of the domain id. The information from where in the host code
the callback is executed is accessible from ComIn via the comin_current_get_domain_id() routine. It returns
the domain id, which can however be DOMAIN_OUTSIDE_LOOP if it encompasses all domains, and ierr,
which equals 0 in a successful call.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

18 ICON Community Interface :: Technical Documentation

Note that the adapter library exposes ICON model variables with respect to these entry points, together with in-/out-
semantics (see the section on read/write access). Therefore, after the secondary constructor has been processed,
the data flow for each entry point and every 3rd party module is known to the callback registry.

1.3.5.1 Naming convention

The Entry point names and ids are constructed as follows:
EP_<COMP>_<PROCESS|LOOP>_[BEFORE|AFTER|START|END]

• <COMP>: the model component, e.g. ATM, OCE, LND...

• <PROCESS|LOOP>: name of the entry point's corresponding physical process or loop in the model

• [BEFORE|AFTER]: position of the entry point in the call sequence, before or after the corresponding physi-
cal process or loop

• [START|END]: inside a loop, the entry point at the beginning (right after DO) has suffix START, the entry
point at the end (right before END DO) has suffix END

The character length of an entry point name cannot exceed MAX_LEN_EP_NAME (currently set to 32), which is
defined in include/global.inc.
Exceptions from this naming scheme are EP_SECONDARY_CONSTRUCTOR, EP_FINISH, EP_DESTRUCTOR,
and the final entry point of the initialization phase EP_<COMP>_INIT_FINALIZE.

1.3.5.2 List of entry points

Entry point ID description call interval
EP_SECONDARY_CONSTRUCTOR secondary constructor, initial phase once in simulation

EP_ATM_YAC_DEFCOMP_BEFORE just before the component definition of
yac

once in simulation

EP_ATM_YAC_DEFCOMP_AFTER after the component definition of yac once in simulation

EP_ATM_YAC_SYNCDEF_BEFORE just before the config synchronisation of
yac

once in simulation

EP_ATM_YAC_SYNCDEF_AFTER after the config synchronisation of yac once in simulation

EP_ATM_YAC_ENDDEF_BEFORE just before the end of the config definition
of yac

once in simulation

EP_ATM_YAC_ENDDEF_AFTER just before the end of the config definition
of yac

once in simulation

EP_ATM_INIT_FINALIZE end of initial phase once in simulation

EP_ATM_TIMELOOP_BEFORE just before start of the time loop once in simulation

EP_ATM_TIMELOOP_START at the beginning of the time loop every (global) time step

EP_ATM_TIMELOOP_END just before the end of the time loop every (global) time step

EP_ATM_TIMELOOP_AFTER after the time loop is finished once in simulation

EP_ATM_INTEGRATE_BEFORE before the integration is called every (global) time step

EP_ATM_INTEGRATE_START start of the integration loop every (nested) time step

EP_ATM_INTEGRATE_END end of the integration loop every (nested) time step

EP_ATM_INTEGRATE_AFTER after the integration loop every (global) time step

EP_ATM_WRITE_OUTPUT_BEFORE before the call to model output every (nested) time step

EP_ATM_WRITE_OUTPUT_AFTER after the call to model output every (nested) time step

EP_ATM_CHECKPOINT_BEFORE before the call to model's checkpoint
writing

checkpoint interval

EP_ATM_CHECKPOINT_AFTER after the call to model's checkpoint writ-
ing

checkpoint interval

EP_ATM_ADVECTION_BEFORE before advection every (nested) time step

EP_ATM_ADVECTION_AFTER after advection every (nested) time step

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.3 Callback register 19

Entry point ID description call interval
EP_ATM_PHYSICS_BEFORE before physics every (nested) time step

EP_ATM_PHYSICS_AFTER after physics every (nested) time step

EP_ATM_NUDGING_BEFORE before nudging every (nested) time step

EP_ATM_NUDGING_AFTER after nudging every (nested) time step

EP_ATM_SURFACE_BEFORE before surface scheme every (nested) time step

EP_ATM_SURFACE_AFTER after surface scheme every (nested) time step

EP_ATM_TURBULENCE_BEFORE before turbulence scheme every (nested) time step

EP_ATM_TURBULENCE_AFTER after turbulence scheme every (nested) time step

EP_ATM_MICROPHYSICS_BEFORE before microphysics every (nested) time step

EP_ATM_MICROPHYSICS_AFTER after microphysics every (nested) time step

EP_ATM_CONVECTION_BEFORE before convection every (nested) time step

EP_ATM_CONVECTION_AFTER after convection every (nested) time step

EP_ATM_RADIATION_BEFORE before radiation every (nested) time step

EP_ATM_RADIATION_AFTER after radiation every (nested) time step

EP_ATM_RADHEAT_BEFORE before radiative heating every (nested) time step

EP_ATM_RADHEAT_AFTER after radiative heating every (nested) time step

EP_ATM_GWDRAG_BEFORE before gravity waves every (nested) time step

EP_ATM_GWDRAG_AFTER after gravity waves every (nested) time step

EP_FINISH in the model's finish subroutine in case of an exception

EP_DESTRUCTOR immediately before MPI_Finalize once in simulation

Notes:

• If a physical process in the model is switched off, the corresponding entry points are still called.

• Entry points in the integration loop are called each (sub-)time step, regardless if the corresponding physical
process is configured to operate on a reduced calling frequency (e.g. reduced calling frequency for radiation).

• The entry points corresponding to the checkpointing are called only if the model's checkpointing is triggered
for the current time step.

• Depending on the model's configuration not all entry points may be called!

1.3.5.3 Appending function pointers to entry points

The primary constructor appends subroutines of the 3rd party module to the callback register via the adapter library
subroutine comin_callback_register().

abstract INTERFACE

SUBROUTINE comin_callback_routine() BIND(C)

END SUBROUTINE comin_callback_routine

END INTERFACE

SUBROUTINE comin_callback_register(entry_point_id, fct_ptr, ierr) BIND(C)

INTEGER, INTENT(IN), VALUE :: entry_point_id

PROCEDURE(comin_callback_routine) :: fct_ptr

INTEGER, INTENT(OUT) :: ierr

END SUBROUTINE comin_callback_register
Remarks:

• It is not necessary to attach function pointers to every available entry point.

• Each 3rd party module may attach only a single function pointer to a given entry point. Each call to
comin_callback_register overwrites previous callback settings.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

20 ICON Community Interface :: Technical Documentation

• Calls of the comin_callback_register, which happen after the 3rd party module's primary constructor, are
ignored. Internally, the callback register is "sealed" by a call to the subroutine comin_callback_←↩

complete.

• During a simulation the current entry point can be requested via comin_current_get_ep(). This is for example
useful if one routine is called from several entry points but should exhibit slightly different behavior.

For a specific entry point, each plugin may register only one callback routine. Allowing multiple callbacks per
component would require complex extension of the relatively simple ComIn interface, especially if components are
allowed to intertwine their callbacks. Advice to users: There is still the possibility to write wrappers (summarizing
multiple callbacks), or to register the same 3rd party library as multiple independent ComIn components.

1.3.5.4 Processing order

The processing order is important when multiple 3rd party modules are present. Currently, the processing order
is specified by the order in which plugins are registered. Additional options to set the processing order are not
available in the first release but ordering via runtime settings (Fortran namelists) is planned. The ordering may then
also differ between individual entry points.

1.3.6 MPI communicators

3rd party plugins may use MPI collective calls to communicate with external processes. To this end,
the ComIn library provides dedicated MPI communicators which are accessible via the two functions
comin_parallel_get_plugin_mpi_comm() and comin_parallel_get_host_mpi_comm(). In addition, comin_parallel_get_host_mpi_rank()
allows to receive information on the rank within the MPI communicator of the host model from within the plugin's
callback function.
Here, the different MPI communicators have the following scope:

• comin_parallel_get_host_mpi_comm(): MPI communicator, comprising ICON participating PEs.

• comin_parallel_get_plugin_mpi_comm(): MPI communicator, comprising ComIn participating PEs (including
the host model). This function is called within a plugin's callback function to get MPI communicator which
contains all MPI tasks of the host model together with the plugin's external MPI partners (if any).

With the above MPI communicator mpi_comm in combination with the topological data structure above, it is
straightforward for 3rd party modules to create other MPI communicators which, e.g., contain all PEs with prog-
nostic grid points (via MPI_COMM_SPLIT).
Note that the C interface for the MPI communicator query functions also provides the (integer/MPI_Fint) Fortran
communicator handles instead of the struct MPI_Comm. This solution was chosen deliberately, because if
MPI_Comm would appear in the signature of the ComIn function, the #include <mpi.h> would become an
MPI dependency for all plugins. C developers can convert the handles using the function MPI_Comm_f2c(...)
(#include <mpi.h>).

1.3.6.1 Parallel plugin registration

The ComIn allows plugins to be set PE-wise. This is deliberately provided as an option, for example to support the
following use case: A diagnostic subroutine could be attached to the host model to perform some collective MPI
operations. Afterwards it would write/plot them with Python - but only on the first PE. In practice, this PE could be
a head node (vector host), and it would only need to support this task, as opposed to the other "worker" PEs. An
elegant solution here would be to implement two different plugins, a Python plugin for PE#0 and a C plugin for the
remaining PEs, using the same plugin communicator.

1.3.6.2 MPI handshake at startup

Problematic situations may occur when both, the ComIn plugins and the host model itself, apply a splitting of MPI
communicators. For example, this is the case when the ICON model itself couples to external processes via the
YAC coupler and, at the same time, uses the ICON ComIn library.
The ComIn setup therefore uses a procedure for the communicator splitting ("MPI handshake") that has been
harmonized with the respective algorithm of the YAC coupler software. It is depicted in the following diagram and is
compatible with the reference implementation https://gitlab.dkrz.de/dkrz-sw/mpi-handshake.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.4 Build process 21

The example summarizes a situation in which the ICON ocean model couples with an external package "FESOM",
while the atmospheric part of ICON uses ComIn to communicate with an MPI process "ComInExternal".

sequenceDiagram

participant fesom as FESOM

participant icono as ICON-O

participant icona as ICON-A

participant cominext as ComInExternal

rect rgb(200,200,200)

fesom-->cominext: Handshake 1

Note over fesom,icona: group yac

Note over icono,icona: group icon

Note over icono,cominext: group comin

end

fesom-->icona: call yac_init(yac)

icono-->icona: split icon > icon-o,icon-a

rect rgb(200,200,200)

icono-->cominext: Handshake 2

Note over icona,cominext: group comin-a

end

1.4 Build process

The ICON model offers a single configure option to enable the use of the ComIn library:

• ./configure --with-comin=${ICON_COMIN_DIR} This option provides the root path of the
ComIn adapter library, automatically adding the necessary settings for LIBS and FCFLAGS.

The host models remaining FCFLAGS (INCLUDE) and LIBS path are provided as usual to the configure
script. As described above, the 3rd party plugins are loaded dynamically at runtime, therefore the respective flags
and build options are independent from these settings.
The ComIn library can be build as a static as well as a shared library. The behavior is controlled by the cmake flag
-DBUILD_SHARED_LIBS.

1.4.1 Preprocessor variable for conditional compilation

In the host model, the compilation of ComIn can be (de-)activated with the preprocessor macro

#ifndef __NO_ICON_COMIN__

...

#endif

1.4.2 Library dependencies

If a user has a ComIn extension, which uses YAC, YAXT or similar, different versions of these libraries could be
introduced while building the plugins and the host model itself.
To avoid potential conflicts, the following installation procedure is suggested for, e.g., YAXT library dependencies:

1. Build YAXT separately on the target platform.

2. Configure the 3rd party module build based on this YAXT library.

3. Configure ICON with the 3rd party module and the (common) YAXT library.

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

22 ICON Community Interface :: Technical Documentation

1.5 C/C++ and Python interfaces

The implementation covers the majority of routines for C/C++ plugins equivalent to Fortran features (see
$BASEDIR/comin/src/comin_plugin_interface.F90 for routines and types accessible to Fortran
plugins). The C interface handles nearly all data structures through getter and setting functions. The alternative
implementation method, namely the direct exposure of Fortran derived types as C structs via the BIND(C)
attribute has not been chosen because the use of Fortran ALLOCATABLE, POINTER or SEQUENCE attributes
causes subtle problems. There is the exception of struct t_comin_var_descriptor which represents
the ubiquitous search key for variables. The routines accessible to C/C++ plugins are listed and explained in this
section below (the C/C++ routine access is provided via comin.h and sub-header files).
By wp the selection of the real kind used for global and parallel domain data grids is set in ICON ComIn. Presently
the default in ICON ComIn is to use C_DOUBLE as real kind.

int wp;
C programming enumeration (enum) types are applied to give access to lists of constants. These incorporate a list
of entry points into ICON that is available to 3rd party plugins via comin.h (ENTRY_POINT). Moreover, a list of
flags (VARACCESS_FLAG) and a list of integer constants providing an interpretation of the vertical axis are also
included. Accessibility in Fortran is granted to C/C++ plugins via the BIND(C) attribute given in the Fortran ENUM
statement.

enum ENTRY_POINT;

enum VARACCESS_FLAG;

enum ZAXIS;
Various auxiliary routines to expose specific grid data and domain information, quantities, such as longitude and
latitude data grids, and values via comin_header_c_ext_descrdata_get_domain.h and comin_←↩

header_c_ext_descrdata_get_global.h as part of comin.h are provided by specific pointer access
routines. These specific grid data quantities, arrays and structures are part of global and domain data structures
within ICON. The derived types in ICON ComIn are found in $BASEDIR/comin/src/comin_descrdata.←↩

F90. The derived type components are partly allocatable and specified at runtime. Several of them are also de-
fined as Fortran POINTER. Therefore, access is provided to the C/C++ plugins via pointer handles to the over-
arching data structures establishing read and at times write access via query routines. For example, via the
routine comin_descrdata_get_domain_cells the grid cell coordinates and parameters are exposed to
C/C++ plugins. Further routines are then employed to provide access to these entities. In particular, comin←↩

_descrdata_get_domain_cells_clon and comin_descrdata_get_domain_cells_clat pro-
vide access to longitude and latitude coordinates. The C/C++ interfaces are partly generated automatically
by Python scripts (comin_build_header_descrdata_get_domain.py, comin_build_header_←↩

descrdata_get_global.py and comin_build_linked_lists.py). These scripts are located in the
$BASEDIR/comin/utils directory and have to be called from there in case changes in the code affecting the
descriptive data structures are implemented.
The Python interface (import comin) registers new callbacks through decorators (@comin.register_←↩

callback(entrypoint)). It provides the data structures and functions

comin.Metadata()

comin.request_add_var(namestr, id, lmodexclusive)

comin.var_get([entrypoint], (namestr, id))

comin.get_host_mpi_rank()

1.6 Host model implementation

1.6.1 Entry points

1.6.1.1 Mandatory entry points

The following entry points are mandatory:

• EP_SECONDARY_CONSTRUCTOR: in the initialization phase

• EP_DESTRUCTOR: before the model returns from execution (usually before MPI_Finalize)

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.6 Host model implementation 23

• EP_FINISH: before the model returns in case an exception is detected

Additionally:

• EP_<COMP>_INIT_FINALIZE: at the final phase of initialization of the model component <COMP>.
This gives the plugins the possibility to finalize their initial setup.

1.6.1.2 Best practices

The subroutine calls of the callback subroutine ("entry points") should be outside of any IF or CASE constructs
related to the host model's physical processes. The callbacks should be executed even if the corresponding physical
process is switched off in the host model. If the physical process in the host model is called on a longer interval than
the time step in the corresponding model domain (nest), the callback subroutine should be called every time step.
For clarity, it is recommended to enclose each entry point with their own #ifdef environment, even if two entry
points follow each other directly.
For each physical process of the host model the corresponding entry points should be included pairwise, before and
after the call of the physical process (_BEFORE and _AFTER). For loops, there should be four entry points. Before
and after the loop (_BEFORE and _AFTER), and at the beginning and the end of the loop, directly after DO and
before END DO (_START, _END).

#ifndef __NO_ICON_COMIN__

CALL comin_callback_context_call(ep_atm_physics_before, jg)

#endif

1.6.2 Filling and updating descriptive data

The descriptive data structures in ComIn are filled by calls of the respective routines from ICON. These are

• icon_expose_descrdata_global

• icon_expose_descrdata_domain

• icon_expose_descrdata_state

• icon_expose_descrdata_parallel

• icon_expose_timesteplength_domain

and they are called with the input parameters from ICON as

SUBROUTINE icon_expose_descrdata_global(n_dom, max_dom, nproma,
min_rlcell_int, min_rlcell, &

& grf_bdywidth_c, grf_bdywidth_e, lrestart,
vct_a)

INTEGER, INTENT(IN) :: n_dom

INTEGER, INTENT(IN) :: max_dom

INTEGER, INTENT(IN) :: nproma

INTEGER, INTENT(IN) :: min_rlcell_int

INTEGER, INTENT(IN) :: min_rlcell

INTEGER, INTENT(IN) :: grf_bdywidth_c

INTEGER, INTENT(IN) :: grf_bdywidth_e

LOGICAL, INTENT(IN) :: lrestart

REAL(wp), INTENT(IN) :: vct_a(:)

TYPE(t_comin_descrdata_global) :: comin_descrdata_global_data

! fill comin_descrdata_global_data

CALL comin_descrdata_set_global(comin_descrdata_global_data)

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

24 ICON Community Interface :: Technical Documentation

END SUBROUTINE icon_expose_descrdata_global

SUBROUTINE icon_expose_descrdata_domain(patch, number_of_grid_used,
vgrid_buffer, start_time, end_time)

TYPE(t_patch), TARGET, INTENT(IN) :: patch(:)

INTEGER, INTENT(IN) :: number_of_grid_used(:)

TYPE(t_vgrid_buffer), TARGET, INTENT(IN) :: vgrid_buffer(:)

REAL(wp), INTENT(IN) :: start_time(:), end_time(:)

TYPE(t_comin_descrdata_domain) :: comin_descrdata_domain(SIZE(patch))

! fill comin_descrdata_domain

CALL comin_descrdata_set_domain(comin_descrdata_domain)

END SUBROUTINE icon_expose_descrdata_domain
For icon_expose_descrdata_domain in addition to p_patch as patch the vgrid_buffer variable
is used to get access to z_ifc, which is not stored in p_nh_state(jg)metricsz_ifc at the time of the
primary constructor.

SUBROUTINE icon_expose_descrdata_state(sim_time_start, sim_time_end,
sim_time_current, &

run_time_start, run_time_stop)

CHARACTER(LEN=*), INTENT(IN) :: sim_time_start

CHARACTER(LEN=*), INTENT(IN) :: sim_time_end

CHARACTER(LEN=*), INTENT(IN) :: sim_time_current

CHARACTER(LEN=*), INTENT(IN) :: run_time_start

CHARACTER(LEN=*), INTENT(IN) :: run_time_stop

TYPE(t_comin_descrdata_state) :: comin_descrdata_state

! fill comin_descrdata_state

CALL comin_descrdata_set_state(comin_descrdata_state)

END SUBROUTINE icon_expose_descrdata_state
As the simulation status in t_comin_descrdata_state is stored as ISO 8601 character strings a conversion
using the datetimeToString procedure is required. This is using components of time_config from mo←↩

_time_config.

SUBROUTINE icon_expose_descrdata_parallel(patch)

TYPE(t_patch), TARGET, INTENT(IN) :: patch(:)

TYPE(t_comin_descrdata_parallel) :: comin_descrdata_parallel(SIZE(patch))

! fill comin_descrdata_parallel

CALL comin_descrdata_set_parallel_cell(comin_descrdata_parallel)

END SUBROUTINE icon_expose_descrdata_parallel
For icon_expose_descrdata_parallel p_patch is read as patch.
The additional routine expose_timesteplength_domain fills the time steps for each domain.

RECURSIVE SUBROUTINE expose_timesteplength_domain(jg, dt_current)

INTEGER, INTENT(IN) :: jg

REAL(wp), INTENT(IN) :: dt_current

INTEGER :: jn

CALL comin_descrdata_set_timesteplength(jg, dt_current)

DO jn=1,p_patch(jg)%n_childdom

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.7 Summary of library functions and data structures (Doxygen) 25

CALL expose_timesteplength_domain(p_patch(jg)%child_id(jn),
dt_current/2.0_wp)

END DO

END SUBROUTINE expose_timesteplength_domain
During a simulation icon_update_descrdata_state()will be called to execute comin_descrdata_update_state()
and update sim_current of comin_descrdata_state. In ICON the routine is called from src/atm_←↩

dyn_iconam/mo_nh_stepping when mtime_current is updated in perform_nh_timeloop.

SUBROUTINE icon_update_descrdata_state(sim_time_current)

CHARACTER(LEN=*), INTENT(IN) :: sim_time_current

CALL comin_descrdata_update_state(sim_time_current)

END SUBROUTINE icon_update_descrdata_state
Note that the names of the routines might be slightly different in the minimal example.
To finalize the descriptive data from the host model the routine comin_descrdata_finalize can be called.
Note that currently the routine does not contain instructions.

1.7 Summary of library functions and data structures (Doxygen)

To summarize the previous sections, the adapter library provides the following data structures and library functions.
Built-in subroutines and functions of the adapter library do not access data except their respective arguments.

• Host interface ComIn entities exposed to the host model (e.g. ICON).

• Plugin interface Procedures, variables and constants that are exposed to third party plugins.

• Common entities Entities that are exposed to both, the host interface and the plugin interface.

• C programming language (header file)

• Python language API

• Preprocessor directive for ComIn interface __NO_ICON_COMIN__

Fortran API C/C++ API Python API
comin_setup_get_verbosity_level int comin_setup_get_verbosity_←↩

level()
comin.setup_get_←↩

verbosity_level

comin_current_get_ep int comin_current_get_ep()

comin_current_get_domain_id int comin_current_get_domain_id() comin.current_get_←↩

domain_id

comin_current_get_datetime void comin_current_get_←↩

datetime(char const∗∗,int∗,int∗)
comin.comin_current_←↩

get_datetime

comin_current_get_plugin_info int comin_current_get_plugin_id() comin.current_get_plugin_info

void comin_current_get_plugin_←↩

name(char const ∗∗, int∗, int∗)

void comin_current_get_plugin_←↩

options(char const ∗∗,int∗,int∗)

void comin_current_get_plugin_←↩

comm(char const ∗∗,int∗,int∗)

comin_parallel_get_plugin_mpi_commint comin_parallel_get_plugin_←↩

mpi_comm()
comin.parallel_get_←↩

plugin_mpi_comm

comin_parallel_get_host_mpi_comm int comin_parallel_get_host_mpi←↩

_comm()
comin.parallel_get_←↩

host_mpi_comm

comin_parallel_get_host_mpi_rank int comin_parallel_get_host_mpi←↩

_rank()
comin.parallel_get_←↩

host_mpi_rank

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

26 ICON Community Interface :: Technical Documentation

Fortran API C/C++ API Python API
comin_plugin_finish void comin_plugin_finish(const

char∗,const char∗)
comin.finish

comin_var_request_add void comin_var_request_←↩

add(struct t_comin_var_←↩

descriptor,_Bool,int∗)

comin.var_request_add

comin_var_get void∗ comin_var_get(int,int∗,struct
t_comin_var_descriptor,int)

comin.var_get

double∗ comin_var_get_ptr(void∗)

void comin_var_get_←↩

shape(void∗,int[5],int∗)

void comin_var_get_←↩

pos(void∗,int∗,int∗,int∗,int∗,int∗)

void comin_var_get_←↩

ncontained(void∗,int∗,int∗)

comin_var_get_descr_list_head void∗ comin_var_get_descr_list_←↩

head()

void∗ comin_var_get_descr_list_←↩

next()

void comin_var_get_descr_list_←↩

var_desc(void∗,struct t_comin_←↩

var_descriptor∗,int∗)

comin_callback_register void comin_callback_←↩

register(int,CALLBACK_PTR
,int∗)

comin_callback_get_ep_name void comin_callback_get_ep_←↩

name(int,char,int∗)
comin.callback_get_ep←↩

_name(iep)

comin_metadata_get_typeid int comin_metadata_get_←↩

typeid(const char∗)

comin_metadata_set void comin_metadata_set_←↩

integer(struct t_comin_var_←↩

descriptor, const char∗,int val,
int∗)

comin.metadata_set

void comin_metadata_set_←↩

logical(struct t_comin_var_←↩

descriptor, const char∗,_Bool val,
int∗)

void comin_metadata_set_←↩

real(struct t_comin_var_descriptor,
const char∗,double val, int∗)

void comin_metadata_set_←↩

character(struct t_comin_var←↩

_descriptor, const char∗,char
const∗,int∗)

comin_metadata_get void comin_metadata_get_←↩

integer(struct t_comin_var_←↩

descriptor,const char∗,int∗ val,
int∗)

comin.metadata_get

void comin_metadata_get_←↩

logical(struct t_comin_var_←↩

descriptor,const char∗,_Bool∗ val,
int∗)

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

1.7 Summary of library functions and data structures (Doxygen) 27

Fortran API C/C++ API Python API
void comin_metadata_get←↩

_real(struct t_comin_var_←↩

descriptor,const char∗,double∗
val, int∗)

void comin_metadata_get_←↩

character(struct t_comin_var←↩

_descriptor,const char∗,char
const∗∗,int∗,int∗)

comin_descrdata_get_timesteplength double comin_descrdata_get_←↩

timesteplength(int)
comin.descrdata_get_←↩

timesteplength

comin_descrdata_get_index int comin_descrdata_get_index(int) comin.descrdata_get_←↩

index
comin_descrdata_get_block int comin_descrdata_get_block(int)

comin_descrdata::comin_descrdata_get_cell_indicesvoid comin_descrdata_get_cell_←↩

indices(int,int,int,int,int∗,int∗,int,int)
comin.descrdata_get_←↩

cell_indices

comin_descrdata_get_cell_npromz int comin_descrdata_get_cell_←↩

npromz(int)
comin.descrdata_get_←↩

cell_npromz

comin_descrdata_get_edge_npromz int comin_descrdata_get_edge_←↩

npromz(int)
comin.descrdata_get_←↩

edge_npromz

comin_descrdata_get_vert_npromz int comin_descrdata_get_vert_←↩

npromz(int)
comin.descrdata_get_←↩

vert_npromz

comin_descrdata_index_lookup_glb2loc_cellint comin_descrdata_index_←↩

lookup_glb2loc_cell(int,int)

comin_descrdata_get_simulation_intervalvoid comin_descrdata_get_←↩

simulation_interval_exp_start(char
const∗∗,int∗,int∗)

void comin_descrdata_get_←↩

simulation_interval_exp_stop(char
const∗∗,int∗,int∗)

void comin_descrdata_get_←↩

simulation_interval_run_start(char
const∗∗,int∗,int∗)

void comin_descrdata_get_←↩

simulation_interval_run_stop(char
const∗∗,int∗,int∗)

comin_descrdata_get_domain comin_descrdata_get_global_XXX

comin_descrdata_get_global comin_descrdata_get_domain_XXX

comin_setup_version_info void comin_setup_get_←↩

version(unsigned int∗,unsigned
int∗,unsigned int∗)

comin_var_to_3d double∗ comin_var_to_3d(void∗) myvariable.to_3d

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

28 ICON Community Interface :: Technical Documentation

Generated on Wed Jul 3 2024 14:50:11 for ComIn - ICON Community Interface by Doxygen

	1 ICON Community Interface :: Technical Documentation
	1.1 General remarks
	1.1.1 Language interoperability
	1.1.2 Limitations
	1.1.3 Versioning information and compatibility
	1.1.3.1 API compatibility and ABI compatibility

	1.1.4 Namespaces and scopes
	1.1.5 Host and plugins
	1.1.6 Error handling in functions and subroutines

	1.2 Adapter library
	1.2.1 Access to model variables
	1.2.1.1 Read/Write access
	1.2.1.2 Tracers
	1.2.1.3 Turbulent & convective transport of tracers
	1.2.1.4 A word of caution: Undefined behavior when accessing output diagnostics
	1.2.1.5 Iterating over variables

	1.2.2 Creating additional model variables
	1.2.2.1 Iterating over cells

	1.2.3 Metadata
	1.2.4 Descriptive data structures
	1.2.4.1 Global data
	1.2.4.2 Grid information
	1.2.4.3 Timing information on the simulation

	1.2.5 Routines to access the current state of ComIn
	1.2.6 Auxiliary procedures

	1.3 Callback register
	1.3.1 Enabling 3rd party plugins through namelist settings
	1.3.2 3rd party primary constructor
	1.3.3 Secondary constructor
	1.3.4 Finalize initialization phase
	1.3.5 Entry points (callbacks)
	1.3.5.1 Naming convention
	1.3.5.2 List of entry points
	1.3.5.3 Appending function pointers to entry points
	1.3.5.4 Processing order

	1.3.6 MPI communicators
	1.3.6.1 Parallel plugin registration
	1.3.6.2 MPI handshake at startup

	1.4 Build process
	1.4.1 Preprocessor variable for conditional compilation
	1.4.2 Library dependencies

	1.5 C/C++ and Python interfaces
	1.6 Host model implementation
	1.6.1 Entry points
	1.6.1.1 Mandatory entry points
	1.6.1.2 Best practices

	1.6.2 Filling and updating descriptive data

	1.7 Summary of library functions and data structures (Doxygen)

