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Abstract. The Modular and Integrated Data Assimilation
System (MIDAS) software (version 3.9.1) is described in
terms of its range of functionality, modular software design,
parallelization strategy, and current uses within real-time op-
erational and experimental systems. MIDAS is developed at
Environment and Climate Change Canada for both opera-
tional and research applications, including all atmospheric
data assimilation (DA) elements of the Canadian operational
numerical weather prediction systems. The described ver-
sion of MIDAS is part of the Canadian prediction systems
that became operational in June 2024. The software is de-
signed to be sufficiently general to enable other DA appli-
cations, including atmospheric constituents (e.g. ozone), sea
ice, and sea surface temperature. In addition to describing
the current MIDAS applications, a sample of the results from
these systems is presented to demonstrate their performance
in comparison with either systems from before the switch to
using MIDAS software or similar systems at other numeri-
cal weather prediction (NWP) centres. The modular software
design also allows the code that implements high-level com-
ponents (e.g. observation operators, error covariance matri-
ces, state vectors) to easily be used in many different ways
depending on the application, such as for both variational
and ensemble DA algorithms, for estimating the observation
impact on short-term forecasts, and for performing various
observation pre-processing procedures. The use of a single
common DA software package for multiple components of
the Earth system provides both practical and scientific ben-
efits, including the facilitation of future research on DA ap-
proaches that explicitly include the coupled connections be-

tween multiple Earth system components. To this end, work
is currently underway to allow the use of MIDAS DA algo-
rithms for initializing both deterministic and ensemble three-
dimensional ocean model forecasts.

1 Introduction

Data assimilation (DA) is used in the context of numerical
weather prediction (NWP) and other Earth system predic-
tion applications to provide an estimate of the current nu-
merical model state for initializing forecasts. This is typi-
cally accomplished using observations acquired from a di-
verse set of both in situ and remote sensing instruments to
compute an optimal correction to a short-term model fore-
cast within a cycling DA system. Several DA algorithms are
currently employed at operational NWP centres, including at
Environment and Climate Change Canada (ECCC), for ini-
tializing deterministic and ensemble forecasts at both global
and regional scales. While NWP centres originally consid-
ered only the atmosphere and land surface, forecast models
are increasingly coupled with other components of the Earth
system, including the ocean and sea ice. Consequently, NWP
centres have become involved in developing and implement-
ing DA systems for initializing multiple components of the
Earth system in addition to the atmosphere. While indepen-
dent DA systems are still mostly used for initializing the
separate components of coupled model forecasts, research
into coupled DA approaches is starting to demonstrate some
potential benefits (Penny et al., 2017). With strongly cou-
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pled DA, assimilated observations related to one Earth sys-
tem component can have a direct impact on variables of the
other components through the physical or statistical relation-
ship between the forecast errors of the different components.
In addition, observations that are directly related to multiple
Earth system components can be assimilated in an appropri-
ate way with a strongly coupled approach to correct variables
in all involved model components. Though other approaches
have been proposed (e.g. the interface solver of Frolov et al.,
2016), a straightforward way to fully include coupling within
the DA procedure is to use a single DA system to assimilate
observations from all coupled Earth system components to
simultaneously estimate the current state for the entire cou-
pled model state. Conducting research into such a strongly
coupled DA approach represents a technical challenge, since
most existing DA systems have been developed in isolation
from each other, often using different DA algorithms and up-
date frequencies.

The Modular and Integrated Data Assimilation System
(MIDAS) is a unified DA software package developed at
ECCC for both research and operational applications. The
purpose of developing a single unified software for DA
is twofold. Firstly, using MIDAS instead of developing
and maintaining numerous independent programs reduces
the amount of redundant technical work needed for com-
monly required functionality. Similarly, scientific function-
ality specifically developed for one application can easily be
tested in the context of other DA applications that employ
MIDAS. The second purpose of using MIDAS for many dif-
ferent Earth system components is to facilitate research into
the potential benefits of strongly coupled DA for initializ-
ing coupled model forecasts. Research on strongly coupled
DA will be technically much easier to conduct after indepen-
dent DA applications for each Earth system component are
implemented and fully tested in MIDAS using the same DA
algorithm and software.

There are other DA software packages developed for DA
applications that share some similarities with MIDAS. This
includes the Joint Effort for Data assimilation Integration
(JEDI; Liu et al., 2022; Huang et al., 2023), the Data As-
similation Research Testbed (DART; Anderson et al., 2009),
the Object Oriented Prediction System (OOPS; Bonavita et
al., 2017), and the Parallel Data Assimilation Framework
(PDAF; Nerger et al., 2020). While, like MIDAS, these are
all developed to cover a variety of DA applications, specific
details about their range of functionality, software design,
and current operational applications differ in many ways as
compared with MIDAS. Like MIDAS, OOPS is currently
used for operational NWP after being recently implemented
at ECMWF (ECMWF, 2023). MIDAS has been used for
numerous operational applications for many years, and the
number of these applications is continuing to increase, as de-
tailed in a later section. An important technical aspect of
MIDAS is that its programs are executed separately from
the forecast model software, while some of the other sys-

tems previously mentioned are compiled and executed to-
gether with the forecast model and exchange information be-
tween DA and the forecast model through subroutines. While
the approach used in MIDAS requires the additional proce-
dure to read files generated by the model, it may avoid con-
straints on the software design and Message Passing Inter-
face (MPI) parallelization implementation strategy that can
be completely independent of the strategy used within the
forecast models.

The goal of this paper is to provide an overview of the MI-
DAS software version 3.9.1 (ECCC, 2024a) used at ECCC
to efficiently conduct scientific research and development for
the DA and related tasks within many operational prediction
systems, including for the NWP systems implemented dur-
ing the summer of 2024. As the MIDAS software is continu-
ally being developed and modified to facilitate both research
and future operational applications, it was decided to focus
the description of functionality, software design, and imple-
mentation details on this particular version to avoid confu-
sion. This description of MIDAS is intended to be helpful for
an audience of developers of similar DA software at other
operational NWP centres. It provides one example of how
such software can be designed and provides the basic ratio-
nale supporting the design choices. Since at this time MI-
DAS cannot be easily installed and used outside of ECCC,
the goal is not to make MIDAS available to the greater DA
community. The next section describes the origins of MIDAS
and the overall development strategy. Section 3 outlines the
range of scientific functionality of the software, and Sect. 4
describes how this functionality is implemented in a set of
Fortran programs and modules. Section 5 presents the dif-
ferent ways data are distributed across separate MPI tasks
for efficient parallelization of the computations in MIDAS.
Finally, Sect. 6 describes all current MIDAS applications in
operational and experimental systems and Sect. 7 provides
some discussion on ongoing and planned MIDAS develop-
ments.

2 MIDAS origins and overall development strategy

A brief description of the initial development steps of MI-
DAS and the reasoning behind the chosen development strat-
egy is provided as an example for DA software developers
and scientists at other NWP centres of how the constraints
and requirements shared among many such centres can be
addressed. Early development of MIDAS originated from
a project to implement and scientifically evaluate the 4D
ensemble-variational DA approach (4D-EnVar) in compari-
son with the then-operational 4D variational DA approach
(4D-Var) for global-scale NWP (Buehner et al., 2013). The
implementation of the 4D-EnVar algorithm in the existing
4D-Var software was not practical due to the extensive re-
liance on global variables accessible throughout the software
and the convoluted design of the code that had become in-
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creasingly complex over time. Nevertheless, the decision was
made to work with this existing code instead of building a
completely new piece of software. To simplify the process,
the code was initially reduced by only keeping the function-
ality needed to perform 3D variational DA (3D-Var). Since
3D-Var is closely related to the 4D-EnVar approach, soft-
ware tests for 3D-Var were used to ensure this functionality
was unaffected during an initial major redesign of the soft-
ware. This initial redesign focused on improving the high-
level structure of the code incrementally (without changing
the functionality) by moving much of the existing subrou-
tines, functions, and variables into logically organized For-
tran modules and gradually removing the use of global vari-
ables. Only after this restructuring could work begin on im-
plementing 4D-EnVar.

Once the initial work was completed for the first opera-
tional implementation of 4D-EnVar in 2014 (Buehner et al.,
2015), major code restructuring continued with a focus on
the data representation and low-level code for handling ob-
servations. This involved refactoring the code into the For-
tran module obsSpaceData with the goal of sharing this
code between the 4D-EnVar and the then operationally used
ensemble Kalman filter (EnKF), which was implemented in
independent Fortran software (Houtekamer et al., 2014).

Following a period of rapid large-scale refactoring of the
code to encapsulate all code in a set of interrelated Fortran
modules, the development strategy now focuses on the con-
tinual and incremental improvement of the code design on
an “as-needed” basis without ever losing any of the exist-
ing functionality. A comprehensive set of system tests are
maintained within the same repository as the Fortran code to
ensure that all existing functionality is preserved when mak-
ing any changes. A typical situation that motivates the need
for improvements to the MIDAS code design is when the
changes required to perform innovative scientific research
cannot be easily introduced into MIDAS, possibly due to
the high-level organization of the Fortran modules or an in-
sufficient level of generality in existing modules. When this
situation arises, a preliminary task is triggered to improve
the existing code design without affecting the functionality.
Once the existing code design is improved, then the new sci-
entific functionality can be more easily introduced. With this
approach, decisions about where to focus software develop-
ment effort are primarily driven by the requirement to contin-
ually perform innovative scientific research and to improve
the forecast quality for the atmosphere and related Earth sys-
tem components without degrading the overall design or un-
necessarily increasing the code complexity.

By using a continual and incremental approach to improv-
ing MIDAS in terms of scientific functionality, software de-
sign, and efficiency, the entire community of developers are
always working on the same code base for both operational
and research purposes. This avoids any division of the devel-
oper community into a subgroup primarily focused on im-
proving the currently operational applications and a separate

subgroup focused on longer-term developments, either tech-
nical or scientific. This is particularly important at ECCC
with its relatively small community of DA scientists and de-
velopers. Changes to MIDAS are managed with GitLab us-
ing “issues” and “merge requests” to ensure coordinated and
open development that incorporates mandatory code reviews
and automated testing.

3 Software functionality

In addition to implementing both deterministic and ensemble
DA algorithms, MIDAS version 3.9.1 currently also includes
the ability to efficiently manipulate ensembles of states, pre-
process and quality-control observations, estimate the impact
of observations on short-term forecasts, estimate analysis-
error standard deviation (SD) using a simple approach, cal-
culate a highly parameterized background-error covariance
matrix, and compute other diagnostic statistics from ensem-
bles. Most of this functionality is used within numerous pre-
diction systems operationally run in real time at ECCC as
described in a later section. However, some functionality has
been developed primarily for research purposes. The follow-
ing subsections provide brief descriptions of the current MI-
DAS functionality.

3.1 Data assimilation algorithms

Two general classes of DA algorithms are implemented in
MIDAS: variational DA for deterministic applications and a
local ensemble transform Kalman filter (LETKF; Hunt et al.,
2007) for ensemble DA applications, with many configurable
variations in each general class of algorithm.

The variational DA algorithm consists of computing the
state vector that minimizes a cost function measuring the
“distance” from both the observations and the background
state using an iterative optimization algorithm (specifically,
version 2.0c of the limited-memory quasi-Newton solver of
Gilbert and Lemaréchal (1989) modified to work with data
distributed over MPI tasks1). The formulation of the cost
function in MIDAS is presented to introduce the mathemati-
cal notation used later and to complement the discussion on
software design regarding the implementation of these math-
ematical operations. The cost function uses linearized obser-
vation operators and is preconditioned with respect to the
background-error covariance matrix, resulting in

J (v)=
1
2
vT v+

1
2

(
H(xb)+HB

1
2 v− y

)T

·R−1(H(xb)+HB
1
2 v− y

)
, (1)

where y is the vector of assimilated observations, xb is
the background state, R is the observation-error covariance

1The original software is available at https://who.paris.inria.
fr/Jean-Charles.Gilbert/modulopt/optimization-routines/m1qn3/
m1qn3.html, last access: 18 December 2024.
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matrix, B is the background-error covariance matrix, B1/2

is a possibly non-symmetric matrix related to B as B=
B1/2BT/2, H is the nonlinear observation operator that trans-
forms a gridded state vector into a quantity comparable with
the actual observation, H is the linearized version of H , and
v is the so-called control vector that is determined by finding
the minimum of this function. The control vector is related
to the state vector as x = xb+1x, where 1x = B1/2v is the
analysis increment. To enable the efficient determination of
the value of v near the minimum, the gradient of the cost
function with respect to v is also used. More details on this
formulation can be found in Buehner et al. (2013).

The configuration of the variational DA algorithm can be
modified by specifying the horizontal grid, vertical levels,
and temporal resolution independently for both the back-
ground state and the analysis increment. For example, the
analysis increment (and therefore also B and H) is often on
a lower-resolution horizontal grid and at a lower temporal
frequency than the background state to save computational
cost, as in the so-called incremental approach (Courtier et al.,
1994). Additionally, the use of a spectral transform as part of
implementing the matrix–vector product with B1/2 requires
that the analysis increment be on a specific type of grid that
differs from the native forecast model grid of the background
state. The specification of the background-error covariance
matrix is very flexible, constructed as an arbitrary weighted
combination of the following types of matrices:

– a climatological highly parameterized formulation
based on spatially homogeneous and isotropic horizon-
tal correlations represented in spectral space used for
both global and regional NWP applications as described
by Gauthier et al. (1999) and Fillion et al. (2010), re-
spectively;

– a climatological highly parameterized formulation for
the assimilation of atmospheric chemical constituents,
such as ozone, also based on spatial homogeneous and
isotropic horizontal correlations represented in spectral
space (Gauthier et al., 1999);

– a climatological highly parameterized formulation
based on the use of a diffusion operator to represent
horizontal correlations with a Gaussian-like shape (e.g.
Weaver et al., 2021) and able to incorporate the coast-
line as a boundary condition for ocean and sea ice appli-
cations as described by Caya et al. (2010; see Sect. 3);
and

– an ensemble-based formulation that can use either stan-
dard spatial localization or scale-dependent localization
(SDL) as described by Caron and Buehner (2018, 2022).

Note that when only using a climatological highly parameter-
ized covariance matrix, the DA method is referred to as either
2D-Var or 3D-Var, depending on if the state vector being es-
timated is only 2D (e.g. for sea ice applications) or 3D (e.g.

for atmospheric applications). When the ensemble-based for-
mulation with spatial localization is used (either alone or in
combination with one of the highly parameterized formula-
tions), the approach is referred to as 3D-EnVar or 4D-EnVar,
depending on if the analysis increment and ensemble covari-
ances only include a single time or multiple times, respec-
tively.

A special configuration of variational DA that treats each
horizontal observation location independently was recently
introduced mainly for research purposes. By only including
the vertical and multivariate background-error covariances,
this 1D variational (1D-Var) approach is useful for research
related to the assimilation of satellite radiance observations.
It allows greater focus on the link between the state vector
of atmospheric vertical profiles and surface properties with
the observed brightness temperature. Like with EnVar, the
background-error covariances can use either a climatological
or an ensemble-based covariance matrix or a weighted com-
bination of both.

The implementation of the LETKF is a much more re-
cent addition to MIDAS. To make the LETKF computa-
tionally feasible for operational applications with O(100)

ensemble members, the calculation of the field of weights
needed to compute the ensemble of analyses is performed
on a coarse grid and then interpolated to the full-resolution
grid before applying the weights to the background ensem-
ble perturbations as introduced by Yang et al. (2009). Vari-
ous flavours of the LETKF algorithm were implemented in
MIDAS to facilitate the comparison by Buehner (2020; see
Sect. 2 for more details) of different approaches in a realis-
tic NWP context together with the previous stochastic EnKF
algorithm: the standard LETKF (Hunt et al., 2007), a new
approach for using cross-validation with the LETKF, and a
stochastic formulation of the LETKF that uses perturbed ob-
servations. Subsequently, the original implementation of the
LETKF with cross-validation was modified to introduce ran-
domized subensembles to overcome problems that only ap-
peared after extensive pre-operational testing (Caron et al.,
2022). More recently, the option of using vertical grid-space
covariance localization, originally proposed by Bishop et al.
(2017), was introduced. This approach has been shown by
Lei et al. (2018) to improve the use of satellite radiance ob-
servations.

3.2 Assimilated observations

The ability to assimilate different types of observations by
any of the DA algorithms described above requires having
nonlinear, tangent-linear, and adjoint versions of observa-
tion operators implemented in MIDAS. These are available
for many types of meteorological atmospheric observations
from both satellite-based and in situ instruments: radioson-
des; aircraft; wind profilers; land stations, ships, and buoys;
scatterometers; atmospheric motion vectors; radar Doppler
winds; satellite-based radio occultation from global navi-
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gation satellite systems (GNSSs); ground-based GNSS sta-
tions; and microwave and infrared satellite sounders and
imagers. The assimilation of all radiance observations uti-
lizes version 13 of the software library Radiative Trans-
fer for TOVS (RTTOV) as part of the observation opera-
tor to simulate the observed brightness temperature from the
gridded state vector (Saunders et al., 2018). A recent addi-
tion to MIDAS is the ability to assimilate several types of
microwave tropospheric sounding channels in cloudy non-
precipitating conditions over ocean (Shahabadi and Buehner,
2021, 2024). In addition to these meteorological observa-
tions, atmospheric chemical constituent assimilation is pos-
sible for various retrieved observation types including point
source values, vertical profiles, vertically integrated amounts
(such as total and partial column ozone), and vertically av-
eraged quantities, with the option of using averaging ker-
nels when relevant. For vertical profile observations, one can
select between piecewise linear interpolation or piecewise
weighted averaging interpolation adapted from Rochon et al.
(2007). Sea ice observation operators are also implemented
for measurements from satellite-based platforms in the form
of either retrievals of ice concentration from passive and ac-
tive microwave sensors or direct measurements of backscat-
ter from scatterometers (Buehner et al., 2016, and Komarov
et al., 2020). In addition, observation operators for various
manually generated sea ice products from the Canadian Ice
Service are included. Finally, various sea surface tempera-
ture (SST) observations from both satellite-based and in situ
platforms can be assimilated. The SST observations from
satellite platforms are currently in the form of temperature
retrievals obtained from either passive microwave or visible–
infrared sensors (Skachko et al., 2024).

A unique feature of the MIDAS observation operators is
their flexibility in how gridded states can be interpolated to
observation locations. Some observation types are related to
the gridded variables at many vertical levels but at a differ-
ent horizontal location for each level. For these observations,
MIDAS can use a so-called “slant-path” approach that ex-
tracts an arbitrarily slanted column of the gridded values for
further computations within the operator for a specific obser-
vation type. This approach is used for measurements from
ground-based weather radar, GNSS radio occultation obser-
vations, and radiances from microwave and infrared satellite
sensors (Shahabadi et al., 2020).

Another feature of the interpolation to observation loca-
tions was originally implemented for sea ice observations.
Some observations from satellite-based sensors are related to
the spatially averaged quantity over an area much larger than
a single model grid cell. For such observations, the observa-
tion operator can perform a spatial average over all analysis
grid cells that fall within the observed “footprint” instead of
the normal procedure of using bilinear interpolation of the
gridded values to the observation location (Buehner et al.,
2016). While used primarily in the context of sea ice analy-
sis, initial testing has been performed for assimilating satel-

lite radiance observations for high-resolution NWP to correct
the large scales without constraining the small scales not re-
solved by these observations.

3.3 Ensemble processing

Several ways of processing ensembles of gridded state vec-
tors are also implemented in MIDAS. These include both
procedures that modify the state vectors and the computa-
tion of basic statistics of the ensemble, namely the ensemble
mean and SD. The ensemble of state vectors can be modified
by inflating the ensemble spread with any combination of the
following approaches:

– the addition of random perturbations drawn from a mul-
tivariate Gaussian distribution with a mean of zero and
covariance matrix specified in the same way as for the
background-error covariances in variational DA (as de-
scribed in Sect. 3.1),

– the relaxation of the ensemble perturbations towards the
original background ensemble perturbations with the re-
laxation to prior perturbation (RTPP) approach (Zhang
et al., 2004), and

– the multiplicative inflation of the ensemble perturba-
tions referred to as the relaxation to prior spread (RTPS)
approach (Whitaker and Hamill, 2012).

An ensemble of state vectors can also be modified using MI-
DAS by applying various methods to “recentre” the mem-
bers either fully or partially around a specified alternative
ensemble mean state. Typically, the same amount of recen-
tring is applied to all ensemble members, which has the ef-
fect of shifting all members without changing the ensemble
spread. However, as described by Houtekamer et al. (2019),
it is also possible to apply a different amount of recentring to
each member, which has the effect of increasing the ensem-
ble spread.

Finally, the analysis ensemble can contain ensemble mem-
bers with unrealistic atmospheric humidity values that far ex-
ceed the saturation point. Therefore simple procedures are
implemented for limiting the humidity values to not sur-
pass the saturation value and also to remain between a set
of pressure-level-dependent minimum and maximum values.

3.4 Observation pre-processing

Several pre-processing steps implemented in MIDAS are
typically required before observations can be effectively as-
similated by any DA algorithm. This includes the estimation
and removal of an error bias to account for the significant
systematic errors that are present in several types of obser-
vations, including all types of satellite radiance observations
and SST observations derived from satellite measurements.
After removal of the estimated bias, numerous observation-
specific quality control procedures are applied to reject ob-
servations that are either erroneous or difficult to accurately
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simulate with the available observation operators. Finally,
many observation types also require either spatial or tempo-
ral thinning to reduce the total number of assimilated obser-
vations. This thinning is especially useful for observations
that have errors with significant spatial or temporal correla-
tions currently not accounted for in the DA algorithms.

An additional type of observation pre-processing is re-
quired for obtaining an accurate SST analysis state. To coun-
teract the undesirable effect of spreading SST corrections
from ice-free to ice-covered areas, artificial observations of
SST equal to the freezing point are created in ice-covered ar-
eas. These artificial observations located in ice-covered areas
are assimilated in combination with real SST observations in
ice-free areas (Skachko et al., 2024).

3.5 Estimating observation impact

Two variations on the forecast sensitivity to observation im-
pact (FSOI) approach originally introduced by Langland and
Baker (2004) for estimating the impact of arbitrary subsets
of observations on short-term forecast error are implemented
in MIDAS. The first is suited to estimating the impact of ob-
servations within a purely ensemble-based DA system, such
as the LETKF, which is similar to the approach described by
Kalnay et al. (2012). The second approach is suited to esti-
mating the impact of observations within a DA system based
on the 4D-EnVar approach (Buehner et al., 2018). Both ap-
proaches use a large ensemble (256 members in the ECCC
system) of short-term forecasts (typically 24 h in length) to
propagate the sensitivities backwards in time from the fore-
cast time to the analysis time. These sensitivities are then
transformed, using the chain rule, into sensitivities with re-
spect to the observations using the adjoint of the DA algo-
rithm.

While the approaches just described for estimating the im-
pact of observations apply to any of the observations cur-
rently assimilated, there are situations when it is useful to
estimate the impact of observations from instruments that
are not yet available for assimilation, such as for a new type
of instrument planned for future deployment. This type of
observation impact assessment is also available in MIDAS
for the LETKF algorithm. Following a modified version of
the approach described by Tan et al. (2007), the hypotheti-
cal observations are assimilated in combination with all ex-
isting real observations. The observation-error SD values of
the hypothetical observations are essentially set to infinity
for the analysis update to the ensemble mean, thereby giving
no weight to these observations. On the other hand, the cor-
rect observation-error SD is used for the analysis update to
the ensemble perturbations. Consequently, the hypothetical
observations, for which actual observed values are not avail-
able, contribute to reducing the ensemble spread while not
affecting the ensemble mean. If the ensemble DA system has
good reliability or the lack of reliability can be effectively
taken into account, then comparison of the ensemble spread

between an experiment with and without the hypothetical ob-
servations provides an estimate of the observation impact.

3.6 Analysis-error estimation

A highly simplified procedure is implemented in MIDAS for
propagating the error covariances of the state vector through
a DA cycle (i.e. the repeated forecast and analysis steps per-
formed sequentially in time) that is based on the Kalman fil-
ter equations. This is used in situations where an estimate of
the uncertainty is required but only a deterministic assimi-
lation system based on the variational DA algorithm instead
of the LETKF is used. A description of this approach for es-
timating the analysis-error SD, originally developed in the
context of the sea ice analysis system, is given by Buehner et
al. (2016).

3.7 Statistics and diagnostic calculations

The existing functionality in MIDAS for efficiently reading,
writing, and performing calculations with observations and
either individual state vectors or ensembles of gridded state
vectors makes it straightforward to implement several calcu-
lations of statistical and diagnostic quantities related to DA.
This includes the computation of a highly parameterized cli-
matological covariance matrix that is used for both speci-
fying the background-error covariances for variational DA
(Sect. 3.1) and computing random perturbations (Sect. 3.3).
The calculation of this covariance matrix takes as input an
ensemble of gridded model states or perturbations to states
that are representative of a random sample of the appropriate
probability distribution.

As described in Sect. 3.1, the background-error covari-
ances for variational DA can be specified as any combina-
tion of several different types of matrices, some of which are
quite complex. Therefore, a simple procedure is included in
MIDAS to permit the visualization of the final resulting ma-
trix by computing both individual columns of the complete
covariance matrix (similar to the analysis increment obtained
from assimilating a single observation) and an estimate of the
matrix diagonal (i.e. the variances) for all variables and grid
points. The ith column is obtained by multiplying a vector
consisting of all zeros, except for the ith element, which is
set to 1, by the adjoint and original versions of the covari-
ance matrix square root. The diagonal of the matrix is esti-
mated by a randomization approach in which a large number
of realizations of a Gaussian-distributed random vector with
covariance equal to the identity is multiplied by the square-
root of the specified covariance matrix and the variance of the
resulting ensemble of states is computed. A similar random-
ization approach can also be used to estimate the diagonal of
a covariance matrix in observation space by simply applying
the tangent-linear version of the observation operator to each
gridded vector in the ensemble of states obtained with the
approach just described.
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4 Modular software design

This section provides a brief and high-level description of
the MIDAS software design to provide an informative exam-
ple that may be useful for developers of similar DA software
at other operational NWP centres. The Fortran source code
of MIDAS version 3.9.1 is organized within 21 programs
and 111 modules. In total, the code is approximately 120 000
lines when excluding comments (ECCC, 2024a). The pro-
grams, listed in Table 1, are used to implement all of the
functionality described in the previous section using a subset
of the Fortran modules. The MIDAS programs and modules
are all located in a single Git repository (primarily for infor-
mation purposes, as no support is available for users external
to ECCC; a public copy is maintained at https://github.com/
ECCC-ASTD-MRD/MIDAS-src/tree/v_3.9; last access: 18
December 2024). A namelist file is used to control the con-
figuration of programs and modules, with most programs and
many modules having their own dedicated block within the
namelist file to allow the setting of namelist variables to con-
trol behaviour of the program or module for a specific ap-
plication.2 For example, the size of the ensemble, the local-
ization parameters, and other information used to configure
the ensemble-based background-error covariance matrix for
4D-EnVar applications are located in the namelist file within
the block NAMBEN which is read only by the setup routine
for the Fortran module bMatrixEnsemble_mod.

The MIDAS Fortran code relies on a set of external li-
braries, including both standard math and file access libraries
(LAPACK/BLAS, sqlite3, HDF5); the publicly available fast
radiative transfer library RTTOV (Saunders et al., 2018); and
a set of libraries developed and maintained by ECCC for
accessing files in the locally used formats for both gridded
model states and observations, generating random numbers,
and more easily accessing observation files in the SQLite
format. Currently, only the ECCC format for gridded model
states (known as the RPN standard file format) is fully sup-
ported, while the observation files can be in both the ECCC
format (known as BURP) and SQLite.

The source code and closely related data structures are
gathered within Fortran modules. These modules are de-
signed in a way that is similar to the “classes” in more for-
mal object-oriented programming approaches, with the goal
of maximizing the links among the data and related subrou-
tines and functions within each module while minimizing the
code links between separate modules. In particular, knowl-
edge of the low-level details of how the data or functionality
is implemented in a given module should not be required by
code within the programs and other modules. This is made
more explicit by using the Fortran private clause to hide

2An example namelist file for one of the tests that imple-
ments 4D-EnVar is at https://github.com/ECCC-ASTD-MRD/
MIDAS-src/blob/v_3.9/maestro/suites/midas_system_tests/config/
Tests/var/EnVar/gdps/nml (last access: 18 December 2024).

Figure 1. High-level relationship between some of the main MI-
DAS Fortran modules used for computing an analysis increment or
background-error perturbation in observation space (see the main
text for definitions of module prefixes). The upper row of modules
are transformations between the data-oriented modules in the lower
row. Note that each module in the upper row includes “use” state-
ments for the two modules in the lower row to which they are di-
rectly connected.

the module’s contents by default and then explicitly defining
a minimal number of public entities at the beginning of the
module source file. In this way, a user of a module can easily
see how the code outside the module can access the func-
tionality implemented in the module through the public
subroutines/functions and derived-type variable definitions.
Other self-imposed coding standards are implemented to fa-
cilitate readability and flexibility of the code, including the
use of module prefixes for all public procedures and derived-
type definitions and variables so that the origin of all non-
local procedures and data is clear. For example, the module
gridStateVector_mod has the prefix gsv and there-
fore all public subroutines and functions utilize this prefix,
such as the function gsv_getField. While the original
Fortran code from which MIDAS evolved made extensive
use of global variables, the use of public module variables in
the current version of MIDAS is restricted as much as pos-
sible. In general, the public module variables are used only
for constants and a limited number of variables that have a
global meaning and remain constant after being initialized.
Additionally, procedure and variable names are sufficiently
long and descriptive to provide useful information for de-
velopers not familiar with the code, thus improving the code
readability and minimizing the need for comments within the
code.

Separation of the MIDAS code within relatively indepen-
dent modules facilitates the generalization of the functional-
ity of each module, for example the removal of assumptions
associated with the forecast model variables, type of vertical
coordinate, and configuration of horizontal grids that can be
used in MIDAS programs. This allows the same code to be
used for very different applications, such as applications that
work with 2D sea ice or SST fields or with 4D NWP or at-
mospheric chemical constituent fields. Many of the low-level
modules are independent of any specific application, while
others implement specific DA algorithms or other high-level
functionality.

Considering the design and relationships between modules
in a general way, it is helpful to note that some modules are
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Table 1. List of MIDAS programs and a short description of each.

Program name Program description

adjointTest Tests consistency of adjoint versions of various linearized operators
analysisErrorOI Estimates analysis-error SD with simplified approach
calcStats Computes climatological B matrix file
diagBmatrix Computes specified columns and/or SD of B matrix
diagHBHt Computes SD of B matrix in observation space
ensembleH Applies observation operators to subset of ensemble members
ensPostProcess Manipulates ensembles (e.g. inflation and recentring)
extractBmatrixFor1Dvar Computes B matrix at specified set of locations for program var1D
genCoeff Estimates satellite radiance bias correction coefficients
letkf Performs LETKF ensemble data assimilation
obsImpact Estimates observation impact
obsSelection Pre-processes observations: bias correction, quality control, thinning
oMinusF Computes difference between observation and gridded state
prepcma Prepares observations for LETKF assimilation
pseudoSSTobs Generates SST observations at ice-covered locations
randomPert Computes ensemble of random perturbations
sstBias Estimates bias for SST satellite observations
sstTrial Produces SST background state by propagating the anomaly
thinning Applies spatial or temporal thinning to observations
var Performs variational data assimilation: 2D-Var/3D-Var/2D-EnVar/3D-EnVar/4D-EnVar
var1D Performs 1D variational data assimilation

mainly responsible for representing data structures and per-
forming various operations on those data structures, while
others are mainly responsible for the transformation between
these different data structures. As an example, Fig. 1 shows
the relationship between several data-oriented modules and
transformation-oriented modules that together are used in ap-
plications such as variational DA. First, the data object cre-
ated with the controlVector_mod module (prefix cvm)
is transformed into a gridded state vector, which is a derived-
type variable defined in the gridStateVector_mod
module (prefix gsv), by multiplying by the square root of
the covariance matrix defined in the bMatrix_mod mod-
ule (prefix bmat). This is then transformed into a single
(possibly slanted) column of values at each observation loca-
tion that is represented with a derived-type variable defined
in the columnData_mod module (prefix col) by apply-
ing horizontal and temporal interpolation implemented in the
stateToColumn_mod module (prefix s2c). This inter-
polation can be considered the first part of the observation
operators. Finally, the column of values is transformed into
values equivalent to the observations and stored in the ap-
propriate location within the large data structure defined in
the obsSpaceData_mod module (prefix obs) by apply-
ing the final part of observation operators contained in the
obsOperators_mod module (prefix oop). This chain of
tangent-linear transformations is represented mathematically
as HB

1
2 v.

Figure 2. Relationship between the gridded state vector module
(gsv) and lower-level modules that are used by this module through
a composition relationship to represent the horizontal coordinate
(hco), vertical coordinate (vco), and ocean mask (ocm).

Several data-oriented modules are also related to each
other in a more direct way through the use of “composition”,
also known as “has a” relationships. This type of relation-
ship is used extensively in MIDAS to combine data structures
and the functionality of multiple simpler modules into more
complex entities. For example, many of the details included
in the gridStateVector_mod data structure and func-
tionality are actually implemented in the lower-level mod-
ules horizontalCoord_mod, verticalCoord_mod,
and oceanMask_mod (with prefixes hco, vco, and ocm,
respectively) as represented in Fig. 2. Therefore, it can be
said that the gridded state vector “has a” horizontal coordi-
nate, vertical coordinate, and ocean mask. As a consequence,
all of the details related to the horizontal grid associated
with a specific instance of the gridded state vector are rep-
resented by the data structure and functionality within the
horizontalCoord_mod module. This type of relation-
ship is extended even further in the module used to represent
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a complete ensemble of gridded state vectors, which is used
in the context of both the EnVar and the LETKF algorithms.
The ensembleStateVector_mod module relies heav-
ily on the gridStateVector_mod module data structure
and functionality to avoid code duplication.

5 Parallelization strategy

Several different strategies are used in MIDAS for distribut-
ing data over a large number of MPI tasks to reduce the
volume of computations performed in parallel by each. The
MPI tasks are generally organized in terms of two “dimen-
sions” that correspond to two actual dimensions of the data
themselves. Each MPI task can have multiple threads avail-
able in an additional layer of parallelization through the use
of OpenMP, usually to speed up loops that perform a large
number of computations. For various applications, it is often
necessary to efficiently convert data currently distributed in
one way into a different distribution over the MPI tasks, and
therefore code for numerous data transpositions is available
in MIDAS. The various MPI data distributions and associated
transpositions are described in the remainder of this section.

For gridded data stored in derived-type vari-
ables defined in the gridStateVector_mod and
ensembleStateVector_mod modules, the data are
most commonly arranged in latitude–longitude tiles, where
each MPI task only contains the data of a single non-
overlapping tile. This choice of distribution facilitates
several procedures related to the assimilation algorithms,
including calculating the mean of ensemble, applying
LETKF weights to ensemble perturbations, and computing
4D-EnVar increments from the localized ensemble. In
this case, the latitude and longitude correspond to the two
dimensions used to organize the MPI tasks. However, it
is sometimes necessary to use other data distributions.
For example, the reading of a single 4D state (such as
the background state needed for variational DA) is made
more efficient by distributing the data with respect to the
time step such that the data for each time step can be read
simultaneously in parallel by different MPI tasks and then
transposed to the latitude–longitude tiles after the reading is
complete. This approach is extended further when reading
an ensemble of 4D states (such as for the LETKF and
the ensemble-based covariance matrix of 4D-EnVar) by
distributing the data with respect to both the time step and
the ensemble index. In this case, each MPI task reads a
single time step of a single member before transposing
the entire ensemble of states to latitude–longitude tiles.
The entire process of reading and transposing the hourly
256-member ensemble takes approximately 1 min of the
total execution time of about 11 min (on 2352 cores) in the
current global operational LETKF with 25 km horizontal
grid spacing (described in Sect. 6.1). However, when writing
an ensemble of states to files (such as for the LETKF), the

Figure 3. Schematic showing how 2D fields are distributed over
MPI tasks with respect to both variables (in this example zonal and
meridional wind, temperature, and humidity: UU, VV, TT, and HU,
respectively) and vertical levels (six levels in this example). A dif-
ferent colour is used for each MPI task. This data distribution is
used when interpolating to observation locations and times.

gridded states are distributed with respect to the member
index only, since all time steps for a member are stored in
the same file. A different distribution is used when interpo-
lating a 4D gridded state to observation location and time
within the stateToColumn_mod module. For this, the
gridded data are transposed into a distribution with respect
to both the variable type and the vertical level, allowing the
interpolation to be performed on each MPI task for all time
steps of a single complete horizontal field (Fig. 3). With
the entire horizontal field available for a given MPI task,
any interpolation approach and type of grid can be used
without requiring additional MPI communication, including
the use of a footprint operator to horizontally average many
grid-point values or the use of level-dependent horizontal
positions for interpolation to create a slanted column.

The observational data are randomly distributed over the
MPI tasks for each type of observation to ensure a nearly
even computational load across MPI tasks when applying the
observation operators. This is accomplished using a round-
robin approach to separate the observations into separate files
for each MPI task. The splitting of observation files makes it
very simple to read and update the files in parallel for each
MPI task. The process of splitting and recombining the indi-
vidual files is performed by separate programs that are par-
allelized for efficiency and executed within the same MPI
job as the MIDAS program, just before and after the MIDAS
program execution (Fig. 4). To be able to perform the in-
terpolation from 2D fields to observation locations and times
(as described above), only the latitude, longitude, and time of
the observations are communicated from the random distri-
bution to all MPI tasks (within the stateToColumn_mod
module).

Another important data object that is distributed over MPI
tasks is the control vector used by the minimization algo-
rithm in variational DA to determine the analysis increment
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Figure 4. Schematic showing how a single observation file is first split into a separate file for each MPI task for parallel reading and updating
by the MIDAS program. After the MIDAS program execution, the updated files are then recombined back into a single file. For increased
efficiency, the splitting is performed independently by each MPI task to extract only the subset of observations needed for this MPI task
using a round-robin strategy. In this example, we arbitrarily choose a configuration with six MPI tasks arranged in the two-dimensional
decomposition as 2× 3.

(see Sect. 3.1). The organization of the elements of this vec-
tor depends on the type of covariance matrix used to define
the background error. In the case of the two types of matri-
ces used for NWP, the control vector consists of spectral co-
efficients. For global applications, a triangular spherical har-
monic spectral truncation is used and the spectral coefficients
for the zonal and total wavenumbers are distributed over the
MPI tasks using a round-robin (or cyclic) strategy. This en-
sures a nearly equal number of coefficients for each MPI task
(Fig. 5). The spectral transforms use this data distribution as
input or output and transpose the data internally (with respect
to only one of the dimensions at a time) to facilitate the vari-
ous steps in performing the spectral transform or its inverse.
The gridded data output or input of the spectral transform
subroutines is distributed with respect to latitude–longitude
tiles.

The LETKF algorithm requires yet another strategy for
parallelizing the most computationally demanding part of
the calculation, namely the calculation of the weights that
are applied to the background ensemble perturbations to ob-
tain the analysis ensemble (e.g. see Eqs. 1–6 of Buehner,
2020). The weights are computed independently for each
grid point of a relatively coarse grid (with ∼ 225 km grid
spacing in the current operational global system). The com-
putational cost of computing each weight strongly depends
on the number of observations within the local neighbour-
hood of the grid point and therefore can vary greatly between
different geographical regions. To ensure that the compu-
tational load is distributed relatively evenly across all MPI
tasks, the weight calculations are assigned to MPI tasks us-
ing a round-robin approach. To facilitate this arbitrary distri-
bution of the weight calculation, the limited information in
observation space required to compute the weights is com-
municated to and duplicated on all MPI tasks. Once all of the
coarse-grid weights are computed, the values for each grid

Figure 5. Schematic showing an example of how the spectral co-
efficients (here up to a triangular truncation of T8, i.e. up to total
wavenumber 8) used for the control vector in global variational data
assimilation are distributed over the two-dimensional MPI decom-
position (here with just 2× 2 MPI tasks) following a round-robin
strategy. The two values in each box represent the MPI task in-
dex over the two dimensions of the decomposition, and a different
colour is used to identify each of the four MPI tasks.

point are communicated to one or more MPI tasks, where
they are needed to perform bilinear interpolation to obtain the
full-resolution weight fields distributed with respect to the
latitude–longitude tiles. The resulting full-resolution weights
can then be applied to the background ensemble perturba-
tions (that are already distributed with respect to the latitude–
longitude tiles) to obtain the analysis ensemble.
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6 Operational MIDAS applications

In this section, all applications of MIDAS programs in either
the currently operational or the experimental systems (listed
in Table 2) are briefly described. While MIDAS could be
used for numerous other types of applications, it was decided
to only present those applications that have been rigorously
tested and evaluated prior to their operational implementa-
tion. In some cases, comparisons are described or the perfor-
mance of these systems is shown with respect to a previous
version before the use of MIDAS or systems at other NWP
centres that implement a similar data assimilation algorithm.

6.1 Numerical weather prediction

Numerous MIDAS programs are used with various config-
urations in all operational NWP systems. The global and
high-resolution deterministic prediction systems (GDPS with
15 km grid spacing and HRDPS with 2.5 km grid spacing)
both use a similar configuration of 4D-EnVar with SDL
applied to the ensemble-based background-error covariance
matrix. A similar configuration of 4D-EnVar is also used
to produce the ensemble mean analysis for recentring the
analysis ensembles in the global ensemble prediction sys-
tem (GEPS with 25 km grid spacing), whereas the main en-
semble analysis is performed by the LETKF algorithm with
cross-validation. Both the GDPS and the GEPS also use MI-
DAS programs for the quality control and spatial and tem-
poral thinning of nearly all observation types and the bias
correction for satellite radiance observations. Additional spa-
tial thinning and quality control of some observation types
are also applied in GEPS to reduce the number of observa-
tions assimilated by the LETKF. The MIDAS functionality
for post-processing ensembles (i.e. recentring, additive infla-
tion, application of limits on humidity) is used in both global
and regional ensemble prediction systems.

A comparison of short-term forecast scores is shown to
demonstrate that the quality of the analyses produced us-
ing MIDAS programs in the GDPS is comparable to anal-
yses produced by other NWP centres that use a similar DA
approach. Figure 6 shows similar values for the GDPS, the
German Weather Service (DWD), and the US National Cen-
ters for Environmental Prediction (NCEP) of the monthly
root-mean-square (rms) difference between 24 h forecasts
and radiosonde observations of 500 hPa geopotential height,
250 hPa wind speed, and 850 hPa temperature over North
America from December 2021 to July 2023.

Figure 7 shows results from GEPS experiments performed
in January 2017 to compare the original MIDAS implemen-
tation of the LETKF (in red) with the previously operational
ensemble DA system based on the stochastic formulation of
the EnKF (in blue). The ensemble forecast quality as eval-
uated with the continuous ranked probability score (CRPS)
with respect to the global radiosonde observations shows a
small, but statistically significant, improvement (i.e. smaller

Figure 6. The RMSE of 24 h forecasts from the GDPS (in red) to-
gether with the same results from the German Weather Service (in
light blue) and the US National Centers for Environmental Predic-
tion (in pink) computed with respect to the North American network
of radiosonde observations for (a) geopotential height at 500 hPa,
(b) wind speed at 250 hPa, and (c) temperature at 850 hPa. (Note a
similar result, but only for 500 hPa geopotential height, is available
on the following public website: https://weather.gc.ca/verification/
monthly_ts_e.html, last access: 18 December 2024).

CRPS values) when using the new MIDAS-based ensemble
DA system. More details regarding the change in DA algo-
rithm are provided by ECCC (2021).

6.2 Observation impact

The system for estimating the impact of all observations as-
similated in the global deterministic system on 24 h fore-
casts, known as the global deterministic forecast sensitivity
to observation impact (GDFSOI) system, has been run oper-
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Table 2. List of operational and experimental systems at ECCC that use MIDAS programs.

System description Status MIDAS programs

Global Deterministic Prediction System (GDPS) Operational var, obsSelection,
genCoeff, oMinusF

High Resolution Deterministic Prediction System (HRDPS) Operational var, obsSelection

Global Ensemble Prediction System (GEPS) Operational letkf, ensPostProcess,
var,
obsSelection, prepcma,
genCoeff,
oMinusF

Regional Ensemble Prediction System (REPS) Operational ensPostProcess

Global and regional sea ice analyses Operational var, obsSelection,
analysisErrorOI

Global sea surface temperature analysis Experimental var, obsSelection,
analysisErrorOI,
pseudoSSTobs, sstBias,
sstTrial

Global deterministic forecast sensitivity to observation impact (GDFSOI) Operational obsImpact

Hourly near-surface atmospheric analysis Experimental var, obsSelection,
oMinusF

Statistical forecast post-processing: UMOS–MIDAS Operational var

Figure 7. The continuous ranked probability score (CRPS) of 5 d
ensemble forecasts from the previous EnKF system (in blue) and the
new MIDAS-based LETKF system (in red) computed with respect
to the global network of radiosonde observations for (a) geopoten-
tial height at 500 hPa, (b) zonal wind at 250 hPa, (c) temperature at
850 hPa, and (d) dew-point depression at 850 hPa over the period 1–
25 January 2017. The filled circles along the horizontal axis indicate
lead times when the difference in the score is considered statistically
significant, with the colour of the circle indicating the experiment
with the better score. Note that these results use an earlier configura-
tion of the LETKF and EnKF at lower spatial resolution and without
ensemble recentring.

ationally since October 2022. It uses extended 256-member
ensemble forecasts and the hybrid FSOI approach imple-
mented in MIDAS as described by Buehner et al. (2018).
Currently, the system runs every 18 h with the 24 h fore-
cast error measured using the moist energy norm including
all vertical levels between the surface and 100 hPa over the
entire global domain and also over only Canada. To cap-
ture the impact of observations on stratospheric forecasts,
the impact is additionally computed over the global do-
main for the vertical levels between 100 and 1 hPa. A sepa-
rate system has recently been implemented to routinely pro-
duce a series of images that show the impact of the as-
similated observations over monthly, seasonal, and annual
averages. These images are published on the ECCC mon-
itoring website, which is accessible to both internal and
external users (https://hpfx.collab.science.gc.ca/~smco500/
psmon/FSOI_monitoring/, last access: 18 December 2024).
Figure 8 provides an example of the average observation im-
pact on forecasts over the global and Canada domains from
the surface to 100 hPa and for the global domain in the strato-
sphere separated by observation type and computed over a
3-month period.

6.3 Stratospheric ozone assimilation

Currently, atmospheric constituent assimilation is conducted
only for ozone as part of 4D-EnVar in the operational GDPS.
Ozone assimilation was introduced to initialize ozone fore-
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Figure 8. The average fractional observation impact on 24 h forecasts (a) over the global domain and (b) over only Canada between the
surface and 100 hPa and (c) for the global domain between 100 and 1 hPa separated by observation type. The colour of each bar indicates the
average number of assimilated observations per analysis. The observation types are ordered according to the magnitude of their impact on
global tropospheric forecasts.

casts for the purpose of UV (ultraviolet) index forecasting
and coupled radiative feedback between prognostic ozone
and temperature in addition to ozone layer monitoring. In-
stead of ensemble background-error covariances, only uni-
variate ozone covariances are used, resulting in ozone as-
similation that is statistically independent of the NWP fields.
The ozone field estimated through DA is also not used as in-
put for the assimilation of NWP radiance observations, and
instead climatological ozone is still employed. The ozone
background-error correlations are obtained by fitting a third-
order autoregression function to estimates initially derived
from 6 h time-lag forecast differences (e.g. Bannister, 2008).
The background-error variances were obtained from apply-
ing the Desroziers et al. (2005) approach with assimilation
of Microwave Limb Sounder (MLS) ozone profiles followed
by globally uniform scaling.

The assimilated ozone observations consist of profiles and
integrated total and partial columns from a total of six satel-
lite instruments (for more detail, see de Grandpré et al.,
2024). While the assimilation and quality control of ozone
observations currently utilize MIDAS programs, observa-
tion thinning and bias correction have not yet been imple-
mented in MIDAS. Figure 9 shows example statistics of the
ozone analysis and short-term forecasts relative to the MLS
ozone profiles and the relative sizes of the specified forecast
and observation-error SD values used for assimilation in the
GDPS (all quantities are shown as percentages after normal-
izing by the mean MLS-observed ozone volumetric mixing
ratio for each pressure level).

Figure 9. The global normalized mean (dashed) and SD (solid) of
MLS observation minus analysis (OmA, light blue) and observation
minus short-term forecast (OmP, dark blue) differences and corre-
sponding average observation-error SD (O, red) and background-
error SD (P, green) used for assimilation. Results are for the June–
August 2022 period.
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6.4 Sea ice

Several MIDAS programs are used for both global and re-
gional configurations of the operational sea ice concentra-
tion analysis systems. These were recently implemented by
migrating all necessary sea-ice-specific functionality from
the previously used independent Fortran software into MI-
DAS, and tests were developed for the new functionality. The
assimilation is performed with a 2D-Var approach using a
diffusion operator for modelling the horizontal background-
error correlations. It also uses footprint horizontal interpo-
lation as part of the observation operator when assimilat-
ing observations that have a footprint much larger than the
grid spacing of the analysis (5 and 10 km for regional and
global configurations, respectively). In addition to estimat-
ing ice concentration, a measure of the associated uncertainty
is produced by estimating the analysis-error SD. Observa-
tion quality control includes a procedure that rejects sea ice
observations when the rms difference between the observa-
tions and the background values averaged over a swath of
data exceeds a specified threshold. More details about the
sea ice analysis system are given by Caya et al. (2010) and
Buehner et al. (2012, 2016). The use of MPI parallelization
in MIDAS greatly accelerates the computationally intensive
analysis-error calculation as compared with the original soft-
ware that only used OpenMP for parallelization. Overall, the
use of MIDAS programs for sea ice DA did not result in
any statistically significant changes to the sea ice analyses as
compared with the previously operational system. However,
the use of MIDAS will ease future software maintenance and
facilitate research on strongly coupled DA that includes sea
ice.

6.5 Sea surface temperature

As part of efforts towards developing a future atmosphere–
ocean-coupled DA system (Skachko et al., 2019), a global
daily SST analysis system was recently implemented using
MIDAS programs. The new system will replace the cur-
rent operational system that is based on legacy Fortran soft-
ware and multiple separate programs and scripts employ-
ing out-of-date programming styles, making it more diffi-
cult to maintain. Like the sea ice system, the new MIDAS-
based SST analysis system employs the 2D-Var DA method
with background-error correlations modelled with a diffusion
operator. The assimilated observations include those from
moored buoys, ships, and drifters, as well as satellite mea-
surements from infrared and microwave instruments. An esti-
mate of analysis-error SD is also computed to provide a mea-
sure of uncertainty. The observation bias correction, quality
control, and spatial thinning are all performed using MIDAS
programs. The large-scale and slowly evolving bias estimates
are computed separately for each satellite instrument for both
day and night with respect to in situ data that are considered
unbiased.

The new MIDAS-based system was initially implemented
as an “experimental” system with plans to replace the current
operational SST analysis system in the near future. More de-
tails about the new SST analysis system, including compar-
isons with the current operational system, are provided by
Skachko et al. (2024).

6.6 Hourly near-surface atmospheric analysis

An hourly near-surface mesoscale analysis-only system de-
fined on the HRDPS domain (2.5 km grid spacing) has re-
cently been implemented at ECCC using several MIDAS
programs. This system is similar to the National Centers
for Environmental Prediction (NCEP) Real-Time Mesoscale
Analysis (de Pondeca et al., 2011). The system relies on the
2D-Var DA approach using a background-error covariance
matrix defined on a horizontal grid with 10 km grid spacing
and derived using an ensemble of lagged-forecast differences
(the so-called NMC method; Parrish and Derber, 1992). It
combines the most recent available forecast from the HRDPS
valid at the analysis time (with forecast lead times between
3 and 8 h) with all surface observations (that are available
15 min after the analysis time) to create gridded fields of tem-
perature and humidity at 1.5 m above ground level (a.g.l.),
horizontal wind components and wind gusts at 10 m a.g.l.,
near-surface visibility, and surface pressure.

A unique feature of this system is that the observation-
error SD for each observed variable was tuned to mini-
mize the analysis departure from observations withheld from
the analysis step as proposed by Ménard and Deshaies-
Jacques (2018). The MIDAS program oMinusF was used
to compute observation minus analysis using 10-fold cross-
validation, where a Hilbert curve was applied to select 10 %
of the observations to be withheld from the assimilation. The
remaining 90 % of the observations were assimilated, and the
resulting analysis was compared with the withheld observa-
tions to compute an error statistic; the approach was repeated
10 times for different subsets of withheld observations. As an
example, Fig. 10 shows how this method led to the adoption
of a value of 2.1 ms−1 for the observation-error SD for wind
gust observations since this is the value that results in the best
fit of the resulting analysis to the withheld observations.

6.7 Statistical forecast post-processing:
UMOS–MIDAS

To reduce systematic bias and random error in raw numeri-
cal weather forecasts, the Updateable Model Output Statis-
tics (UMOS) approach uses surface station observations to-
gether with a multiple linear regression technique to cor-
rect the forecasts at different forecast lead times for spe-
cific sites over Canada (see Wilson and Vallée, 2003). To
enable the generation of post-processed fields on a grid, the
post-processed forecasts at observation locations are trans-
formed into pseudo-observations and assimilated with the
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Figure 10. The red line shows the wind gust (10 m a.g.l.) rms de-
parture of the analysis from the withheld observations for differ-
ent values of the specified observation-error SD when using 10-fold
cross-validation over a 2-month period during the winter of 2020.
The blue line shows the SD of the observation departure from the
HRDPS background state as measured using all of the wind gust
observations.

2D-Var approach implemented in MIDAS, similarly to in
the previously described near-surface analysis system. So
far, the approach has been applied only to temperature at
1.5 m a.g.l. The observation-error SD values assigned to the
post-processed temperature forecasts were determined by
finding those that minimize the departure from the result-
ing post-processed gridded data to observations not currently
considered in the UMOS procedure. The approach is used
operationally to correct the near-surface temperatures for
various lead times of the GDPS and HRDPS forecasts over
Canada (ECCC, 2023).

7 Summary and future plans

MIDAS is Fortran software developed at ECCC for a diverse
range of both operational and research DA applications. It is
currently used for most major tasks within the operational
NWP systems as well as for producing sea ice, SST, and
hourly near-surface atmospheric analyses and for estimat-
ing the impact of observations on short-term forecasts. Its
modular software design is continually being improved, as
needed, to facilitate applications to even more components
of the Earth system. The use of MIDAS for many such sys-
tems will be essential to enable research on strongly coupled
DA approaches that explicitly take into account the coupled
connections between multiple Earth system components, es-
pecially between the atmosphere, ocean, sea ice, and land
surface.

Some ongoing research and development projects involv-
ing MIDAS include testing of an LETKF configuration for

high-resolution limited-area ensemble NWP, testing of grid-
space vertical localization for global ensemble NWP, and ap-
plication of the LETKF for initializing both deterministic
and ensemble 3D ocean and sea ice model forecasts. Work
also continues on the improvement of the processing and as-
similation of various types of observations (including cloud-
affected and surface-sensitive satellite radiances) and the ad-
dition of new observation types (such as from new satellite
instruments).

The flexibility and range of applications made possible
with MIDAS could constitute a powerful tool in an academic
context to facilitate DA research at Canadian universities.
Therefore, preliminary efforts have begun to explore the fea-
sibility of making MIDAS accessible to collaborators exter-
nal to ECCC.

Finally, given the recent rapid developments related to
NWP applications of artificial intelligence and machine
learning methods, it seems inevitable that work should begin
on examining how such approaches can be used in combina-
tion with MIDAS. Such developments are also increasingly
leading to the incorporation of graphical processing units
(GPUs) in supercomputers, and therefore work will begin on
enabling the MIDAS software to run efficiently on GPUs.

Code and data availability. MIDAS version 3.9.1 is publicly re-
leased on GitHub and accessible in the v_3.9 branch of MIDAS-
src (https://github.com/ECCC-ASTD-MRD/MIDAS-src/tree/v_3.
9, last access: 21 March 2024). It is also available from Zenodo
at https://doi.org/10.5281/zenodo.10849225 (ECCC, 2024a). The
automatically generated documentation web pages of the MIDAS
code version 3.9.1 are available on GitHub at https://eccc-astd-mrd.
github.io/MIDAS-doc/ (ECCC, 2024b).
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