
Geosci. Model Dev., 17, 997–1021, 2024
https://doi.org/10.5194/gmd-17-997-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperAgriCarbon-EO v1.0.1: large-scale and high-resolution simulation
of carbon fluxes by assimilation of Sentinel-2 and Landsat-8
reflectances using a Bayesian approach
Taeken Wijmer1,2, Ahmad Al Bitar1, Ludovic Arnaud1, Remy Fieuzal1, and Eric Ceschia1

1CESBIO, Université de Toulouse, CNES/CNRS/INRAE/IRD/UPS, 18 Avenue Edouard Belin, bpi 2801,
CEDEX 09, 31401 Toulouse, France
2DYNAFOR, Université de Toulouse, INRAE, INPT, INP-PURPAN, Castanet-Tolosan, France

Correspondence: Taeken Wijmer (taeken.wijmer@univ-tlse3.fr) and Ahmad Al Bitar (ahmad.albitar@gmx.com)

Received: 13 January 2023 – Discussion started: 22 February 2023
Revised: 20 November 2023 – Accepted: 21 November 2023 – Published: 7 February 2024

Abstract. Soil organic carbon storage is a well-identified cli-
mate change mitigation solution. Quantification of the soil
carbon storage in cropland for agricultural policy and off-
set carbon markets using in situ sampling would be exces-
sively costly, especially at the intrafield scale. For this rea-
son, comprehensive monitoring, reporting, and verification
(MRV) of soil carbon and its explanatory variables at a large
scale need to rely on hybrid approaches that combine remote
sensing and modelling tools to provide the carbon budget
components with their associated uncertainties at intrafield
scale. Here, we present AgriCarbon-EO v1.0.1: an end-to-
end processing chain that enables the estimation of carbon
budget components for major and cover crops at intrafield
resolution (10 m) and regional extents (e.g. 10 000 km2) by
assimilating remote sensing data (e.g. Sentinel-2 and Land-
sat8) in a physically based radiative transfer (PROSAIL)
and agronomic models (SAFYE-CO2). The data assimila-
tion in AgriCarbon-EO is based on a novel Bayesian ap-
proach that combines normalized importance sampling and
look-up table generation. This approach propagates the un-
certainties across the processing chain from the reflectances
to the output variables. After a presentation of the chain, we
demonstrate the accuracy of the estimates of AgriCarbon-
EO through an application over winter wheat in the south-
west of France during the cropping seasons from 2017 to
2019. We validate the outputs with flux tower data for net
ecosystem exchange, biomass destructive samples, and com-
bined harvester yield maps. Our results show that the scala-
bility and uncertainty estimates proposed by the approach do

not hinder the accuracy of the estimates (net ecosystem ex-
change, NEE: RMSE= 1.68–2.38 gC m−2, R2

= 0.87–0.77;
biomass: RMSE= 11.34 g m−2, R2

= 0.94). We also show
the added value of intrafield simulations for the carbon com-
ponents through scenario testing of pixel and field simula-
tions (biomass: bias=−47 g m−2, −39 % variability). Our
overall analysis shows satisfying accuracy, but it also points
out the need to represent more soil processes and include
synthetic aperture radar data that would enable a larger cov-
erage of AgriCarbon-EO. The paper’s findings confirm the
suitability of the choices made in building AgriCarbon-EO
as a hybrid solution for an MRV scheme to diagnose agro-
ecosystem carbon fluxes.

1 Introduction

Agriculture and land use changes account for 15 % (i.e.
8.7 Gt CO2 yr−1) of human-induced greenhouse gas (GHG)
emissions (Pörtner et al., 2022; Skea et al., 2022). Agri-
culture has also been identified as a sector that can con-
tribute to climate mitigation through several solutions (Porter
et al., 2017; Matthews et al., 2022). Among these, soil or-
ganic carbon (SOC) storage has the potential to remove 0.6
to 9.3 Gt CO2 yr−1 globally from the atmosphere through
the implementation of carbon farming practices (Skea et al.,
2022). Increasing the SOC implies an enhancement of the
net ecosystem carbon budget (NECB) (Woodwell and Whit-
taker, 1968; Chapin et al., 2006; Smith et al., 2010) expressed
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in Eq. (1). A positive variation of NECB can be achieved
by increasing the gross primary production (GPP) and the
net ecosystem exchange (NEE) through above-ground crop
residue retention (Soussana et al., 2019; Bolinder et al.,
2020), the addition of cover crops in crop rotations (Poe-
plau and Don, 2015; Lugato et al., 2020), and an increase in
the carbon imports through the application of organic amend-
ments (Bolinder et al., 2020) and biochar (Steinbeiss et al.,
2009).

(1)

Equation (1) also shows the linkage between (1) the quan-
tification of the effect of ecosystem respiration (Reco), which
is subdivided into autotrophic (plant) and heterotrophic (soil)
respiration (Rauto and Rh), and (2) the quantification of car-
bon exports that correspond mainly to yield and the fraction
of biomass incorporated to the soil. All the components in
the equation are impacted not only by the intrinsic character-
istics of the field (soil) and the weather but also, and most im-
portantly, by the farming practices: choice of crop and cover
crop, choice of amendments, and choice of harvesting, etc.
The quantification of the carbon fluxes due to each of the
components is the basis of the computation of the net ecosys-
tem carbon budget, as shown in Eq. (1).

It should be noted that after the death of the vegetation, all
the unharvested biomass returns to the soil. At this point, we
can approximate that NECB=1SOC. The accumulation of
SOC in agricultural soils, in addition to climate change miti-
gation, has additional benefits in terms of ecosystem soil ser-
vices (ESSs), such as increasing soil fertility (Su et al., 2006),
enhancing water-holding capacity (Karhu et al., 2011), and
increasing biodiversity (Wall et al., 2015). SOC storage could
also provide an additional source of revenue for farmers
through carbon credits and subsidies.

Following the Intergovernmental Panel on Climate
Change guidelines for national GHG inventories, methodolo-
gies for assessing SOC stock changes have been developed.
They are based on a tiered approach with increasing com-
plexity involving soil monitoring networks where SOC is di-
rectly measured and process-based modelling where 1SOC
is modelled by taking into account the soil, climate, and
mean biomass returned to the soil (GPP–Rauto–Cexport) de-
rived from yield at the regional scale (Del Grosso et al., 2005;
Yokozawa et al., 2010; Lehtonen et al., 2016). The need to
monitor soil carbon at the farm and field levels to inform in-
dividual farmers and guide policies and the development of
carbon markets has led to the development of monitoring,
reporting, and verification (MRV) schemes based on simi-
lar approaches employed at a higher resolution (Smith et al.,
2020; Paustian et al., 2019). These approaches are mainly
used in carbon farming projects following national or re-

gional initiatives (e.g. Label Bas Carbone in France). They
often rely on a soil-centred quantification approach where
the focus is the modelling of Rh, C imports, and C exports. In
these approaches, the estimates of carbon returned to the soil
are usually extrapolated from farm- or field-scale yield in-
formation (Clivot et al., 2019). The field scale often does not
match the intrafield/farm variability of the soil characteristics
and plant growth (de Gruijter et al., 2016; Ellili et al., 2019).
This means that these values present limitations in terms of
accuracy and spatial representativity.

Coupled plant–soil process-based models that address the
quality and quantity of the crop residues that return to the
soil are also used to assess SOC stock changes. These mod-
els include the main components of the cropland’s biolog-
ical CO2 fluxes. They can also account for carbon inputs
through organic fertilization and carbon exports of biomass
at harvest (Eq. 1, Smith et al., 2010). Existing agronomic
models, such as DSSAT-CSM (Porter et al., 2010), STICS
(Launay et al., 2021), DAYCENT (Parton et al., 1998), and
WOFOST (Supit et al., 1994); soil models, for example,
DNDC (Gilhespy et al., 2014); and land surface models,
for example, ORCHIDEE-STICS (Gervois et al., 2008), take
into account a wide array of environmental conditions to rep-
resent crop growth and the components of the carbon budget
(Eq. 1). However, water and nutrient availability, local to-
pography, pests, and historical factors (e.g. former ditches,
roads, field limits) highly influence soil and plant processes
(Gregory et al., 2009). This can result in high spatiotempo-
ral variability in crop development and soil processes that
can be observed, even at the intrafield scale (Stevens et al.,
2008; de Gruijter et al., 2016). Moreover, to operate those
models, farmer activity data and crop development dynam-
ics are required to provide accurate estimates of SOC stock
changes. Getting hold of this information at a large scale
is still challenging (Seidel et al., 2018; Wattenbach et al.,
2010). However, it is possible to use time series of biophys-
ical variables such as green leaf area index (GLAI), derived
from remote sensing data, to provide information about de-
velopment dynamics to those models through data assimila-
tion (Huang et al., 2019; Battude et al., 2017; Pique et al.,
2020a). These assimilated observations provide spatially ex-
plicit crop-specific estimates of biomass and carbon returned
to the soil using coupled soil–plant models. Assimilation of
biophysical variables is usually based on iterative optimiza-
tion methods such as Simplex, Monte Carlo Markov chain
(MCMC), ensemble Kalman filter, or variational assimila-
tion that are generally applied at moderate resolutions (Ku-
mar et al., 2019; Hararuk et al., 2014) or field scale (Trepos
et al., 2020; Upreti et al., 2020). Applying these methods at
an intrafield resolution over large areas is often computation-
ally prohibitive. Enhancing scalability is thus key to assess-
ing the spatial variability of CO2 flux components at a scale
consistent with measurements of soil and plant characteris-
tics. Operating on a scale that is representative of measure-
ments enables better diagnosis and calibration of plant and
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soil processes, as well as a more robust validation and uncer-
tainty estimation of the model outputs.

This paper aims to present the newly developed
AgriCarbon-EO processing chain for the assimilation of
Earth Observation (EO) data into the SAFYE-CO2 agro-
nomic model at a large scale (100 km) and intrafield reso-
lution (10 m). This processing chain allows for the assess-
ment of the carbon budget components (Eq. 1). The chal-
lenge of estimating the carbon budget components at high
spatial resolution at a large scale is addressed by using the
new BASALT (BAyesian normalized importance SAmpling
via Look-up Table generation) algorithm, which also pro-
vides uncertainty estimates. In addition, the paper aims to
provide an evaluation of the accuracy, limitations, and ro-
bustness of AgriCarbon-EO methods through validation ex-
ercises and scenario simulations. We chose to make these as-
sessments for wheat in southwest France, as this area ben-
efits from a large amount of data that has been gathered in
the context of the Observatoire Spatial Regional (OSR) and
the Integrated Carbon Observation System (ICOS) network.
Furthermore, southwest France is a major production area of
wheat. This area has also been chosen because it presents
a challenge for spatial crop modelling in reproducing the di-
verse crop growth dynamics induced by a wide array of pedo-
climatic conditions in a hilly landscape. The scenario simu-
lations were designed to assess the robustness of the method
with respect to the amount of assimilated remote sensing data
and the added value in using high-resolution agronomic mod-
elling.

In the following sections, we first present the details of
the AgriCarbon-EO processing chain including the standard
inputs, models, and BASALT assimilation scheme. We then
present the numerical experimental setup and the validation
datasets. Next, we present the validation results and the im-
pact of image availability. Finally, we conclude with the ben-
efits and limitations of the presented solution for assessing
the cropland carbon budget components and their associated
uncertainties at high resolution over large areas.

2 AgriCarbon-EO chain

2.1 Overview of the processing chain

AgriCarbon-EO is an end-to-end processing chain that sim-
ulates multiple relevant variables of crop development,
biomass inputs to the soil, CO2 fluxes, and water fluxes at a
daily timescale, for the assessment of carbon and water bud-
gets. It is specifically designed to assimilate optical remote
sensing datasets at native high resolution into a parsimonious
agronomic model (SAFYE-CO2) over large regions. A brief
description of the data flow and processing steps is presented
here (Fig. 1) and detailed in the following subsections:

1. A preprocessing “data ingestion” step allows the up-
dating of existing datasets through the automated

downloading and stacking of satellite images and
weather forcing. Optical bottom-of-atmosphere (BOA)
reflectances are downloaded for Sentinel-2 and Landsat-
8 (referred to as S2 and L8 below). The weather data are
stored in time series with the associated correspondence
matrix to the high-resolution grid defined by the user.
This is performed for the zone defined by the input land
cover (polygons or mask raster map).

2. The biophysical variable GLAI is retrieved from the
satellite reflectance images by inverting a radiative
transfer model (PROSAIL). The retrieval of GLAI is
based on an adapted Bayesian importance sampling pro-
cedure (i.e. BASALT).

3. The crop model (SAFYE-CO2) parameters are inverted
by assimilating the GLAI time series using the BASALT
method as in the previous step. In this case, LUTs are
generated based on the closest known weather simula-
tion node. Only the phenological crop model parame-
ters and the light use efficiency (LUE) are inverted in
this procedure.

4. A postprocessing step allows the construction of the
output products based on the posterior crop model pa-
rameter distribution. Georeferenced maps of the vari-
ables of interest in each model (i.e. PROSAIL, SAFYE-
CO2) are constructed as well as cumulative variables
(e.g. NEP, which is the cumulative NEE over 1 crop-
ping year, number of satellite acquisitions, and soil wa-
ter content).

AgriCarbon-EO is implemented in the Python language. A
maximum requirement of 5 GB per process for the satel-
lite images needs to be considered. This will allow mono-
process tests and development on standard computers over
smaller study areas, as well as large-scale applications (e.g.
100× 100 km) with high-performance-computing (HPC) re-
sources.

2.2 Input dataset

In the following subsections, the spatial datasets needed for
AgriCarbon-EO are detailed.

2.2.1 Land cover map

The main driver for the data preparation is a land cover (LC)
map in vector or raster format. This file contains the bound-
aries of each agricultural field for a given cropping year over
a selected region of interest or a raster-based mask. Based
on the border extents of the LC map, the remote sensing
and weather forcing data are downloaded and preprocessed.
When the simulations are intended to cover several cash crop
cycles, a run scenario of AgriCarbon-EO is considered for
each individual crop cycle. Additionally, a standard simula-
tion can include a cover crop with each cash crop. In this
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Figure 1. Overview of the AgriCarbon-EO data flow and main processing steps that include the data ingestion, BASALT spatial retrieval,
BASALT temporal retrieval, and mapping of the variables of interest.

paper, AgriCarbon-EO was applied to winter wheat crops
in southwest France (on the Sentinel-2 tile referenced as
31TCJ) in 2017, 2018, and 2019. The LC map was obtained
from the Registre Parcellaire Graphique (RPG) in France
(RPG, 2021), which is available online in Open Licence v2.0.
This information is produced by the Institut Geographique
National (IGN) for the Agence de Service de Paiement (ASP;
i.e. the French Agency for Services and Payment) in charge
of the implementation, control, and payment of the subsidies
for the EU Common Agricultural Policy (CAP) in France. In
this study, the original polygons in the Lambert-93 projec-
tion (EPSG:2154 – RGF93) were reprojected to a selected
common grid projection: WGS 84/UTM31.

2.2.2 BOA surface reflectances

The assimilated remote sensing data are optical multi-
spectral surface reflectances at the BOA, which correspond
to reflected energy from the top of the canopy and the soil
at a given incidence angle. Currently, AgriCarbon-EO uses
data from the ESA’s Sentinel-2 programme (Drusch et al.,
2012) and NASA’s Landsat-8 programme (Roy et al., 2014),

knowing that the modular interface is compatible with multi-
source EO data. The Sentinel-2 data are acquired over 13 op-
tical bands with a resolution of 10 to 60 m depending on the
spectral bands with a 5 d revisit from the constellation. Only
the nine visible bands were considered from the Landsat-8
data. Landsat-8 has a revisit of 16 d and a spatial resolution
of 30 m in the visible range.

For this study, the data were downloaded from the The-
matic Center for Continental Surfaces (THEIA), which uses
a common atmospheric correction and cloud masking algo-
rithm for Sentinel-2 and Landsat-8 through the MAJA pro-
cessing chain (Hagolle et al., 2021). This enables a harmo-
nized Level-2A database with an efficient cloud masking al-
gorithm (Baetens et al., 2019). The data contain quality indi-
cators, including cloud coverage. The dataset is presented as
granules (tiles) of 110×110 km orthoimages in the UTM pro-
jection. Prior to the processing, the remote sensing datasets
are decompressed and resampled at 10 m resolution using the
nearest-neighbour method.

Geosci. Model Dev., 17, 997–1021, 2024 https://doi.org/10.5194/gmd-17-997-2024



T. Wijmer et al.: AgriCarbon-EO v1.0.1 1001

2.2.3 Weather forcing data

Daily weather data maps covering the simulation period and
spatial extents are used to force the crop model. Cumulative
daily global incoming solar radiation (Rg in MJ m−2) and
daily average air temperature at 2 m (Ta in ◦C) are needed
for the vegetation growth module in SAFYE-CO2. Based on
previous studies that showed the impact of diffuse radiation
on crop development and photosynthesis (Béziat, 2009; Rod-
erick et al., 2001), the diffuse incoming radiation is com-
puted based on De Jong (1980). Two additional forcings
are needed for the water budget module of SAFYE-CO2:
daily potential evapotranspiration (ET0 in mm d−1) and daily
cumulative rainfall (rain in mm d−1). AgriCarbon-EO sup-
ports two data sources that provide weather data: the Météo-
France SAFRAN dataset (Vidal et al., 2010) and ERA5 Land
(Muñoz-Sabater et al., 2021). The extraction of the ERA5
Land data was performed via the dedicated API. SAFRAN
consists of a reanalysis of climate variables at 8 km spatial
resolution and an hourly timescale over France starting in
1958. In this paper, the weather data were extracted from
the Météo-France SAFRAN dataset and reprojected over the
UTM/31N at 8 km resolution.

2.3 Process-based models

2.3.1 Radiative transfer modelling using PROSAIL

Maps of geophysical variables (i.e. GLAI) are retrieved in
AgriCarbon-EO by inverting the PROSAIL radiative trans-
fer model. PROSAIL has been extensively used as a radia-
tive transfer model for vegetated areas (Jacquemoud et al.,
2009) with a wide range of inversion schemes (Wang et al.,
2022). PROSAIL combines the PROSPECT and SAIL mod-
els (Baret et al., 1992). PROSPECT provides leaf spec-
tral properties in the 400 to 2500 nm wavelength (Jacque-
moud and Baret, 1990). SAIL (scattering by arbitrary in-
clined leaves) is a multidirectional canopy reflectance model
(Verhoef, 1984) based on the bidirectional reflectance model
(Suits, 1971). A Python implementation of PROSAIL was
used in AgriCarbon-EO. This version includes the coupled
PROSAIL from PROSPECT-5-D (Féret et al., 2017), 4SAIL
(Verhoef et al., 2007), and a simple Lambertian soil re-
flectance model. The PROSAIL parameters were inverted us-
ing a Bayesian approach to provide GLAI and its correspond-
ing uncertainty as input to the crop model inversion.

2.3.2 Crop CO2 fluxes and biomass modelling using
SAFYE-CO2

SAFYE-CO2 is a parsimonious agronomic model that runs
at a daily time step (Veloso, 2014; Pique et al., 2020a, b).
The model stems from the SAFY models (Duchemin et al.,
2008; Battude et al., 2017) which compute dry above-ground
biomass (DAM), based on the LUE theory of Monteith
et al. (1977). A full description of the SAFYE-CO2 model

is provided in Veloso (2014); Pique et al. (2020a, b). The
core equations of the model are detailed below. In SAFYE-
CO2, NEE is computed based on Rh and net primary pro-
duction (NPP; gC m−2), which in turn is computed from
GPP (gC m−2) by subtracting autotrophic respiration Rauto
(gC m−2), as presented in Eq. (1). The CO2 fluxes caused by
the plant, GPP, and Rauto are computed using Eqs. (2) and
(10), respectively.

GPP= Rg · εcfT (Ta) · fw(WC) ·ELUE ·APAR ·SR10, (2)

where Rg is the incoming global radiation (MJ m−2 d−1),
fT (Ta) is the temperature stress function that depends on
Ta the mean air temperature at 2 m (◦C), and fw(WC) is
the water stress function where WC is the soil water content
(m−3 m−3). In this study, the water budget is computed, but
the water stress function is deactivated (i.e. fw(WC)= 1). In
Eq. (2), ELUE (gC MJ−1 m−2) is the effective light use effi-
ciency (Eq. 3).

ELUE= LUEa × e
(
Rdiff
Rg ·LUEb)

, (3)

where LUEa (gC MJ−1 m−2) is the light use efficiency for
direct radiation, and LUEb is a correction coefficient for the
impact of diffuse radiation Rdiff (MJ m−2 d−1) on ELUE.

In Eq. (2), SR10 accounts for the decrease in photosyn-
thetic efficiency during senescence linked among others to
the decrease in chlorophyll.

SR10 =
GLAI

GLAI_max×Cs
if SMT> Sena.

else SR10 = 1, (4)

where Cs is the parameter that controls the slope of SR10 de-
pending on the thermal age of the crop SMT, and Sena refers
to the thermal age at which the plant enters senescence. Fi-
nally, FAPAR is the fraction of absorbed photosynthetically
active radiation and is computed in SAFYE-CO2 (Eq. 5).

FAPAR= εc · 1− eKex·GLAI, (5)

where εc is the parameter that quantifies the fraction of pho-
tosynthetically active radiation in Rg.

SAFYE-CO2 derives GLAI (Eq. 6) and other pheno-
typic traits using allometric coefficients and the plant’s organ
biomass values such as DAM, dry leaf biomass (DLM), and
dry below-ground biomass (DBM) (Eq. 7). To compute these
biomass values, the model relies on partition coefficients that
dispatch the carbon and resulting biomass in different organs
depending on the thermal age of the crop (Eq. 8, Baret et al.,
1992).{
1GLAI+ = DLM ·SLA
1GLAI− = GLAI · (SMT−Sena) ·Sen−1

b ,
(6)
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where SLA (m2 g−1) is the specific leaf area, and Senb is the
rate of functional leaf loss depending on thermal age.
1DAM= NPP

Cveg
· (1−PRT_R)

1DLM=1DAM · (PRT_L)
1DBM= NPP

Cveg
· (PRT_R),

(7)

where Cveg is the average fraction of carbon in plant biomass.
PRT_R = PRT_Rb+ (PRT_Ra−PRT_Rb)

·e
(−PRT_Rc· SMT

SMT_G )

if PRT_R> 0 else PRT_R= 0
PRT_L = 1−PRT_La · ePRT_Lb·SMT

if PRT_L> 0 else PRT_L= 0

(8)

The fraction of biomass allocated below ground, PRT_R, is
computed using PRT_Ra, PRT_Rb, PRT_Rc, and SMT_G,
which correspond to the end-of-cycle fraction of biomass al-
located below ground, the initial fraction of biomass allo-
cated below ground, a coefficient modulating the decrease in
biomass partition to the roots between the initial and end-
of-cycle states, and the sum of the temperature at which
grain filling starts respectively. The fraction of above-ground
biomass allocated to the leaves PRT_L is computed using
PRT_La and PRT_Lb0, respectively, the initial fraction of the
above-ground biomass that is not allocated to the leaves and
a fitting parameter that modulates the rate and thus the end
of allocation of above-ground biomass to the leaves.

The biomass and yield are used to determine carbon ex-
ports in Eq. (1). Equation (9) illustrates a simple way to es-
timate exported biomass by taking into account only the dry
above-ground biomass (DAM), the harvest index (HI), and
the fraction of carbon in the dry biomass (Cveg).

Cexports =

dry yield︷ ︸︸ ︷
DAM×HI×Cveg (9)

The other component of NPP, Rauto, is divided into veg-
etation maintenance respiration Rmaint (Amthor, 2000) and
vegetation growth respiration Rgrow (Choudhury, 2000), as
described in Eq. (10).
Rauto = Rmaint+Rgrow, where
Rmaint = R10 ·Q

−0.1·(T−10)
10 ·SR10 and

Rgrow = (1−Yg) · (GPP−Rmaint)

(10)

Rmaint depends on two parameters: the basal plant respiration
at 10 ◦C (R10), the temperature sensitivity of plant respira-
tion (Q10), and the temperature T and SR10 to represent an
increase in relative maintenance cost during senescence. The
growth respiration is computed from the growth conversion
efficiency, GPP, and Rmaint.

The final term in NEE, Rh (gC m−2), is computed using
the empirical model in Delogu et al. (2017) that depends on
soil moisture and temperature.{

Rh= Rh1 · e
(Rh2·Tsoil) ·Hwater stress, where

Hwater stress = (1+Rh1 · e
(Rh2·RSM1))−1 (11)

Rh1 is the reference Rh rate, Rh2 expresses the RH sensitiv-
ity to temperature, and Hwater-stress is the effect of soil mois-
ture on soil carbon decomposition. In Hwater-stress, Rh_H1
and Rh_H2 provide the form of the water stress function and
RSM1 the relative soil moisture.

A Python implementation of SAFYE-CO2 was developed
for AgriCarbon-EO and is used in this paper. This new ver-
sion is vectorized to provide predictions for multiple runs and
build LUTs. It can also handle multiple vegetation cycles for
each run (e.g. crop and cover crop) and has a modular archi-
tecture. The physical modules are restructured to regroup soil
processes, plant phenology, plant physiology, heterotrophic
activity, and field management.

In SAFYE-CO2, the water flux computation is based on
the Penman–Monteith and FAO-56 methodologies that en-
able the computation of evapotranspiration and water dis-
tribution in the soil based on a bucket model (Allen et al.,
1998). The coupling between the carbon and water cycles
occurs in two ways. Plant growth impacts root water uptake,
and the soil water content impacts GPP production through a
water stress coefficient. The dynamic computation of GLAI
in Eq. (6) provides the link between the model and the GLAI
retrieved from optical EO and therefore allows us to con-
strain the model’s phenological and light use efficiency pa-
rameters (emerg, PRT_La, PRT_Lb, SLA, Sena , Senb, Harv,
LUEa) using EO data assimilation. The assimilation of GLAI
allows implicit accounting of soil stress impacts (e.g. nutri-
ents and water) on vegetation development. Therefore, the
water stress effect on GPP and plant development is implic-
itly accounted for through the model’s parameters, resulting
mainly in lower values of LUE for a field experiencing wa-
ter stress. Assimilating GLAI also enhances the estimation
of NEE and the export of specific organs and the resulting
NECB (Eqs. 9 and 1) by considering the effect of the crop
growth dynamic. In data assimilation, the relative parsimony
of SAFYE-CO2 compared to models such as STICS (Du-
mont et al., 2014) or DSSAT (Porter et al., 2010) entails a
limited number of free parameters controlling the vegetation
dynamics. This allows the use of scalable assimilation algo-
rithms such as “BASALT” presented below that can only be
applied to relatively low dimensional optimization problems
(Bellman, 2015).

2.4 Bayesian normalized importance SAmpling using
Look out Table – BASALT

To provide large-scale high-resolution assimilation, a tai-
lored inversion method was developed. The new approach,
BASALT, relies on the Bayesian normalized importance
sampling (NIS) approach to address the need for uncertainty
propagation across the processing chain. Also, the generation
of look-up tables (LUTs) provides computational gain by re-
ducing the total number of model simulations. In a Bayesian
framework, the initial knowledge about the model’s param-
eters is represented by a probability distribution P(2), the
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prior distribution. The knowledge brought by the observa-
tions x is expressed by the conditional probability distribu-
tion P(2|x) of the model parameters knowing the observa-
tions x, the so-called posterior distribution. The goal is to
evaluate this posterior distribution using Bayes’ theorem that
connects P(2|x), P(2), and P(x|2), called the likelihood
(Eq. 12):

P(2|x)=
P(x|2)P (2)

P (x)
. (12)

P(x) is the probability of observation (marginal distribu-
tion). Bayesian methods are at the root of popular inver-
sion algorithms such as MCMC or Dream (Vrugt, 2016).
Such algorithms have often been applied to agronomic mod-
elling (Dumont et al., 2014), ecosystem modelling (Ma et al.,
2022), and radiative transfer modelling (Zhang et al., 2005).

In BASALT, random samples are generated for the model
according to the probability distribution that best represents
the user’s prior knowledge of the model’s parameters. The
model output variables are calculated for each of those sam-
ples, given forcing and fixed parameters specific to a spatial
and/or temporal range. The sampled parameters and result-
ing variables are treated as an LUT containing the prior state
of the model for the range where the forcing is valid. Follow-
ing LUT creation, the different LUT entries are compared
against observations with known uncertainty. Using a nor-
mal error model for the observation allows log-likelihoods
to be computed as presented in Eq. (13). Following this step,
the relative likelihoods (RLs) of each LUT entry can be com-
puted as presented in Eq. (14). In AgriCarbon-EO, this can
be done for different scales, i.e. the entity scales or the scale
of a group of entities. Finally, the posterior distribution is
computed based on the underlying error model with a nor-
mal distribution by computing a weighted mean and standard
deviation (Eq. 15).

logLi,j =
∑(

−
1
2

log(2π
(
σo,i,j )

2
))

−

(
vo,i,j −µ

2
o,i,j

)
2σo,i,j

, (13)

where v is the simulation value, µ and σ are the mean and
standard deviation of the observation, j is the index for enti-
ties, o is the index of the independent observations, and i is
the index for the model run in the LUT.

RLi =
elogLi∑
ie

logLi
; RLfieldi =

∑
kRLi,k∑

i

∑
kRLi,k

, (14)

where RLi is the relative likelihood at the entity scale, k is
the entities in the same field, and RLfieldi is the relative like-
lihood at the field scale assuming an equal contribution of

each pixel in the field.

µw(vi,RLi)=
∑
iviRLi∑
iRLi

;

σw(vi,RLi,µw)=

∑
i(vi −µw)

2
·RLi∑

iRLi
, (15)

where µw is the weighted mean, vx is the vector given by the
LUT for a parameter or variable, x is the number of samples,
and σw is the weighted standard deviation.

2.4.1 Retrieval of GLAI maps from PROSAIL

When inverting PROSAIL, the main objective is to retrieve
GLAI and its associated uncertainties that will be assimi-
lated by SAFYE-CO2. This is done by generating an LUT
of PROSAIL runs (size = 5000) for each remote sensing im-
age based on the prior (Table 1) and the solar and observa-
tion angles provided by Sentinel-2 and Landsat-8 products.
Equation (14) is then used to evaluate the RL, where j is the
index of pixels in the simulated image, i is the index of the
PROSAIL runs in the LUT, and o is the observed reflectances
from the Sentinel-2 or Landsat-8 images. As PROSAIL pro-
vides LAI and not GLAI, the chlorophyll content (cab) is
constrained to a high interval [60,80] µg m−2. This makes
all simulated surfaces green and thus allows GLAI to be re-
trieved. A constraint is also added to the relation between dry
biomass and GLAI to reduce the parameter search space by
eliminating solutions with leaves that are too thin or thick.
Then, the surface reflectances of the Level 2-A BOA prod-
ucts are considered to follow a normal distribution with a
mean and a standard deviation that is fixed at 0.02. Finally,
the posterior distribution is approximated with a normal dis-
tribution, using Eq. (15), to determine µ and σ .

2.4.2 Application of BASALT to SAFYE-CO2

The simulated variables, DAM, yield, GPP, Reco, and NEE,
are highly dependent on the duration and intensity of crop
development (Ceschia et al., 2010). The GLAI outputs from
PROSAIL are assimilated into SAFYE-CO2 to correct the
prior vegetation dynamics. This is done by generating a LUT
of SAFYE-CO2 runs (size = 5000) for each zone with the
same forcing (i.e. same prior). In this case, the zoning is de-
fined by the weather forcing data (i.e. SAFRAN at 8 km).
For each zone, Eqs. (13) and (14) are applied to evaluate the
RL given the GLAI observations, where j is the index of
pixels in the simulated area, i is the index of the SAFYE-
CO2 runs in the LUT, and o is the observed GLAI at differ-
ent dates. The priors for LUT generation for SAFYE-CO2
are shown in Table 2. Those priors are used for the SAFYE-
CO2 LUT generation and were reassessed in terms of statis-
tical distribution from Pique et al. (2020a) to account for the
high spatial heterogeneity that can be observed at a regional
scale and the vegetation cycles that are more contrasted at the
pixel level than at the field level due to the regression to the
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Table 1. Priors’ configuration for PROSAIL parameters used in the Bayesian inversion.

Name Description Unit Prior (uniform [min, max])

N Leaf structure parameter – [1,2]
cab Chlorophyll a+ b concentration µg m−2 [60,80]
car Carotenoid concentration µg m−2 [5,20]
cm Leaf thickness g cm−2 [−0.02,0.02] + LAI · 0.004
LAI Leaf area index m2 m−2 [0,5]
psoil Soil moisture index – [0,1]

mean. For each parameter, a truncated normal distribution is
independently sampled considering µ, σ , min, and max val-
ues; the only exception is PRT_Lb, which has an exponential
behaviour. For this parameter, a logarithmic transformation
is applied to the distribution. To aggregate the SAFYE-CO2
simulations at the field scale, the likelihood is summed over
all the pixels in the field (Eq. 14). Finally, Eq. (15) is used
to compute µ and σ for a parameter or a variable on a given
day for a field or pixel.

3 Application for wheat in southwest France

3.1 Experimental setup and study area description

Several assimilation experiments were conducted to answer
the specific objectives of the paper; they are summarized
in Table 3. The experiments correspond to simulations over
the Sentinel-2 31TCJ tile located in southwestern France for
winter wheat in 2017, 2018, and 2019 (Fig. 2). They alter-
nate between the use of S2 alone and the combined use of S2
and L8. They also include pixel- and field-scale simulations.
The ACEO-S2L8-Pixel combines Landsat-8 and Sentinel-2
data at 10 m resolution, which represents approximately 20
million pixels for our study area. It was used as the main
simulation for the validation experiments. The ACEO-S2L8-
Field simulations correspond to averaging the 10 m GLAI
from PROSAIL retrievals at the field scale. Additionally, an
averaging of the high-resolution simulations with Sentinel-
2 and Landsat-8 was performed at the field scale (ACEO-
S2L8-Mean).

The study area has a mean annual precipitation of 655 mm
and a mean annual temperature close to 13 ◦C. It is classified
as a majorly temperate oceanic climate (Cbf) in the plains
and temperate continental climate (Dfb) near the Pyrenees
mountains, based on the Köppen climate classification. In
2017, winter was exceptionally dry and sunny, and spring
was sunny, with a 10 % deficit in rainfall (Météo-France,
2019), while 2019 had a mild winter and a sunny spring,
with 10 % deficit rainfall for the two seasons (Météo-France,
2021). The region has an intermediary cloud coverage that
allows for multitemporal optical remote sensing analysis and
analysis of the impact of clouds (Fig. 2b). It is mainly occu-
pied by agricultural fields that cover approximately 90 % of

the area, among which the majority is seasonal crops. Win-
ter wheat covers approximately 20 % of the zone and reaches
40 % in some areas. In southwest France, soft-wheat varieties
are predominant, and they are usually sown in autumn around
the middle to the end of October. Soft wheat represents 75 %
of the French exports of soft wheat. The crop typically de-
velops slowly during the winter, and growth accelerates dur-
ing spring. It is harvested from mid-June to the end of July
depending on maturation as well as climatic conditions to
optimize grain. The harvest in 2017 was normal (6 t ha−1 at
15 % humidity), while 2019 was an exceptional year with a
yield of 11.5 t ha−1 at 15 % humidity (ARVALIS, 2019). In
terms of pedology, two main soil types are present in the area
of study: silt-rich soils near the major streams and clay soils
across the hills with a variable density of stones depending on
erosion. The topography offers a wide range of aspects. The
region also bears the effects of historical land management,
specifically, the “remembrement” policy, a political push to
merge adjacent fields from 1945 to 1980 in France (Baker,
1961). This leads to a wide range of soil and microclimatic
conditions that cause significant intrafield plant growth vari-
ability.

This study area was chosen for three main reasons in light
of the aims of the paper. First, it is part of the Space Regional
Observatory that benefits from extensive datasets regarding
crop growth and crop physiology through the presence of
two certified ICOS flux sites (FR-AUR and FR-LAM), and
extensive measurement campaigns operated by different pub-
lic laboratories specializing in agronomy and remote sensing
as well as measurement campaigns operated by private com-
panies and individual farmers. These measured variables re-
lated to the field’s carbon budget such as NEE, GPP, Reco,
DAM, and yield (Eqs. 1 and 9) are monitored in different lo-
calities with different representative scales (Table 3.2). Sec-
ond, the crop growth and biophysical process variability, due
to topography and pedo-climatic variations, is needed to as-
sess the impact of using high-resolution modelling and as-
similation schemes in quantifying the carbon budget compo-
nents (e.g. Yield, CO2 fluxes). Third, winter wheat is one of
the most studied crops worldwide. This allows us to com-
pare the quality of the results obtained with AgriCarbon-EO
against a large corpus of published studies. Furthermore, the
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Table 2. Priors configuration for SAFYE-CO2 parameters used in the Bayesian inversion.

Name Description Unit Prior [µ,σ,min,max]

emerg Day of year of vegetation emergence DOY [335,15,200,400]
harv Day of year of vegetation harvest DOY [200,0,160,200]
LUEa Light use efficiency gC MJ−1

[1.05,0.05,0.8,1.5]
SLA Specific leaf area m2 g−1

[0.01,0.002,0.004,0.05]
PRT_La Initial fraction of biomass that is not allocated to the leaves g g−1

[0.325,0.15,0.01,0.5]
PRT_Lb Decrease rate of the fraction of biomass allocated to the leaves. g g−1 ◦C−1

[1.01,0.005,1,1.02]
Sena Sum of temperature at which senescence starts ◦C [1350,200,1000,2000]
Senb Rate of senescence ◦C m2 m−2

[12000,3000,0,20000]
HI Harvest index g g−1

[0.45,0,0.45,0.45]

Figure 2. Map of the simulation area and image availability from 2016 to 2019. (a) Background the ESRI World Topo Map, the 31TCJ
Sentinel2 tile limits (red rectangle), land cover for winter wheat fields for 2017 (blue), location of the FR-AUR ICOS site, the dry above-
ground biomass (DAM) measurements (red circles) and the two fields monitored with connected combine harvesters (CHs) (orange circles).
The zoomed maps show the FR-AUR field and the fields monitored using combine harvesters. (b) Chronogram of the remote sensing dataset
from Sentinel-2A (S2A), Sentinel-2B (S2B), and Landsat-8 (L8), over the 31TCJ tile for 2016 to 2019. The bar plots represent the percentage
of cloud-free pixels for each image.
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Table 3. Name, aim, and input details of the assimilation experiment.

Name Aim RS data Spatial resolution Years

ACEO-S2-Pixel – Determine the impact of revisits. S2 Pixels (10 m) 2017
ACEO-S2L8-Pixel – Validate the model outputs. S2 & L8 Pixels (10 m) 2017, 2018, 2019
ACEO-S2L8-Field – Quantify the impact of spatial resolution. S2 & L8 Fieldsa 2017
ACEO-S2L8-Mean – Quantify the spatial variability. S2 & L8 Fieldsb 2017

a For ACEO-S2L8-Field the GLAI from PROSAIL inversion is averaged prior to the SAFYE-CO2. b For ACEO-S2L8-Mean the outputs at 10 m from
SAFYE-CO2 are averaged at field scale.

area is a dense crop production zone. This is especially true
for wheat production, which has a large economic interest.

3.2 Validation of the AgriCarbon-EO outputs

The validation relies on several datasets corresponding to the
main output variables of AgriCarbon-EO: CO2 flux measure-
ments (i.e. NEE, GPP, Reco), DAM measurements over ele-
mentary sampling units (ESUs), and yield maps. A summary
of the ID and characteristics of the aforementioned validation
datasets is presented in Table 4.

The validation datasets were extracted from the database
of the Environmental Information System maintained by the
CESBIO laboratory (SIE, 2022).

3.2.1 Validation against field-scale CO2 fluxes and
DAM measurements

The FR-AUR ICOS site provides many biophysical measure-
ments, among which there are variables of interest regarding
the carbon budget GPP, Reco and NEE (FR-AUR C-Flux, Ta-
ble 4). These variables allow us to assess the soundness of the
representation of CO2 fluxes caused by physiological pro-
cesses in the model, as GPP represents photosynthesis and
Reco the sum of plant and soil respiration. NEE allows ac-
cess to the representation of the biological part of the carbon
budget. Furthermore, DAM is linked to carbon export (Eq. 9)
and NPP (Eq. 1). As one of the requirements for the ICOS
certification is the homogeneity of the ecosystem, the mea-
surements were considered to be representative of the field.
The DAM and CO2 flux measurements were acquired us-
ing the ICOS destructive biomass sampling protocol (Gielen
et al., 2018) and eddy covariance (EC) flux tower measure-
ments processed with EdiRe software (Clement, 2008), fol-
lowing the CarboEurope-IP recommendations for data filter-
ing, quality control, and gap filling (Table 4). The EC method
consists of measuring the 3D wind fluctuations at 20 Hz us-
ing a high-frequency sonic anemometer and the CO2 concen-
tration using a gas analyser. The covariance is then computed
between the turbulent component of the vertical wind and
the turbulent component of the CO2 concentrations (Baldoc-
chi, 2003). The NEE was then partitioned into GPP and Reco
using a formulation for croplands in Béziat (2009) adapted
from Reichstein et al. (2005). Depending on wind speed and

the intensity of the turbulence, a fraction of the direct mea-
surements are not representative of the plot, and those data
points were filtered out during the processing and replaced
with simulated values extrapolated from the environmental
conditions. We maintained only daily data points where more
than 50 % of the information comes from real measurements,
as gap-filling over long periods induces high errors (Béziat,
2009). The days when less than 50 % of the information is
provided by measurements are represented in grey in Fig. 3.
Furthermore, it is also noticeable that the observed Reco in
2018–2019 dips to zero during the vegetation growth period,
which is related to an error in the partitioning process of NEE
into GPP and Reco. This period is also ignored for GPP and
Reco and is represented in red in Fig. 3.

In this exercise, the daily outputs from AgriCarbon-EO
at 10 m resolution were spatially averaged over the area of
the FR-AUR field (Eq. 14) sampled by the EC tower (a.k.a.
the target area in the ICOS nomenclature). Those averaged
values were then compared against FR-AUR DAM and FR-
AUR C-Flux as shown in Fig. 3, and the corresponding fit-
ting statistics are shown in Table 5. The statistics were com-
puted for three specific periods, from 1 January to 1 May,
1 May to 1 July, and 1 October to 1 October. These periods
correspond to the growing and senescence of the wheat crop
and the whole cropping year respectively. The GLAI fitting
statistics computed over the growing season show a good fit
(R2
= 0.95) in 2016–2017 with a slightly lower fit in 2018–

2019 (R2
= 0.91). From mid-November 2018 until the end

of January 2019, spontaneous regrowth of the previous crop
(i.e. rapeseed) was observed in the field. The model does not
reproduce this GLAI dynamic, as this increase does not cor-
respond to the wheat crop cycle. The GLAI for the 2018–
2019 senescence period is underestimated by the model.

Regarding observed as well as simulated DAM, end-of-
cycle values are higher for the 2019 cropping year than in
2017, which is consistent with regional yield statistics (AR-
VALIS, 2019). Additionally, the modelled above-ground-
biomass dynamics are consistent with the observed dynam-
ics, apart from an overestimation of the simulation at the be-
ginning of the vegetation cycle in 2017. Note that replicates
in 2016–2017 and 2018–2019 present a noticeable spread. In
2017, the dynamics of the CO2 fluxes are well represented,
with most of the observed values in the uncertainty margin of
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Table 4. Description of the validation data sets.

ID Source Type Sampling Scale Frequency

FR-AUR C-Flux ICOS GPP, Reco, NEE Eddy covariance FR-AUR field Daily
FR-AUR DAM ICOS DAM FR-AUR field 10 m During and at end of cycle∗

ESU-DAM RSO DAM 8 ESUs 10 m One to four dates during the cycle∗

NAT-HA Farmer Yield Two CHs at two fields 30 cm At end of cycle

∗ The list of dates is provided in the Supplement.

Figure 3. Time series of GLAI, DAM, NEE, GPP, and Reco. The blue line and surface represent the mean and standard deviation of the
posterior distribution. The orange points with error bars represent the GLAI derived from the satellite observations and the DAM, NEE, GPP,
and Reco at the FR-AUR site for 2 cropping years (2016–2017 and 2018–2019). In the case of the CO2 fluxes, the grey areas represent the
days during which more than 50 % of the data are gap-filled, and the red area represents the periods during which a partitioning error has
been identified.

the model, with R2 values of 0.87, 0.91, and 0.76 for NEE,
GPP, and Reco, respectively. The model’s daily flux varia-
tions are slightly higher than the observations in 2017. In
2019, the CO2 flux dynamics are less well reproduced, nev-
ertheless with acceptable R2 values (above 0.7) over the full
year. For the cropping year, R2 was 0.77, 0.79, and 0.70 for
NEE, GPP, and Reco respectively. The modelled GPP values
are significantly higher than the observed values during the
growing period (bias= 3.31 gC m−2), while the differences
between the model and observations are less pronounced at
the end of the vegetation cycle (bias=−0.87 gC m−2).

3.2.2 Validation against spatialized DAM
measurements

The ESU protocol allows the assessment of variables at de-
cametric scales. Among those variables, DAM is especially
of interest as it can be used as a proxy for NPP (Eq. 7). More-
over, the exported yield can be computed using end-of-cycle
biomass (Eq. 9). To measure DAM with the ESU protocol,
the above-ground vegetation is sampled at five points fol-
lowing a cross pattern inscribed in a 10× 10 m square; each
sample corresponds to 1 linear metre of the crop row. The
five samples are weighed fresh in the field. In the laboratory,
one of the five samples is dried to retrieve the canopy water
content, which is then applied to the five fresh weight mea-
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Table 5. Bias, R2, and RMSE statistics for GLAI, DAM, GPP, Reco, and NEE variables in FR-AUR site over years 2017 and 2019 for the
growth and senescence and cropping year.

Variable Statistic 2017 2019

Growth Senescence All Growth Senescence All

Bias 0.36 0.19 0.27 0.21 0.44 0.35
GLAI RMSE 0.63 0.39 0.45 0.51 0.71 0.56
(m2 m−2) R2 0.92 0.95 0.95 0.96 0.87 0.91

Bias – – –6.46 – – 4.78
DAM RMSE – – 172.34 – – 380.62
(g m−2) R2 – – 0.97 – – –

Bias 0.43 0.13 0.28 2.39 −0.86 0.62
NEE RMSE 1.52 2.04 1.68 3.42 1.90 2.38
(g m−2) R2 0.86 0.87 0.87 0.64 0.87 0.77

Bias 0.78 −0.53 0.03 3.31 −0.87 0.67
GPP RMSE 1.87 2.06 1.82 4.67 2.26 3.00
(g m−2) R2 0.92 0.91 0.91 0.75 0.87 0.79

Bias −0.35 0.66 0.25 −0.91 0.01 −0.12
Reco RMSE 0.80 1.38 1.13 1.32 1.40 1.29
(g m−2) R2 0.88 0.69 0.76 0.84 0.50 0.70

surements to obtain dry above-ground biomass. The mean
and standard deviation are computed to obtain a representa-
tive DAM (g m−2) for the ESU. Eight fields were sampled
using the ESU protocol in 2018, and simulations were per-
formed for each ESU (Supplement).

Figure 4 shows the scatter plot between the simulated and
observed DAM coloured with respect to the month of ac-
quisition for eight fields with up to four revisits. The statis-
tics corresponding to this figure are recorded in Table 6.
The comparison shows a good fit when considering all DAM
measurements, with an R2 of 0.94, an RMSE of 211.34 g m2,
and a mean overestimation of the model of 129 g m−2. These
statistics represent the spatiotemporal fitting of the model.

When analysing the statistics per month, it is noticeable
that most of the total bias is present at the early growth stages
(in April), and the bias decreases over the growing season.
The final DAM values linked to yield and carbon exports in
July have low bias, and we can explain 61 % of the variabil-
ity. In addition, a weaker correlation is present when the data
are split per month compared to the full dataset (Table 6).
The variability in a given month is mainly due to the spa-
tial variability. Splitting the data thus enables us to assess the
variability in the spatial and temporal components that are
simulated by AgriCarbon-EO. Given the small sample size,
these monthly results should be interpreted with caution.

3.2.3 Comparison with high-resolution combine
harvester yield maps

Yield maps are of high interest for the evaluation of high-
resolution crop models in the context of carbon and preci-

Figure 4. Scatter plot of the simulated winter wheat dry above-
ground biomass (DAM) versus the observed biomass in the fields
in 2018.

Table 6. Values of RMSE, MAE, bias, and R2 between the simu-
lated and observed dry above-ground biomass (DAM).

Dataset Bias RMSE R2

(g m−2) (g m−2)

April −281.80 286.19 0.65
May −76.18 116.46 0.89
July 17.37 222.43 0.61
All −129.44 211.34 0.94
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sion farming. They provide information on the grain yield
that often represents the bulk of the carbon that is exported
from the field. CHs are also the only readily available spa-
tial and direct high-resolution crop organ monitoring tools.
Nevertheless, they have drawbacks because the mass flow
sensor and the grain moisture content sensor can experience
significant sensor drift within the field. Moreover, CH yield
data processing requires a range of parameters such as lag
time settings and distance travelled via GPS measurements,
header position, and cut width, all of which contribute to
the uncertainty in the measurements ( Grisso et al., 2002).
In this study, yield CH data were provided by a farmer lo-
cated in the Gers département. Data from two fields NAT-
Plt3 and NAT-Plt6 (Table 4), were collected by a CH that
measures the incoming flow of grain, its humidity, and its
position at a fixed frequency with a GPS. These measure-
ments were integrated between two points of the trajectory
taking into account harvesting width to compute the grain
production (yield) per surface area. The grain humidity con-
tent enabled the computation of the dry yield mass (g m−2).
The point yield data are then converted into a harvest map
over the simulation grids by summing the points inside each
pixel. A Gaussian smoothing filter with sigma = 12 m was
then applied over these maps to reduce the aliasing effects.
The spatial anomaly (i.e. (value−µ)/σ) maps were also
computed. To complete the processing, the co-localization
error between observations and AgriCarbon-EO yield esti-
mates was minimized through the detection of the maximum
spatial correlation in a 10 m lateral shift range.

The simulated yield maps were obtained from the ACEO-
S2L8-Pixel simulation by multiplying the final DAM by HI
(Eq. 9). We analysed the results in terms of the retrieval of
the spatial patterns as shown in Fig. 5. These maps show the
comparison between the CH yield data and the AgriCarbon-
EO yield estimates at the pixel level (in t ha−1) as well as
the spatial yield anomaly. Overall, the observed yields show
a larger variability than the simulations, and a clear satura-
tion effect is observed in the simulations for the NAT-plt6
field. The AgriCarbon-EO and CH anomaly maps show clear
spatial patterns. However, the spatial patterns are more pro-
nounced over the NAT-Plt3 field than over NAT-Plt6. RM-
SEs of 0.70 and 0.68 t ha−1, biases of 0.42 and 0.41, and
R2 values of 0.12 and 0.29 are observed for NAT-Plt3 and
NAT-Plt6, respectively. The performances of the yield simu-
lations vary strongly between the two fields. A relatively low
RMSE and bias indicate a quite good mean representation
of the plots. However, the correlation coefficient is quite low
and indicates that not all the spatial variability in yield can
be captured using this approach. The small R2 can however
be explained by the range of variation in wheat yield that is
smaller at the intrafield scale than regional scale. Maximum
R2 values for these datasets are found to be respectively 0.32
and 0.22 when assuming an observation measurement error
of 1 t ha−1 (Supplement). Furthermore, if we compare these
simulations to standard field-wise simulations that do not ex-

plain spatial variability, the explained spatial variance illus-
trated here is a net gain. Difficulties in reproducing the range
of yield observed variations in yield values may be caused by
the simple representation of grain biomass allocation through
the use of an HI which does not take into account potential
variations in the HI due to nutrient availability or crop cycle
duration (Dai et al., 2016).

3.3 Large-scale simulation outputs

In this section, the results from the ACEO-S2L8-Pixel in
2017 are illustrated and analysed. The RPG land cover map
for winter wheat fields, the SAFRAN weather data, and the
THEIA S2 and L8 EO data were used as input along with the
parametrization files for PROSAIL and SAFYE-CO2. The
AgriCarbon-EO processing chain was run in parallel over a
single server rack with two computation nodes and with 36
threads maximum. The memory requirement was the highest
for the PROSAIL retrievals, reaching 5 GB per process (im-
age inversion) for a LUT size of 5000. For SAFYE-CO2 the
requirements were 5 GB per process, with one process per
node of the weather grid with a LUT size of 5000. A SAFYE-
CO2 run over the 110× 110 km area of study at 10 m resolu-
tion required 4 h of computation time per year of simulation.
The chain was able to produce maps of all parameters and
variables estimated by SAFYE-CO2. With the carbon bud-
get being our main priority here, we chose to focus on NEP,
DAM at the end of the vegetation cycle, Cexport (Eq. 9), and
NECB (Eq. 1). NEP was computed by summing NEE over
1 cropping year from 1 October 2016 to 30 September 2017.
Maps of NEP, Cexport, and NECB at native resolution (10 m)
are shown in Fig. 6a as an illustration of typical outputs from
the chain. The histograms of the same variables and their un-
certainty are shown in Fig. 6b. Note that, in these figures,
we presented NEP and NECB in the soil-oriented convention
(i.e. positive values mean net CO2 fixation and soil organic
carbon storage, respectively) to be able to compare the values
of NEP, Cexport, and NECB.

High levels of heterogeneity with regional patterns can
be seen in the retrieved simulations. The northwestern and
southeastern corners are characterized by higher CO2 fixa-
tion and thus growth, yield, and lower NECB. The variability
of NEP is mostly comprised between 300 and 700 gC m−2,
which is consistent with eddy covariance measurements for
wheat across Europe (Ceschia et al., 2010). Furthermore,
the dry yield varies between 6.6 t ha−1 (i.e 300 gC m−2) and
10 t ha−1 (i.e. 450 gC m−2), which is also coherent with re-
gional statistics (ARVALIS, 2019). In Fig. 6, negative values
of NEP and NECB correspond to pixels where wheat did not
develop. In those cases, Rh dominates during the cropping
year, leading to a net carbon loss in the soil.

The uncertainty (i.e. standard deviation of the posterior
distribution) has mean values of 55, 25, and 38 gC m−2 for
NEP, Cexport, and NECB, respectively. The spatial variabil-
ity (i.e. standard deviation of the mean pixel values) is equal
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Figure 5. Yield maps and spatial anomalies simulated by AgriCarbon-EO and collected using a combine harvester over the Nataïs site
(NAT-Plt3 and NAT-Plt6) for 2017 and 2019.

Figure 6. Regional-scale carbon budget outputs from AgriCarbon-EO assimilation using S2 and L8. (a) From left to right, NEP, Cexport
(yield), and NECB for the winter wheat fields for the 2016–2017 cropping season. In (b) the histogram of the posterior mean and standard
deviation of the same variables on top and bottom, respectively. Note that NEP and NECB are presented in the soil-oriented convention.
Positive values of NEP and NECB thus correspond to net annual CO2 sinks and soil organic carbon storage, respectively.

to 131, 50, and 82 gC m −2 for those same variables. The
fact that the uncertainty is lower than the retrieved spatial
variability indicates that this method has enough resolution
to discriminate and ordinate values of NEP, Cexport, and
NECB based on the update of priors using remote sensing-
based GLAI. However, the fact that those values are on the
same order of magnitude stresses that uncertainty assess-
ments should always be provided with these analyses. The
maps and distributions, given their scale and resolution, do

not showcase the full range of crop variability that can be
observed in the study area. To illustrate individual solutions
and anomalies encountered in the simulations, selected pixels
of interest (POIs; located in Fig. 2) are presented in Fig. 7.

These pixels are selected to illustrate intrafield heterogene-
ity and specific anomalies. Figure 7a–e show the GLAI in-
verted using PROSAIL in green with their respective un-
certainties and the simulated GLAI time series in red, with
higher transparency for the solutions with the lowest contri-
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Figure 7. Time series of GLAI and radar plots containing the free parameters of SAFYE-CO2. Simulations are represented in red with a
transparency proportional to their relative likelihood, and the maximum likelihood simulation is represented in dashed blue lines. POI-00 (a)
and POI-01 (b) are located in the same field. POI-02 (c) and POI-03 (d) are adjacent pixels where a cloud date is not filtered in (d). POI-04 (e)
illustrates either an error in the CAP declaration or a failed wheat crop followed by a summer crop.

bution (likelihood). For instance, the results in Fig. 7a POI-
00 and Fig. 7b POI-01 show the fitting of the model over 2
pixels in the same field. It is clear from the observed and the
GLAI between the two POIs that the vegetation phenology is
different, with early emergence and higher maximum GLAI
in the case of POI-00 (Fig. 7a) and later emergence and lower
maximum GLAI in the case of POI-01 (Fig. 7b). Addition-
ally, Fig. 7c POI-02 and Fig. 7d POI-03 are adjacent pixels
in the same field, but each is on a different side of a cloud
mask in May 2017. The input GLAI from PROSAIL on this
date is associated with very low uncertainty, which impacts
the retrieval of the SAFYE-CO2 model. The low uncertainty
will result in a high level of false information for this date,
which in turn will negatively impact the Bayesian inversion
and reduce the SAFYE-CO2 model performances, thereby
pushing the model to better fit this unrealistic inversion of
GLAI. Finally, Fig. 7e POI-04 corresponds to a pixel in a
field where the observed GLAI is not consistent with win-
ter wheat; in fact, this GLAI dynamic fits better to a summer

crop such as sunflower. Mislabelling in the land cover such
as this one can result in “no fitting”. Mislabelled winter crops
could, however, be fitted and not stand out in the spatialized
simulation.

3.4 Impact of the spatial resolution and temporal
sampling of assimilated GLAI

The AgriCarbon-EO simulations (Table 3) were compared
at different scales (i.e. pixel vs. field) and for different
satellite image temporal densities to investigate the benefit
of assimilating high-resolution multimission-derived GLAI
into SAFYE-CO2. The impact of the spatial scale of the
GLAI assimilation is illustrated by Fig. 8a, which shows the
histogram of DAMACEO−S2L8−Pixel−DAMACEO−S2L8−Field.
An average negative bias of −47 g m−2 is observed for
DAM with a spread between −210 and +120 g m−2 for the
[−σ,+σ ] interval when comparing the pixel-scale simula-
tion to the field-scale simulation. This result is interpreted as
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the bias error that can be avoided by applying an intrafield
assimilation scheme in the crop model in contradiction to
the more generally applied field scale. Note that the same
bias value is obtained for Fig. 8b, representing the difference
between the averaged pixel at field scale and the field-scale
simulations: DAMACEO−S2L8−Mean−DAMACEO−S2L8−Field.
This is mathematically expected as DAMACEO−S2L8−Mean is
obtained by averaging the DAMACEO−S2L8−Pixel simulations.
However, when comparing the RMSE values between Fig. 8a
and b, a noticeable change in RMSE of −68 g m−2 is ob-
served. This result shows that the variability of simulated
biomass will decrease by 39 % when considering field-scale
modelling. The variability is directly influenced by the re-
trieved parameters of the crop model between the intrafield
and field scales for the same crop cycle, resulting in a differ-
ent posterior parameter distribution, as shown in the section
above. Figure 8c shows the difference between a simulation
using only S2 and using S2 + L8. Adding L8 images tends
to slightly increase dry biomass, with a bias of 30 g m−2 and
an RMSE of 94 g m −2. This difference is caused by the ad-
ditional samples added at the start and end of the vegetation
cycle that result in a change in the length of the vegetation
cycle. To assess the robustness of the assimilation approach
with respect to the number of assimilated images, the DAM
outputs from ACEO-S2L8-Pixel were analysed in terms of
the number of images over each pixel. Figure 9 shows the
impact of the number of GLAI observations per pixel on µ
and σ of the DAM. σ of DAM decreases by approximately
66 % with the number of observations (146 g m−2 for 11 im-
ages to 48 g m−2 for 28 images), while the µ DAM values
remain stable. This illustrates the stability of µ values given
the range of variation of observed images. However, the de-
crease in σ also illustrates the contribution of the number of
images to the constraining of solutions and increased accu-
racy.

4 Discussion

4.1 Accuracy of carbon budget component retrieval

The performances of our retrievals of the carbon budget com-
ponents are put here in the context of relevant studies. In the
previous applications of SAFYE-CO2, Pique et al. (2020a)
implemented an iterative retrieval algorithm at the field scale.
This algorithm is not scalable for intrafield simulations at the
regional scale, and it does not provide an estimate of the
associated uncertainty. Their validation exercises for wheat
with SAFYE-CO2 over the FR-AUR flux tower showed R2

ranges of [0.78,0.90], [0.82,0.94], and [0.58,0.84] for NEE,
GPP, and Reco, respectively. The results from our study are
in the same ranges, considering the two studies address dif-
ferent years and different EO data: [0.77,0.87], [0.82,0.87],
and [0.7,0.76] for NEE, GPP, and Reco, respectively. The
implementation of the BASALT algorithm, while enabling

uncertainty estimates for regional-scale applications, does
not come at the expense of the accuracy of the retrievals.
Other studies addressed the estimates of NEE and GPP.
Combe et al. (2017) constrained the WOFOST agronomic
model at 25 km resolution using yield and sowing dates, over
three ICOS sites and 10 site years. They obtained R2 values
of [0.64,0.74] and RMSE values of [2.33,2.67] g m−2 for
NEE over wheat fields. The values we retrieved for FR-AUR
are better regarding R2

[0.77,0.87] and RMSE [1.68,2.36].
Combe et al. (2017) also obtained R2 and RMSE values
of [0.82,0.87] and [2.33,2.83] g m−2 for GPP, respectively.
The R2 retrieved from AgriCarbon-EO is slightly higher
[0.82,0.87], and the RMSE was in the same range for 2019
and lower for 2017. Reco is not systematically addressed in
the modelling exercises, as it requires simulation of the plant
and soil processes simultaneously. Combe et al. (2017) re-
trieved Reco with R2 values of [0.76,0.83] and RMSE values
of [0.98,1.29] g m−2. The R2 obtained with AgriCarbon-EO
is slightly lower [0.70,0.76] and the RMSE slightly higher
[1.13,1.29] g m−2) than in Combe et al. (2017) for Reco. The
Reco estimates depend on Rh and Rauto. We recommend that
Rh should be enhanced using a more complete soil module.
This point is addressed later in this discussion. In addition
to NEE, GPP, and Reco, the other components of the carbon
budget involve the biomass and yield estimates that are either
exported out of the field or integrated into the soil. Tewes
et al. (2020) assimilated in situ LAI into the LINTUL5 crop
model using NIS. Their DAMs at maturity (BBCH 99) were
compared against field measurements collected on 14 plots
in the Netherlands, northern France, and Germany (from 40
to 60 in situ points over 1 m2), showing a mean RMSE of
246 g m−2 and a mean bias of 58 g m−2. The end-of-cycle
biomass retrieved using AgriCarbon-EO shows similar per-
formances (RMSE= 222 g m−2 and Bias= 17 g m−2) while
using GLAI derived from satellite measurements (see Ta-
ble 6). Hao et al. (2021) presents a meta-analysis of 76 stud-
ies using the APSIM model, which is broadly used for wheat
yield simulations. They find that an RMSE = 100 g m−2 is
expected for applications of this model. The RMSE retrieved
by AgriCarbon-EO is in the same order as these studies
(RMSE= 60–70 g m−2). While the estimates are reasonable,
we consider that the use of a direct harvest index to deter-
mine yield may present some limitations, more so in the pres-
ence of extreme events during the grain filling. Our biblio-
graphical research yielded no other studies that perform crop
growth simulations and estimation of the carbon budget com-
ponents at a decametric resolution while covering very large
areas. Most of the studies perform low-resolution analysis
in plains, where the spatial variability is expected to be low.
The same approaches may be penalized when applied to ar-
eas with high spatial variability, such as the hilly countryside
in southwestern France. When compared to existing stud-
ies, we find that AgriCarbon-EO allows the retrieval of the
main carbon budget components with performances that are
close to or better than existing state-of-the-art evaluations.
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Figure 8. Histogram (left y axis) and cumulative density function (right y axis) of the bias of biomass at harvest (y axis). Panel (a) corre-
sponds to DAMACEO−S2L8−Pixel−DAMACEO−S2L8−Field, panel (b) to DAMACEO−S2L8−Mean−DAMACEO−S2L8−Field, and panel (c) to
DAMACEO−S2L8−Pixel−DAMACEO−S2−Pixel.

Figure 9. Violin plots of the number of images used for the inver-
sion over each pixel on the x axis and the mean (µ) DAM on the
right y axis and the standard deviation (σ ) of DAM on the left y
axis.

An extended application of AgriCarbon-EO over a variety of
pedo-climatic conditions by taking advantage in particular of
the data provided through the regional Fluxnet, ICOS, and
Ameriflux networks will help in confirming this statement.

4.2 Multi-mission data, cloud cover, and limitations

The retrieval of SAFYE-CO2 parameters and the carbon bud-
get components in AgriCarbon-EO relies on the accuracy
and availability of EO data, which can be hampered by er-
rors in image co-location, atmospheric corrections, the pres-
ence of clouds, and cloud shadow correction. Many studies
show that these effects have an important impact on agri-
cultural remote sensing applications, such as yield estima-
tion (Soriano-González et al., 2022), land cover (Song et al.,
2021), and superficial soil carbon content mapping (Vaudour
et al., 2019). While we find that these effects are in the large
majority mitigated through the use of a Bayesian approach
for the GLAI assimilation, we identified examples where the
retrieval of GLAI is associated with a low uncertainty when
clouds or cloud shadows persist. Unfiltered clouds or the lack
of images can significantly impact the simulations locally
(Fig. 7c). Consequently, the analysis of GLAI time series
to detect anomalous variations (Fig. 7d) or improvements in

cloud detection algorithms like in Skakun et al. (2022) would
improve GLAI inversions in AgriCarbon-EO. The use of ad-
ditional data from L8 with a coarser spatial resolution than
S2 enhanced the simulation quality for our region of interest.
The most notable impact was the reduction of uncertainty
due to the increased constrained by the additional images. An
additional option would be the use of daily high-resolution
optical data from Planet Labs at < 5 m. Still, there is a limit
to the addition of optical images when clouds are persistent
over long periods, which are most frequent in tropical areas.
In these cases, the use of biophysical variables retrieved from
Synthetic Aperture Radar (SAR) satellite data could mitigate
the loss of data (Veloso et al., 2017; Fieuzal et al., 2017).
This can be achieved through the relation between the above-
ground biomass of crops and the radar polarization ratio or
vegetation index (RVI). This would imply the use of a multi-
variable assimilation scheme that considers GLAI from opti-
cal and DAM from SAR. This is feasible using the BASALT
scheme in AgriCarbon-EO as the Bayesian assimilation algo-
rithm can be easily adapted for multi-variable assimilation.

4.3 Impact of remote sensing and input spatial
resolution

Intrafield heterogeneity is a well-established issue in agricul-
tural applications (Weiss et al., 2020; Blackmore et al., 2003;
Grieve et al., 2019; Nowak, 2021). However, it has not been
thoroughly treated in terms of CO2 fluxes and uncertainty
estimates. In this paper, we argue that reliable and accurate
estimates of DAM and CO2 fluxes in support of carbon bud-
get component monitoring require intrafield-scale estimates.
Our results show that by assimilating mean-field-level GLAI
products in SAFYE-CO2, a bias of −47 g m−2 and an arti-
ficial relative uncertainty decrease of 39 % on DAM will be
induced compared to assimilating high-resolution GLAI and
calculating the mean of the model’s output. The high spatial
resolution thus allows more accurate estimates of the mean
DAM values at the field scale, which in turn also enables
more accurate field-scale estimates of SOC changes by soil
models. Nevertheless, the use of even higher-resolution re-

https://doi.org/10.5194/gmd-17-997-2024 Geosci. Model Dev., 17, 997–1021, 2024



1014 T. Wijmer et al.: AgriCarbon-EO v1.0.1

mote sensing data may be relevant to address carbon bud-
get components at very small or elongated fields, such as
those in rural India (Deininger et al., 2017). For example,
current data at < 5 m spatial resolution from Planet Labs,
mentioned above, or future data from the next-generation
(NG) Sentinel-2 constellation can extend the applicability of
approaches like AgriCarbon-EO to small fields. The other
input data products that drive the spatial resolution of the
AgriCarbon-EO outputs are the land cover and the weather
data. While the land cover is available at an adequate resolu-
tion (i.e. field scale), it is error-prone, either because of erro-
neous CAP declarations (Magnin, 2019) or because of clas-
sification errors when EO-based land cover maps are used
(Liu et al., 2022). Interestingly, our results show that when a
mismatch occurs, the fields in question exhibit high anoma-
lies in retrieved parameters and are thus detectable. For the
weather forcing, the current application was based on the
Météo-France 8 km resolution Safran data, which provides
reasonable accuracy over France (Garrigues et al., 2015).
Currently, ECMWF provides ERA5-Land at 0.1◦ resolution
globally (Muñoz-Sabater et al., 2021), and NOAA provides
weather reanalysis at 3 km over the US (Dowell et al., 2022).
In the future, the coverage and resolutions of weather forcing
data are expected to increase (i.e. ERA6 at 2.5 km). Increas-
ing the resolution of the weather forcing in AgriCarbon-EO
would provide better spatial information but would also in-
crease the computational demand by a factor of γ as the LUT
for SAFYE-CO2 is generated over the weather grid (Eq. 16).

γ =
TLUT× 82

θ2 (16)

TLUT is the processing time for the generation of LUT, and
θ is the weather grid resolution (in km).

4.4 Limitations of the Bayesian and physically based
approach

While the components of AgriCarbon-EO have been tailored
to the requirements mentioned in the Introduction (large-
scale, high-resolution, uncertainty estimates, and biophysi-
cal processes), we have shown limits for each of them. For
instance, the BASALT Bayesian approach can be sensitive
to an erroneous observation associated with low uncertainty
(Fig. 7d). A trade-off must be made between the range cov-
ered by the generated solutions and the number of LUT en-
tries in order to maintain computational efficiency. A solu-
tion could be to consider a joint distribution for prior param-
eters to propose a better ratio of appropriate solutions (Wang
et al., 2022). Another point is that the radiative transfer mod-
elling is constrained by the spectral library database (Ver-
hoef et al., 2007), which may not reflect ground conditions
such as the presence of weeds impacting GLAI retrievals.
Another limitation is that the crop model predictions require
crop-dependent fixed and prior parameters. As an alternative
solution to bypass some limitations, one could have reverted

to machine learning approaches that have gained popular-
ity for precision agriculture and soil carbon farming applica-
tions (Sharma et al., 2021). However, while they are powerful
tools, they need a large amount of training data to take into
account climatic conditions and management practices and
need to be updated regularly as we encounter unprecedented
weather conditions. Hybrid solutions such as AgriCarbon-
EO that combine parsimonious process-based modelling and
remote sensing approaches are thus needed. In the current
state, it is reasonable to consider that an MRV platform for
SOC carbon stock changes should include an ensemble of
approaches with varying levels of complexity (e.g. Tier 1, 2
and 3) (Nevalainen et al., 2022), similar to what has been
implemented in the IPCC approaches (Parker, 2013). In this
framework, AgriCarbon-EO is designed to be a Tier 3 MRV
approach for crop carbon farming.

4.5 From AgriCarbon-EO to SOC budget

The present approach provides high-resolution estimates of
key carbon budget components and estimations of NECB
and SOC variations. To achieve this, the SAFYE-CO2 crop
model currently uses a simplified soil respiration module that
simulates Rh that does not include the modelling of the pro-
cesses in the different carbon pools in the soil (e.g. humifica-
tion, mineralization) (Eq. 11). This methodology is adapted
for the short-term assessment of carbon budgets (typically
up to 1 year) (Pique et al., 2020a). This means that stock-
dependent soil processes that affect SOC mineralization and
litter humification that may cause priming effects are not ac-
counted for here. The inclusion of a soil carbon decompo-
sition module, as in Guenet et al. (2016), that includes such
processes would allow a better representation of soil respi-
ration and account for the effect of amendments with differ-
ent decomposition dynamics. Such an exercise, would, how-
ever, increase the number of parameters and create the need
for the addition of in situ or spatial maps to provide ini-
tial soil carbon content, soil chemical characteristics, and or-
ganic amendment information. Procurement at a large scale
of such information with sufficient accuracy is still challeng-
ing for large-scale applications. One way of achieving this is
to take advantage of the rapidly developing Farm Manage-
ment Information Systems (FMIS) and enhanced soil prop-
erty maps through digital soil mapping (DSM). Even though
farmer activity data are not easily accessible, it is expected
that this limitation will be reduced with the development of
soil carbon farming policies (such as the Label Bas Carbone
in France) and auditing schemes (de Gruijter et al., 2016).
Such data exchange would have a dual positive effect, pro-
vided that adequate soil sampling protocols are applied. The
SOC data would increase the size of existing datasets avail-
able for validation and verification of tools like AgriCarbon-
EO, and at the same time, approaches such as AgriCarbon-
EO may provide optimal sampling strategies for the estima-
tion of SOC stock changes for carbon auditing.
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5 Conclusions

The main aim of the paper is to present the AgriCarbon-
EO processing chain that assimilates remote sensing data
into the PROSAIL radiative transfer model and the SAFYE-
CO2 crop model to estimate key carbon budget compo-
nents of crop fields at a high resolution and a regional scale.
AgriCarbon-EO was designed to cover essential features to
comply with the monitoring component of the MRV sys-
tems for cropland carbon budget (Smith et al., 2020; Paustian
et al., 2019):

1. Provide a scalable solution, which is of major specifi-
cation in the design of AgriCarbon-EO. The proposed
assimilation scheme has been constructed to prevent the
time-related drawbacks of iterative methods while en-
abling easy integration of additional information.

2. Provide the component of the carbon budget (biomass
and carbon fluxes) with their associated uncertainties.
The uncertainty of the model’s variables is estimated us-
ing an innovative Bayesian approach labelled BASALT.

3. Estimate the carbon budget at intrafield resolution.
High-resolution modelling is enabled by the assimila-
tion of EO data at a 10 m resolution, which is a coher-
ent resolution with verification data, and provides the
means to determine optimal in situ soil and vegetation
sampling.

4. Propose a readily operational tool that seamlessly inte-
grates remote sensing, weather, and ancillary data in an
end-to-end processing chain.

The paper details the mathematical concepts and the al-
gorithm behind the AgriCarbon-EO processing chain. The
implementation of BASALT, a non-iterative Bayesian NIS
methodology, within AgriCarbon-EO, allows the consider-
able computational requirements to be addressed effectively.
Validation and analysis have been performed using an appli-
cation over winter wheat crop in southwest France. Our re-
sults show that when validating the simulations against flux
tower measurements, we find that the new inversion approach
(BASALT) produces reliable estimates of CO2 fluxes (NEE,
GPP, and Reco) and performs similarly to SAFYE-CO2 in
previous studies while providing uncertainty estimates. Our
estimates for DAM are close to the observations, while the
validation exercise for yield is less conclusive due to the
small range of yield values, the uncertainty of the CHs’ data
and processing, and/or the use of a HI to estimate yield that
may not account for essential drivers of yield. Our analy-
sis of the impact of the number of remote sensing acquisi-
tions shows a reduction in uncertainty of 66 % when full S2
and L8 data are available, while the median-retrieved NEE
and DAM remained the same. This points to the stability
of the method in this range of satellite observation avail-
ability. Furthermore, we find that the assimilation of field-
scale GLAI products induces a bias on the DAM from −120

to 210 g m−2 and a reduction in the DAM inter-field vari-
ability of about 39 % compared to pixel-scale assimilation.
Based on this, we argue that an intrafield-scale quantifica-
tion of the carbon budget components NECB is preferable as
this resolution provides (1) coherent spatial information with
soil samples and (2) the means to provide better sampling
strategies for soil and plant monitoring approaches. Further
applications of AgriCarbon-EO will enable the extension of
such analysis to other crops, cover crops, and climatic con-
ditions. Several limitations were identified in the discussion
about AgriCarbon-EO. Primary enhancement should con-
cern the addition of a soil carbon pool model into the soil
module to take into account long-term changes in the carbon
stock, the integration of information from Farm Management
Information Systems (FMIS) to better account for organic
amendments and configure the carbon exports, and finally
enhancement of the accuracy of the assimilation scheme by
integrating additional remote sensing data such as SAR. Fi-
nally, from the broader perspective of agronomic modelling,
it should be noted that AgriCarbon-EO can also provide vari-
ables related to the water cycle such as soil moisture, evapo-
ration, transpiration, and drainage. It can thus be envisioned
as a coherent agronomic decision support tool for yield, phe-
nology, carbon, and water fluxes.

Code availability. AgriCarbon-EO is implemented in Python 3.
AgriCarbon-EO requires the PROSAILv5 Python package and
the SAFYE-CO2 v2.0.5 Python implementation. AgriCarbon-EO
v1.0.1 is available free of charge for research and evaluation pur-
poses (non-commercial) upon signature of a licence agreement
with the Toulouse Technology Transfer (TTT) office of Université
Toulouse 3.

For this, the user contacts the TTT at “contact@toulouse-tech-
transfer.com”, providing contact information, affiliation, and objec-
tive of use. Upon validation of the license, the code is provided
by the team at CESBIO. SAFYE-CO2 v2.0.5 is provided with
AgriCarbon-EO v1.0.1 by this same procedure. Note that for this
paper, and in compliance with the journal requirements, an anony-
mous procedure was put in place to grant access to the review-
ers. PROSAIL: Python Bindings v2.0.3 for PROSAIL5 is hosted
at https://github.com/jgomezdans/prosail (last access: December
2023) and archived under https://doi.org/10.5281/zenodo.2574925
(Domenzain et al., 2019) by José Gómez-Dans.

Data availability. The source of datasets and codes is given here-
after.

1. Remote sensing data for Sentinel-2 and Landsat8 using
MAJA processing are downloaded from THEIA at https://
www.theia-land.fr/en/product/sentinel-2-surface-reflectance/
(Theia, 2023). The Sentinel-2 level 2A and Landsat8 L2A data
are distributed under the ETALAB V2.0 open license.

2. Land cover datasets are available at https://geoservices.
ign.fr/rpg (last access: December 2023). 2017:
https://doi.org/10.34724/CASD.425.3139.V2 (ASP, 2017),
2018: https://doi.org/10.34724/CASD.425.3140.V1 (ASP,
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2018), 2019: https://doi.org/10.34724/CASD.425.3709.V1
(ASP, 2019).

3. Validation datasets are available from the SIE website at
https://sie.cesbio.omp.eu/ (last access: December 2023). Au-
radé biomass data are available at https://sie.cesbio.omp.eu/
detail_releve.php?id=1 (SIE, 2020a). Eddy covariance data
are available at https://sie.cesbio.omp.eu/detail_jeu.php?id=90
(SIE, 2020b).

4. The full dataset of all simulations is about 5 T of memory; se-
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