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Abstract. For several decades, a suite of satellite sensors
has enabled us to study the global spatiotemporal distribu-
tion of phytoplankton through remote sensing of chlorophyll.
However, the satellite record has extensive missing data, par-
tially due to cloud cover; regions characterized by the high-
est phytoplankton abundance are also some of the cloud-
iest. To quantify potential sampling biases due to missing
data, we developed a satellite simulator for ocean chloro-
phyll in the Community Earth System Model (CESM) that
mimics what a satellite would detect if it were present in the
model-generated world. Our Chlorophyll Observation Simu-
lator Package (ChlOSP) generates synthetic chlorophyll ob-
servations at model runtime. ChlOSP accounts for missing
data – due to low light, sea ice, and cloud cover – and it can
implement swath sampling. Here, we introduce this new tool
and present a preliminary study focusing on long timescales.
Results from a 50-year pre-industrial control simulation of
CESM–ChlOSP suggest that missing data impact the appar-
ent mean state and variability of chlorophyll. The simulated
observations exhibit a nearly − 20 % difference in global
mean chlorophyll compared with the standard model output,
which is the same order of magnitude as the projected change
in chlorophyll by the end of the century. Additionally, miss-
ing data impact the apparent seasonal cycle of chlorophyll
in subpolar regions. We highlight four potential future ap-
plications of ChlOSP: (1) refined model tuning; (2) evalu-
ating chlorophyll-based net primary productivity (NPP) al-
gorithms; (3) revised time to emergence of anthropogenic

chlorophyll trends; and (4) a test bed for the assessment of
gap-filling approaches for missing satellite chlorophyll data.

1 Introduction

The spatiotemporal distribution of marine phytoplankton,
unicellular algae responsible for ∼ 50 % of global net pri-
mary production, greatly impacts fisheries, ecosystems, and
the marine carbon cycle (Chassot et al., 2010; Fay and
McKinley, 2017). Phytoplankton growth is dependent on
temperature, light, and nutrient availability. Regions charac-
terized by upwelling of nutrient-rich water, such as the equa-
torial, subpolar, and eastern boundary current regions, are
some the most biologically productive (Siegel et al., 2013).
In subpolar regions, wintertime mixing brings nutrients to
the surface, but the lack of sunlight prohibits growth until the
spring. This results in a pronounced seasonal cycle in phyto-
plankton abundance at high latitudes. In contrast, subtropical
regions have abundant light but lack nutrients due to density
stratification, which reduces vertical mixing. This nutrient
limitation is relieved at the Equator due to ocean dynamics,
leading to elevated productivity throughout the year.

For over 20 years, a suite of satellite sensors has enabled
us to study the global spatiotemporal distribution of phyto-
plankton through remote sensing of chlorophyll a (McClain,
2009; Siegel et al., 2013). Chlorophyll a (hereafter referred
to as chlorophyll) is the primary photosynthetic molecule in
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plant cells, and it affects ocean spectral properties in identi-
fiable wavelengths that can be remotely observed by passive
satellite spectroradiometers. Since remote sensing of chloro-
phyll relies on visible light, detection is not possible at night
or beneath cloud cover and sea ice. The most commonly
used algorithms to derive chlorophyll concentration from re-
mote sensing reflectance rely primarily on the ratio of blue
to green wavelengths. The Hu (Hu et al., 2012) and O’Reilly
(O’Reilly et al., 1998; O’Reilly and Werdell, 2019) chloro-
phyll algorithms are based on empirical relationships be-
tween remote sensing reflectance and in situ measurements.
These satellite measurements have provided a global dataset
with which we can study phytoplankton abundance and vari-
ability.

Earth system models (ESMs) can generate projections
of future phytoplankton abundance and productivity in a
changing climate and are thus a key tool for quantifying
the impacts of changing climate on the carbon cycle (Wil-
son et al., 2022) and fisheries productivity (Tittensor et al.,
2018), as well as the avoided impacts under climate change
mitigation (Krumhardt et al., 2017). ESMs produce century-
scale projections of climate, using mathematical equations
to describe atmospheric and oceanic processes, including a
full terrestrial and ocean carbon cycle. ESMs simulate nu-
trient cycling in the ocean by accounting for the role of
phytoplankton and their zooplankton predators. In simulat-
ing the abundance of phytoplankton, models include pro-
cesses such as photosynthesis, respiration, grazing, and sink-
ing. These biological terms depend on physical and chemi-
cal oceanography simulated by the model. ESM projections
suggest that phytoplankton abundance is affected by anthro-
pogenic climate change due to changes in stratification and
the consequent nutrient and light availability brought on by
upper-ocean warming (Kwiatkowski et al., 2020). As the cli-
mate changes, oligotrophic regions are expected to see a de-
cline in phytoplankton abundance, while regions with light-
limited production are likely to see increases in abundance
(Kwiatkowski et al., 2020; Marinov et al., 2010). These re-
gional changes in primary productivity have critical implica-
tions for the coupled carbon–climate system, as well as for
marine ecosystems and fisheries.

In order to use ESMs to project the future, we first need
to validate them using present-day observations. During the
model development phase, the biogeochemical components
of ESMs are often tuned to the satellite record of chlorophyll.
Based on simulated phytoplankton biomass, ESMs calcu-
late the chlorophyll concentration at each time step and grid
cell. The process of tuning involves making minor adjust-
ments to various parameters so that the model outputs more
closely align with observations. Some examples of ocean
biogeochemical parameters are nutrient uptake rates, max-
imum grazing rates, and growth efficiency coefficients for
each phytoplankton functional group (Long et al., 2021).
These parameter values are based on information provided
from laboratory studies, but the exact values are not known.

Figure 1. Multi-year means, with the (a) Aqua MODIS chlorophyll
concentration entire mission composite image (2002–2023) (NASA
Ocean Biology Processing Group, 2022) and (b) Aqua/Terra
MODIS total cloud cover (2000–2011) mean (NASA Goddard
Space Flight Center, 2019).

A typical tuning target involves minimizing error in the broad
global patterns of the modeled climatology (Danabasoglu
et al., 2020).

Due to the availability of surface chlorophyll data from
satellite measurements, this dataset is a convenient tuning
target. However, ESM-produced chlorophyll is not identical
to that estimated via satellite. Satellite observations represent
a vertically, optically weighted chlorophyll signal, which is
generally limited to the near-surface ocean due to light atten-
uation at depth. Therefore, the comparison with the vertically
resolved model output is limited to the surface layer. Ad-
ditionally, ESMs provide a complete record of chlorophyll
across the global ocean, whereas there are significant data
gaps in the satellite record. Gregg and Casey (2007) esti-
mated that satellite sampling bias leads to an 8 % overesti-
mate of global mean chlorophyll. Additionally, ESMs calcu-
late chlorophyll directly, while satellite estimates of chloro-
phyll are derived from optical properties of ocean water,
leading to further uncertainty. As such, we may be tuning
our ESMs to biased observations, which could inflate in-
accuracies in ESM projections. Previous validation efforts
have tried to make models more satellite-like by generating
remote sensing reflectances within the model (Dutkiewicz
et al., 2018). However, one of the most important causes
of potential bias and model mismatch has not yet been ad-
dressed: the role of missing data.
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Globally, the largest impediment to satellite chlorophyll
detection arises from solar zenith angle limits (Gregg and
Casey, 2007), which prevent detection at nighttime. This
is especially important in the high-latitude regions during
wintertime, when sea ice (a further detection challenge) is
present. Another significant barrier to chlorophyll retrieval
via satellite is cloud cover (Gregg and Casey, 2007; Mikel-
sons and Wang, 2019). On an average day, Moderate Reso-
lution Imaging Spectroradiometer (MODIS) sensors aboard
the Terra and Aqua satellites are unable to detect chlorophyll
in approximately 72 % of the ocean’s surface due to clouds
(King et al., 2013). Some of the cloudiest ocean regions, such
as the subpolar North Atlantic, North Pacific, and Southern
Ocean, also have some of the highest rates of primary pro-
ductivity (Fig. 1). The co-location of high chlorophyll and
cloud coverage results from atmospheric and oceanic dynam-
ics; global wind patterns control the climatological distribu-
tion of clouds and ocean upwelling. Ocean upwelling tends
to cool the overlying atmosphere, which raises the humid-
ity and leads to enhanced cloud cover. Upwelling also leads
to increased nutrient concentrations, allowing more phyto-
plankton growth. Therefore, we are unable to reliably detect
phytoplankton in the regions where they are most abundant.

To help bridge the gap between modeled and observed
chlorophyll, we developed a satellite observation system sim-
ulator for ocean chlorophyll in the Community Earth Sys-
tem Model (CESM): the Chlorophyll Observation Simulator
Package, ChlOSP (Fig. 2). Using ChlOSP, CESM simultane-
ously generates an estimate of standard modeled (full-field)
chlorophyll and synthetic observations (obscured by simu-
lated solar zenith angle, sea ice, and clouds). This enables
us to (1) estimate sampling biases due to cloud cover and
other sources of missing data and (2) make a more direct
comparison between the model outputs and real-world data
to improve model tuning and validation. Here, we present
initial results from a 50-year pre-industrial simulation us-
ing ChlOSP and briefly explore future applications of this
new tool. As we will show, clouds can alter the apparent
mean state, seasonality, and variability in the chlorophyll.
In addition to improving model tuning exercises, applica-
tions of ChlOSP include estimating the time of emergence
of anthropogenic trends in the chlorophyll record, evaluat-
ing methods for calculating net primary productivity from
satellite-observed chlorophyll, and creating a self-consistent
gap-filling test bed.

2 Methods

2.1 Community Earth System Model version 2

The Community Earth System Model version 2 (hereafter re-
ferred to as CESM) is a fully coupled global climate model
developed at the National Center for Atmospheric Research
(Danabasoglu et al., 2020). The model includes components

for the ocean (POP2), atmosphere (CAM6), sea ice (CICE5),
land (CLM5), land ice (CISM2), waves (WW3), and rivers
(MOSART), which exchange information through the cou-
pler (CPL7). The carbon cycle is represented through land
and ocean biogeochemistry subcomponents, which exchange
carbon fluxes through the atmosphere. Here, we use version
2.2 of CESM, which was tuned via parameter adjustment
and expert evaluation to correct ocean biogeochemical biases
(Yeager et al., 2022).

2.1.1 Ocean model

The ocean component in CESM is the Parallel Ocean Pro-
gram version 2 (POP2) (Danabasoglu et al., 2020; Smith
et al., 2010). The coupler passes states and fluxes between
CAM6 and POP2 at 30 min and hourly intervals, respec-
tively. The standard grid for POP2 has an approximately 1◦

horizontal resolution, with 60 vertical levels ranging in thick-
ness from 10 m at the surface to 250 m at depth. The model
includes parameterizations of subgrid-scale processes, which
are important for modeling ocean biogeochemistry. For ex-
ample, biogeochemical tracers are impacted by parameteri-
zations for eddy diffusivity, along with estuary, wave-driven,
and vertical mixing (Danabasoglu et al., 2020). CESM also
includes subgrid-scale light availability, which impacts pho-
tosynthesis rates and improves the representation of phyto-
plankton in regions with sea ice (Long et al., 2015).

Biogeochemical ocean processes are modeled in CESM
by the Marine Biogeochemistry Library (MARBL) (Long
et al., 2021). We use a configuration of MARBL that sim-
ulates three phytoplankton functional groups: diatoms, di-
azotrophs, and small (pico and nano) phytoplankton. The
growth term depends on light, nutrients, and temperature.
The loss terms include sinking and grazing, which is con-
trolled by one zooplankton functional group. For each phy-
toplankton type, nutrient limitation is calculated based on
phosphorus, nitrogen, iron, and silicon tracers. Nutrient con-
centrations evolve through biological processes, as well as
nutrient fluxes from dust deposition and river inputs. The
light limitation term is a function of photosynthetically ac-
tive radiation (PAR), which is calculated as 45 % of incoming
shortwave radiation at the surface. PAR varies with time of
day, depth in the water column, cloud coverage, and sea ice.
MARBL includes a dynamic chlorophyll-to-carbon ratio (θ )
within each phytoplankton group. The optimal θ depends on
temperature, light, and nutrient availability, allowing phyto-
plankton to adapt to changing environments through the pro-
cess of photo-acclimation (Geider et al., 1998). Since satel-
lite observations of chlorophyll are used as a proxy for phy-
toplankton biomass, including the photo-acclimation term is
key for estimating biases in the satellite record.
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Figure 2. Conceptual diagram of ChlOSP.

2.1.2 Atmosphere model

The atmosphere model used in CESM is the Community
Atmosphere Model version 6 (CAM6) (Danabasoglu et al.,
2020). The default configuration for CAM6 is a finite-volume
dynamical core with a horizontal resolution of 1.25◦ in longi-
tude and 0.9◦ in latitude. It has 32 vertical levels up to about
40 km in height. Clouds are simulated through parameteriza-
tions of the planetary boundary layer and shallow convection
following the Cloud Layers Unified By Binormals method
(Golaz et al., 2002; Bogenschutz et al., 2013). This allows for
subgrid-scale variations in temperature, humidity, and verti-
cal velocity, leading to partial cloud cover within a grid cell.
The cloud microphysics scheme is based on Gettelman and
Morrison (2015), with ice nucleation depending on both tem-
perature and aerosol concentration (Wang et al., 2014).

This work builds on existing satellite simulator software
designed for clouds – the Cloud Feedback Model Inter-
comparison Project (CFMIP) Observation Simulator Pack-
age (COSP) (Bodas-Salcedo et al., 2011; Webb et al., 2017).
Within CAM6, COSP provides model outputs that are di-
rectly comparable to real-world satellite observations (Pin-
cus et al., 2012). This software package has been incorpo-
rated into many climate models (Klein et al., 2013), includ-
ing CESM (Kay et al., 2012). The latest version of COSP,
COSP2, is functional in CESM version 2 (Swales et al.,
2018). COSP simulates the observations of several satel-
lite sensors, including the Multi-angle Imaging SpectroRa-
diometer (MISR), Moderate Resolution Imaging Spectrora-
diometer (MODIS), CloudSat, Cloud–Aerosol Lidar and In-
frared Pathfinder Satellite Observations (CALIPSO), and the
International Satellite Cloud Climatology Project (ISCCP).
In COSP, the atmospheric model grid cells are divided into
internally homogeneous subcolumns that roughly correspond
to the spatial resolution of satellite data, and then forward
modeling is applied to each subcolumn to generate satellite-
like measurements. The results from each subcolumn are
then aggregated back to the model resolution. We developed
ChlOSP using both the ISCCP and MODIS cloud simulators.
Cloud properties are calculated at hourly radiation time step
intervals using 250 subcolumns.

2.2 ChlOSP description

The goal of ChlOSP is to generate model output that is com-
parable to the NASA Ocean Color Level 3 chlorophyll con-
centration data product. Level 3 data are an imperfect esti-
mate of the actual surface chlorophyll concentration due to
atmospheric correction, instrumentation, and ocean color al-
gorithm uncertainties. Here, we focus on sampling biases that
arise due to missing data by assuming that the satellite can
detect the true ocean surface chlorophyll with 100 % accu-
racy in clear-sky conditions. We discuss the implications of
this assumption in the Discussion and Conclusions section
below.

Simulated observations of surface chlorophyll are gener-
ated within the ocean model component, POP2. We assume
that the satellite can only see the surface layer of the POP2
grid, which represents depths from 0 to 10 m. Although the
depth seen by a satellite depends on the optical constituents
present in the water column, the surface layer of the model
roughly aligns with depths of in situ measurements used to
validate the SeaWiFS (Sea-viewing Wide-Field-of-view Sen-
sor) chlorophyll retrievals (Gregg and Casey, 2004). The
chlorophyll concentration in each surface model grid cell
is calculated as the sum of chlorophyll from each phyto-
plankton functional group represented in MARBL. At each
model time step, POP2 uses multiple variables to calculate
the chlorophyll weights, which represent the fraction of each
model grid cell that would be viewable by a satellite (i.e.,
the fraction of the surface area that is not obscured). The
weighted chlorophyll field can then be compared with the
total surface chlorophyll to assess biases due to missing data.

2.2.1 Calculation of the weights

ChlOSP accounts for clouds, sea ice, and low sunlight (high
solar zenith angle), all of which prevent satellite detection
using passive instruments. In the default CESM configura-
tion, the sea ice fraction is calculated in CICE5 and then
passed to POP2. For clouds and solar zenith angle, the CESM
coupler is modified to pass these additional variables from
CAM6 into POP2. Specifically, we use the COSP-generated
MODIS and ISCCP total cloud cover and cosine of the solar
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zenith angle. Since the quality of chlorophyll retrievals starts
to decline at a solar zenith angle of about 70◦ (Mikelsons and
Wang, 2019), we apply a masking threshold of 0.342 for the
cosine of the solar zenith angle.

Satellite-derived level-3 ocean color products have a high
spatial resolution (4.6 km for MODIS) compared to the
coarse model grid (1◦). To account for the discrepancy in
resolution, we apply a weighting method for sea ice and
cloud cover. The weights range from 0 to 1, where 1 indi-
cates that 100 % of the cell was viewable by the satellite,
and 0 indicates that no detection was possible. To calcu-
late the weight from modeled sea ice and cloud cover fields,
which are both expressed in terms of the fraction of a grid
cell that is covered, these values are subtracted from 1. All
weights are assumed to be independent from one another,
so the final weight is the product of the weights calculated
from each input parameter. At every model time step, the
surface chlorophyll is multiplied by the weights. Then, the
weighted chlorophyll and the weights are both output by the
model at the frequency specified by the user when running
CESM (hourly, monthly, etc.). Both outputs are needed to
calculate the weighted mean over space and/or time. The
weighted chlorophyll is not a physical value that should be
analyzed independently from the weights. When calculating
the weighted mean of chlorophyll, the weighted chlorophyll
output corresponds to the numerator, and the weights output
corresponds to the denominator in Eq. (1):

weighted mean=
∑n
i=1wiXi∑n
i=1wi

. (1)

2.2.2 Simulator configurations

In order to test the sensitivity of ChlOSP to the modeled
representation of cloudiness, we generate outputs using two
different simulated cloud observations. We also test the im-
pact of sampling frequency by comparing results from sam-
pling chlorophyll once per day vs. all-sunlit time steps. Here,
we present the results from three configurations of ChlOSP:
(1) all-daylight sampling with simulated ISCCP cloud ob-
servations, (2) all-daylight sampling with simulated MODIS
cloud observations, and (3) 13:30 LT swath sampling with
simulated MODIS cloud observations. The ISCCP configu-
ration is comparable to a chlorophyll observing system that
combines multiple satellites, while the 13:30 LT (local time)
sampling of MODIS is more similar to observations from an
individual satellite.

MODIS and ISCCP cloud cover are simulated observa-
tion fields generated in COSP. The simulated observations
are generated using the same model information, but differ-
ent cloud-detection algorithms result in different observed to-
tal cloud fraction (Bodas-Salcedo et al., 2011; Pincus et al.,
2012). In the real world, the ISCCP cloud cover product com-
bines data from multiple passive sensors, including geosta-
tionary weather satellites (Rossow and Schiffer, 1991), and
the MODIS instrument is aboard two polar-orbiting satellites

(Aqua and Terra). COSP in CESM samples each location at
all time steps and does not include varying orbits for the dif-
ferent satellite simulators. However, since both MODIS and
ISCCP rely on visible wavelengths, only sunlit time steps
are included (Kay et al., 2012). For the all-daylight ISCCP
and MODIS configurations in ChlOSP, we similarly sample
chlorophyll at all sunlit locations at each model time step.

The two MODIS configurations can be compared to assess
the impact of satellite-like sampling vs. sampling at all day-
light time steps. Since phytoplankton and chlorophyll con-
centrations exhibit a diurnal cycle, the time of detection may
impact the results (Salisbury et al., 2021; O’Malley et al.,
2014). We simulate a simplified version of NASA’s Aqua
orbit. Aqua is a polar-orbiting satellite that collects data at
approximately 13:30 LT, with a swath width of 2300 km. On
a given day, Aqua samples the poles several times but has
data gaps at low latitudes because successive orbits are not
aligned longitudinally. These low-latitude gaps are then filled
during an orbit on the subsequent day, and the orbital pattern
repeats every 16 d. To simplify the complex orbital geome-
try, the simulated Aqua satellite in ChlOSP flies exactly the
same orbit every day. The swaths are vertically centered on
13:30 LT and have a swath width of 1668 km. Since succes-
sive orbits are aligned, there are no inter-orbit gaps near the
Equator. While simplified, this method simulates the general
sampling pattern of Aqua, which is approximately once per
day at low latitudes, with increasing frequency at higher lat-
itudes (Fig. S1).

2.3 Initial simulation and analysis

2.3.1 CESM simulation setup

We tested ChlOSP in a pre-industrial control simulation. In
this type of simulation, forcing fields (greenhouse gases,
aerosols, etc.) are fixed at values for the year 1850. There-
fore, fluctuations in the system are a result of internal cli-
mate variability, rather than a response to external forcing.
After initializing the model, equilibration of the deep ocean
can take thousands of years. However, we are interested pri-
marily in surface ocean variables, which reach equilibrium
relatively quickly. In our model simulation, equilibrium of
surface chlorophyll is reached after approximately 15 years
(Fig. S2). We ran the model for 50 years but only analyzed
the last 30 years of data.

2.3.2 Model outputs

Each configuration of ChlOSP generates a chlorophyll out-
put, along with the corresponding weights (see Table A1
for a complete list of new model outputs). ChlOSP out-
puts were added to a new hourly POP2 output file stream.
We use these hourly model outputs to assess the impact
of photo-acclimation and the diurnal cycle of chlorophyll.
We expected that the diurnal cycle may impact our MODIS
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13:30 LT swath results, since this version samples each grid
cell fewer times per day (once a day at low latitudes).

In post-processing, the weights are used along with their
corresponding variable to calculate means over space and
time (see Appendix B for equations). To investigate sampling
biases in synthetic observations, we calculate the chloro-
phyll climatology using three ChlOSP outputs: “standard”,
“clear sky”, and “cloudy”. The standard climatology is the
unweighted, standard model output (i.e., total surface chloro-
phyll). The cloudy output includes solar angle, sea ice, and
cloud cover weights, and the clear-sky version includes only
the daylight and sea ice weights, allowing us to isolate the
impact of cloud cover. The cloudy and clear-sky outputs vary,
depending on which configuration of ChlOSP is used (i.e.,
ISCCP, MODIS, and MODIS swath).

When calculating the global mean of chlorophyll, we
weight each grid cell by how frequently it was sampled
(Eq. B3). To do this, we calculate the time mean of the
weights and then multiply this by the area of each grid cell,
which effectively represents the sample size for each grid
point. Figure S3 shows the chlorophyll climatologies along
with the corresponding time mean of the weights for each
cloudy configuration. The normalized weights represent the
mean area seen by the satellite relative to other points on the
globe.

2.3.3 Regions of interest

For our evaluation of ChlOSP and subsequent analysis, we
focus on highly biologically productive and cloudy open-
ocean regions, particularly those with large seasonal cycles.
We use ocean biomes defined by Fay and McKinley (2014)
(Fig. S4). These regions were defined using observations of
chlorophyll, sea surface temperature, ice fraction, and mixed
layer depth. The biomes that we highlight are the North Pa-
cific (biome 2 is North Pacific subpolar seasonally stratified),
North Atlantic (biome 9 is North Atlantic subpolar season-
ally stratified), Arctic (biome 1 is North Pacific ice; biome
8 is North Atlantic ice), and Southern Ocean (biome 16 is
Southern Ocean subpolar seasonally stratified). Note that the
Arctic biome used in our analysis includes only regions that
are seasonally ice-free and does not correspond to the entire
Arctic ocean.

2.4 ChlOSP evaluation

Before using ChlOSP to quantify the impact of missing data
on chlorophyll, we demonstrate that ChlOSP is able to re-
alistically simulate satellite observations. Here, we focus on
evaluating how well the simulator mimics real-world satel-
lite data by calculating the percentage of missing chlorophyll
data during the sunlit period of the day. This metric was se-
lected for evaluation because it captures the efficacy of the
simulator in an imperfect representation of the Earth sys-

tem; CESM exhibits known biases in both chlorophyll (Long
et al., 2021) and clouds (Danabasoglu et al., 2020).

Total cloud coverage greatly impacts the amount of miss-
ing chlorophyll data. Due to differing cloud detection al-
gorithms, ISCCP and MODIS produce different estimates
of total cloud cover (Fig. 3). The global mean cloud cov-
erage from the ISCCP observations is approximately 13 %
higher than the MODIS observations. The primary differ-
ence is in the treatment of partially cloudy pixels, which are
treated as fully cloudy in the ISCCP simulator and fully clear
in the MODIS simulator (Pincus et al., 2012). Since par-
tial cloud cover within a pixel would also prevent accurate
satellite measurements of chlorophyll, it is more appropriate
here to use the higher estimate of total cloud cover. There-
fore, our results focus on the ISCCP cloud configuration. The
ISCCP-simulated chlorophyll sampling strategy would be
most comparable to a global network of geostationary satel-
lites with passive ocean color instruments. Since this does not
exist in the real world, we use a merged chlorophyll prod-
uct that combines several polar-orbiting sensors to increase
daily data coverage: the Ocean Colour Climate Change Ini-
tiative (OC-CCI, https://www.oceancolour.org/, last access:
22 January 2024) dataset, version 6.0 (Sathyendranath et al.,
2019). This product combines chlorophyll data from Sea-
WiFS, MERIS (Medium Resolution Imaging Spectrometer),
MODIS (Moderate Resolution Imaging Spectroradiometer,
aboard the Aqua satellite), and VIIRS (Visible Infrared Imag-
ing Radiometer Suite). The data are available daily at 4 km
spatial resolution.

The real world has more missing data than the simu-
lated observations (Fig. 4). The OC-CCI chlorophyll prod-
uct has a median global daily coverage of 21 %, whereas
the median daily coverage for the ChlOSP ISCCP config-
uration is 40 %. The ISCCP configuration of ChlOSP sam-
ples more frequently than real-world sensors because it sam-
ples at every sunlit time step rather than once per day. Ad-
ditionally, ChlOSP does not account for all conditions that
prevent chlorophyll detection. Many of these factors are dif-
ficult to predict and model; for example, observations may
be excluded from level-3 data due to atmospheric correction
failure, saturated observed radiance, stray light contamina-
tion, algorithm failures, or satellite navigation failure (Scott
and Werdell, 2019). However, there are several factors that
are candidates for future versions of the simulator; some
atmospheric and oceanic constituents that prevent chloro-
phyll retrieval, such as white caps, coccolithophores, and
aerosols, are already simulated in some capacity in CESM.
Instrument-related challenges, such as sun glint and high sen-
sor zenith angle, would also be valuable additions to future
versions of ChlOSP. Sun glint and inter-orbit gaps mainly im-
pact low- to mid-latitude regions. However, Gregg and Casey
(2007) found that chlorophyll sampling biases in these re-
gions are small, so addressing these issues was not the pri-
mary goal of ChlOSP. Since we are not accounting for all
of these factors currently, we expect that the total percent
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Figure 3. Cloud fraction climatology from CESM and observations. (a) ISCCP cloud cover observations from 2002 to 2016 (Rossow et al.,
2017). (b) MODIS cloud cover (percent of pixels within 1◦ cell that had successful cloud property retrievals) from 2002 to 2016 (NASA
Goddard Space Flight Center, 2019). (c) ISCCP and (d) MODIS modeled clouds from 30 years of the CESM pre-industrial simulation.

missing data will be lower in ChlOSP than in the real world.
Therefore, our results represent a conservative estimate of bi-
ases due to missing data on a global scale.

In addition to the viewing conditions built into the simu-
lator, differences in missing data arise due to the modeled
representation of Earth. Comparing the temporal coverage
across the globe provides more insight into the distribution
of missing data (Fig. 4). ChlOSP captures missing data in the
subpolar and polar regions well. However, ChlOSP collects
more data in the tropics and subtropics compared to the real-
world observations. This is due to cloud biases in the model,
as shown in Fig. 3. We focus our study on the highly produc-
tive and very cloudy subpolar North Atlantic, Pacific, Arctic,
and Southern Ocean regions, where the modeled cloud bias
is minimal; as such, ChlOSP is an appropriate modeling tool
for our purposes.

Since we are interested in the seasonal cycle of chlorophyll
in the productive and cloudy subpolar regions, accurately
representing the seasonality of missing data is also impor-
tant. The timing of missing data relative to the seasonal cy-
cle in chlorophyll effects how the climatology is weighted in
time. Figure 5 shows the mean percent area missing from our
four biomes of interest for each day of the year. To provide
seasonal context for each biome, the mean seasonal cycle

of modeled chlorophyll is plotted as a heatmap above each
panel, along with the mean sea ice fraction in the Arctic. For
the model output, the weights were used to calculate the total
area that was observed during the sunlit portion of the day.
Overall, we find that the seasonality of missing data is ap-
propriately captured in the model. Differences in the percent
missing data between the model and real world may arise due
to biases in modeled clouds and sea ice, as well as the mean
state of the climate. For example, the modern-day satellite
observations have lower sea ice coverage in the Arctic com-
pared with the pre-industrial climate simulated in the model
(Kay et al., 2022), leading to fewer instances of missing data
in the real world.

The amount of missing data in ChlOSP depends on both
the simulator setup (conditions used for masking) and the
representation of physical variables in the model (concentra-
tion of clouds and sea ice). Despite some biases, our model
evaluation demonstrates that, overall, ChlOSP realistically
simulates the number of missing observations in a merged
chlorophyll data product, particularly in regions with high bi-
ological productivity. Therefore, we can now use ChlOSP to
investigate how these missing data impact our interpretation
of chlorophyll climatology and seasonal cycles.
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Figure 4. Percentage of days with chlorophyll data coverage from
(a) the Ocean Colour Climate Change Initiative (OC-CCI) (Euro-
pean Space Agency, 2022), 2006–2016, and (b) the pre-industrial
simulation with the ISCCP configuration of ChlOSP.

3 Results

3.1 Climatology and global mean

A comparison of the standard, clear-sky, and cloudy (ISCCP)
chlorophyll climatologies reveals that the temporal mean is
impacted by missing data (Fig. 6). We highlight the differ-
ences between the various model outputs and configurations
by calculating the percent differences in the climatology out-
puts (Fig. 7). To estimate the total sampling bias in simulated
observations relative to the standard model output, we sub-
tract the standard climatology from the cloudy climatology.
We further estimate the contributions of sunlight and sea ice
(clear sky − standard) and cloud cover (cloudy − clear sky)
to the simulated observations of chlorophyll. The cloudy mi-
nus standard (cloudy − standard) maps indicate that sam-
pling biases lead to > 100 % overestimates of chlorophyll
in the high latitudes. This pattern emerges largely from the
clear-sky minus standard (clear sky − standard) maps, indi-
cating that daylight-only sampling has the largest influence.
Figure 7 reveals that the different configurations of ChlOSP
show similar overall spatial patterns.

The greatest differences in the clear-sky minus standard
climatologies are located in the high latitudes, where there
is insufficient light for satellite detection during the winter
months. The winter months also correspond with low chloro-
phyll concentrations because the lack of sunlight limits phy-
toplankton growth. Additionally, in the polar regions, sea ice
further prevents the satellite detection of chlorophyll during
the start of the bloom season. As such, undersampling in the
winter leads to an overestimate of the mean chlorophyll con-
centration. In the low latitudes, a small underestimation of
chlorophyll arises due to the phasing of the diurnal cycle
relative to sampling time (Fig. 8). In Fig. 8, we select grid
cells near the Equator to illustrate how these sampling bi-
ases arise. This region exhibits the largest diurnal range, as
shown in Fig. S5. Both the swath and daylight configurations
of ChlOSP have a negative anomaly compared to the true
mean (cf. dashed yellow, blue, and gray lines in Fig. 8).

A comparison of Fig. 7e and h reveals that implement-
ing a satellite swath in ChlOSP impacts the clear-sky chloro-
phyll climatology. Overall, the biases are slightly less ex-
treme when the swath is implemented; the differences de-
crease by about 9 % when averaged globally. In low latitudes,
this is due to the sampling time. Figure 8 shows that, at the
Equator, the swath sampling has a smaller bias compared to
the daylight sampling. In subpolar regions, the overestimate
is also smaller when the swath is implemented (cf. Fig. 7e
and h). The swath version samples less frequently, relative
to the daylight configuration during the summer months (cf.
Fig. S1a and b), leading to weights that are more evenly
distributed throughout the year. Therefore, the bias towards
the summer chlorophyll peak is less extreme in the clear-sky
swath compared with the all-daylight version.

The cloudy minus clear-sky (cloudy − clear-sky) column
in Fig. 7 isolates the impact of cloud cover on the chloro-
phyll climatology from simulated observations. Clouds from
the ISCCP simulator were used for Fig. 7c, and clouds from
the MODIS simulator were used for both Fig. 7f and i. The
impact of clouds is slightly sensitive to the sampling strat-
egy (cf. Fig. 7f and i), but the total simulated cloud cover has
a larger effect on chlorophyll climatology (cf. Fig. 7c and
f). The difference in magnitude between Fig. 7c and f arises
from the difference in total cloud coverage simulated by the
two configurations (Fig. 3). Since the ISCCP simulator has
more cloud coverage on average, there is a greater impact
on the apparent chlorophyll climatology. The spatial pattern
in all three panels can be largely explained by the correla-
tion between the seasonal cycle of cloud cover and clear-
sky chlorophyll (Fig. 9). The similarity in the spatial pat-
terns seen between Figs. 9 and 7c suggests that correlations
on monthly timescales play an important role in the result-
ing cloudy chlorophyll climatology. In regions where cloudy
seasons correspond with lower chlorophyll (negative correla-
tion), the chlorophyll climatology is overestimated relative to
the clear-sky chlorophyll. Similarly, in regions where cloudy
seasons correspond with higher chlorophyll (positive corre-

Geosci. Model Dev., 17, 975–995, 2024 https://doi.org/10.5194/gmd-17-975-2024



G. L. Clow et al.: The utility of simulated ocean chlorophyll observations 983

Figure 5. The mean percentage of area missing from the chlorophyll data for each day of the year in the (a) North Pacific, (b) North Atlantic,
(c) Arctic, and (d) Southern Ocean. The observed data (dark blue line) were calculated using the OC-CCI data product from 2006 to 2016
(European Space Agency, 2022), and the modeled data (light blue line) were calculated from the 30 years of the pre-industrial simulation
using the ISCCP configuration of ChlOSP. The error bars show the 95 % confidence interval on the daily mean. The green heatmaps show
the seasonal cycle of chlorophyll derived from the standard model output, and the gray heatmap above the Arctic panel represents the sea ice
seasonality.

lation), the chlorophyll climatology is underestimated. The
impact of cloud cover is particularly important in the Arc-
tic, where clouds offset some of the large overestimates of
chlorophyll due to daylight-only sampling.

Global mean chlorophyll concentration estimated by the
cloudy ChlOSP output is ∼ 20 % different from that esti-
mated by the standard configuration (Table 1; differences for
individual biomes are included in Table S1). From the maps
in Fig. 7, the simulated observations appear to strongly over-
estimate global chlorophyll. However, this does not account
for how often each location is sampled. The regions that
show some of the highest sampling biases, such as subpo-
lar biomes, are sampled very infrequently due to cloud cover
or lack of sunlight (Fig. S3). If satellite sensors could see
through clouds (as in the clear-sky configuration), then the
global chlorophyll mean would be overestimated by 14 %
to 22 %. This is because the clear-sky mean is heavily bi-
ased towards the productive summer months in high-latitude
regions due to solar zenith angle limits in the wintertime.
However, including cloud coverage leads to an underesti-
mation of chlorophyll, which ranges from −7 % to −17 %.

This is because locations with high chlorophyll values tend
to also be cloudy, and therefore, they are sampled less fre-
quently than other regions. The sampling frequency of the
swath vs. daylight-only configurations also plays an impor-
tant role. The cloudy MODIS swath configuration has a
lower global bias than the daylight-only version (−7 % vs.
−14 %). While the MODIS swath configuration samples less
frequently overall, it samples the high latitudes more fre-
quently relative to other parts of the globe (Fig. S3). This
is especially true in the summer months in high latitudes,
since the orbit passes over the poles many times per day.
Therefore, the biologically productive subpolar regions are
weighted more strongly relative to other locations, leading to
a smaller underestimation in global chlorophyll.

3.2 Seasonal cycles

In addition to impacting the chlorophyll climatology,
satellite-like sampling also impacts the spatially averaged
chlorophyll concentration. To investigate spatial means, we
calculate the daily area-weighted chlorophyll mean within
our biomes of interest using the standard, clear-sky, and
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Table 1. Weighted global mean chlorophyll concentrations and weighted standard deviation for various configurations of ChlOSP, calculated
using Eq. (B3). The weights are the product of the grid cell area and the ChlOSP weights (mean fraction of the grid cell that was “seen” by
the satellite simulator). Note that chlorophyll is approximately log-normally distributed.

Model output Global mean chlorophyll Global mean difference Standard deviation
(mg m−3) from standard (mg m−3)

Standard 0.215 – 0.553
Clear sky 0.245 14.1 % 0.609
Clear-sky swath 0.263 22.2 % 0.642
Cloudy: ISCCP 0.179 −16.7 % 0.463
Cloudy: MODIS 0.184 −14.3 % 0.477
Cloudy: MODIS swath 0.200 −7.4 % 0.515

cloudy (ISCCP) outputs. The mean seasonal cycle was then
calculated over the 30-year analysis period (Fig. 10).

The largest differences between the clear-sky and stan-
dard seasonal cycles occur during winter months when satel-
lite sensors cannot detect higher-latitude grid cells due to
low light. These regions also correspond to low wintertime
chlorophyll values because there is limited light for photo-
synthesis. This difference between clear sky and standard
is more pronounced in biomes that span a larger latitudi-
nal range, such as the North Atlantic. In the Arctic, sea ice
also plays a major role in the apparent seasonal cycle of the
clear-sky chlorophyll. During most of the year, the standard
chlorophyll is lower than the clear sky in this region. How-
ever, in July and August, the standard chlorophyll is higher
than the clear sky, indicating that there are phytoplankton
blooms beneath the sea ice that cannot be seen by ChlOSP.

Cloud cover also influences the apparent magnitude and
timing of the seasonal phytoplankton bloom in the North Pa-
cific. The differences between cloudy and clear-sky chloro-
phyll arise due to the spatial correlation between clouds and
chlorophyll within each biome, which varies throughout the
year. These correlations are shown in the boxes beneath each
time series (Fig. 10; the corresponding correlations for all
biomes can be found in Fig. S6). Many biomes exhibit a
positive spatial correlation between cloud cover and chloro-
phyll concentration during the bloom months (e.g., Fig. 10a,
b, and c). Within these biomes, model grid cells with high
cloud cover tend to have higher chlorophyll, leading to lower
biome mean cloudy chlorophyll concentrations relative to the
clear-sky configuration (Fig. 10a, b, and c). Conversely, in
the Southern Ocean, there is a negative spatial correlation
between cloud cover and chlorophyll concentration through
most of the year, leading to higher cloudy chlorophyll con-
centrations than the clear-sky configuration (Fig. 10d).

4 Applications

Our analysis so far has focused on using ChlOSP to assess
how clouds, daylight vs. swath sampling, and the presence of
sea ice may bias satellite observations of chlorophyll. How-

ever, there are many other potential applications that we en-
vision for this tool.

4.1 Model tuning

Previously, tuning of the biogeochemical component of
CESM has been accomplished by comparing standard
chlorophyll to real-world satellite observations. The goal is
to replicate the spatial pattern of the global chlorophyll cli-
matology. However, as we have demonstrated, satellite ob-
servations of chlorophyll are biased due to missing data,
whereas the standard model output is not. Figure 11 com-
pares the real-world, observed chlorophyll climatology from
Aqua MODIS to the modeled 30-year pre-industrial clima-
tology. Calculating the model bias using standard chlorophyll
vs. cloudy outputs leads to different results (Fig. 11). Given
that they are both impacted similarly by missing data, the
cloudy model output is more suitable for comparing model
output with the real-world observations. These results indi-
cate that the actual bias of CESM in the subpolar regions
may be greater than previously thought, demonstrating the
importance of taking sampling bias into account during the
tuning process.

4.2 Net primary productivity

Another metric used for model tuning is the rate of globally
integrated net primary productivity (NPP). NPP, the rate at
which dissolved inorganic carbon is converted into organic
matter, is particularly relevant for quantifying the global car-
bon cycle. The true modeled NPP can be determined directly
by calculating the sum of the total carbon fixation vertical in-
tegral for all phytoplankton groups. This value is then com-
pared to estimates of real-world marine NPP. There are many
methods for estimating real-world NPP, many of which rely
on satellite-observed chlorophyll. For example, the Vertically
Generalized Production Model (VGPM) uses chlorophyll,
along with sea surface temperature (SST) and photosynthet-
ically active radiation (PAR), which are also derived from
satellite products (Behrenfeld and Falkowski, 1997).
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Figure 6. The 30-year chlorophyll climatology from the pre-
industrial simulation calculated with (a) standard, (b) clear-sky, and
(c) cloudy (ISCCP configuration) model outputs.

We can make a more direct comparison between the model
and the real world by calculating ChlOSP-estimated NPP
(using VGPM) rather than the true model output (i.e., the
vertically integrated phytoplankton carbon fixation). To cal-
culate satellite-like NPP from ChlOSP, we use the chloro-
phyll, SST, and PAR climatologies in the VGPM algorithm.
When integrating the resulting NPP over the global oceans,
we weight each grid cell area by the time-averaged satellite
weights. We then calculate the total fraction of the ocean
that was seen by the satellite and use this fraction to scale

Table 2. Global net primary productivity calculated with VGPM
model using ChlOSP (ISCCP) outputs.

Chlorophyll input used Global NPP
in VGPM (Pg C yr−1)

Standard 49.26
Clear sky 54.54
Cloudy 50.10

our NPP estimate to the full area of the ocean. The re-
sulting NPP values are impacted by the version of chloro-
phyll from ChlOSP used as the input (Table 2). Since the
cloudy output is most similar to real-world satellite data, the
50.10 Pg C yr−1 value should be used when tuning the model.

In addition to using simulated satellite-derived NPP to im-
prove model tuning, we also demonstrate how ESMs can be
used as a test bed for NPP algorithms. In our CESM simu-
lation, the true globally integrated NPP is 48.43 Pg C yr−1.
This value is remarkably similar to the VGPM-derived val-
ues, increasing our confidence in the accuracy of the real-
world globally integrated NPP from VGPM.

4.3 Time of emergence

ChlOSP can also be used to calculate the time of emergence
for chlorophyll trends in simulated observations. The time of
emergence is the length of the observational record required
to identify a statistically significant trend within the context
of internal variability. The impact of anthropogenic climate
change on phytoplankton abundance is critically important to
marine ecosystems and fisheries around the world. However,
there is great uncertainty in global chlorophyll trends in the
current satellite record (Beaulieu et al., 2013; Boyce et al.,
2014; Gregg and Rousseaux, 2014; Hammond et al., 2017;
van Oostende et al., 2023), due in part to the limitations of
satellite data, i.e., the shortness of the record and the preva-
lence of missing data. Additionally, there is further uncer-
tainty in how surface chlorophyll trends translate to changes
in total phytoplankton biomass (Siegel et al., 2013; Behren-
feld et al., 2016).

Using Earth system models, we can project global phyto-
plankton biomass into the future, using various forcing sce-
narios, where we know the true trend in surface chlorophyll
and primary productivity. With ChlOSP enabled, we can also
calculate the apparent trend from the simulated observations.
Because we have a fully coupled model, we can account for
any changes in cloud cover and sea ice due to warming. The
time of emergence from the simulated observations gives us
greater insight into when we might detect significant trends
in the real world.

Since we have not yet generated a future projection with
ChlOSP, here we compare the variability in monthly chloro-
phyll anomalies using the cloudy and standard outputs from
our pre-industrial simulation. Throughout the majority of the
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Figure 7. Percent difference in chlorophyll climatologies calculated with the three configurations of ChlOSP. The rows show the outputs
from ISCCP, MODIS, and MODIS swath, respectively. The first column is the difference between cloudy chlorophyll and standard. The
second column is the difference between clear-sky chlorophyll and standard, which shows the impact of daylight-only sampling and sea ice
on observations. The third column is the difference between cloudy chlorophyll and clear-sky chlorophyll, which isolates the impact of cloud
cover on observations. Note that panels (b) and (e) are equivalent.

globe, the temporal variability is higher in the cloudy output
relative to the standard output (Fig. 12). This is particularly
apparent in high-latitude regions, where the low variance in
wintertime is not seen by satellites. Since the cloudy dataset
has more noise, a longer time series is necessary to iden-
tify a statistically significant trend. To estimate the length
of the time series needed, we assumed a global trend in the
surface chlorophyll of −5× 10−4 mg m−3 yr−1 and applied
the method described in Weatherhead et al. (1998). Our cal-
culations (not shown) indicate that the time to emergence
may be delayed by more than 10 years in the subpolar re-
gions due to missing data. This preliminary analysis indicates
that typical chlorophyll model outputs may underestimate
the time of emergence because they do not account for the
enhanced variability in real-world observations. Therefore,
ChlOSP will be a valuable addition to future simulations by
providing more realistic estimates of the time of emergence.

4.4 Gap-filling

Satellite-derived chlorophyll data are often gap-filled to gen-
erate a more complete dataset at high spatial and temporal
resolution. A wide variety of methods have been applied to
this problem, from simple linear interpolation to more com-
plex methods such as EOFs (empirical orthogonal functions)
(Liu and Wang, 2018), neural networks (Krasnopolsky et al.,
2016), and self-organizing maps (Jouini et al., 2013). Stock
et al. (2020) compared many of these methods within four
study areas and found that ordinary kriging, spatiotempo-

ral kriging, DINEOF (data interpolating empirical orthogo-
nal functions), and random forests were the most successful
methods, although results varied by region. Validating gap-
filling methods is a challenge in the real world because we
do not know what the truth is in places where we have miss-
ing data. This is often solved by transplanting artificial cloud
masks onto clear-sky images or using data at a later time
step. As we have shown, clouds and chlorophyll exhibit cor-
relations, and there is a diurnal cycle in surface chlorophyll.
Therefore, these methods introduce additional errors, making
it difficult to quantify the error from the gap-filling method
alone.

Here, we propose using an Earth system model test bed to
apply various gap-filling techniques to the simulated obser-
vations from ChlOSP (Fig. 13). In the model world, we know
the true chlorophyll values at every location, thus improving
our ability to validate the gap-filled results. To generate gaps
in the ChlOSP output, we use the weights as the probabil-
ity of a grid cell being masked out. As an example, we have
done a linear interpolation in Fig. 13. While the overall spa-
tial pattern of chlorophyll is a close match between the gap-
filled estimate and the model truth, smaller-scale features are
not captured well by the linear interpolation, particularly in
regions with large amounts of missing data.

Future work will involve testing a wide variety of methods,
with the goal of identifying the best method for gap-filling
chlorophyll on a global scale. In the model, we have full
knowledge of variables that impact phytoplankton growth –
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Figure 8. The mean diurnal cycle of chlorophyll at the Equator
over all months of the year, represented as chlorophyll anomalies.
The gray line represents the entire cycle, the yellow line indicates
the sunlit period where the solar zenith angle is less than 70◦, and
the blue dot is the swath sampling time. The horizontal dashed yel-
low and blue lines correspond to the mean anomaly observed with
daylight sampling and swath sampling, respectively, and the dashed
gray line highlights the mean of the full period. To analyze the mean
diurnal cycle, chlorophyll concentrations from the standard output
were grouped by local time of day (binned hourly) and then aver-
aged over all months and years. The time stamp of each data point
is the end time of the averaging interval.

Figure 9. Pearson coefficient of correlation between monthly means
of ISCCP cloud cover and clear-sky chlorophyll. Dotted cells indi-
cate that the correlation was significantly different from zero at the
95 % confidence level. The effective sample size was determined by
calculating the lag 1 autocorrelation for clouds and chlorophyll in
each grid cell.

such as temperature, salinity, and wind – and can use this ad-
ditional information in random forests or neural networks to
predict chlorophyll. Many of these variables can be detected
beneath cloud cover using microwave remote sensing (Gen-
temann et al., 2010), so these methods could be applied in the
real world. One disadvantage of using the model as a test bed
is that the resolution is much coarser than real-world satellite
data, so it would likely not be suitable for gap-filling small-

scale features. However, this method allows for the quantifi-
cation of the error due to the gap-filling method.

5 Discussion and conclusions

We developed the Chlorophyll Observation Simulator Pack-
age (ChlOSP) for CESM, a fully coupled Earth system
model. This new tool generates synthetic observations of sur-
face ocean chlorophyll that are obscured by simulated cloud
cover, sea ice, and high solar zenith angle. As a proof of con-
cept, we ran ChlOSP in a 50-year pre-industrial simulation
of CESM and analyzed the last 30 years. We tested three
configurations of ChlOSP using different simulated cloud
observations from COSP: ISCCP clouds, MODIS clouds,
and MODIS clouds with an Aqua-like swath (13:30 LT sam-
pling time). For each configuration, we compared the cloudy
(obscured by sea ice, high zenith angle, and cloud cover),
clear-sky (obscured by sea ice and high zenith angle only),
and standard (not obscured) chlorophyll outputs to assess the
sampling bias that arises due to missing data. We found that
missing data impact the apparent climatology, overall global
mean, and seasonal cycle in subpolar regions. We further
demonstrated that ChlOSP can be used in future simulations
to improve model tuning, calculate the time of emergence of
a trend, and test gap-filling methods.

We found that the simulated observations from the ISCCP
configuration underestimate the true global mean chloro-
phyll by ∼ 0.03 mg m−3, which is the same order of mag-
nitude as the expected change by the end of the century
(∼ 0.05 mg m−3; Schlunegger et al., 2020). The largest dif-
ferences between the simulated observations and the stan-
dard chlorophyll output are due to daylight-only sampling.
These differences are particularly pronounced in the high-
latitude regions, where the detection of low chlorophyll val-
ues during winter is not possible. This leads to an overes-
timation of mean chlorophyll over time, which is consis-
tently over 100 % throughout the polar regions. In the real
world, we have sparse in situ observations to compare with
satellite data; therefore, our ability to estimate sampling bias
is limited. However, results in Fig. 7 agree well with es-
timated real-world satellite sampling bias from Gregg and
Casey (2007), where they applied satellite sampling to a
global biogeochemical model with data-assimilated chloro-
phyll. Their results similarly showed that the largest sam-
pling biases were due to the solar zenith angle threshold in
high-latitude regions, with clouds being the second most im-
portant factor. They found a positive bias in the annual global
mean (+8 %), which differs from the negative bias that we
report (−16.7 %). However, this is because they report the
standard mean rather than weighting by sampling frequency
as we have done here.

Cloud cover plays an important role in the apparent mean
of chlorophyll. Depending on the region, cloud cover can
cause positive or negative sampling bias. In many ocean re-
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Figure 10. Seasonal cycle of standard, clear-sky, and cloudy chlorophyll (from the ISCCP configuration) in the (a) North Pacific (biome 2),
(b) North Atlantic (biome 9), (c) Arctic (biomes 1 and 8), and (d) Southern Ocean (biome 16). The error bars on the clear-sky and cloudy
lines indicate the 95 % confidence interval on the mean. The boxes below the time series indicate the spatial correlation (Pearson’s coefficient)
between the mean cloud coverage and clear-sky chlorophyll within the biome for each month. White cells indicate that the correlation is not
significantly different from zero at the 95 % confidence level. The effective sample size was calculated using Moran’s I spatial autocorrelation
index.

Figure 11. Model biases in chlorophyll climatology calculated with standard and cloudy (ISCCP) chlorophyll outputs. The observations are
from Aqua MODIS from 2002 to 2023 (NASA Ocean Biology Processing Group, 2022) and are re-gridded to the model resolution.

gions, cloud cover and chlorophyll exhibit statistically sig-
nificant correlations in both space and time (Figs. 9 and S6).
Spatial correlations impact the mean chlorophyll over ocean
biomes, while temporal correlations impact the climatology
in a given location. The mechanisms driving these corre-
lations are not explored here, but we expect that this is a
result of large-scale dynamics rather than a direct interac-

tion between clouds and phytoplankton. In CESM, the PAR
field at the ocean surface includes the influence of clouds,
but the extent to which this impacts phytoplankton growth
and/or photo-acclimation is not investigated here. There is
some evidence that biogenic aerosols (dimethyl sulfide) pro-
duced by phytoplankton can increase cloud cover by acting
as cloud condensation nuclei (Andreae and Crutzen, 1997),
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Figure 12. Difference in the variance of the monthly anomalies in
surface chlorophyll concentration. The cloudy output is from the
ISCCP ChlOSP configuration.

Figure 13. Diagram of the gap-filling test bed using ChlOSP-
CESM.

but this process is not represented in CESM. Further work is
needed to investigate the direct effects of cloud cover on sur-
face chlorophyll concentration and to validate the seasonal
phasing of clouds and chlorophyll in the real world.

Through testing various configurations of ChlOSP, we
found that the results are sensitive to both the definition of
cloud cover and the sampling pattern. The ISCCP configu-
ration had higher cloud cover than MODIS, which amplified
the differences between the standard and cloudy chlorophyll
outputs (Fig. 7; Table 1). Since the ISCCP cloud simulator
can detect partial cloud cover, it provides a more realistic rep-
resentation of missing chlorophyll data. Therefore, we chose
to focus the majority of our results on this configuration. De-
spite some differences in magnitude, we found that the over-
all patterns were consistent in all configurations.

Interestingly, when compared with the all-daylight ver-
sions, the swath configuration led to greater chlorophyll bi-
ases in the clear-sky global mean yet smaller biases in the
cloudy global mean (Table 1). Figure S1 highlights that
in the swath configuration, the subpolar regions (generally
more productive) are sampled more frequently than lower-

latitude regions (generally less productive) due to the polar
orbit. Therefore, the swath configuration further enhances
the overestimation of the global mean that arises in clear-
sky chlorophyll due to summertime-only sampling. However,
when we add clouds, the swath sampling more accurately
captures the global mean chlorophyll (Table 1). Figure S3
reveals that when clouds are included, the resulting weights
are more evenly distributed throughout the globe because
the productive subpolar regions tend to be cloudy. Addition-
ally, we showed that at low latitudes, the 13:30 LT sampling
time provides a more representative sample of the diurnal
cycle than the all-daylight version (Fig. 8), which impacts
the climatological mean of the clear-sky output (Fig. 7). This
demonstrates the importance of simulating a realistic sam-
pling pattern when assessing sampling biases in chlorophyll.
Future work will involve implementing various swath widths,
times, and orbital geometries to simulate a variety of sensors,
including the upcoming NASA PACE (Plankton, Aerosol,
Cloud, ocean Ecosystem) mission.

Our work focuses on sampling biases that arise due to
missing data, but there are many other differences between
modeled and observed chlorophyll. As shown in Dutkiewicz
et al. (2018), large errors in observed chlorophyll – compa-
rable in magnitude to what we found here – arise from the
choice of algorithm used for estimating chlorophyll from re-
mote sensing reflectance. We are unable to estimate these er-
rors in CESM, as it currently lacks an optical model. While it
is useful to isolate the biases that arise due to certain factors,
it would also be beneficial to understand the cumulative ef-
fect. We hope that ChlOSP will be implemented in an Earth
system model capable of combining these various compo-
nents.

While ChlOSP provides an improved model output for
real-world comparison, it is not a perfect representation of
satellite data. We have demonstrated that ChlOSP reasonably
represents the amount of missing chlorophyll data (Figs. 4
and 5). However, ChlOSP does not include all factors that
prevent satellite detection of ocean chlorophyll. Future im-
provements to ChlOSP could involve adding more of these
factors – such as white caps, coccolithophores, and aerosols
– along with more realistic satellite orbits and associated sen-
sor challenges, including sun glint and high sensor zenith
angle. Additional discrepancies between missing data in the
real world and ChlOSP arise due to the model’s representa-
tion of the Earth system (i.e., cloud cover and sea ice in a
pre-industrial vs. present-day climate).

The spatial resolution of the simulated observations from
ChlOSP match the spatial resolution of the CESM config-
uration used, which is ∼ 1◦ in this case. This coarse spatial
resolution is needed to run long-term climate simulations, but
it is much lower than the resolution of satellite data. As such,
ChlOSP does not capture small-scale heterogeneity that ex-
ists in the real-world, including coastal variability. Figure 11
demonstrates how CESM does not resolve coastal regions,
which tend to have high chlorophyll concentrations. There-
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fore, this tool is best suited for large-scale, open-ocean analy-
ses. To address partial cloud cover and sea ice within a model
grid cell, we implemented a weighting method, which differs
from the subcolumn strategy utilized in COSP.

Currently, our ability to compare modeled and real-world
chlorophyll is limited because ChlOSP was developed for a
free-running, fully coupled climate model simulation. While
this configuration permits future projections, internal vari-
ability complicates our ability to compare the model to the
real world. We anticipate that the next version of ChlOSP
will be implemented in a hindcast configuration, i.e., an
ocean-only version of the model forced with momentum,
heat, and freshwater fluxes from historical observations span-
ning the duration of the satellite chlorophyll record. Using
this version of the model along with in situ data, we plan to
assess how clouds and missing data may have impacted our
understanding of historical chlorophyll evolution.

Despite these uncertainties, our proof-of-concept simula-
tion has demonstrated the utility of ChlOSP. The new model
outputs allow for more robust comparisons between modeled
and real-world chlorophyll, leading to improved model tun-
ing and data assimilation capabilities. Initial results indicate
that there are differences in the chlorophyll concentration be-
tween the typical model output and the satellite-like version.
While we do not address all errors associated with ocean
color remote sensing, we focus on one of the largest sources
of uncertainty, namely missing data due to solar zenith an-
gle and clouds. In the real world, we rarely know the true
chlorophyll value where data are missing. However, in the
model world, we know the exact values of all variables at ev-
ery location and every time step, making it a powerful tool
for estimating sampling bias. We anticipate that this tool will
open the door to a wide body of future work.
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Appendix A: Model outputs

We added the cloudfrac_modis and cloudfrac_isccp to the
POP2 outputs for easier comparison to the other POP2 vari-
ables. These cloud fraction outputs include the daylight
mask, which is written out as the cloudfrac_wgt variable.
This output differs from the clear-sky weights because it does
not include the weights from sea ice.

Table A1. New model outputs from CESM–ChlOSP. These outputs are written out in a new file stream within POP2.

Name Description

1 totChl Sum of chlorophyll in the surface layer (10 m) over all phytoplankton functional types.
2 totChl_sat_nocld Clear-sky chlorophyll (daylight-only sampling and sea ice mask).
3 totChl_sat_nocld_wgt Weights used for clear-sky chlorophyll.
4 totChl_modis Clear-sky chlorophyll weighted by MODIS-simulated cloud cover.
5 totChl_modis_wgt Weights used for totChl_modis.
6 totChl_isccp Clear-sky chlorophyll weighted by ISCCP-simulated cloud cover.
7 totChl_isccp_wgt Weights used for totChl_isccp.
8 cloudfrac_modis Total cloud fraction from MODIS simulator.
9 cloudfrac_isccp Total cloud fraction from ISCCP simulator.
10 cloudfrac_wgt Daylight weights for cloud fraction outputs.
11 totChl_sat_nocld_swath Clear-sky chlorophyll with 13:30 LT swath sampling.
12 totChl_sat_nocld_wgt_swath Weights used for clear-sky chlorophyll with 13:30 LT swath sampling.
13 totChl_modis_swath MODIS chlorophyll with 13:30 LT swath sampling.
14 totChl_modis_wgt_swath Weights used for MODIS chlorophyll with 13:30 LT swath sampling.
15 cloudfrac_modis_swath MODIS cloud fraction with 13:30 LT swath sampling.
16 cloudfrac_modis_wgt_swath Weights used for MODIS cloud fraction with 13:30 LT swath sampling.
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Appendix B: Equations

For ChlOSP outputs, the climatology was calculated by ap-
plying the weighted mean. As an example, to calculate the
mean of satellite-observed ISCCP chlorophyll over time, we
use the model outputs totChl_isccp and totChl_isccp_wgt in
Eq. (B1):

weighted time mean=
∑
t (totChl_isccp(x,y, t))∑

t (totChl_isccp_wgt(x,y, t))
, (B1)

where totChl_isccp= chlorophyll×weight (calculated
within POP2) and totChl_isccp_wgt= weight. The chloro-
phyll and weight variables correspond to the surface
chlorophyll concentration in a grid cell and the fraction of
the grid cell observed during a given time step, respectively.
Seasonal cycles were evaluated in ocean biomes (Fig. S4)
using Eq. (B2):

weighted spatial mean=∑
x,y(totChl_isccp(x,y, t)×TAREA(x,y))∑

x,y(totChl_isccp_wgt(x,y, t)×TAREA(x,y))
. (B2)

This is equivalent to taking the weighted average in space,
where the weights are equal to the total area observed (in
square centimeters) within the biome at each time step.
TAREA is the area of each model grid cell and is included in
all POP2 output files. TAREA was subset for certain biomes
of interest in these calculations. The total weighted mean
over time and space is calculated with Eq. (B3):

weighted total mean=∑
x,y,t (totChl_isccp(x,y, t)×TAREA(x,y))∑

x,y,t (totChl_isccp_wgt(x,y, t)×TAREA(x,y))
. (B3)

Code and data availability. The model code is stored on GitHub
at https://github.com/genna-clow/CESM/tree/cesm2.2.0_satchl
(last access: 22 January 2024). Specific instructions for run-
ning CESM with ChlOSP can be found at https://github.com/
genna-clow/CESM/blob/cesm2.2.0_satchl/ChlOSP_guidance.md
(last access: 22 January 2024). The exact version of the model used
to produce the results used in this paper is archived on Zenodo
(https://doi.org/10.5281/zenodo.8071063, Clow and CESM Team,
2023). The data used to produce the figures are also archived
on Zenodo (https://doi.org/10.5281/zenodo.8097543, Clow et al.,
2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-975-2024-supplement.
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