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Abstract. Maintaining soil organic matter (SOM) is crucial
for healthy and productive agricultural soils and requires un-
derstanding at the process level, including the role of SOM
protection by soil aggregates and the connection between
microbial growth and aggregate formation. We developed
the Soil Aggregation through Microbial Mediation (SAMM)
model, to represent this important connection. The pools of
SAMM are fully measurable, and we calibrated and eval-
uated it against data from a long-term bare fallow experi-
ment in a tropical sandy soil. This experiment received addi-
tions of plant litter of different compositions, which resulted
in twice the soil carbon stocks in the best treatment com-
pared to the control (about 8 vs. 4 t C ha−1 in 0–15 cm soil
depth) after 25 years. As hypothesized, the SAMM model
effectively represented the microbial growth response after
the addition of litter and the subsequent formation and later
destabilization of aggregates. The low correlations between
different calibrated model parameters (r < 0.5 for all param-
eters; r > 0.4 for only 4 of 22) showed that SAMM is par-
simonious. SAMM was able to capture differences between
treatments in soil organic carbon (Nash–Sutcliffe modeling
efficiency (EF) of 0.68), microbial nitrogen (EF of 0.24), and
litter carbon (EF of 0.80). The amount of carbon within the
aggregates (EF of 0.60) and in the free silt and clay fraction
(EF of 0.24) was also simulated very well to satisfactorily.

Our model results suggested that in spite of the sandy soil,
up to 50 % of carbon stocks were stabilized through aggre-
gate protection mechanisms; and that microbial and physical
aggregate formation coexists. A version of the SAMM model
without aggregate protection (SAMMnoAgg) initially failed
to stabilize soil organic carbon (EF decreased to −3.68)
and the simulation of microbial nitrogen worsened (EF of
0.13). By recalibrating SAMMnoAgg, it was possible to par-
tially correct for the lack of aggregate protection by reducing
the rate of mineral-attached carbon decomposition by about
85 % (EF of 0.68, 0.75, and 0.18 for SOC, litter carbon, and
microbial nitrogen, respectively). However, the slightly bet-
ter evaluation statistics of SAMM (e.g., Akaike information
criterion of 5351 vs. 5554) suggest that representing aggre-
gate dynamics in SOM models can be beneficial and nec-
essary to understand the mechanism behind SOM dynam-
ics. Our results indicate that current models without aggre-
gate formation partly compensate for the absence of aggre-
gate protection by lowering the turnover rates of other pools.
Thus, they remain suitable options where data on aggregate
associated carbon are not available.
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1 Introduction

Soil aggregates play a crucial role in the context of soil car-
bon sequestration because soil organic matter (SOM) that is
stabilized in aggregates is a fraction of SOM that is strongly
affected by human activities (Six and Paustian, 2014). There
is evidence that the particulate organic matter (POM) stored
within the aggregates may be the fraction of SOM that satu-
rates the least if carbon inputs are increased (Castellano et al.,
2015), and thus may be a suitable fraction to target for the ac-
cumulation of SOM. However, exactly this intra-aggregate
POM becomes relatively easily available to decomposers
upon disruption of aggregates (Six et al., 2000) and may
therefore be considered to be labile. Mineral-associated or-
ganic matter (MAOM), on the other hand, is considered to
have slower turnover rates, but the pathways upon which it is
formed are not completely clear. For example, the concepts
of Kallenbach et al. (2016) and Cotrufo et al. (2013) sug-
gest that most of the stable MAOM is of microbial origin,
while Angst et al. (2021) recently estimated that about half
of MAOM is formed through direct adsorption of dissolved
organic matter to soil minerals. As a result, we need a better
understanding of the relative importance of the different pro-
cesses of SOM stabilization, such as MAOM formation and
POM protection within aggregates.

Numerical models are a good way to test our mechanistic
understanding of complex systems, such as soils, and to im-
prove knowledge of interconnected processes by testing dif-
ferent hypotheses about the system. They allow us to quan-
tify fluxes which are not directly measurable and to test one
or several conceptual structures of a system against measured
data (Necpálová et al., 2015). Thus, they represent an elegant
way to test research hypotheses. Despite the existence of con-
ceptual models, the central role of microbial growth in aggre-
gate formation is still incompletely understood and is only
poorly represented in current SOM research models that are
developed for the field scale. The initial attempts of Segoli
et al. (2013), for example, modeled the formation and de-
struction of micro- and macroaggregates by including a sim-
ple microbial activity factor. However, the model was not fur-
ther developed into an ecosystem model and therefore is only
applicable to shorter-term incubation experiments. The Mil-
lennial model (Abramoff et al., 2018, 2022) has a specific mi-
crobial biomass pool and distinguishes between aggregated
and non-aggregated carbon, but its temporal dynamics have
not been evaluated against long-term experiments and it does
not simulate the effect of nitrogen on the dynamics of SOM.

In the sense of using models to test important research
hypotheses, three important concepts and/or processes re-
lated to aggregate formation should therefore be included
into models. The first important process is the effect that
the composition of the plant residue and the elemental sto-
ichiometry (Sinsabaugh et al., 2013) have on the carbon use
efficiency (CUE) of the microbes. It is considered a key fac-
tor in stabilizing SOC (Cotrufo et al., 2013). For example,

Lavallee et al. (2018) showed that shoot material leads to
more stabilized MAOM than root material, which they at-
tributed to a higher CUE for the shoot material due to higher
quality (i.e., low C/N and lignin; Cotrufo et al., 2013). Also
Laub et al. (2022), in a long-term field experiment, found
differences in aggregate dynamics between the additions of
different types of litter and suggested that these were the re-
sult of different CUE that depended on the composition of
the litter. Secondly, the effect of microbial activity on ag-
gregate formation must be considered. Many studies in the
literature have shown the direct link between aggregate dy-
namics and microbial functioning. For example, Bucka et al.
(2019) showed, under incubation conditions, that microbial
activity associated with dissolved organic matter and POM
formed aggregates rapidly. Third, measurable pools. It has
been suggested numerous times that next-generation SOM
models should model carbon pools that are directly measur-
able (Segoli et al., 2013; Wang et al., 2013; Wieder et al.,
2014). However, when doing so, one should adhere as much
as possible to the principle of distinct structural identity (e.g.,
Oldfield et al., 2018; Wang et al., 2022; de Aguiar et al.,
2022). Thus, in an optimal model based on measurable pools,
any quantity of carbon should maintain its structural iden-
tity until it is subject to an actual molecular change. This
means that if carbon transfers from one modeled pool to an-
other, this should correspond not only to a transfer of matter
between the pools but also to a chemical or physical reac-
tion (e.g., depolymerization, anabolic microbial growth, or
adsorption to minerals). As such, MAOM and POM have
been identified as possible modellable pools of relative dis-
tinct structural identities (e.g., Segoli et al., 2013; Lavallee
et al., 2020) and are commonly accepted as the main building
blocks of aggregates (Totsche et al., 2018). Furthermore, they
can be derived from established soil fractionation schemes
and differ strongly in average turnover times and properties
(Lavallee et al., 2020; Schrumpf et al., 2013). While POM
consists mostly of undecomposed plant material, stabilized
MAOM originates either from microbial residues (Kallen-
bach et al., 2016; Six et al., 2006) or from dissolved organic
matter (Angst et al., 2021).

Here, we present an approach to include all the aforemen-
tioned concepts into a model of Soil Aggregation through
Microbial Mediation (SAMM). SAMM is based on the foun-
dations introduced by mechanistic SOM models, such as
simulating measurable fractions and aggregates (Abramoff
et al., 2018, 2022; Segoli et al., 2013) and the decomposition
of plant-derived carbon to low-molecular-weight carbon, be-
fore consumption by microbes (Tang and Riley, 2015; Wang
et al., 2013; Zhang et al., 2021). It enriches these concepts
by (1) the central role of microbes in soil aggregate for-
mation and (2) a consistent structural identity of POM and
MAOM within aggregates. We applied the model to simu-
late data from a long-term SOM formation experiment in a
tropical sandy soil in northeast Thailand, which included in-
puts of litter of different compositions and a non-amended
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control. SAMM was tested against measured data of micro-
bial biomass, SOC, and carbon in different soil fractions. To
better understand the model and its uncertainty, a Bayesian
calibration of the model parameters was performed. The cal-
ibrated model was then used to test three main hypotheses:

1. Simulating the connection between microbial growth
and aggregate formation with SAMM helps to quan-
tify the relative importance of different SOM stabilizing
processes.

2. Including this connection in SOM models is essential to
accurately represent the dynamics of SOM formation.
Therefore, a model that explicitly simulates aggregate
formation as a result of microbial growth will outper-
form a model of similar structure that does not include
aggregate formation.

3. The dynamics of microbial activity, which are linked to
temperature, moisture, and litter composition, help to
explain dynamics in aggregate formation. Thus, we ex-
pect that aggregates can be simulated with model per-
formance similar to that of microbial biomass.

2 Material and methods

2.1 Description of the experiment

We tested the capability of SAMM in a long-term bare
fallow experiment, which was established on a degraded
tropical sandy soil in 1995 (Vityakon et al., 2000; Puttaso
et al., 2011, 2013; Laub et al., 2022). In brief, the experi-
ment was initiated to study the effects of annual additions
of organic material (at a rate of 10 t dry matter ha−1 yr−1)
of different compositions on the dynamics of soil organic
matter. The experiment is located within the research sta-
tion of the Office of Agriculture and Cooperatives of the
Northeast, Khon Kaen province (16◦20′ N; 102◦49′ E, https:
//goo.gl/maps/uCjHzoDNG2fSRXNZ9, last access: 31 Jan-
uary 2024) in northeast Thailand. The soil is a Khorat sandy
loam (Typic Kandiustult in USDA, Acrisol in WRB classifi-
cation) with 90 % sand and 5 % clay (Puttaso et al., 2013). At
the start of the experiment, the bulk density was 1.45 g cm−3,
the pH was 5.5 and the CEC 3.53 cmol kg−1 in the 0–15 cm
topsoil (Vityakon et al., 2000). Later measurements did not
find significant changes in bulk density attributable to treat-
ments (Fig. A5), and thus we assumed a constant bulk den-
sity of 1.45 g cm−3 throughout the period for all treatments in
this study. The site has a savanna-type climate with a wet pe-
riod from April to September with approximately 1200 mm
annual precipitation and a mean temperature of 28 ◦C (Put-
taso et al., 2013). The experiment was a randomized com-
plete block design with three replicated plots of 4× 4 m
size. The annual litter application of 10 t ha−1 dry matter
at the beginning of the rainy season around May supplied

about 4 t carbon ha−1 yr−1. Next to an unamended control
(CT), the litter treatments were rice (Oryza sativa) straw
(RS; high C/N, low lignin and polyphenol contents), ground-
nut (Arachis hypogaea) stover (GN; low C/N, low lignin
and polyphenol contents), tamarind (Tamarindus indica) lit-
ter (TM; medium C/N, medium lignin and polyphenol con-
tents) with a leaf to petiole litter ratio of 7 : 1, and dipterocarp
(Dipterocarpus tuberculatus; DP; high C/N, high lignin and
polyphenol contents) leaf litter (Table 1). The applied litter
was manually incorporated into the topsoil to a depth of ap-
proximately 15–20 cm using hand hoes. Hand weeding was
conducted to keep the plots free of vegetation. This was done
about once a month during the rainy season and every second
month for the rest of the year, attempting to have as little as
possible additional organic matter input from weeds. How-
ever, despite the best efforts it was not possible to keep the
plots completely free of vegetation at all times. The experi-
mental data covered a period from the establishment of the
experiment in 1995 to December 2019.

2.2 Available long-term experiment data that were
simulated with SAMM

Carbon and nitrogen data from soil microbial biomass were
available from most years and were always measured prior
to the incorporation of litter and at weeks 2, 4, 8, 16, and
32 after the addition of litter (Puttaso et al., 2011; Vityakon
et al., 2000; Vityakon, 2007; Laub et al., 2022, and unpub-
lished data in Table 2). Litterbag decomposition experiments
were conducted to elucidate differences in litter decomposi-
tion rates as a function of litter composition, measuring ash-
free dry weight remaining at the same points in time (Puttaso
et al., 2011). The soil microbial biomass was measured by
chloroform fumigation extraction (see Puttaso et al., 2011,
for more details). Because microbial carbon and nitrogen
are usually correlated, we only used microbial nitrogen data,
which were of higher quality (fewer negative values than car-
bon, lower variability within treatments). Annual measure-
ments of soil organic carbon and soil C/N data, measured by
the Walkley–Black method (Walkley and Black, 1934), were
available from Vityakon et al. (2000) and from additional an-
nual measurements until 2016 and from 2019. Furthermore,
there were measurements of carbon in aggregates (carbon
in small macroaggregates, 2–0.25 mm; and microaggregates,
0.25–0.053 mm; combined) and the free silt and clay faction
(MAOC) throughout the year 2019 at weeks 0, 2, 4, 8, 16,
and 30 (Laub et al., 2022).

2.3 SAMM model version 1.0: core concepts and model
description

The core concepts of SAMM are (1) all pools are measur-
able entities that adhere to the concept of structural carbon
identity (Wang et al., 2022), which they maintain within the
aggregates and along the gradient of increased decomposi-

https://doi.org/10.5194/gmd-17-931-2024 Geosci. Model Dev., 17, 931–956, 2024

https://goo.gl/maps/uCjHzoDNG2fSRXNZ9
https://goo.gl/maps/uCjHzoDNG2fSRXNZ9


934 M. Laub et al.: SAMM version 1.0

Table 1. Chemical characteristics of applied organic residues/litter. Total carbon was measured by Walkley–Black wet digestion; total nitro-
gen by micro-Kjeldahl; lignin and cellulose by the acid detergent lignin method (Van Soest and Wine, 1968); polyphenols were determined
according to Anderson and Ingram (1993). Values within the same column that share the same uppercase letter are not significantly different
(p < 0.05). The table is adopted from Laub et al. (2022) under creative common license 4: http://creativecommons.org/licenses/by/4.0/ (last
access: 31 January 2024).

Carbon Nitrogen C/N Lignin Polyphenols Cellulose
Litter type (Abbreviation) (g kg−1) (g kg−1) (g g−1) (g kg−1) (g kg−1) (g kg−1)

Rice straw (RS) 367A 4.7A 78A 28.7A 6.5A 507A

Groundnut stover (GN) 388A 22.8B 17B 67.6A 12.9A 178AB

Dipterocarp (DP) 453B 5.7A 80A 175.5B 64.9B 306AB

Tamarind (TM) 427B 13.6C 32C 87.7C 31.5C 143B

SE∗ 7 0.8 3.4 19 5.6 46

∗ Standard error

Table 2. Overview of all measurements from the Khon Kaen long-term experiment that were used in this study.

Type Unita Frequency Weeksb Time span and reference

Litterbag C kg C ha−1 6 yr−1 0, 2, 4, 8, 16, 32 2004c

Microbial N kg N ha−1 6 yr−1 0, 2, 4, 8, 16, 32 1995d, 96–99g, 2004e, 07g, 12g, 19e

Soil organic C kg C ha−1 1 yr−1 0 1995–2005f, 2006–2016g, 2019e

Soil C/N g g−1 1 yr−1 0 1995–2005f, 2006–2016g, 2019e

Aggregate C kg C ha−1 6 yr−1 0, 2, 4, 8, 16, 30 2019e

Free mineral-associated C kg C ha−1 6 yr−1 0, 2, 4, 8, 16, 30 2019e

a Data rescaled to kg ha−1 using 15 cm soil depth and a bulk density of 1.45 g cm−3; b Weeks after residue addition (0= prior); References: c Puttaso
et al. (2011), d Vityakon et al. (2000), e Laub et al. (2022), f Vityakon (2007), g Unpublished

tion status, (2) linking the formation of the aggregates with
the microbial life cycle, and (3) simulating aggregates in a
coupled soil carbon and nitrogen model. For brevity, we only
explain the central concepts of SAMM and the flow of carbon
and nitrogen in the main text, while the Appendix hosts a de-
tailed description of model pools (Appendix A1) and the dif-
ferential equations comprising the SAMM model (Sect. A3).
A list of all model pools is given in Table 3, while all param-
eters and their calibrated values are given in Table 4.

To achieve complete measurability, the simulated fresh lit-
ter was divided into two pools: structural litter measured as
lignin and polyphenols (similar to Campbell et al., 2016), and
labile (metabolic) litter representing the carbon and nitro-
gen of the remaining litter, thus allowing for different CUE
and decomposition rates resulting in differences in microbial
growth. By simulating both carbon and nitrogen, the model
further allows for a C/N ratio-dependent CUE at microbial
uptake. The carbon and nitrogen cycles are coupled (Fig. 1
and Table 3), but the structural litter pool is defined as a
carbon-only pool. This is indicated in the following by the
subscripts next to the pool names (i.e., PoolC for carbon-only,
and PoolC&N for carbon- and nitrogen-containing pools).

The organic matter decomposition process in the SAMM
model starts with undecomposed plant material, consist-
ing of structural litter (STRC), and the labile/metabolic lit-

ter pool (LABC&N). To distinguish between the cell walls
and the interior part of LABC&N, the STRC protects part
of LABC&N from decomposition (ProtLAB pool; see Ap-
pendix A1), mimicking that part of LABC&N is interviewed
with STRC in the cell walls. Upon depolymerization, the car-
bon and nitrogen of any pool enters the easily soluble low-
molecular-weight (LMWC&N) pool. This LMWC&N is the
only pool that contains molecules that are small enough to
be incorporated by the microbial biomass (MICC&N). Extra-
cellular enzyme production consumes energy, which is in-
directly accounted for by a pool-dependent carbon use ef-
ficiency (CUE), leading to CO2 respiration in the amount
of (1-CUE) during the transition from any litter pool to
LMWC&N. When the MICC&N pool consumes LMWC&N, a
portion of the consumed carbon is respired as growth respi-
ration, the rest is used for anabolism. The amount of growth
respiration of MICC&N depends on a variable stoichiomet-
ric CUE, which is a function of the C/N ratio of LMWC&N.
MICC&N is subject to microbial death and microbes also have
maintenance respiration. Parts of death microbes (cell walls)
are attached to minerals, creating mineral-associated car-
bon and nitrogen (MAOC&N), the rest (cell internal content)
is transferred back into the LMWC&N pool. Furthermore,
MICC&N can immobilize or release N, to maintain their C/N
ratio (see Appendix A1.4). Direct adsorption of LMWC&N
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Figure 1. Conceptual model of SAMM. The carbon and nitrogen in the pools are represented as PoolC&N or PoolC for the pools only with
carbon. The following pools exist: STRC, structural litter; LABC&N, labile litter; LMWC&N, low molecular weight; MICC&N, microbial;
MAOC&N, mineral-associated. Thick solid arrows represent flows of carbon and nitrogen between pools that include a change in structural
identity. The thick dashed arrows represent aggregate protection and deprotection, which does not change the structural identity. The effect of
MICC&N on pool decomposition by reverse Michaelis–Menten kinetics (aMIC parameter) is represented by the thin dashed arrow. The two
large arrows with a colored outline represent the factors that influence the rate of aggregate formation. Losses from the system are represented
by thin dotted arrows (CO2) and solid arrows (leaching). Further abbreviations: Prot, protected by structural litter; Agg, aggregate-protected
pools.

Table 3. Overview of all SAMM model pools and their units.

Pool Description Unit∗

STRC Structural litter pool C kg C ha−1

LABC Metabolic litter pool C kg C ha−1

LABN Metabolic litter pool N kg N ha−1

LMWC Low-molecular-weight pool C kg C ha−1

LMWN Low-molecular-weight pool N kg N ha−1

MICC Microbial biomass pool C kg C ha−1

MICN Microbial biomass pool N kg N ha−1

MAOC Mineral-associated C kg C ha−1

MAON Mineral-associated N kg N ha−1

AggSTRC Structural litter pool C protected in aggregates kg C ha−1

AggLABC Metabolic litter pool C protected in aggregates kg C ha−1

AggLABN Metabolic litter pool N protected in aggregates kg N ha−1

AggMAOC Mineral-associated C protected in aggregates kg C ha−1

AggMAON Mineral-associated N protected in aggregates kg N ha−1

∗ For a defined depth interval (here 0–15 cm).
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to MAOC&N is also possible. Carbon and nitrogen from the
primary constituents (i.e., LABC&N, STRC, MAOC&N) are
protected by integration into aggregates as a byproduct of
microbial growth; i.e., the amount of aggregate formation is
a function of microbial growth. There is also a physicochem-
ical aggregate formation, which for simplicity is assumed to
be constant in version 1.0 of SAMM. Inside the aggregates,
there is no decomposition, a concept proposed by Luo et al.
(2017) as a way to reduce the number of parameters in aggre-
gation models. The carbon of all pools outside of aggregates
is subject to decomposition by MICC&N following reverse
Michaelis–Menten kinetics, a good approximation of enzy-
matic depolymerization (Abramoff et al., 2022; Tang and Ri-
ley, 2019). Thus, the speed of decomposition depends on the
amount of substrate and the amount of MICC&N. Aggregate
disruption is simulated as a first-order kinetic process.

2.4 SAMM setup and Bayesian calibration

For the technical implementation of SAMM version 1.0, we
used the R programming language (R Core Team, 2020).
Details are described in the Appendix A2. As SAMM is
a new model, we added a mass balance equation to stop
the model with an error message if the mass balance was
not closed. Further, most model parameters had to be cal-
ibrated. In addition to typical parameters of a SOM model
representing pool turnover, SAMM contains some unique pa-
rameters, such as the protection capacity that STRC exhibits
on LABC&N, the rate of aggregate formation per microbial
growth, and the rate of physicochemical aggregate forma-
tion (Table 4). Additionally, the amount and composition
of carbon and nitrogen entering the soil through plant roots
were calibrated parameters. These were necessary because,
despite the best efforts to keep the experiment completely
fallow, it was not possible to fully eliminate plant growth
in the plots. Two model parameters were fixed on the ba-
sis of the literature. The first uncalibrated parameter was the
maximum CUE for LMWC, which was fixed at 0.6 (Sins-
abaugh et al., 2013; Manzoni et al., 2012). The second un-
calibrated parameter was cSORP, the maximum sorption ca-
pacity of the fine fraction, which was taken from Abramoff
et al. (2022). To initialize the pools, we used the mean of
the measured SOC fractions in the rice straw treatment in
2019, which had not experienced major changes in SOC
since the start of the experiment. In the absence of fraction-
ation data from the start of the experiment and historic plant
input quantities and qualities, this was considered the best
option. Ideally, SOC fractions would be measured at the be-
ginning of any experiment. However, sensitivity analyses,
perturbing the distribution of initial SOC between MAOC
and litter pools from 80 % to 120 % of our initial assump-
tions confirmed a very limited effect (any visible differences
in simulated SOC and aggregate C disappeared within less
than 10 and less than 3 years, respectively; see response to

referee comments https://doi.org/10.5194/egusphere-2023-
1414-AC1, Laub, 2023a).

To test our hypotheses about the importance of aggregates
in carbon stabilization and the need to simulate this process,
we also created a SAMM version without aggregate forma-
tion (SAMMnoAgg). By setting the turnover of aggregates
(kAgg) to 1 d−1 and the aggregate formation parameters to
0, all aggregate protection was effectively removed from the
model. We evaluated the difference in simulated stabilized
SOC in SAMM and SAMMnoAgg, using the parameters cal-
ibrated for SAMM, to gain insight into the importance of ag-
gregate protection for SOC stabilization. SAMMnoAgg was
further recalibrated to test our hypothesis of the need to sim-
ulate aggregates to represent SOM dynamics. Note that mea-
surements of carbon in aggregates and in silt and clay frac-
tions of 2019 were not used to recalibrate SAMMnoAgg.

As a starting point for the model parameters, an initial
model calibration was performed using a genetic algorithm
(GA package of R; Scrucca, 2013). To explore the uncer-
tainty associated with the two different versions (i.e., SAMM
and SAMMnoAgg), this initial calibration was followed by
a Bayesian calibration applying the sampling importance re-
sampling (SIR) method. This method was used by Gurung
et al. (2020) to calibrate the SOM module of DayCent and
is described in detail in their article. Briefly, the SIR method
uses the Bayes theorem to derive the posterior distribution
of model parameters and model output based on assumed
prior and available data. We assumed normally distributed
broad priors centered around the initial calibrated model pa-
rameters, i.e., the mean parameter values from SAMM and
SAMMnoAgg, to have the same priors for both (except for
the values only calibrated in the aggregate version). To cali-
brate SAMM and SAMMnoAgg, we used all available data
of litterbag C, microbial N, and SOC, while data of aggre-
gate C and free MAOC were only used to calibrate SAMM.
In the next step of SIR, the posteriors are derived by filtering
the prior using importance weights to sample individual pa-
rameter sets from the prior. The importance weights are pro-
portional to the simulation likelihoods (i.e., of observing the
data, given the model), which are computed using the data,
the simulated values, and the variance–covariance matrices
of data (Wallach et al., 2019). As is common practice, we as-
sumed that the covariances were 0, and hence we only used
the variances for each type of measurement (taking the me-
dian variance computed for each type of data from the three
experimental repetitions). Then, by dividing the likelihood
of each simulation by the mean likelihood of all simulations,
standardized importance weights were computed. The prior
parameter set was then resampled without replacement and
the importance weights taken as sampling probability. Over-
all, a total of 200 000 simulations were performed, of which
200 parameter sets were drawn in the resampling.

Geosci. Model Dev., 17, 931–956, 2024 https://doi.org/10.5194/gmd-17-931-2024
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Table 4. Overview of all SAMM model parameters (top), further computed helper variables (middle), and external model drivers and site
conditions needed (bottom). The calibrated values are the best parameter set from the independent Bayesian calibration for the SAMM model
and the recalibrated non-aggregate model (SAMMnoAgg).

Variable Description Unit Calibrated SAMMa SAMMnoAggb

kSTR Turnover rate of structural litter pool g g−1 d−1 Yes 0.0024 0.0028
kLAB Turnover rate of metabolic litter pool g g−1 d−1 Yes 0.0225 0.0551
kMIC Death rate of microbial biomass pool g g−1 d−1 Yes 0.0046 0.0098
kMAO Turnover rate of mineral-associated carbon pool g g−1 d−1 Yes 0.00044 0.000057
µmax Maximum uptake rate of LMW by microbes g g−1 d−1 Yes 0.238 0.367
kAgg Turnover rate of aggregate pools g g−1 d−1 Yes 0.0316 1c

KMMIC Half-saturation constant of the microbial activity factor – Yes 35.5 1.0
mMIC Maintenance respiration of microbes g g−1 d−1 Yes 0.00035 0.0013
KLMWMAO Specific adsorption rate of LMW to MAOM g g−1 d−1 Yes 0.043 0.031
cSORP Maximum sorption capacity coefficient g g−1 Nod 0.83 0.83
CUESTR Carbon use efficiency of structural litter pool g g−1 Yes 0.65 0.52
CUELAB Carbon use efficiency of metabolic litter pool g g−1 Yes 0.54 1.00
CUELMW Maximum carbon use efficiency of low molecular weight pool g g−1 Noe 0.6 0.6
CNmin(MIC) Minimum C/N ratio of microbial biomass pool g g−1 Yes 5.01 6.12
CNmax(MIC) Maximum C/N ratio of microbial biomass pool g g−1 Yes 10.1 9.49
fMICMAOM Fraction of MIC directed to MAOM upon microbial death g g−1 Yes 0.24 0.26
pcSTRLAB Protection capacity of STRC for LABC&N g g−1 Yes 2.47 3.98
aggfactSTRC Protection of STRC inside aggregates per microbial growth g g−1 Yes 0.71 0c

aggfactMAOC Protection of MAOC inside aggregates per microbial growth g g−1 Yes 2.70 0c

NonMicAgg Physicochemical aggregate formation kg MICCeq ha−1 d−1 Yes 31.0 0c

DailyLitterC Daily root carbon inputs (from unavoidable plant growth) kg C ha−1 d−1 Yes 3.07 3.09
DailyLitterC/N C/N ratio of daily root inputs g g−1 Yes 159.3 47.0
DailyLitterSTRC(%) Percent of structural litter in daily root inputs g g−1 Yes 0.13 0.24

Computed helper variables (rate modifiers etc.)

CUECN(LMW) Dynamic C/N-based carbon use efficiency of LMWC pool g g−1 – – –
st Temperature scalar – – – –
sw Water scalar – – – –
pLAB Fraction of metabolic litter protected by structural litter g g−1 – – –
aMIC Michaelis–Menten microbial activity factor – – – –
MAOCmax Maximum adsorption capacity to MAOC t ha−1 – – –
wleach Share of soil water leached (HYDRUS calculation) g g−1 d−1 – – –

Site condition and other model driving variables

depth Soil depth to be simulated m – – –
BD Bulk density kg m−3 – – –
% SiCl Silt and clay fraction % – – –

a Model version including soil aggregates; b recalibrated model version without soil aggregates; c set to 0/1 in model version without soil aggregates to deactivate them; d from Abramoff et al. (2022);
e established maximum (Sinsabaugh et al., 2013; Manzoni et al., 2012).

2.5 Model evaluation

The following standard evaluation statistics were used for
model evaluation, as defined by Loague and Green (1991):

MSEy =
1
n

n∑
z=1
(Oyz−Pyz)

2 (1)

RMSEy =
√

MSEy (2)

EFy = 1−

∑n
z=1(Oyz−Pyz)

2∑n
z=1(Oyz− Ōy).

2
(3)

Here, MSEy is the mean square error and RMSE is its root.
EFy is the Nash–Sutcliffe modeling efficiency, Oyz stands
for the measured value of the zth measurement of the yth

type of measurement. Furthermore, Ōy is the mean of mea-
sured values of the yth type of measurement and Pyz is the
model-predicted value corresponding to Oyz. As suggested
by Gauch et al. (2003) to gain better insight into the nature
of model errors, we further divided MSEy into squared bias
(SB), nonunity slope (NU), and lack of correlation (LC). We
expressed them in relative terms, by dividing them by MSEy :

SBy (%)=
(Ōy − P̄y)

2

MSEy
· 100 (4)

NUy (%)=
(1− by)2 ·

(∑n
z=1(O

2
yz)

n

)
MSEy

· 100 (5)
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LCy (%)=
(1− ry)2 ·

(∑n
z=1(P

2
yz)

n

)
MSEy

· 100. (6)

Here, P̄y is the mean predicted value of the yth measurement
type, and b the slope of the regression of P on O. Finally,
r is the correlation coefficient between O and P . The rel-
ative LC, SB, and NU provide information on whether the
model errors are mostly random (high LC) or whether there
is a systematic bias (high SB). A high relative NU indicates
that the sensitivity of the model is wrong (either too low or
too high). The SB can be interpreted as the intercept of a re-
gression between predictions and measured values, while the
NU is the slope of this regression (Gauch et al., 2003). Fi-
nally, the Akaike information criterion (AIC) was computed
to compare different model versions:

AIC= 2k− 2ln(L̄). (7)

Here, k is the number of model parameters that were esti-
mated (23 for SAMM and 19 SAMMnoAgg) and L̄ is the
likelihood.

3 Results

Because SAMM is a new model, we first describe its be-
havior and illustrate the development of pools (Fig. 2) us-
ing the treatment with the highest microbial activity, the
groundnut stover treatment. It is important to note that our
results cover a period where the model has not yet reached a
new steady state. Second, the performance of the calibrated
model is evaluated against the measured data, and poste-
rior parameter distributions are discussed. Third, we test the
importance of aggregate protection in SAMM, by assessing
how much the simulation performance decreases for different
types of measurements when aggregate formation is not sim-
ulated (SAMMnoAgg). Finally, we try to assess to which ex-
tent simulating aggregate formation is necessary to correctly
simulate microbial biomass and SOC, by recalibrating the
SAMMnoAgg version and comparing it with SAMM.

3.1 SAMM model behavior: the connection between
microbes and aggregate formation

After the groundnut stover application in 2001, a rapid de-
polymerization of the part of LABC that is not protected
by STRC is simulated (Fig. 2). The depolymerized material
is transferred to the LMWC pool. This increase in LMWC
feeds the growth of MICC, which almost triples in biomass.
The MICC growth slows down once the unprotected part of
LABC is fully decomposed. However, the peak of LMWC
availability is within 1–2 weeks after litter addition, while
the peak of MICC is about 1–2 months after litter addition
and maximum LMWC availability. The increase in microbial
growth is accompanied by an increase in the formation of

new aggregate-protected carbon. Unprotected MAOC and lit-
ter are thereby protected in aggregates, increasing the amount
of aggregate-protected MAOC and litter by approximately
30 %. Because the formation of aggregates is linked to micro-
bial growth, the peak of aggregate-protected pools (MAOC,
LABC and STRC) occurs simultaneously with the peak of
MICC. Subsequently, the amount of aggregate carbon starts
to decrease again, which becomes visible in the increase of
unprotected MAOC, LABC, and STRC. During the dry sea-
son about 250 d after residue application, another increase in
aggregate formation occurs, this time driven by the physico-
chemical aggregate formation that continues while aggregate
turnover is reduced due to limiting water availability. After
a full year, just before the next addition of litter, most of the
newly added litter of the previous year is decomposed and
increased moisture availability increases aggregate disrup-
tion again. However, a higher amount of MAOC compared
to the beginning of the year and a slightly higher amount of
aggregate-protected MAOC, STRC, and LABC leads to an
increased amount of SOC compared to the previous year.

3.2 Evaluating SAMM against measured data

Overall, the SAMM model was able to simulate the differ-
ent types of available measurements, as indicated by posi-
tive modeling efficiencies for all of them (Table 5a; soil C/N
was the only exception). The best representation of the mea-
sured values by the model was that of residue-C in litterbags
(Fig. 3; EF 0.80) and, interestingly, the measured decompo-
sition of groundnut stover was so fast (> 50 % in the first
week) that the model could not capture it. Furthermore, the
measured values of the SOC of the top soil were well repre-
sented by SAMM (Figs. 4 and 5; EF 0.68), with a tendency
of the model to overestimate SOC in the rice straw treat-
ment and underestimate SOC in the tamarind and ground-
nut treatments. Further, microbial nitrogen (MICN; EF 0.24)
and carbon in the free silt and clay fraction (MAOC; EF 0.24)
were simulated with acceptable accuracy (Figs. 5 and 6). The
temporal trend of microbial nitrogen was also well captured
for all litter treatments with the exception of the control, in
which there was almost no simulated microbial growth re-
sponse over the year (Fig. 6). For free MAOC, the differ-
ences between treatments were captured, the temporal dy-
namic was low, both in measured and modeled values, and
the model could overall capture the treatment differences (EF
0.24). It could also capture very well the temporal dynam-
ics of aggregate C in the groundnut, rice straw, and tamarind
treatments, as well as the absence of major temporal dynam-
ics in the other two treatments (Fig. 6; EF 0.60). Despite
the dynamic CUE function of SAMM, the SOC content of
the high C/N ratio residue treatments (rice straw the most
strongly and dipterocarp to some extent) tended to be overes-
timated while tamarind tended to be underestimated, leading
to poor model performance for the soil C/N ratio (EF−0.58;
Fig. 5).
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Figure 2. Exemplary SAMM model behavior and carbon pool dynamics of the groundnut treatment in the period 2001–2002 starting 1 d
before the addition of litter. The top panel displays all carbon pools inside and outside of aggregates, while the bottom panel displays the soil
water content (model driver, simulated by HYDRUS 1D). In the two panels, aggregate-protected pools (Agg) are represented by a dashed
line, decomposable (Free) pools by a solid line. STRC, structural litter; LABC, labile litter; LMWC, low molecular weight; MICC, microbial;
MAOC, mineral-associated.

Figure 3. Simulation of incubated litterbag residue-C dynamics from different litter materials (buried at 15 cm depth). Dots with error bars
indicate the mean and 95 % credibility interval of measured values. The black line and gray band indicate the best simulation and the 95 %
credibility interval of the Bayesian calibration posterior, respectively.

3.3 Model behavior when aggregate formation was
removed

Removing the aggregate protection from the calibrated
SAMM model to derive SAMMnoAgg showed that the

model assigned a high importance to aggregate protection
for the process of SOC stabilization. Without aggregate pro-
tection, the simulated SOC of all treatments was reduced to
approximately half compared to the measured values (Fig. 7;
Table 5b). As a result, all litter addition treatments had ap-
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Figure 4. Measured and simulated development of SOC stocks in the top 15 cm of soil from all residue addition treatments. Displayed are
(a) the measured versus modeled gain in SOC stocks since the onset of the experiment, with gray bars indicating 95 % credibility interval.
Additionally, (b) shows the results for simulated versus measured SOC over time for different residues. Dots with error bars indicate the
mean and 95 % credibility interval of measured values and simulations. The black line and gray band indicate the best simulation and the
95 % credibility interval of the Bayesian calibration posterior, respectively.

Figure 5. Simulated versus measured values of aggregate carbon, litter carbon, mineral-associated organic carbon (MAOC), microbial
biomass nitrogen, soil organic carbon (SOC) and soil C/N ratio. The gray bars indicate the 95 % credibility interval. The black line marks
the 1 : 1 line, the blue line the regression of simulated on measured values.
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Figure 6. Simulation of (a) microbial nitrogen (MICN) in 2005, 2008, and 2019 (top); of (b) aggregate-protected C (AggC) and of (c) free
mineral-associated C (MAOC) of different residues in 2019. Dots with error bars indicate the mean and 95 % credibility intervals of measured
values. The black line and gray band indicate the best simulation and the 95 % credibility intervals of the Bayesian calibration posterior,
respectively. The dashed line indicates the mean free MAOC in the control in 2019.

proximately the same amount of simulated SOC (excluding
litter) in SAMMnoAgg, despite their difference in C/N ra-
tios, lignins, and polyphenols (Fig. 7). Hence, removing ag-
gregate protection led to a significantly reduced and now neg-
ative modeling efficiency (−3.68) for SOC (Table 5). In ad-
dition, the simulation of microbial nitrogen was negatively
affected by the removal of aggregate protection. Due to the
absence of aggregate protection of LABC and STRC (i.e.,
POM), simulated microbial growth became too high after
litter addition. However, it still had a positive modeling ef-
ficiency (reduction of EF to 0.13 from 0.24, initially) and

the temporal trend of the strongest microbial growth occur-
ring after litter addition was still represented (simulation not
shown). By contrast, removing aggregate protection had little
effect on the simulation of litterbag carbon (EF was 0.79) and
the increase in model error was minor because litterbag car-
bon is not protected by aggregates. Overall, the dipterocarp
treatment was simulated to have the highest carbon storage
of litter and SOC combined without aggregate protection.
This was mainly because not all dipterocarp litter decom-
posed within 1 year.
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Figure 7. Results for the simulation of carbon stocks with the model version including aggregates (SAMM, a) and when aggregate protection
is removed without recalibration (SAMMnoAgg, b). The solid line indicates all carbon including litter, the dynamic dashed line indicates the
combined soil carbon stocks stored in MAOC, AggC and MICC. The horizontal thin dashed line indicates the mean measured SOC in the
control. Dots with error bars indicate the mean and 95 % credibility intervals of measured values (excluding litter).

Table 5. Model evaluation statistics of (a) the default SAMM model (with aggregate protection), (b) the SAMM model without aggregate
protection (SAMMnoAgg), and (c) the recalibrated SAMM model without aggregate protection (SAMMnoAgg). The RMSE and the width
of 95 % credibility intervals (w95 % CI) are in kg ha−1. Evaluation statistics are from the Bayesian calibration. Abbreviations: EF, Nash–
Sutcliffe modeling efficiency; (R)MSE, (root) mean square error; LC, lack of correlation; NU, nonunity slope; SB, squared bias; AIC, Akaike
information criterion. Data rows in brackets were not used in the calculation of the overall model AIC.

Dataset EF RMSE R2 LC NU SB MSE AIC % in 95 % CI w95 % CIa

(a) Default SAMM model 5351b

Litterbag C 0.80 537.3 0.82 87 1 11 288 685 869 64 926
Microbial N 0.24 22.8 0.42 76 22 2 518 2041 53 36
SOC 0.68 788.4 0.77 73 5 22 621 636 2534 62 1381

( Aggregate C 0.60 302.6 0.61 98 0 2 91 548 521 93 1265 )
( Free MAO C 0.24 356.4 0.60 53 46 1 126 997 664 93 1188 )
( Soil C/Nc

−0.58 6.2 0.04 61 35 4 38 1201 61 12 )

(b) Removing aggregate protection/formation (SAMMnoAgg) 11 799b

Litterbag C 0.79 540.4 0.81 89 1 10 291 993 896
Microbial N 0.13 24.4 0.38 70 22 8 594 2183
SOC −3.68 2922.3 0.62 8 2 90 8 539 715 8855

(c) Recalibrated SAMMnoAgg 5554b

Litterbag C 0.75 600.4 0.77 89 3 8 360 447 993 64 953
Microbial N 0.18 23.7 0.39 75 25 0 563 2112 51 38
SOC 0.68 792.3 0.75 77 19 4 627 769 2540 55 1409

( Soil C/Nc
−133262 1791 0.00 0 99 1 3 211 117 Inf 65 41 )

a 95 % width of the credibility interval from the Bayesian calibration posterior; b overall model AIC. For comparability of model versions this was computed without
Aggregate and MAO C and soil C/N. c Not used in calibration.
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3.4 Comparison of SAMM separately calibrated with
and without the aggregate protection mechanism

When the SAMM model without aggregate formation
(SAMMnoAgg) was recalibrated, the poor model perfor-
mance was largely resolved (Table 5c). For example, the
model performance for SOC was the same for the two mod-
els (EF of 0.68). However, some notable difference between
SAMM and recalibrated SAMMnoAgg remained for the mi-
crobial nitrogen and litter carbon. Their dynamics were simu-
lated slightly worse in recalibrated SAMMnoAgg compared
to SAMM (EF of 0.80 vs. 0.75 for litterbag C and EF of
0.24 vs. 0.18 for microbial nitrogen; Table 5c). Consequently,
the overall model AIC, considering, for comparability, only
litterbag carbon, microbial nitrogen, and SOC, was slightly
lower for SAMM versus recalibrated SAMMnoAgg (5351
vs. 5554).

When comparing the posterior distributions of both model
versions, it became evident that the recalibration of SAMM-
noAgg counteracted the loss of aggregate protection by low-
ering the turnover of MAOM by almost 1 order of magni-
tude (about 85 %; Fig. A1). This indicates that the represen-
tation of aggregate protection on SOC was changed from ex-
plicit to implicit. Also, the recalibrated SAMMnoAgg ver-
sion had a lower half saturation constant for direct adsorption
of LMWC&N to MAOM in tendency, allowing for a faster di-
rect adsorption (Table 4). However, the removal of aggregate
protection did not affect most other model parameters, which
were similar in their posterior distributions between SAMM
and recalibrated SAMMnoAgg. Interestingly, the 95 % pos-
terior credibility intervals were smaller for SAMM than for
recalibrated SAMMnoAgg and at the same time covered a
higher proportion of measurements of microbial nitrogen and
SOC, indicating that they were more accurate for the aggre-
gate version of SAMM.

3.5 Analysis of model parameter behavior

In both calibrated model versions, SAMM and SAMM-
noAgg showed a clear distinction between the turnover of
different carbon pools (Fig. A1). The highest likelihood
turnover rates of MAOM, structural and metabolic litter dif-
fered by a factor of 5–10 (e.g., around 0.0004, 0.002, and
0.02 for SAMM, respectively; Table 4). The breakdown of
aggregates, with around 3 % per day, and the physicochem-
ical aggregate formation, equivalent to a MICC growth of
31 kg ha−1 per day, were high in SAMM. This indicated a
highly dynamic aggregate fraction and a high importance
assigned to physicochemical aggregate formation. At the
same time, few strong parameter correlations of r > 0.4
were present in the posterior parameters set for the SAMM
(Fig. A2) and the parameter correlations in the recalibrated
SAMMnoAgg were of similar magnitude (Fig. A3). First,
structural litter turnover and structural protection capacity
for labile litter were correlated (r = 0.48). Then, there was

a negative correlation between the aggregate protection of
POM by microbial growth and the rate of formation of
physicochemical aggregates (r =−0.43). Furthermore, the
adsorption speed of LMWC to MAOC and the turnover of
MAOM were correlated (r = 0.40). Finally, the turnover of
MAOM was correlated with microbial death (r = 0.42).

4 Discussion

4.1 SAMM as a state-of-the-art soil model with
measurable pools

With SAMM, we present a state-of-the-art microbe-driven
coupled C/N model that is suitable for field-scale applica-
tion. It simulates the effect of residue stoichiometry on mi-
crobial CUE (Sinsabaugh et al., 2016) and the role of micro-
bial growth in aggregate formation (Laub et al., 2022; Bucka
et al., 2021). It contains measurable pools, is well able to sim-
ulate aggregate formation resulting from microbial growth,
maintains carbon and nitrogen identity (Wang et al., 2022)
within the aggregates, and can easily be converted into a
lower-complexity model without aggregates (i.e., SAMM-
noAgg). The model evaluation statistics (Table 5) showed
that SAMM, with its representation of carbon and nitrogen
in measurable pools (including litter as measurable struc-
tural and metabolic pools), is capable of capturing the rel-
evant processes in a long-term experiment of litter addition
in a tropical sandy soil and of handling the complexity of
microbial driven aggregate formation for different chemical
compositions of litter. As demonstrated, SAMM captures the
differences between treatments, the temporal development of
microbial biomass, and the connection between microbial
growth and aggregate formation. To our knowledge, apart
from an early attempt to model in situ aggregate stability
without considering aggregate stored carbon (Abiven et al.,
2008), SAMM is the first model to demonstrate this capabil-
ity in a field experiment with different litter qualities.

The fact that the parameter correlations were low (max-
imum r = 0.48) compared to calibration exercises with es-
tablished models such as DayCent (Necpálová et al., 2015,
showed parameter correlations between turnover times of
different pools of up to r = 0.9), Daisy (Laub et al., 2020,
had parameter correlations between turnover of fast and slow
pools of up to r = 0.8), or ICBM (Ahrens et al., 2014, had
correlations between pools up to r = 0.7), gives some in-
dication that the structure of the SAMM model with mea-
surable pools has a clear advantage compared to models
with theory-based conceptual pools. It could, however, also
be due to the superiority of Michaelis–Menten over first-
order kinetics. Furthermore, the fact that all pools can be
measured facilitates calibration, as was recently shown on a
global scale with Millennial compared to Century (Abramoff
et al., 2022). However, the data needed to constrain models
with measurable pools at the global scale may not be read-
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ily available. For example, we are not aware of other field
experiments that include different litter types and follow mi-
crobial biomass, SOC, and aggregate carbon simultaneously
over time. Therefore, this version of SAMM was tested only
at one site, and it remains to be evaluated for larger spatial
scales and with a range of experiments with different-quality
organic amendments. It is likely that across a range of sites,
SAMM model performance will be lower and that the cali-
bration to the single site of this study resulted in an overfitting
of some parameters.

We posit that maintaining the carbon identity inside aggre-
gates represents the next logical step for aggregate models,
but we are aware of the fact that the marginally better per-
formance of SAMM versus recalibrated SAMMnoAgg only
provides initial evidence. Hence, we invite others to test the
concept against further datasets with SAMM or with their
own model. By maintaining the carbon identity, aggregate
models can help answer important scientific questions, such
as how important stabilization of carbon in aggregates is for
the global carbon cycle. As shown by the deactivation of ag-
gregates in SAMMnoAgg, SAMM can also provide novel
insights into the relative importance of different processes,
such as the importance of aggregate protection for carbon sta-
bilization versus protection by attachment to minerals (Angst
et al., 2021). In this calibration exercise, the model estimate
was that only half of the carbon is protected as MAOC and
that about half of the carbon is protected inside aggregates
(Fig. 7). However, because we had no measurements of POM
versus MAOM in the aggregates, we cannot evaluate this by
measurements, and it is based on the assumption of com-
plete protection of POM and MAOM inside the aggregates.
Another interesting process insight was that the calibration
of SAMM assigned a similar importance to physicochemi-
cal aggregate formation and microbial aggregate formation
and that both processes probably happen in parallel, espe-
cially in tropical soils, as tested here. However, it is clear that
our data did not provide enough information to clearly dis-
tinguish between both processes, which can be seen by the
wide posterior credibility intervals of physicochemical ag-
gregate formation. Despite this, the fact that SAMM could
simulate the observed increase in aggregate C in the dry sea-
son toward the end of 2019 (Fig. 6) indicates that this process
needs to be included.

4.2 Is aggregate protection necessary to better simulate
microbial and SOC dynamics?

It has been postulated that because a substantial portion of
soil carbon is located within soil aggregates, soil aggregation
needs to be included in models in order to accurately cap-
ture reality (Segoli et al., 2013; Abramoff et al., 2018). In
this paper we followed this hypothesis and explicitly tested
it by comparing the performance of SAMM with and with-
out aggregate formation in simulating litter carbon, micro-
bial nitrogen, and SOC across the different treatments (Ta-

ble 5). Since clear connections between microbial growth and
aggregate formation have been demonstrated (Laub et al.,
2022; Bucka et al., 2021; Bossuyt et al., 2001; Denef et al.,
2001), including aggregate formation in SAMM is a more
realistic process representation. In alignment with our sec-
ond hypothesis, removing the soil aggregate formation did,
even after recalibration of SAMMnoAgg, reduce model per-
formance of the non-aggregated pools, albeit not strongly.
This suggests that simulation of aggregate formation and dis-
ruption can be useful to understand the overall dynamics of
SOC, but that SAMMnoAgg was able to artificially compen-
sate for the missing aggregate protection mechanism (which,
as shown by crushed aggregates incubation, e.g., Kpemoua
et al., 2022; Puttaso et al., 2011; Six et al., 2002, clearly ex-
ists) by reducing turnover of MAOM. What also speaks for
this effect are the smaller posterior credibility intervals of
SOC, microbial nitrogen, and litter carbon of the aggregate
version of SAMM compared to recalibrated SAMMnoAgg
(Table 5) and that they still covered a higher percentage of
measured values.

The fact that the recalibrated SAMMnoAgg model still
seems to implicitly account for the aggregate protection of
SOC by reducing the turnover of MAOM (Fig. A1) could
suggest that aggregate formation does not need to be in-
cluded in models to accurately capture differences in SOC
formation at large scales. Despite being a better process rep-
resentation, limited data availability of aggregate and micro-
bial dynamics may make a non-aggregate model more fea-
sible. However, for a mechanistic understanding, i.e., using
the model as a research tool to test hypotheses, it is arguably
better to include aggregate formation and carbon protection
in aggregates. By contrast, simulating aggregate protection
may not be necessary to assess the carbon sequestration po-
tential of different management strategies. On the one hand,
many processes that are relevant for soil formation and SOC
stabilization and occur inside aggregates may be irrelevant
at the field scale (Yudina and Kuzyakov, 2019) if they are
implicitly included by adjusting other model parameters. On
the other hand, we only had data to test SAMM with one
long-term experiment in a single soil type. Model parsimony
and equifinality often depend on how many data are available
(Marschmann et al., 2019). Hence, it is possible that across
sites, the interaction of factors such as differences in tex-
ture, litter composition, and different climates on SOC pro-
tection may be best represented by a model that includes the
mechanism of aggregate protection. For example, the better
model performance of Millennial compared to Century only
became evident when looking at the global distribution of
soil carbon (i.e., only at high latitudes is Millennial better;
Abramoff et al., 2022). Clearly, a range of field experiments
that measured the temporal dynamics of aggregates together
with microbial biomass and SOC would be needed to better
test and hence understand the relevance of aggregate forma-
tion to simulate SOC dynamics across scales.
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4.3 Potential limitations and open questions

An interesting observation is that the model assumes a rather
high amount of daily carbon input through roots (about
3 kg C ha−1 d−1 for both SAMM and SAMMnoAgg) in addi-
tion to the litter that is added annually through the treatment.
However, this additional material is expected to have a rather
high C/N ratio. The parameter of daily carbon input was in-
cluded for two reasons: (1) we observed weed growth in the
plots, despite regular weeding, and hence assuming no ad-
ditional inputs did not seem reasonable, and (2) model runs
with carbon inputs only from litter addition could not main-
tain any microbial activity in the control, further corroborat-
ing the validity for these inputs (simulations not shown). The
fact that the calibration assumed rather high root inputs is po-
tentially due to the absence of more complex microbial traits
in SAMM, such as dormancy, which some other models in-
clude (Wang et al., 2015; Blagodatsky and Richter, 1998). In
fact, the estimation of microbial biomass via chloroform fu-
migation extraction does not separate between dormant and
active microbes. While Wang et al. (2015) suggested that a
model that includes dormancy can better represent the to-
tal magnitude of microbial biomass, an important concept of
SAMM was the measurability of all pools and the inclusion
of dormancy would thus need data on dormancy, which were
not available in this trial. Ideally, only the non-dormant mi-
crobes should be considered in the microbial activity factor
(aMIC). Since KMMIC , which determines aMIC, is a calibrated
parameter, this discrepancy does not drastically alter model
behavior. However, it means that the microbial activity fac-
tor of SAMM cannot be directly compared with measure-
ments of microbial activity, and it implicitly assumes that
the fraction of dormant microbes is constant. Since the water
and temperature rate modifiers indirectly account for differ-
ences in microbial activity between optimal and poor con-
ditions, the use of chloroform fumigation extraction data is
most likely, in the absence of data on dormancy, the best way
to represent a single microbial biomass pool while maintain-
ing structural identity.

Furthermore, CUE is only a function of litter C/N and not
of the microbial community. An earlier study showed that
the different treatments led to different microbial commu-
nities (Kamolmanit et al., 2013), and communities of min-
imal inputs usually become more efficient at recycling car-
bon and nitrogen (Dijkstra et al., 2022). The lower C/N ra-
tio of daily root carbon inputs in SAMMnoAgg compared to
SAMM in that regard could be interpreted as aggregate for-
mation within a model that helps simulate microbial biomass
patterns. In fact, aggregate formation, linked to both micro-
bial growth and physicochemical formation, was very fast.
Additionally, turnover rates were high (almost as fast as
metabolic litter decomposition). This is in alignment with a
recent model of aggregation on the micro-scale (Zech et al.,
2022). Yet, it is difficult to distinguish between the differ-
ent pathways of aggregate formation. Finally, the question

is to what extent POM and MAOM are effectively protected
inside aggregates. In this version of SAMM, we simulated
the most extreme case of complete protection of carbon in-
side aggregates, which in future versions should most likely
be replaced by a decomposition reduction factor because we
know that aggregates do not completely protect carbon. Yet,
it will be very difficult to measure carbon turnover inside ag-
gregates and hence to constrain such a reduction factor. Fi-
nally, the next logical step would be to include multiple soil
layers in SAMM, provided a suitable water leaching func-
tion is included. The LMWC/N leaching to deeper soil layers,
feeding aggregate formation there should, in theory, help to
explain SOC depth gradients.

5 Conclusions

We presented and evaluated the SAMM model, a state-of-
the-art soil organic matter research model with measurable
pools that can simulate the formation and turnover of aggre-
gates under different organic amendment treatments. Overall,
good model evaluation statistics (EF 0.2–0.8, depending on
observation type) and low parameter correlations (r < 0.48)
suggested that the current structure of SAMM is valuable,
clearly identifiable in calibration and hence parsimonious.
The results suggested that aggregate protection plays a cru-
cial role for SOC stabilization, i.e., in the model simulations
about 50 % of soil carbon was protected in aggregates, even
in the sandy soil of the long-term experiment studied. While
for basic research, aggregate formation should be included
into models, our results indicate that with model recalibra-
tion, the absence of aggregate protection in SOM models is
partly compensated by reducing turnover of the MAOM pool.
Hence, if the sole goal is to represent SOM, microbial nitro-
gen, and litter carbon well, aggregate formation may be omit-
ted in SOM models, especially if there are insufficient data on
aggregates. However, it is possible that this compensation in
our study was only possible because the data originated from
a single site. For further evidence, studies would be needed
in a variety of soils and climates, which calls for more long-
term studies to include repeated measurements of aggregate
and microbe dynamics.

Appendix A

A1 Detailed description of the SAMM model pools

A1.1 Structural litter pool – STRC

To make the structural litter pool (STRC) fully measurable,
it consists of lignin and polyphenols, the parts of litter which
stabilize the cell wall and are processed by microbes with a
low CUE. STRC is assumed to have a carbon content of 65 %,
representing a lignin-typical C/H/O ratio of 20/23/7 (Gar-
gulak et al., 2015). Through this definition, the structural lit-
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ter pool is measurable as acid detergent lignin (Van Soest and
Wine, 1968) and polyphenols (Anderson and Ingram, 1993),
and it does not contain nitrogen.

A1.2 Metabolic litter pool – LABC and LABN

The metabolic litter pool contains all parts of the litter which
are not part of STRC. This includes cellulose, hemicellu-
lose, intracellular carbon, and nitrogen. Because plant cell
walls are a mixture of structural components with celluloses
and hemicelluloses (Alberts et al., 2002), there needs to be
a distinction between the non-lignin components of the cell
wall and the easily available cell interior. While others have
solved this by creating three litter pools, containing the sol-
uble part, the non-lignin structural part, and the lignin part
(Campbell et al., 2016), we wanted to be parsimonious and
have only two litter pools. We therefore linked the decom-
position speed of the non-lignin cell wall components to the
decomposition speed of lignin by adding a simulated protec-
tion capacity of the structural litter pool on the metabolic lit-
ter pool. This mimics that the parts of the cellulose, hemicel-
lulose, and lignin of the cell wall are tightly interwoven (Al-
berts et al., 2002). The amount of protected metabolic carbon
(ProtLABC&N) is not a real pool but a linear function of car-
bon in the structural pool (fixed ratio). This approach implic-
itly assumes that non-lignin and lignin cell wall components
decompose together and that the decomposition speed of the
lignin components is the rate-limiting factor. All components
that are not protected by STRC are considered to be eas-
ily available for microbial uptake and, due to the lower cost
of depolymerization, microbes usually process them with a
higher CUE.

A1.3 Low-molecular-weight carbon and nitrogen pools
– LMWC and LMWN

The low-molecular-weight pool contains depolymerized car-
bon and nitrogen which easily enters the soil solution. All de-
composed plant and microbial residues, as well as MAOM,
end up in this pool. The pool of LMWC&N can be measured
by extraction using a K2SO4 solution. Microbes, similar to
other established models, such as MEND (Wang et al., 2013)
and Millennial (Abramoff et al., 2018), can only consume
carbon and nitrogen in the LMWC&N pool. When consumed
by microbes, LMWC is subject to a dynamic CUE. This dy-
namic CUE is a function of the C/N ratio of LMWC&N,
thus accounting for a C/N-dependent growth respiration and
spilling (Sinsabaugh et al., 2013). We used the linear function
of C/N-dependent CUE (Fig. A6) based on Campbell et al.
(2016, equation 16B), which they based on Sinsabaugh et al.
(2013). Additionally, the LMWC&N pool is the only pool
that can be leached. Finally, direct adsorption of LMWC and
LMWN to particles from the silt and clay fraction is possible.
This was simulated using a Langmuir-type relationship, as in

Wang et al. (2013), with values for this relationship estimated
by Abramoff et al. (2022).

A1.4 Microbial pools – MICC and MICN

The MICC&N pool comprises the living soil microbial
biomass that actively influences the decomposition of all
other pools. MICC&N can be measured using various tech-
niques, such as substrate-induced respiration (Kandeler et al.,
1999), or the more common chloroform fumigation extrac-
tion (Vance et al., 1987), but all of these are subject to con-
siderable uncertainty. In SAMM, the MICC&N pool actively
contributes to the decomposition of other pools through a mi-
crobial activity factor (aMIC). Because the uptake of LMWC
and LMWN by microbes only depends on the availability and
on aMIC, the C/N ratio of microbes is not fixed. We included
indirect limits to microbial C/N through a C/N-dependent
CUE and a direct limit through nitrogen immobilization if
microbial C/N surpasses an upper boundary and a spilling of
nitrogen occurs for very low C/N ratios at a lower bound-
ary. If the C/N ratio of microbes becomes smaller than a
minimum C/N, the excess nitrogen is released by the mi-
crobes to avoid unrealistically low C/N ratios of the mi-
crobes (maximally half of the excess nitrogen per day). Both
maximum and minimum microbial C/N are calibrated pa-
rameters. The microbial pool is subject to maintenance respi-
ration and microbial death. The carbon and nitrogen of dead
microbes are divided between the LMWC&N and the mineral-
associated pool, representing the soluble cell constituents en-
tering LMWC&N and cell wall structures, which are assumed
to be attached directly to the minerals (Krause et al., 2019).

A1.5 Mineral-associated organic carbon and nitrogen
pools – MAOC and MAON

This pool consists of all carbon and nitrogen which is at-
tached to silt and clay. It has long been suggested that
this is a form of carbon and nitrogen with slower average
turnover than total SOM (Christensen, 2001) with a resi-
dence time of decades to millennia (Kögel-Knabner et al.,
2008). There are two ways in which carbon and nitrogen can
enter the MAOC&N pools: first, microbial cell walls that at-
tach to minerals after microbial death and, second, the ad-
sorption of LMWC&N. As in many models, we allow for
an attachment of SOM to MAOC&N in the form of micro-
bial residues that is only limited by a partitioning constant
as one process. The adsorption of LMWC&N to MAOC&N,
as the other process, follows a Langmuir-type relationship,
where the limit is determined by the amount of silt and clay
in a soil (Abramoff et al., 2022). The differences between
LMWC&N and MICC&N attachment to MAOC&N follow re-
cent studies that demonstrated that N-rich microbial products
preferentially attach to new mineral surfaces (Kopittke et al.,
2018, 2020), while the direct sorption of LMWC&N depends
on the amount of fine particles (Georgiou et al., 2022).
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A1.6 Aggregate pools – AggC and AggN

To adhere to the concept of structural carbon identities,
the carbon and nitrogen in aggregates does not represent
a single pool. Instead, the aggregates consist of the pri-
mary constituents STRC, LABC&N, and MAOC&N pools,
which inside aggregates are protected from decomposition
(AggSTRC, AggLABC&N and AggMAOC&N). In alignment
with recent studies showing that the presence of microbially
produced binding agents stabilizes aggregates (Bettermann
et al., 2021; Crouzet et al., 2019), the rate of aggregate for-
mation in SAMM (amounts of primary constituents enter-
ing the aggregate-protected pools) is a function of micro-
bial growth. Furthermore, SAMM allows for physicochem-
ical aggregate formation at a constant rate (currently defined
as daily microbial growth equivalent). This physicochemical
aggregate formation represents all abiotic aggregate forma-
tion processes. Hence, SAMM allows for both important pro-
cesses of aggregate formation, biological and physicochem-
ical (Six et al., 2002), while within the aggregates there is
no decomposition, a concept proposed by Luo et al. (2017)
as a way to reduce the number of parameters in aggregation
models and represent aggregate protection in a parsimonious
way. Each carbon identity is transferred back into the pool
from which it originated without any loss of matter during
aggregate turnover.

A2 Technical implementation of SAMM

The SAMM model was written in the R programming
language (R Core Team, 2020), and differential equations
were solved using the deSolve package with the rk4 solver
(Soetaert et al., 2010). Thus, it can be run at any time step.
We used a daily time step with the optimized rk4() solver,
after confirming that the results for this were the same as us-
ing an ode() solver, which makes time steps infinitely small
and has no numerical errors. Simulations of carbon and nitro-
gen dynamics are performed for the topsoil layer (0–15 cm).
While all flows of carbon and nitrogen between pools were
simulated within the SAMM model, the soil water status,
water leaching, and temperature needed to drive SAMM are
currently external inputs. Climatic data and soil temperature
measurements were available from a station located close to
the experiment, and soil water content and leaching of water
from the soil were simulated with the HYDRUS 1D model
(Šimůnek et al., 2005) based on climatic data and soil texture.
Measurements conducted with moisture sensors during 2019
showed that the simulated HYDRUS water content matched
the moisture levels and the dynamical pattern of the mea-
sured water content (Fig. A4). To be able to calibrate SAMM
for litter decomposition from a litterbag experiment, we cre-
ated litterbag carbon and nitrogen pools, which were reini-
tialized with each yearly litter addition and did not flow into
any other pools. They decomposed at the same turnover as
the normal STRC and LABC&N litter pools, but could not be

protected in aggregates. Note that SOC was defined to cor-
respond all pools combined, excluding the free STRC and
LABC pools.

A3 SAMM model equations and additional model
graphs

The following section describes the differential equations of
the SAMM model that govern the changes of pool sizes (Ta-
ble 3) over time. Inputs into the system are only in the form
of litter (ISTRC and ILABC ). The flows between pools are dis-
played as flows (FX1X2 ) from the donor pool (X1) to the re-
ceiving pool (X2) as follows:

dSTRC

dt
=+ISTRC −FSTRCLMWC

−FSTRCAggSTRC +FAggSTRCSTRC −FSTRCCO2 (A1)
dLABC

dt
=+ILABC −FLABCLMWC −FLABCAggLABC

+FAggLABCLABC −FLABCCO2 (A2)
dLMWC

dt
=+FSTRCLMWC +FLABCLMWC

+FMICCLMWC +FMAOCLMWC

−FLMWCMICC −FLMWCMAOC

−FLMWCCleach −FLMWCCO2 (A3)
dMICC

dt
=+FLMWCMICC −FMICCLMWC

−FMICCMAOC −FMICCCO2 (A4)
dMAOC

dt
=+FMICCMAOC +FLMWCMAOC

−FMAOCLMWC −FMAOCAggMAOC

+FAggMAOCMAOC (A5)
dAggSTRC

dt
=+FSTRCAggSTRC −FAggSTRCSTRC (A6)

dAggLABC

dt
=+FLABCAggLABC −FAggLABCLABC (A7)

dAggMAOC

dt
=+FMAOCAggMAOC −FAggMAOCMAOC . (A8)

Respired (CO2) and leached (Cleach) carbon are permanently
lost from the system.

dCO2

dt
=+FSTRCCO2 +FLABCCO2 +FLMWCCO2

+FMICCCO2 (A9)
dCleach

dt
=+FLMWCCleach (A10)

The flows of carbon between pools, as described above, are
computed from the state variables of each pool XC, the pro-
tection capacity for the LABC pool (pLAB), carbon use ef-
ficiencies for each pool (CUEX) and their standard turnover
rates (kX) or maximum microbial uptake for LMWC (µmax).
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Figure A1. Prior and posterior parameter distributions of SAMM and the version without aggregates (SAMMnoAgg) for all model parame-
ters that were calibrated. Priors were the mean of SAMM and SAMMnoAgg from an initial calibration of both model versions with a genetic
algorithm. The width of the distribution was manually chosen and based on the range given by the genetic algorithm. Negative values were
excluded.

Apart from LMWC, the CUEX, are not directly measurable,
but represent a proxy for depolymerization cost. The de-
composition speed of all pools outside aggregates is influ-
enced by a reverse Michaelis–Menten microbial activity fac-
tor (aMIC), and a temperature (st) and a moisture rate mod-
ifier (sw) influences all pools. Partitioning coefficients (fX)
are further used, where one pool feeds into several pools.

FSTRCLMWC = STRC ·CUESTR · kSTR · aMIC · st · sw (A11)
FSTRCCO2 = STRC · (1−CUESTR) · kSTR · aMIC · st · sw (A12)
FLABCLMWC = LABC · (1− pLAB) ·CUELAB

· kLAB · aMIC · st · sw (A13)
FLABCCO2 = LABC · (1− pLAB) · (1−CUELAB)

· kLAB · aMIC · st · sw (A14)
FLMWCMICC = LMWC ·CUECN(LMW) ·µmax

· aMIC · st · sw (A15)
FLMWCCO2 = LMWC · (1−CUECN(LMW)) ·µmax

· aMIC · st · sw (A16)

The protection and disruption of aggregates are formulated
as follows:

FSTRCAggSTRC =min(((FLMWCMICC +NonMicAgg)

· aggfactSTRC
),STRC) (A17)

FLABCAggLABC =min(FSTRCAggSTRC ·pcSTRLAB ,LABC) (A18)
FMAOCAggMAOC =min(((FLMWCMICC +NonMicAgg)

· aggfactMAOC
),MAOC) (A19)

FAggSTRCSTRC = AggSTRC · kAgg · st · sw (A20)
FAggLABCLABC = AggLABC · kAgg · st · sw (A21)
FAggMAOCMAOC = AggMAOC · kAgg · st · sw (A22)
FMICCCO2 =MICC ·mmic · st · sw (A23)
FMICCLMWC =MICC · kmic · (1− fMICMAOM) · st · sw (A24)
FMICCMAOC =MICC · kmic · fMICMAOM · st · sw (A25)
FMAOCLMWC =MAOC · kMAO · aMIC · st · sw. (A26)

Adsorption to MAOC is formulated as follows:

FLMWCMAOC = LMWC ·KLMWMAO

·
MAOCmax −MAOC

MAOCmax

· st · sw. (A27)

For leaching, which was externally calculated using the HY-
DRUS 1D model (Šimůnek et al., 2005), it is assumed that
LMWC&N are equally mixed with the soil solution and thus
lost at the same rate as leached water.

FLMWCCleach =min(wleach ·LMWC;0.95 ·LMWC) (A28)

The reverse Michaelis–Menten microbial activity factor
(aMIC), which influences the decomposition speed of most
pools, and the ratio of STRC, LABC&N, and MAOCC&N pro-
tected in aggregates are calculated as follows:

aMIC =max
(

MICC

KMMIC +MICC
;0.05

)
. (A29)
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Figure A2. Correlation matrix between all calibrated parameters of the SAMM model. The parameter values are from the posterior distribu-
tion of the Bayesian calibration using the SIR method. The level of significance for parameter correlations is indicated by red stars (p < 0.05,
0.01, and 0.001 for 1 to 3 stars, respectively).

It was defined as never being lower than 0.05, so that mi-
crobes in low organic matter input treatments would not com-
pletely die off.

The maximum adsorption capacity of a soil depends on the
modeled depth, the bulk density (BD), and the amount of silt
and clay particles (SiCl):

MAOCmax = depth ·BD ·%SiCl · cSORP. (A30)

The temperature (st) and a moisture scalar (sw) and the dy-
namic CUE were adopted from established models and not
subject to further modification (Fig. A6). For the tempera-
ture scalar, an exponential equation was chosen as is com-
mon in many models (e.g., Daisy; Mueller et al., 1997). In
this context it is important to note that different tempera-
ture rate modifiers have a different temperature at which they
set the temperature scalar to 1. Here 20 ◦C was chosen to
be representative for the tropical climates. Many temperate
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Figure A3. Correlation matrix between all calibrated parameters of the model without aggregates (SAMMnoAgg). The parameter values are
from the posterior distribution of the Bayesian calibration using the SIR method. Aggregate related parameters were fixed to deactivate the
aggregate formation.The level of significance for parameter correlations is indicated by red stars (p < 0.05, 0.01, and 0.001 for 1 to 3 stars,
respectively). NA corresponds to parameters that were fixed for SAMMnoAgg and thus have no correlation.

models use a value of 10 ◦C for the scalar (Daisy, RothC),
whereas Century and Millennial use a scalar that has a maxi-
mum value of 1 at 40 ◦C but only 0.5 at 20 ◦C. This difference
in temperature scalar functions needs to be considered, e.g.,
when adopting turnover rates from one model to another. In
that case, rates need to be adjusted accordingly (e.g., in the
case of SAMM multiplying them by 2 for models that define
the scalar to be 1 at 10 ◦C and use an exponential temperature

function with a Q10 value of 2).

st = 2(
t−20

10 ) (A31)

sw =min
(
(0.6+ 0.4 ·

pF

1.5
);max(1.625−

pF

4
;0);1

)
(A32)

CUECN(LMW) = CUELMW ·min
(

CN(LMW)−1
· 13.4;1

)
(A33)
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Figure A4. Comparison of measured water contents by moisture sensors (ECH2O EC-5, METER Group, Inc. USA; solid lines) with sim-
ulated water content by HYDRUS 1D (dashed red line). Sensors were installed in different plots of the long-term experiment in Khon
Kaen.

Figure A5. Comparison of measured bulk densities in 0–15 cm in the years with available data. Treatment differences were not significant
but a significant effect of year existed. This was, however, not considered to be any temporal trend but rather an effect arising from different
people conducting the sampling. All statistical tests were conducted with a mixed linear effects model, containing a random intercept per
subplot nested in the experimental block.

The flow of nitrogen between the different pools is simu-
lated in a way that is similar to the carbon pools:

dLABN

dt
=+ILABN −FLABNLMWN −FLABNAggLABN

+FAggLABNLABN (A34)
dLMWN

dt
=+FLABNLMWN +FMICNLMWN

+FMAONLMWN −FLMWNMICN

−FLMWNMAON −FLMWNNleach − IMMICN

+OSMICN (A35)

dMICN

dt
=+FLMWNMICN −FMICNLMWN −FMICNMAON

+ IMMICN −OSMICN (A36)
dMAON

dt
=+FMICNMAON +FLMWCNMAON

−FMAONLMWN −FMAONAggMAON

+FAggMAONMAON (A37)
dAggLABN

dt
=+FLABCAggLABN −FAggLABCLABN (A38)

dAggMAON

dt
=+FMAOCAggMAON −FAggMAOCMAON (A39)

dNleach

dt
=+FLMWNNleach . (A40)
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Figure A6. Graphic representation of the scalar functions which are applied in SAMM to represent the effect of (a) temperature (b) moisture.
Additionally the function that represents (c) the dynamic CUE based on the C/N ratio of LMWC&N is displayed.

To calculate the flows of nitrogen, the same scalars, ratios
of protected STRC, LABC&N, and MAOCC&N in aggregates,
and turnover rates are used. Additionally, the microbes can
immobilize nitrogen (IMMICN ) from LMWN, if their C/N
ratio gets too wide, or spillover nitrogen to the DON pool
(OSMICN ), if their C/N ratio gets too narrow:

FLABNLMWN = LABN · (1− pLAB) · kLAB · aMIC · st · sw (A41)
FLMWNMICN = LMWN ·µmax · aMIC · st · sw

+ IMMICN −OSMICN (A42)
FMICNLMWN =MICN · kmic · (1− fMICMAOM) · st · sw

− IMMICN +OSMICN (A43)
FMICNMAON =MICN · kmic · fMICMAOM · st · sw (A44)
FMAONLMWN =MAON · kMAO · aMIC · st · sw (A45)

FLMWNMAON = FLMWCMAOC ·
LMWN

LMWC
(A46)

FLABNAggLABN = FLABCAggLABC ·
LABN

LABC
(A47)

FMAONAggMAON = FMAOCAggMAOC ·
MAON

MAOC
(A48)

FAggLABNLABN = AggLABN · kAgg · st · sw (A49)
FAggMAONMAON = AggMAON · kAgg · st · sw (A50)
FLMWNNleach =min(wleach ·LMWN;0.95 ·LMWN) (A51)

IMMICN = if
(

MICC

MICN
> CNmax(MIC)

)
·

[
min

(
MICC

CNmax(MIC)
−MICN;

1
2

LMWN

)
;0
]

(A52)

OSMICN = if
(

MICC

MICN
< CNmin(MIC)

)
·

[
0.5

(
MICN−

MICC

CNmin(MIC)

)
;0
]
. (A53)

Code and data availability. The full dataset used for this study, as
well as the R code of SAMM version 1.0, is provided on Github via
Zenodo (https://doi.org/10.5281/zenodo.8086828; Laub, 2023b). It
may be adapted for further use or integrated into full ecosystem
models that allow for interchanging of the SOM part of the model.
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