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Abstract. Snow modelling is often hampered by the avail-
ability of input and calibration data, which can affect the
choice of models, their complexity, and transferability. To
address the trade-off between model parsimony and trans-
ferability, we present the Generalizable Empirical Model of
Snow Accumulation and Melt (GEMS), a machine-learning-
based model, which requires only daily precipitation, tem-
perature or its daily diurnal cycle, and basic topographic fea-
tures to simulate snow water equivalent (SWE). The model
embeds a support vector regression pretrained on a large
dataset of daily observations from a diverse set of the SNOw-
pack TELemetry Network (SNOTEL) stations in the United
States. GEMS does not require any user calibration, except
for the option to adjust the temperature threshold for rain–
snow partitioning, though the model achieves robust simula-
tion results with the default value. We validated the model
with long-term daily observations from numerous indepen-
dent SNOTEL stations not included in the training and with
data from reference stations of the Earth System Model–
Snow Model Intercomparison Project. We demonstrate how
the model advances large-scale SWE modelling in regions
with complex terrain that lack in situ snow mass observations
for calibration, such as the Pamir and Andes mountains, by
assessing the model’s ability to reproduce daily snow cover

dynamics. Future model improvements should consider the
effects of vegetation, improve simulation accuracy for shal-
low snow in warm locations at lower elevations, and possibly
address wind-induced snow redistribution. Overall, GEMS
provides a new approach for snow modelling that can be use-
ful for hydroclimatic research and operational monitoring in
regions where in situ snow observations are scarce.

1 Introduction

Snow is a vital component of the global climate system and
plays a key role in regulating the temperature of the Earth’s
surface and in governing the hydrologic cycle on both global
and regional scales (Zhang, 2005; Sturm et al., 2017). Fur-
thermore, snow plays an important role as a natural means
of water storage and supply for human activities (Barnett
et al., 2005), with a substantial share of the world’s popu-
lation relying on snowmelt to provide water for agriculture
and domestic needs (Mankin et al., 2015; Kraaijenbrink et
al., 2021). Snowmelt is particularly crucial for densely pop-
ulated downstream areas, where the timing and quantity of
snow accumulation and melting in mountainous regions de-
termine the availability of water (Armstrong et al., 2019; Im-
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merzeel et al., 2020). Accurate estimation of snow mass ac-
cumulation and melt is therefore essential for water resource
management, as well as for early warning of droughts and
floods (Beniston, 2008).

Energy balance and temperature index snow models are
the two main types of models used to simulate snow accu-
mulation and melting. Energy balance snow models, also re-
ferred to as physics-based models, calculate the amount of
snow mass, based on the balance between the energy input to
the snowpack and the energy output from the snowpack (Es-
sery, 2019). These models consider multiple factors such as
incoming solar radiation, air temperature, humidity, precipi-
tation, and wind speed, as well as the physical properties of
the snowpack, such as snow density and surface albedo. Due
to the high input data requirement of energy balance models,
which are often lacking especially in countries of the Global
South, researchers often opt for relatively simpler concep-
tual temperature index models, which rely on temperature
and precipitation data (Hock, 2003; Ohmura, 2001). These
models estimate the amount of snowmelt by determining em-
pirical relationship between temperature and the amount of
snowmelt (Link et al., 2019). The two types of snow mod-
els usually require an adjustment of the internal parameters
that characterize embedded snow processes. Depending on
the complexity of a model, calibrating its parameters can of-
ten become a computational burden and introduces the chal-
lenge of model parameter equifinality (Beven, 1993, 2006;
Günther et al., 2020).

Despite the differences in the number of internal processes
represented and the corresponding data requirements, both
types of models produce similar results when calibrated and
applied to the same spatial domain and same climatic con-
ditions (Kumar et al., 2013; Bavera et al., 2014; Magnusson
et al., 2011; Shakoor et al., 2018). The growing number of
the intercomparison studies conclude that model complexity
does not determine performance (Essery et al., 2013; Mag-
nusson et al., 2015; Menard et al., 2021), and simpler mod-
els may perform equally well or even outperform more so-
phisticated snow models in some cases; e.g. when input data
are of low quality (Terzago et al., 2020). Models calibrated
to the same climate conditions can, however, produce dif-
ferent simulations under different climate conditions (Car-
letti et al., 2022). In this regard, physics-based snow models
are known to show better temporal and spatial transferabil-
ity than temperature index models (Magnusson et al., 2015),
since they are able to capture the dynamic physical processes
that govern formation, accumulation, and melting of snow,
which allows them to simulate snow under a wide range of
climate conditions. The generalizability and transferability of
snow models are important considerations in their develop-
ment and deployment, especially for applications over geo-
graphical domains where in situ snow measurements are non-
existent or scarce.

In recent years, the research community saw an emer-
gence of so-called data-driven approaches for snow mod-

elling, which usually employ machine learning techniques
on extensive sets of snow observations and predictor vari-
ables. In terms of ways in which machine learning (ML) has
been applied for snowpack modelling, the respective research
studies can be grouped into several main approaches. One
common approach is estimating the spatial distribution of
snowpack by applying ML-supported interpolation of sparse
snow observations and using topographical features and me-
teorological and satellite data (Broxton et al., 2019; Mital et
al., 2022). Other studies have explored the potential of satel-
lite radar data for the direct detection of instantaneous prop-
erties of snowpack (Santi et al., 2022; Daudt et al., 2023). In
cases where several gridded snow products are available, ML
can be employed for a better prediction through the assimi-
lation of multiple estimates or bias correction (Shao et al.,
2022; King et al., 2020). A few recent studies applied ML
in a manner consistent with traditional snow models, explic-
itly modelling snow mass accumulation and melt dynamics
(Vafakhah et al., 2022; Duan et al., 2023; Wang et al., 2022).
However, most of the noted approaches also rely on in situ
observations or an extensive set of regional reanalysis vari-
ables, which restricts their wider applicability due to unavail-
ability of such data in many regions. Furthermore, the ability
of pretrained machine learning models to generalize to new
geographic and climatic domains remains another challenge;
machine learning models often perform less well outside the
data distribution used to train them (Chase et al., 2022; Her-
nanz et al., 2022).

We address these challenges with the Generalizable Em-
pirical Model of Snow Accumulation and Melt (GEMS) that,
by leveraging the power of machine learning to learn from a
large number of diverse experiments, generates accurate esti-
mates of snow water equivalent (SWE) from a limited range
of input data. Instead of modelling snow as a dynamic sys-
tem, the GEMS employs assimilated statistical relationship
between changes in snow mass in response to climate vari-
ables, while accounting for topographic features. By incorpo-
rating diverse climate and topographic observations into the
model training, we demonstrate how it simulates snow water
equivalent with acceptable accuracy even in distant out-of-
sample geographical locations.

2 Model description

2.1 Model structure and required inputs

GEMS is an empirical model based on statistical learning of
daily changes in snow water equivalent in response to pre-
cipitation, temperature, and topography. It incorporates sup-
port vector regression (SVR) that was trained using more
than 28 000 observations of daily snow accumulation and
melt from 94 stations of the SNOwpack TELemetry Network
(SNOTEL) in the United States. The model has only one ad-
justable parameter, namely a temperature threshold (TS) that
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specifies when 100 % of precipitation falls as snow, which is
used to confine the SVR simulations during the rain-to-snow
transition and snow accumulation phases. Figure 1 depicts
the model’s workflow and its primary components, which are
described in greater detail in the following sections.

The GEMS v1.0 model is developed in the R programming
environment (R Core Team, 2020), with anticipated replica-
tion in Python and possibly other program languages. It is
available as a pretrained SVR model, accompanied by an R
script containing a set of functions that take input data on
daily time steps, calculate additional predictors, and gener-
ate corresponding estimates of snow water equivalent. It can
be applied for both single-point and spatially distributed sim-
ulations by feeding input data in tabular form or raster files,
respectively.

The model is available in four variations in the required
input data listed in Table 1. The simplest one, GEMS-4P (the
“P” suffix specifies the number of required inputs), requires
four predictors, such as daily precipitation, average tem-
perature, latitude, and elevation. Three other modifications,
GEMS-5P, GEMS-6P, and GEMS-7P, require additional pre-
dictors, such as daily diurnal temperature range (daily max-
imum and minimum temperatures) and a location-specific
heat–insolation index, which can be retrieved through the
Google Earth Engine.

2.2 Support vector regression

In its core embedding, GEMS is built on a pretrained SVR
that estimates daily accumulation and melt of SWE, given
the meteorological conditions and terrain features. SVR is a
supervised machine learning algorithm that projects data into
a higher-dimensional space and then minimizes the error by
generating a set of hyperplanes that explain as many obser-
vations as possible (Awad and Khanna, 2015; Vapnik, 1995).
SVR utilizes radial basis function kernels (Vert et al., 2004)
and is calibrated for optimal cost and gamma hyperparame-
ters, which govern training errors and degree of influence of
a single training point. The SVR can be expressed as

SVR(x)=
∑N

i=1

(
αi −α

∗

i

)
K (xi, x)+ b , (1)

where N is the total number of support vectors, which cor-
responds to number of data points during training. αi,α∗i are
Lagrangian multipliers, such that αi ≥ 0 and α∗i ≤ 0.K is the
radial basis function kernel, such that

K
(
xi, xj

)
= exp

[
−
||xi − xj ||

2

2σ 2

]
,

where ||xi − xj || is the Euclidian distance between feature
vectors corresponding to the ith and j th input data points.

We trained the model using data from selected SNOTEL
stations (described in Sect. 3.1) for 2017 and 2018. We fine-
tuned the hyperparameters so that the model produces sim-
ilar levels of accuracy when applied to observations from

the same stations for 2019 and 2020. The hyperparameter
calibration process involved an exhaustive grid search tech-
nique, which systematically explored all possible combina-
tions within predefined parameter ranges. Ultimately, we se-
lected the hyperparameter configurations that resulted in the
lowest root mean squared error between simulated and ob-
served daily changes in SWE (dSWE) during both model
training on observations from 2017 and 2018, and we tested
the model on observations from 2019 and 2020.

2.3 Temperature threshold constraint and model
wrapper function

Due to the instabilities of dSWE estimated by the SVR dur-
ing rain–snow transition phases (described in Sect. 4.1), sim-
ulated dSWE at any day (t) values are constrained as follows:

dSWEt =
{

SVR(xt ) , if TAVGt ≥ TS
PRCPt , if TAVGt < TS

, (2)

where TS is a 100 % rain–snow temperature threshold, with
a default value of −1 ◦C.

The dSWE estimates are then aggregated into daily SWE
time series using the cumulative sum reset function as fol-
lows:

SWEt =
{

0, if t = 0
max(dSWEt +SWEt−1,0) , if t > 0 . (3)

3 Data

3.1 Data for training support vector regression

For training the SVR, we used the SNOTEL data listed in Ta-
ble 2, the largest network of automated weather stations that
collect data on snow water equivalent, precipitation, tempera-
ture, and other climatic variables. We used daily observations
from 94 SNOTEL stations located in the contiguous United
States for 2 hydrological years, 2017 and 2018. Figure 2 dis-
plays location of the selected stations, along with density dis-
tribution of their main geographical and topographical char-
acteristics.

In the 1990s, the temperature observations from SNOTEL
showed anomalous trends (Pepin et al., 2005), which were
eventually attributed to a new temperature sensor (Oyler et
al., 2015) installed with an incorrect equation algorithm. To
correct for this bias, we applied a debiasing equation on
SNOTEL temperature data, proposed by Brown et al. (2019),
and using the metadata of affected stations (USDA, 2019).

SNOTEL precipitation gauges may also be susceptible
to solid precipitation undercatch, especially when snowfall
occurs in windy conditions (USDA, 2014). Scalzitti et al.
(2016) provide a comprehensive review of the issues as-
sociated with precipitation undercatch, highlighting a re-
ported undercatch ranging from 11 % for snowfall under
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Figure 1. GEMS workflow. Model elements and abbreviations are described in the sub-sections that follow.

Table 1. Required forcing data for GEMS.

Input data GEMS-4P GEMS-5P GEMS-6P GEMS-7P

Precipitation (mm) X X X X
Mean daily temperature (◦C) X X X X
Maximum daily temperature (◦C) X X
Minimum daily temperature (◦C) X X
Latitude (decimal degrees) X X X X
Elevation (m a.s.l.) X X X X
Heat–insolation index X X

2 m s−1 wind speed to more than 30 % during intense snow-
storm events. To ensure data accuracy, we cleaned the train-
ing dataset by removing observations with inconsistencies
between daily precipitation and snow mass accumulation.
These inconsistencies refer to cases when the daily increase
in SWE exceeded the reported daily precipitation.

The input data includes a heat–insolation index to ac-
count for the influence of topographic shading, which may
result in a significant variability in the surface energy bal-
ance and therefore in snowmelt rate, particularly in complex
terrain. We used the Continuous Heat–Insolation Load Index
(CHILI), which approximates the effects of insolation and to-
pographic shading on evapotranspiration and is determined
by estimating insolation in the early afternoon at equinox
Sun height (Theobald et al., 2015). The Google Earth Engine
provides access to CHILI data on a global scale, with a hori-
zontal resolution of 90 m. Since CHILI is a location-specific
static characteristic, we also augmented the forcing data with
day length, which is a time-varying variable estimated using
latitude of a location and day of a year.

3.2 Data and procedure for evaluation of the model

The evaluation of the model performance followed a three-
tiered structure.

First, we assessed the model performance using observa-
tions from SNOTEL stations that were not included in the
training. The selection of stations for validation followed two

main criteria. We excluded stations that exhibit precipitation
undercatch, which we formulate as when SWE accumulated
by March is greater than the accumulated precipitation dur-
ing October to March. This approach enabled us to include
more stations in the evaluation dataset, while excluding only
those hydrological years that exhibited inconsistencies be-
tween these variables. We selected evaluation observations
using this criterion without any specific threshold for the
magnitude of inconsistencies, and we did not make correc-
tions to the precipitation time series. Out of the filtered sta-
tions, we selected only stations that have complete daily ob-
servations for at least 5 water years, defined as October of
the preceding year to September next year for any year from
2011 to 2022. The selection algorithm filtered 520 stations
from a total of approximately 703 contiguous United States
SNOTEL stations that had not been used for model training.

Second, we evaluated the model performance using snow
and meteorological data from 10 reference stations, which
were used in the Earth System Model–Snow Model Inter-
comparison Project (ESM–SnowMIP), hereinafter referred
to as ESM–SnowMIP reference stations. Table 3 below pro-
vides descriptions of these sites.

Finally, we assessed the performance of the model using
distributed large-scale climate data over the western Pamir in
central Asia and central Andes regions with complex terrain
(Fig. 3) by comparing observed and simulated snow cover.
Both selected regions are characterized by semi-arid climate
conditions in higher elevations and predominantly arid cli-
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Figure 2. Location of SNOTEL stations used for training the SVR (a), and their density distributions in terms of (b) elevation, (c) latitude,
and (d) heat–insolation index.

Table 2. Climate and topographic data used to train the model.

Variable Abbreviation Source/reference

Daily change in snow water equivalent (mm) dSWE SNOTEL

Precipitation (mm) PRCP SNOTEL

Mean daily temperature (◦C ) TAVG SNOTEL

Maximum daily temperature (◦C) TMAX SNOTEL

Minimum daily temperature (◦C ) TMIN SNOTEL

Rolling sum of temperature over preceding 3 d (◦C) TSUM Calculated using TAVG

Cumulative sum of precipitation over preceding 3 d (mm) PSUM Calculated using PRCP

Day length (hours) DAYL Calculated as a function of latitude and day of a
year (Forsythe et al., 1995)

Elevation (m a.s.l.) ELEV SNOTEL

Heat–insolation index CHILI Global Continuous Heat–Insolation Load Index
(Theobald et al., 2015)

mate conditions in plains. We used temperature and precipi-
tation data at 1 km resolution from CHELSA-W5E5 dataset
(Karger et al., 2023) to force the model and compared the
extent of SWE simulated during the two consecutive snow
seasons between 2014 and 2016 with MODIS-derived snow
cover retrievals using the cloud-gap-filled MOD10A1F prod-
uct images (Riggs et al., 2019).

The evaluation metrics for single-point simulations across
SNOTEL and ESM–SnowMIP reference sites consist of
the Nash–Sutcliffe efficiency (NSE) coefficient (Nash and
Sutcliffe, 1970), mean absolute percentage error in the peak
SWE (maxSWE MAPE), bias of the simulated peak SWE

(maxSWE BIAS), and the difference in snow melt-out dates,
as follows:

NSE
(

SWE, ŜWE
)
= 1−

∑N(days)
i=1 (SWEi − ŜWEi)2∑N(days)

i=1 (SWEi −mean(SWEi))2
,

where SWEi is the observed daily SWE. ŜWEi is the simu-
lated daily SWE

maxSWE MAPE(y, ŷ)=
100%
N (years)

∑N(years)
w=1

|yw − ŷw|

yw

maxSWE BIAS(y, ŷ)=
100%
N(years)

∑N(years)
w=1

yw − ŷw

yw
,
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Table 3. Geographic and climate characteristics of the ESM–SnowMIP reference stations.

Site name, country Abbreviation Latitude Elevation Snow cover Köppen climate classification
(◦ N) (m a.s.l.) classification

Col de Porte, France CDP 45.3 1325 Alpine Warm-summer humid continental climate
Old Aspen, Canada OAS 53.63 600 Taiga Warm-summer humid continental climate
Old Black Spruce, Canada OBS 53.99 629 Taiga Warm-summer humid continental climate
Old Jack Pine, Canada OJP 53.92 579 Taiga Warm-summer humid continental climate
Reynolds Mountain, USA RME 43.19 2060 Alpine Warm-summer humid continental climate
Sapporo, Japan SAP 43.08 15 Maritime Hot-summer continental climates
Senator Beck, USA SNB 37.91 3714 Alpine Polar and alpine (montane) climates
Swamp Angel, USA SWA 37.91 3371 Alpine Subarctic climate
Sodankylä, Finland SOD 67.37 179 Taiga Subarctic climate
Weissfluhjoch, Switzerland WFJ 46.83 2536 Alpine Polar and alpine (montane) climates

Source: Ménard et al. (2019).

Figure 3. Selected regions for distributed snow modelling.

where yw is the observed peak SWE in wth hydrological
year. ŷw is the simulated peak SWE in wth hydrological year

Snow melt-out date error=
1

N(years)

∑N(years)
w=1

mdatew − m̂datew,

where mdatew is the actual date of snow disappearance in
wth hydrological year. m̂datew is the date of the snow disap-
pearance according to model simulations.

All simulations for the evaluation are implemented with
the GEMS-7P version of the model that uses seven predictors
(Table 1).

Section 4.7 compares the overall performance of the
model’s four different versions (GEMS-7P, GEMS-6P,
GEMS-5P, and GEMS-4P).

4 Model evaluation

4.1 Observed and modelled daily changes in SWE
across training and validation SNOTEL stations

Figure 4 compares observed and predicted dSWE values ob-
tained by running the pretrained SVR using training, cali-
bration, and validation datasets. The model yields plausible
estimates of the dSWE, although the variance is greater at
higher melt rates. There is a greater variance between simu-
lated and observed values in the validation dataset, although
it should be noted that it has a much larger number of ob-
servations compared to the training and calibration datasets
(1.36 million, 28 600, and 32 600 observations, respectively),
which results in more outliers. In each of the three instances,
the slope of the linear regression between the observed and
simulated values ranges between 1.03 to 0.99.

The validation dataset simulations exhibited a bigger pro-
portion of outliers in the upper tile corresponding to snow
accumulation phase (dSWE> 0). To determine the accu-
racy of the SVR’s performance for this phase, we compared
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Figure 4. Predicted and observed dSWE values for training, calibration, and validation datasets. The red line represents the slope of the
linear regression run on observed and predicted dSWE values.

model simulations using a sample of the validation dataset
that includes observations with incremental changes in the
SWE at the beginning of the snow season. Since the SNO-
TEL observations do not contain explicit information on the
precipitation–snow transition, we decided to use a sample of
the dataset to simulate the transition depending on climate
inputs (temperature variables) and topographical characteris-
tics (e.g. elevation). More specifically, we have filtered the
SNOTEL observations that closely fall on the precipitation–
snow transition phase by selecting observations that meet the
following non-exhaustive main criteria: (1) observations for
October or November when precipitation is non-zero; (2) av-
erage temperature (TAVG) is below 10 or above −10 ◦C;
and (3) accumulated SWE is below 20 mm. We then run the
model using the obtained sample of observations and esti-
mated solid fraction of precipitation simulated by the model,
i.e. amount of dSWE estimated by the model with respect to
precipitation amount.

Figure 5 depicts the rain-to-snow transition modelled us-
ing the metadata of the 520 validation SNOTEL stations. We
conclude that average daily temperatures (TAVG) at which
the model predicts precipitation to fall partially as snow may
range from−5 to more than 5 ◦C and have a relatively higher
association with maximum temperature and elevation. The
comparison also reveals that the simulations tend to under-
estimate snow accumulation, since in some cases the solid
component of precipitation in simulations does not reach
100 %, even at temperatures below −5 ◦C. In this regard, we
have introduced a constraint (specified above in Sect. 3.4),
which imposes that any daily precipitation after a certain
temperature threshold (TS) is considered to fall as 100 %
snow. We set the default value of TS as−1 ◦C, which the sim-
ulations revealed to be the optimal common threshold, based
on observations from the validation dataset.

Here it is important to note that the TS constraint in the
GEMS model differs from classical temperature-based par-
titioning methods, where the threshold defines precipitation
in a binary way (either 100 % rainfall or 100 % snow). The
model simulates snow–precipitation partitioning only until

the temperature drops below TS, at which point any precip-
itation is regarded as 100 % snow. For example, when the
average temperature (TAVG) is 0 ◦C, using the assimilated
statistical relationships the model will likely simulate some
portion of precipitation as snowfall. As illustrated in Fig. 5
at TAVG around of 0 ◦C, the model, on average, simulates
around 75 % of precipitation as snowfall. Depending on other
input variables, this ratio varied from approximately 25 % to
as high as 95 %.

4.2 Model evaluation with independent SNOTEL
stations

Figure 6 presents results of the model evaluation on multi-
annual data from the 520 independent SNOTEL stations with
histograms and distribution maps of the four selected met-
rics. The model produces accurate simulations of SWE time
series in most cases, with the median NSE for simulations
across all the stations of 0.91, and for 84 % of the stations,
the model achieved NSE of greater than or equal to 0.8. For
80 % of all stations, the maxSWE error (maxSWE MAPE)
of the simulations is less than 20 %, with the median value
for all stations being 14 %. The median error in the snow
melt-out date was 4 d and did not exceed 10 d in 74 % of in-
stances. We found no spatial associations for NSE values and
maxSWE errors, while the bias for maxSWE and the snow
melt-out date error tend to be larger in the western part of the
study domain (in the vicinity of the Cascade Range, Oregon).
Here the simulations overestimate maxSWE and the snow
melt-out date by a larger margin. Another concentration of
overestimation of simulated snow melt-out date occurs in
stations located in the Sierra Nevada mountains. In contrast,
the model systematically underestimates maxSWE in some
stations in the northeastern part (Montana and Wyoming),
where it consequently simulates earlier snow disappearance.

In addition to simulations generated with the default TS
value, we also examined the model’s accuracy using TS val-
ues calibrated to each SNOTEL station. We calibrated TS
for each of the stations with the objective of maximizing the
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Figure 5. The rain–snow transition with respect to average temperature (TAVG) simulated by the pretrained SVR using metadata from
the SNOTEL validation data. The two graphs illustrate the same simulations and highlight distributions of elevation (a) and maximum
temperature (b). The black line is the median of the resulting solid fraction of precipitation across the simulations.

Nash–Sutcliffe efficiency of the model’s simulations with re-
spect to observed SWE, and we bounded the range of cal-
ibrated TS to −5 to +5 ◦C. The results illustrated in Fig. 7
show that the station-adjusted modelling incrementally im-
proves all evaluation metrics of the simulations result, though
with a lesser impact on mean maxSWE error. Adjusted TS
values tend to be negative across the stations on mountain
ranges, particularly across the Cascade Range and Sierra
Nevada and Rocky mountains. A cluster of a few stations
with positive TS appear in the northeastern portion of the
study region.

While the median of the adjusted TS values for all stations
agrees with its default threshold (−1 ◦C), the density distri-
bution also shows a high frequency of calibrated TS resulting
at the lowest bound of −5 ◦C (Fig. 7f). This suggests that, in
cases where calibrated TS values approach the lowest bound-
ary, the model simulations might have been overcalibrated,
resulting in error compensation. The overestimation of SWE
at these locations can be attributed to several factors that the
model does not account for, including effect of dense veg-
etation, wind-induced snow drift, sublimation, and rain-on-
snow events which may be frequent phenomena in the moun-
tain areas (Li et al., 2019; Boniface et al., 2015; Kirchner et
al., 2014; Sexstone et al., 2018).

4.3 Model evaluation using ESM–SnowMIP reference
station data

Table 4 presents obtained NSE, maxSWE MAP, and
maxSWE bias values of the GEMS simulations using the
ESM–SnowMIP reference stations, and Fig. 8 compares their
observed and modelled SWE time series. The model per-
formance at ESM–SnowMIP reference sites was robust for
the majority of stations, with the TS threshold set to −1 ◦C
by default. In general, simulated SWE was more accurate
for the stations located at higher elevations and character-
ized by higher snow accumulation rates (RME, CDP, WFJ,
and SWA), except for SNB, which had the lowest NSE
value (0.34) and the highest maxSWE error (17 %) among

all ESM–SnowMIP stations. The poor performance of the
model for the SNB station is attributed to prevalence of wind-
induced snow redistribution, which can reportedly reduce
peak SWE on the site by up to 40 % (Landry et al., 2014). For
the same reason, one of the largest SWE errors were recorded
for the SNB site by the majority of models that participated
in ESM–SnowMIP (Menard et al., 2021).

SWE simulations for SOD and SAP stations have NSE
values of around 0.7 and maxSWE MAPE errors of 8 % and
18 %, respectively. It is important to note that in terms of lati-
tude and thus the range of day lengths, the SOD station is sit-
uated much beyond the range of the data utilized to pretrain
the GEMS model. In addition, since the global Continuous
Heat–Insolation Load Index (CHILI) does not extend beyond
the arctic circle. To estimate it for SOD, we used the nearest
known value, assuming flat terrain, but acknowledge that our
estimate may have some uncertainty. Regarding the SAP sta-
tion, the performance of GEMS may be affected by the site’s
anomalous precipitation-phase partitioning, in which precip-
itation reportedly can fall as rain at low temperatures and as
snow at temperatures over 5 ◦C (Ménard et al., 2019).

The performance of the model exhibited notable dispari-
ties across three forested locations in Canada (OAS, OBS,
and OJP). In comparison to other sites, the model’s perfor-
mance at these sites was relatively inferior, as indicated by
NSE values ranging between 0.44 and 0.66 and maxSWE er-
rors spanning from 15 % to 30 %. This observation suggests a
diminished performance of the model in environments char-
acterized by dense canopy interception.

For reference, Table 4 also provides the NSE of sim-
ulations produced by models that participated in ESM–
SnowMIP. With the exception of the SNB site, ESM–
SnowMIP simulations had lower NSE than those of GEMS
simulations. However, a direct comparison between GEMS
and ESM–SnowMIP simulations is not possible because
evaluation data were not provided to the ESM–SnowMIP
participants in advance, and rain–snow transitions were pre-
scribed in the driving data (Ménard et al., 2019). ESM–
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Figure 6. GEMS performance metrics for independent SNOTEL stations. Spatial distributions of the resultant (a) NSE, (b) maxSWE MAPE,
(c) maxSWE bias, (d) snow melt-out date error, and corresponding histograms (e–h). Vertical dashed red lines on the histograms denote the
median across all stations; the vertical dashed black line correspond to the 5th percentile (and 95th percentile in the case of two-tailed
distributions).

SnowMIP participants thus had no opportunity to enhance
model performance by adjusting parameters.

4.4 Model evaluation for large-scale simulations

Figure 9 compares observed and simulated snow cover area
for the selected western Pamir and Mendoza–Andes regions
on a daily time step over two consecutive snow seasons. The
primary objective of this analysis was to test and demonstrate
the model’s transferability to regions with complex terrain
and without in situ SWE data. We assume that if the extent

of the simulated SWE aligns well with the remotely sensed
snow cover, then the simulated SWE is likely to contain less
uncertainty. This assumption is also based on the fact that re-
motely sensed snow cover is increasingly used for parameter
calibration or uncertainty reduction in snow modules of hy-
drological models (e.g. Parajka and Blöschl, 2008; Gyawali
and Bárdossy, 2022; Tong et al., 2022; Di Marco et al., 2021).

GEMS accurately reproduced seasonal cycles and inter-
annual variations in the snow cover in the western Pamir
and Mendoza–Andes region, which have distinctive seasonal
patterns. The simulations capture short-term spikes in the
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Figure 7. GEMS performance metrics for the independent SNOTEL stations with station-adjusted TS threshold. (a) NSE, (b) maxSWE
MAPE, (c) maxSWE bias, and (d) snow melt-out date error. The bottom map (e) and histogram (f) show the density and spatial distribution
of the adjusted TS values.

Table 4. GEMS performance metrics for the ESM–SnowMIP reference stations.

GEMS model ESM–SnowMIP models

Station NSE maxSWE maxSWE max NSE
MAPE (%) BIAS (%)

CDP 0.84 14 0 0.6
OAS 0.6 15 −13 0.24
OBS 0.44 29 −29 0.18
OJP 0.66 27 −30 0.41
RME 0.8 13 −13 0.72
SAP 0.72 17 3 0.47
SNB 0.34 17 −13 0.46
SOD 0.68 8 6 0.68
SWA 0.85 15 14 0.6
WFJ 0.85 14 4 0.64
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Figure 8. Observed and modelled SWE at the ESM–SnowMIP reference stations (with the default TS threshold).

snow cover extent in the middle of the snow seasons over
the Pamir. Overall pixel-wise accuracy of snow/no-snow de-
tection for both regions was 92 %, while the class-balanced
accuracy, which takes into account the balance of class dis-
tribution (Branco et al., 2016), was 87 % on average.

All validation sites used previously are in the Northern
Hemisphere because we were unable to locate representa-
tive station-based snow and climate forcing data for model
evaluation in the Southern Hemisphere. The evaluation of
the model in the Mendoza–Andes region implies that the
model may have comparable performance for locations in the
Southern Hemisphere.

4.5 Relative importance of climate and topographic
variables

We conducted a permutation-based feature importance anal-
ysis to determine how individual input variables affect dSWE
simulation. The method randomly shuffles input data and
compares the model’s baseline performance on the origi-
nal dataset to performance after permuting a feature’s values
(Fisher et al., 2019; Greenwell et al., 2018). We applied the
permutation-based feature importance analysis on the entire

training dataset of the independent SNOTEL stations, as well
as its subsamples representing snow accumulation or melt
phases. Figure 10 illustrates the obtained variable importance
scores.

The results unequivocally identified precipitation and av-
erage temperature followed by day length as the most sig-
nificant variables, but they also demonstrate that their im-
portance varies considerably depending on the phase con-
sidered. For snow accumulation, precipitation is by far the
most obvious and significant variable, followed by a wide
margin by maximum temperature. In contrast, the model re-
lies heavily on average temperature and day length to pre-
dict snowmelt, followed by precipitation and other remain-
ing variables, again by a wide margin. At first glance, the re-
sults suggest that topographic variables are among the least
influential, but it should be noted that their significance is as-
sessed in relation to other variables, some of which, such as
precipitation and temperature, are more fundamental for ac-
curate snowpack estimation (Günther et al., 2019). Further-
more, climate predictors can be highly variable, whereas to-
pographic features are constant per each location, which pre-
determines insufficient variability in these predictors in the
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Figure 9. Observed and simulated snow cover area for western Pamir and Mendoza–Andes region.

dataset and thus contributes to a wider gap in their relative
importance in comparison with climate variables.

4.6 Climatic and topographic attributes of locations
where the model exhibited lower accuracy

In order to evaluate model uncertainty, we filtered the SNO-
TEL stations into two groups based on their NSE values,
namely one group from the first quartile and another group
from the fourth quartile of NSE values across all validation
SNOTEL stations. We then calculated probability distribu-
tion densities for several climatic and topographic charac-
teristics (presented in Fig. 11) for each group to compare
how stations with relatively poorer model performance dif-
fer from those with good model performance.

Accordingly, there is a higher likelihood that a station
where the GEMS shows relatively inferior performance typi-
cally yields lower seasonal snowpack and has higher average
seasonal temperatures. In addition, stations with poor model
performance tend to have higher diurnal fluctuations during
the snow season. We have detected minor differences be-
tween two groups of stations in terms of average elevation
or distribution of heat–insolation indices. Despite not using
station latitude in the model as a direct input (it is required
to estimate day length for the location), the comparison sug-
gests that there was a slightly higher proportion of poorly
performing stations at lower latitudes.

These distinguishing characteristics of poorly performing
stations in some instances are not mutually exclusive. For ex-

ample, locations with higher seasonal temperatures usually
tend to have lower seasonal SWE peaks under identical con-
ditions. Similarly, lower latitudes in the western USA have
generally greater diurnal air temperature variations. We hy-
pothesize that the performance of the model under such cli-
matic conditions could be enhanced by incorporating more
respective observations into the training dataset, which ap-
parently included fewer SNOTEL stations from the southern
part of the training domain (see Fig. 2c).

4.7 Performance of GEMS model under different input
requirements

To evaluate how the model performance depends on a num-
ber and type of input data (see Table 1), we compared sim-
ulations of the three versions of GEMS using the SNOTEL
validation dataset. Overall, the incorporation of diurnal tem-
perature range and heat–insolation index enhances simula-
tion accuracy as measured by a smaller interquartile range
of NSE and maxSWE error (Fig. 12). Compared to utiliz-
ing only the maximum and minimum temperatures, the heat–
insolation index is a predictor that appears to modestly im-
prove model accuracy. This improvement is evident because
compared to GEMS-6P, GEMS-5P exhibits somewhat better
performance across the four metrics used.

Besides, GEMS-7P and GEMS-5P have a tighter range be-
tween the minimum and maximum NSE and maxSWE error.
However, there is no discernible difference in the snow melt-
out date and maximum SWE bias across the three model
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Figure 10. Relative importance of model inputs during SWE accumulation and melt phases.

Figure 11. Probability density distributions of topographic and climatic characteristics of the SNOTEL stations, where the model shows
higher and lower performance in terms of NSE.

versions. Although GEMS-4P has a slightly lower NSE and
maxSWE error accuracy, its overall performance is still ro-
bust, and it has the benefit of requiring fewer inputs (only
precipitation, average temperature, elevation, and latitude).

Running any of the three versions of the model on a desk-
top computer using a single CPU core (Intel i7) was shorter
than 6 s for 20-year-long Weissfluhjoch station data, which
approximates to 0.3 s per site year. An ongoing experiment
(not shown here) suggests that the computation time can be
reduced by about 30 % through improved sampling of the
training data used to develop the model, a modification that
will be implemented in the updated version of GEMS.

5 Model limitations

Instances of less consistent simulations generated by the
model can arise from various sources of uncertainty, includ-
ing internal uncertainty within the model, as well as uncer-
tainty in input data and unaccounted external factors.

One of the major limitations of the model is that it does not
account for vegetation, which is known to have a complex
and divergent effect on snow accumulation and melt under

different climate conditions (Dickerson-Lange et al., 2021;
Sun et al., 2022). Because most SNOTEL stations are situ-
ated in forest clearings or open bushes, we initially assumed
the training sample locations to be free of canopy obstruc-
tion. Using Google Earth, a visual check of the stations used
in both the training and validation samples reveals, however,
that some sites can be intercepted by the tree canopies in
their surroundings. In addition, we have detected the shad-
owing of some snow pillows by the dense forests that sur-
round them. Both phenomena are possible sources of model
uncertainty, as also evidenced from relatively lower perfor-
mance of the model for three forested ESM–SnowMIP sites
in Canada (OAS, OBS, and OJP), and future model develop-
ment should try to incorporate vegetation effects.

Based on a comparison of high-performing and low-
performing site simulations, the model may be less accurate
at simulating shallow snow in warm sites at lower elevations.
When these factors combine with large diurnal temperature
fluctuations, model simulations may even become more dis-
torted. These issues could be resolved with a more sophisti-
cated sampling strategy and by incorporating additional ob-
servations into the training of the model. It remains unclear,
however, whether an improved sampling strategy could also
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Figure 12. Comparison of performance across three GEMS models. The minimum and maximum limits of the box plots correspond to first
Q− 1.5· IQR (interquartile range) and third Q+ 1.5· IQR, respectively.

better approximate rain-on-snow effects, as these are driven
by dynamic processes of energy exchanges across snow lay-
ers that the model does not capture for.

The model’s parsimonious design, which relies only on
precipitation and temperature variables as climate data in-
puts, also precludes the incorporation of wind- or gravity-
induced snow redistribution, which may compromise the ac-
curacy of single-point simulations for wind-exposed sites.

When temperature is below the −1 ◦C TS threshold and
precipitation is 0 mm, GEMS will automatically estimate
daily change in SWE as 0 mm. The model thus fails to ac-
count for snow sublimation, which can occur even when tem-
peratures are below freezing. This differs from snow mod-
els based on energy balance, which can estimate snow subli-
mation. Furthermore, the evaluation on the SNOTEL dataset
suggests that significant adjustments of the TS threshold im-
poses a risk of error compensation due to overcalibration.
Therefore, we recommend adhering to the default value of
TS (−1 ◦C), unless local precipitation–snow partitioning pat-
terns are well understood.

As discussed in Sect. 4.6 and also evidenced from the eval-
uation on ESM–SnowMIP sites, the model demonstrates rel-
atively better performance in mountainous areas compared to
lower elevations. However, the training dataset used to elab-
orate the model may be less representative of locations with
very low CHILI indices (Fig. 2d). Low CHILI indices often
correspond to sites significantly shadowed by terrain or situ-
ated at higher latitudes or both. This discrepancy may be an
additional source of model uncertainty.

6 Summary and conclusions

We present a computationally efficient model that emulates
snow mass accumulation and melting, using only a few cli-
mate and topographic inputs. The absence of the explicit
need for calibration is the most distinctive aspect of the
GEMS model, with a 100 % rain–snow transition temper-
ature threshold (TS) being the only parameter that can be
modified; though, in most validation cases, robust simula-
tions were obtained just using the default TS value. Despite
its parsimony and no extensive calibration options, the model

achieves robust transferability across a variety of climate and
geographic conditions.

The main motivation behind the development of GEMS
was to balance the trade-off between complexity, data re-
quirement, and transferability, which can be helpful for oper-
ational monitoring and hydrological modelling in data-scarce
domains. The emulator was developed by training a machine
learning model on daily changes in snow water equivalent
as a response to daily climate inputs and diverse topographic
features. Despite the dynamic nature of snow processes, our
simplified, static approach effectively captured the impact of
precipitation, temperature, and topography on snowmelt, as
indicated by the validation results. This corroborates the con-
clusion of several intercomparison studies that model com-
plexity is not necessarily a predeterminant of its performance
(Essery et al., 2013; Magnusson et al., 2015; Menard et al.,
2021).

The model evaluation suggests that GEMS achieves com-
parable performance to physical snow models, as evidenced
by comparing with simulations from ESM–SnowMIP. A
more appropriate comparison might necessitate the adjust-
ment of physical model parameters, which was not investi-
gated in ESM–SnowMIP. Nevertheless, the evaluation out-
comes allow us to conclude that, at the very least, GEMS
with its default TS parameter exhibits superior spatial trans-
ferability compared to physical models with unadjusted pa-
rameters.

In addition to avoiding computationally demanding cali-
bration, GEMS may also help to address the equifinality of
model parameters that is pertinent to hydrological and snow
modelling. The challenge of equifinality is particularly pro-
nounced in hydrological modelling, where even relatively
simple snow models require calibration of at least two param-
eter, namely the precipitation–snow threshold and the degree
day melt factor. Considering that there are many other param-
eters for the remaining components of a hydrological model,
it is easy to end up with multiple combinations of optimal
parameters. In contrast, GEMS shows a generally plausible
performance in diverse climatic and topographic conditions
using the default value of TS.

One difference between GEMS and physics-based models
lies in the number of outputs they generate. While GEMS is
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specifically designed to simulate only SWE, comprehensive
physics-based snow models produce a broader spectrum of
outputs that provide valuable insights into other snow proper-
ties. We assume that machine learning could become helpful
in modelling some of these snow properties. For example,
previous studies have shown how simple empirical models
can effectively derive snow depth from SWE measurements,
and vice versa (Aschauer et al., 2023; Hill et al., 2019). We
assume that a similar approach to GEMS could be scalable
for estimating snow depth by incorporating additional vari-
ables, such as snow age.

Machine learning is gaining importance in snow mod-
elling, with existing applications predominantly focusing on
snowpack interpolation or the detection of its instantaneous
state through the assimilation of ground truth and active
satellite radar data. GEMS provides a modelling framework
similar to traditional snow modelling approaches by sim-
ulating snowpack in a temporally progressive manner and
leveraging climate and topographic inputs commonly used
in snow models. Moreover, the revealed variable importance
aligns with the general physics governing how climate vari-
ables affect snowpack accumulation and melt. Some recent
studies employing machine learning methods (Vafakhah et
al., 2022; Duan et al., 2023) also simulate snowpack in a tem-
poral manner and demonstrate robust performance, though
spatial extrapolation limits of those algorithms remain un-
clear. Another recent study (Wang et al., 2022) presents
promising results for a deep-learning-based approach, show-
casing its superior spatial transferability compared to en-
hanced temperature index model across the United States.
Nevertheless, the applicability of these models beyond their
targeted regions may be questionable, due to dependance
on climate inputs or locally specific data that may not be
available elsewhere. From these perspectives, GEMS offers
a higher degree of parsimony in terms of required input vari-
ables and, more importantly, a proven ability to generalize
outside of the training domain.

We have tested several other data-driven techniques for the
model development, including multivariate linear regression,
Gaussian process, random forests, and gradient boosting ma-
chines (not shown here). When evaluating on the training
dataset, the performance of most models was either lower
than or equivalent to SVR; however, even in the latter case,
their accuracy on the evaluation dataset was worse. Exper-
iments in other fields indicate that SVR has relatively bet-
ter extrapolation potential on unseen data (Horn and Schulz,
2011; Kim and Kim, 2019), which may explain why it out-
performed other algorithms. We have not examined neural
network algorithms, since they require more computer re-
sources during training, and evidence suggests that they tend
to underperform relative to other machine learning (ML)
techniques when applied to tabular data (Borisov et al., 2022;
Shwartz-Ziv and Armon, 2022). To make definitive judge-
ments with regard to the performances of different machine
learning algorithms, however, would require a more exten-

sive intercomparison experiment which is outside the scope
of this paper.

Future development of GEMS may aim at addressing veg-
etation effects and improving model performance for shallow
snowpack in warm sites. Including sublimation and rain-on-
snow effects may be possible but may inevitably lead to in-
creased complexity of the model. Another promising aspect
of model improvement involves further reduction in the com-
putational costs. At least to some extent, these improvements
may be achieved through a more careful selection and sam-
pling of the training dataset used to develop the model. In
addition to these imperatives, further work may also concen-
trate on extending a similar framework for modelling other
snow properties, such as snow depth and albedo.
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