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Abstract. The increasing amount of data in meteorologi-
cal science requires effective data-reduction methods. Our
study demonstrates the use of advanced scientific lossy com-
pression techniques to significantly reduce the size of these
large datasets, achieving reductions ranging from 5× to over
150×, while ensuring data integrity is maintained. A key
aspect of our work is the development of the “enstools-
compression” Python library. This user-friendly tool simpli-
fies the application of lossy compression for Earth scientists
and is integrated into the commonly used NetCDF file for-
mat workflows in atmospheric sciences. Based on the HDF5
compression filter architecture, enstools-compression is eas-
ily used in Python scripts or via command line, enhancing
its accessibility for the scientific community. A series of ex-
amples, drawn from current atmospheric science research,
shows how lossy compression can efficiently manage large
meteorological datasets while maintaining a balance between
reducing data size and preserving scientific accuracy. This
work addresses the challenge of making lossy compression
more accessible, marking a significant step forward in effi-
cient data handling in Earth sciences.

1 Introduction

In parallel with advances in observation instruments and
computing resources, the speed at which new data are gener-
ated keeps increasing year after year. Science, geosciences,
and weather are no exception (Zhao et al., 2020). While stor-
age technology has also improved, the pace has been slower.
Looking at how memory and CPU speeds evolved, there is a

difference of orders of magnitude (Alted, 2010). With storage
systems, the difference is even bigger. Yet, even though these
input/output (I/O) systems did not become fast or big enough,
they did become cheap. This allowed users to overcome the
storage capacity problem by buying more hardware. If at
some point data generation outgrows disk cost reduction, a
bigger proportion of the budget will have to go to storage.
At this point, storage can threaten the feasibility of scientific
projects. Although solving this problem requires much more
than a single solution (Lawrence et al., 2019), one ingredient
that can contribute to alleviating it is the adoption of data-
reduction techniques.

There are two ways to reduce the storage required for a
dataset: reducing the number of values being stored or re-
ducing the number of bits used to represent the same amount
of values. When only specific variables are saved and only
at specific time steps or when similar actions are taken, the
first approach is being applied. Utilizing smaller data types
or employing other methods to reduce the bit-per-value ratio
signifies the application of the second approach. While the
first approach is common in geosciences, the second one has
been less used. Data compression, which is the subject of this
paper, falls into this second category.

The community has developed both lossless (Collet, 2020;
Collet and Kucherawy, 2021; Deutsch and Gailly, 1996)
and lossy (Lindstrom, 2014; Liang et al., 2018; Zhao et al.,
2020; Liu et al., 2021; Ballester-Ripoll and Pajarola, 2015;
Ballester-Ripoll et al., 2020; Klöwer et al., 2021; Düben
et al., 2019) data compression methods. Lossless methods
leverage redundancies to reduce size. There is no loss of in-
formation, and the original data are bit-to-bit recoverable. In
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contrast, with lossy methods, the recovered data are not bit-
to-bit identical anymore. Lossless methods may initially ap-
pear ideal, but the potential compression ratios that can be
achieved for weather and Earth sciences data are very lim-
ited. In geosciences, the vast majority of disk resources are
committed to storing arrays of real numbers. Typically, these
are stored using floating-point representations. Despite the
inherent uncertainty, a floating-point representation of a real
number will consume a fixed number of bits. Hence, when
a quantity bears uncertainty, all bits are stored even though
only a select few may carry significant value. Since most geo-
scientific data have some uncertainty, some of the bits that
end up stored are meaningless (Zender, 2016). These bits
are not only meaningless, but their randomness also makes
them non-compressible. Thus, while the phrase “loss of in-
formation” may initially sound intimidating, discarding use-
less data seems to be more of a solution than a problem.

In geosciences the widespread adoption of lossy methods
has not happened yet, with one notable exception. The GRIB
format, which is widely used in the weather community, uses
a lossy method. It applies a linear quantization to reduce the
number of bits per value. However, because for many vari-
ables the distribution of the values does not fit very well with
a linear distribution, other methods would be better suited
(Klöwer et al., 2021). The basic idea behind these methods
is that models and measurements generate false precision
that results in meaningless data bits (Zender, 2016). Since
these bits are meaningless, getting rid of them should not re-
sult in a degradation of data quality. The difference between
these methods is how the non-significant bits are discarded.
The most naive approach is bit-shaving (Caron, 2014), which
consists of setting all the bits after a certain position to 0. The
same thing but setting all bits to 1 is known as bit-setting. In
the case of data arrays, truncating the values always in the
same direction might affect statistical quantities. To solve
this, bit-grooming was proposed. What it does is alternate
between bit-shaving and bit-setting (Zender, 2016). On their
own, these methods do not provide any benefit in terms of
data size; however, they allow for higher compression ra-
tios in a posterior lossless compression because they help to
get rid of meaningless incompressible random bits (Zender,
2016). Besides these methods, other scientific lossy compres-
sors combine different methods to achieve higher compres-
sion ratios while allowing error control. By combining differ-
ent algorithms, these compressors achieve higher compres-
sion ratios for similar errors (Delaunay et al., 2019; Klöwer
et al., 2021).

Lossy compression is widely used in non-scientific appli-
cations. It is the standard for multimedia data. Usually, the
algorithms exploit human perception to maximize the com-
pression ratio. For example, the image format Portable Net-
work Graphics (PNG) has design choices that are based on
how humans perceive images (Boutell, 1997). In addition,
most images are represented using different channels with a
limited bit depth. Such methods may not be satisfactory in

the case of scientific data, where it is important to have quan-
titative control of the errors.

To tackle the singularities of scientific data, a few ac-
tive projects have attempted to develop suitable compres-
sors. To the authors’ knowledge, the list of the most inter-
esting of these projects includes SZ (Liang et al., 2018; Zhao
et al., 2020; Liu et al., 2021), ZFP (Lindstrom, 2014), FPZIP
(Lindstrom and Isenburg, 2006), THRESH (Ballester-Ripoll
and Pajarola, 2015; Ballester-Ripoll et al., 2020), MGARD
(Gong et al., 2023), and SPERR (Li et al., 2023). These com-
pressors rely on different methods but pursue the same goal:
high compression ratios with fine error control. Because the
different projects have very similar objectives, there was an
initiative to create a benchmark to facilitate comparison be-
tween them (Zhao et al., 2020). Along with this benchmark,
few publications have compared these compressors (Zhao
et al., 2020; Lindstrom, 2017). Since one of the objectives
of these lossy compressors is to have control over the errors
that are introduced, it is important to mention that the differ-
ent methods used result in different error distributions (Lind-
strom, 2017). Looking at the latest research on the topic,
there are very promising works on the usage of auto-encoders
for scientific data compression (Donayre Holtz, 2022; Liu
et al., 2021). While preliminary results suggest that this ap-
proach can be very competitive for low bit-rates, these are
still very slow compared to the alternatives and are not made
public in a usable way.

Some work has been done to address the use of
scientific lossy compressors with Earth sciences data
(Klöwer et al., 2021; Poppick et al., 2020; Baker et al.,
2014, 2016, 2017, 2019; Düben et al., 2019). A first conclu-
sion is that variables with different distributions should be
evaluated with different metrics (Poppick et al., 2020; Baker
et al., 2014). The different papers introduce different anal-
ysis methods: Klöwer et al. (2021) introduces the idea of
using information theory to find the “real information con-
tent”, while Baker et al. (2017) suggests that the errors intro-
duced by lossy compression should not be statistically distin-
guishable from the natural variability in the climate system.
In summary, the literature supports the idea that, when im-
plemented correctly, lossy compression methods can safely
help to reduce storage needs. To answer the question of what
implemented correctly means, Baker et al. (2016) notes that
the considerations that users need to make when applying
lossy compression are not much different than other nec-
essary choices like the grid resolution and data output fre-
quency, among other factors, which will affect the results of
our simulations. To illustrate how we have already been mak-
ing trade-offs, consider the three-dimensional variables on
pressure levels from the widely used ERA5 dataset. While
the model simulation uses 137 vertical model levels, many
users use the data reduced to 37 pressure levels. Similarly,
the internal simulation time step is much shorter than the
hourly outputs that are published. That is an example of a
compromise between information and storage.
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Along with achieving an effective data reduction, to facil-
itate widespread adoption it is imperative that productivity
remains unaffected. Weather and Earth sciences communi-
ties heavily rely on the netCDF format (Rew et al., 1989)
to store data. The newest version, netCDF-4, can use HDF5
(Koranne, 2010) as a back-end. One of the features of HDF5
is the possibility of using filters. By using filters, HDF5 can
process the data on its way to/from the disk. In this way, one
can make data-compression transparent to users, allowing
them to keep the same file format and making explicit de-
flation not necessary. Moreover, developers of some state-of-
the-art compressors have implemented their own HDF5 filter
plugins. Delaunay et al. (2019) evaluated the usage of HDF5
filters with geoscientific data showing its feasibility. How-
ever, they evaluated one set of compression parameters for all
variables in the dataset, concluding that the digit-rounding is
preferable. This leaves open the question of whether individ-
ual compression specifications for each variable can improve
the results.

Tools to apply lossy compression to weather data already
exist and are mature enough to be adopted. Our work pur-
sues the goal of filling the knowledge gaps so users can start
compressing their weather and other Earth sciences data. The
objective of this publication is to advance toward that goal
by enabling scientists to compress their existing datasets and
create new ones that are directly compressed. Additionally,
this work aims to ensure that scientists can seamlessly utilize
the compressed data. Essentially, the intent is to facilitate an
effortless integration of lossy compression into the research
workflows of the weather and Earth science communities.
From our perspective and looking at the literature, the miss-
ing gaps are (1) the difficulty of using existing lossy com-
pressors and (2) the difficulty of deciding which compression
specifications are appropriate. To address these gaps, this ar-
ticle aims to achieve the following objectives: (1) providing a
novel tool for straightforward use of lossy compression with
NetCDF, (2) providing a method that computes optimal com-
pression parameters based on user-specified quality metrics,
and (3) evaluating our approach based on a number of use
cases drawn from current research applications. It is worth
noting that similar efforts, such as the libpressio software
(Underwood et al., 2021), also aim to improve the accessi-
bility and usability of compression tools, though our work
focuses specifically on the needs and challenges within the
atmospheric and earth system science.

2 A user-friendly Python tool to use lossy compression
with NetCDF files

While alternatives like “nccopy” can also apply lossy com-
pression, selecting the “right” parameters can be more chal-
lenging; for example, configuring nccopy to compress all
variables with ZFP in accuracy mode with a threshold of
0.075 requires a complex command.

nccopy -F "*,32013,0,4,3,0,858993459,
1068708659" input.nc output.nc

This can be non-intuitive for many users.
We provide a user-friendly Python implementation that

facilitates straightforward integration of lossy compression
into workflows using the NetCDF file format, which is
widely used in the atmospheric sciences. Our implemen-
tation is integrated into the “enstools-compression” Python
package (Tintó Prims, 2022) and based on the HDF5 com-
pression filter architecture (The HDF Group, 2023). It can be
used from within Python scripts and from the command line.
The source code is provided in an open-source manner along
with this article (Redl et al., 2022; Tintó Prims, 2022).

2.1 Exemplary compression schemes: ZFP and SZ

For this study, we selected the lossy compression algorithms
ZFP (Lindstrom, 2014) and SZ2 (Liang et al., 2018; Zhao
et al., 2020; Liu et al., 2021). Both offer competitive com-
pression ratios with strict control of the errors, and for both
HDF5 filters are available. In addition, both algorithms were
previously analyzed and compared by Zhao et al. (2020, pro-
viding information on compression ratio, speed, and further
metrics for different scientific datasets) and Lindstrom (2017,
providing information on error distributions of compressed
floating-point data defined on structured grids). While out-
side the scope of this article, it is straightforward to ex-
tend our framework with further compression algorithms for
which HDF5 compression filters are available, as described
in the software documentation.

ZFP (Lindstrom, 2014) is a transform-based compressor
designed for 3-D data. Its compression algorithm consists of
five steps, applied to fixed blocks of 4× 4× 4 grid points:
(1) aligning the values of each block to a common exponent,
(2) converting from a floating-point to a fixed-point represen-
tation, (3) decorrelating the values by doing a block transfor-
mation, (4) ordering the transform coefficients, and (5) ap-
plying an embedded coding algorithm. The ZFP algorithm
offers four modes of lossy compression: (1) rate, (2) preci-
sion, (3) accuracy, and (4) an “expert mode”. When using the
rate mode, the bit rate of the resulting compressed file can be
selected; i.e., the size of the compressed file can be specified.

The precision mode specifies the number of bit planes en-
coded for the transform coefficients, which controls the rela-
tive error but does not directly correspond to the number of
bits in the original data.

The accuracy mode ensures that the errors introduced are
smaller than a user-defined threshold.

The expert mode allows the user to fine-tune the ZFP algo-
rithm with four parameters: minimum and maximum number
of compressed bits per block, maximum precision in terms of
encoded bit planes, and the smallest exponent value to con-
trol accuracy. Details are available in Lindstrom (2014).

SZ2 is a prediction-based compressor, and like ZFP it
is designed for multi-dimensional data. Its compression al-
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gorithm consists of four steps: (1) value prediction using
a Lorenzo predictor or a linear-regression-based predictor,
(2) application of linear quantization, (3) variable-length en-
coding, and (4) lossless compression. The predictor is auto-
matically selected based on the compressed data. The algo-
rithm is also applied block-wise, using blocks of 6× 6× 6
grid points for 3-D data and 12×12 blocks for 2-D data. The
SZ2 algorithm provides three modes: (1) absolute, (2) rel-
ative, and (3) point-wise relative. The absolute mode uses
a user-defined absolute-error threshold, and like ZFP’s ac-
curacy mode it ensures that errors are smaller than the pro-
vided threshold. For the relative mode a global relative-error
threshold is provided; the corresponding absolute error is
computed with respect to the range of all data values in the
dataset. The point-wise-relative mode uses a relative error
with respect to each data point’s individual value.

To illustrate the difference between relative and point-
wise-relative modes, consider a dataset with values rang-
ing from x0 to x1 (where x1 > x0). When using the relative
mode with a global relative error of ε, the compressed dataset
will contain errors smaller than (x1− x0) · ε. For example, if
x0 = 1, x1 = 1001, and ε = 0.01 (1 %), the maximum error
would be (1001− 1) · 0.01= 10.

On the other hand, when using the point-wise-relative
mode with the same error threshold ε, each data point in the
compressed dataset will have an error smaller than ε times its
original value. Hence, in this mode, values at the higher end
of the range will have absolute errors smaller than x1 · ε, and
those at the lower end will have absolute errors smaller than
x0 · ε. Using the same example with x0 = 1, x1 = 1001, and
ε = 0.01, values near 1001 will have absolute errors smaller
than 10, while values near 1 will have errors smaller than
0.01.

It is important to note that in the relative mode a global ab-
solute error of (x1−x0) ·ε could lead to small positive values
close to x0 becoming negative in the compressed representa-
tion. Therefore, the point-wise-relative mode should be used
when it is critical to maintain the strict positivity of all data
values.

Details are available in Liang et al. (2018).
While the performance of the different compressors is out-

side the scope of this publication, detailed information on the
performance of these compressors can be found in the work
by Zhao et al. (2020). Our tool is designed to achieve per-
formance comparable to that of the underlying compression
libraries.

In addition to lossy compression using ZFP and SZ2, we
integrate lossless compression for use cases where bit-to-
bit reproducibility is required. For lossless compression, we
use the BLOSC (Blosc Development Team, 2022) library
that provides a number of state-of-the-art algorithms. Loss-
less compression, however, is not further investigated in this
work.

2.2 Compression specification format

The use of HDF5 compression filters requires the use of low-
level programming interfaces, which demand a comprehen-
sive understanding of their architecture. To simplify their use
in Python, the “hdf5plugin” library (Vincent et al., 2022) has
been developed to provide an accessible high-level interface
that translates user-defined options into parameters required
by the HDF5 compression filters, making them usable from
the “h5py” library (Collette, 2013), the HDF5 Python inter-
face. While the hdf5plugin library successfully bridges the
gap between the h5py Python interface and the HDF5 com-
pression filters, its application necessitates significant code
modifications, particularly for users accustomed to working
with higher-level libraries such as “xarray”, who might find
these adjustments less intuitive and more complex.

In the approach we present here, we add another layer and
propose a user-friendly “compression specification format”
(CSF) that allows compression specifications to be expressed
as simple, plain text, making the use of compression more ac-
cessible to users. We developed a method to translate the tex-
tual compression specifications into the numerical parame-
ters expected by the HDF5 compression filters. The goal is to
make hdf5plugin applicable beyond h5py to Python libraries
including “h5netcdf” (h5netcdf Contributors, 2023) and xar-
ray (Hoyer and Hamman, 2017), which are extensively used
in the atmospheric science community.

The CSF is a string of comma-separated values, which in-
clude the type of compression, the compressor, the mode, and
the parameters. While formats including YAML (Ben-Kiki
et al., 2009) and JSON (Bray, 2017) can be more verbose and
carry more information, we decided for comma-separated
strings to obtain a format that is easy to understand by hu-
mans and that facilitates straightforward use from command
lines as well as from shell scripts or Fortran namelists, typi-
cally used in numerical weather prediction. For lossless com-
pression, specification of compressor, mode, and parameters
can be omitted to use the default values chosen by BLOSC.

The CSF then takes the format given below.

"lossy,ZFP,accuracy,0.01",
or "lossy,sz,abs,0.01", or "lossless"

The strings can be extended to include different specifica-
tions for different variables in the same line. Here, the name
of a variable is followed by a colon (:), and spaces separate
multiple specifications.

"temperature:lossy,sz,abs,0.01
precipitation:lossy,sz,pw_rel,0.0001"

If a specification is provided for a single variable only, all
other variables in a data file will be compressed losslessly by
default.

"temperature:lossy,sz,abs,0.01"

Default specifications can be defined explicitly. The previ-
ous specification is equivalent to information given below.
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"temperature:lossy,sz,abs,0.01
default:lossless"

However, it is possible to specify arbitrary defaults.

"temperature:lossy,sz,abs,0.01
default:lossy,ZFP,rate,6.4"

Coordinate variables are by default always compressed
losslessly. To change this behavior, the “coordinates” key-
word can be used.

"coordinates:lossy,ZFP,rate,8"

For a more detailed explanation and examples, please refer
to Appendix A, which provides comprehensive usage scenar-
ios and code examples illustrating how CSF is implemented
in Python function call arguments and command line argu-
ments.

2.3 Inferring optimal compression parameters from
user-specified quality metrics

For further processing and analyzing the compressed data,
it may be desirable to ensure that a specific quality metric
that may be important for a given use case is maintained
under compression. Such quality metrics can include Pear-
son’s correlation and the mean-square error (MSE) and its
variants the root-mean-square error (RMSE), and the normal-
ized root-mean-square error (NRMSE). Other more specific
metrics include the structural similarity index metric (SSIM;
Wang et al., 2004), commonly used in the computer vision
literature; its variant the data structural similarity index met-
ric (DSSIM; Baker et al., 2024); or the continuous ranked
probability score (CRPS; Gneiting et al., 2005).

In our approach we include a method to automatically find
optimal compression parameters based on specified qual-
ity metrics. We build on the work by Kunkel et al. (2017)
and Tao et al. (2019b). Kunkel et al. (2017) introduces the
idea of decoupling the compressor selection and mode from
the quality constraints. They allow the user to specify one
of six predefined metrics and automatically find the best-
performing compressor. In Tao et al. (2019b), a similar ap-
proach is used, focusing on making the selection on the fly.
Our approach also tries to optimize compression specifica-
tions only based on quality constraints but making it extend-
able to any metric of interest.

Two possibilities exist when trying to optimize com-
pression parameters: (1) maximizing the compression ra-
tio while maintaining specific quality metrics and (2) max-
imizing quality metrics while achieving a specific compres-
sion ratio. The solution in either scenario comprises a se-
lection of a compressor, a compression mode, and a param-
eter. Since all the compression methods used in this work
are uni-parametric, the optimal parameter search reduces
to a 1-D optimization problem. Various methods are avail-
able to solve 1-D optimization problems (Kochenderfer and

Figure 1. Illustration of how the bisection method works to find
the optimal parameter. The circles represent the correlation indices
corresponding to each parameter. Red circles indicate that the corre-
lation index does not meet the defined threshold, and green circles
indicate that the index fulfills the requirement. The arrows repre-
sent a step of the algorithm. In this case, we are using SZ2 with
the relative-error mode. Since the parameter range goes from 0 to 1,
we perform the first evaluation at the middle of this range and con-
tinue adjusting the parameter until the correlation index value falls
within the defined threshold (indicated by a dotted horizontal line).
The variable temperature at 2 m above the surface from the ERA5
dataset was used.

Wheeler, 2019); the bisection method (Burden et al., 2015) is
used in our work. Figure 1 shows an illustration of the steps
this method would perform in order to find optimal compres-
sion parameters.

Given a compressor and a method, we determine the pa-
rameter range; i.e., the relative error can go from 0 to 1. We
then define a function that, given the compression parameter,
returns the values of the metrics of interest. Following this,
we use the bisection method with this function to find the
optimal parameter. The user can select the metrics of inter-
est. Pearson’s correlation, MSE, RMSE, NRMSE, DSSIM,
and CRPS have been implemented. If more than one met-
ric is used, the algorithm will find the parameter that fulfills
all the constraints. If no compressor or method is provided,
the search will be performed for all of them, and the best-
performing one will be selected.

2.4 Integrating HDF5 compression filters in “enstools”

We integrated our approach in the I/O implementation of
the ensemble tools (enstools) Python package (Redl et al.,
2022), a collection of weather research utilities that include
methods for clustering, interpolation, I/O, access to remote
open data, post-processing, and evaluation scores. In addi-
tion, we provide a lightweight stand-alone Python package,
“enstools-encoding” (Tintó Prims, 2022), to simplify adop-
tion of our developments without the need to use the en-
tire enstools package. The I/O implementation of enstools
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is based on xarray, meaning that further tools that rely on
xarray for I/O can adopt our approach without adding much
complexity.

The enstools-encoding package processes the CSF string
and assigns a compressor, mode, and parameter to each vari-
able. Next, these specifications are converted to the actual pa-
rameters required by the HDF5 compression filters, includ-
ing a compression filter identification number and an array
of options. Because different filters use different options, it
is necessary to implement an interface for each compres-
sor. The complexity of the interfaces depends on the spe-
cific filter, but typically at most 10 lines of code are required.
Our implementation was based on hdf5plugin (Vincent et al.,
2022), which already included some of the filters but not
all of them. Initially, we made our own implementation for
SZ2 but later decided that it was better for the community to
contribute directly to the hdf5plugin open-source project, in
which we had directly participated. Subsequently, SZ3 was
added by other contributors, further extending the capabili-
ties of hdf5plugin and allowing us to also extend our own
tool capabilities.

While enstools-encoding can be used independently for
applying compression filters, it was primarily designed as
a core component of enstools-compression. This separation
minimizes dependencies for those that only require compres-
sion functionality within xarray or other lightweight scenar-
ios. Enstools-compression, on the other hand, offers a more
comprehensive solution, integrating enstools-encoding and
providing both a Python API and a command line interface.
This dual functionality ensures that users can apply com-
pression either programmatically within Python workflows
or directly via the command line, depending on their specific
needs.

Additionally, we provide a command line interface,
enstools-compression (Tintó Prims, 2022), to compress ex-
isting datasets without the need to code Python scripts. It uses
enstools to read files, which in addition to using NetCDF and
HDF5 also allows processing of GRIB files, writing the result
as NetCDF4 files with the HDF5 backend. The tool provides
additional features including keeping only certain variables,
emulating the compression without writing output files, or
parallelizing the compression of multiple files on a cluster.

3 Applications

In this section, a sequence of use cases will be presented
where lossy compression has been applied in different re-
search applications. The aim is to demonstrate through exam-
ples how compression settings can be chosen, what level of
compression is possible without compromising the scientific
results, and to give some indications of where a researcher
must be careful in applying lossy compression. The exam-
ples are all based on recent studies carried out within the
Waves to Weather research program (Craig et al., 2021). Sec-

tion 3.1 discusses the achievable compression ratios for stan-
dard model output data when specific quality constraints are
applied. A representative set of variables is drawn from the
ERA5 dataset, and the trade-off between the degree of com-
pression and various quality metrics is explored. While this
assessment provides some useful guidelines, it does not nec-
essarily give confidence to scientists that work with more so-
phisticated diagnostics that are derived from the compressed
data. Therefore, the subsequent examples will consider some
more advanced use cases. It is impossible to cover all the
possible applications of atmospheric data, but using range of
different studies, some indication can be given of the bene-
fits and pitfalls that may be encountered. The next example
in Sect. 3.2 considers the forecast error growth experiments
of Selz et al. (2022) and highlights a difficult scenario where
the important signal is a small difference between large val-
ues. Section 3.3, based on the forecast evaluation study of
Matsunobu et al. (2022), uses a complex verification met-
ric where it is difficult to predict in advance what the ef-
fects of compression will be. The final example, or rather set
of examples, in Sect. 3.4 uses the visualization tool Met.3D
(Rautenhaus et al., 2015b). Examples drawn from Rauten-
haus et al. (2020) are used to explore how changes in com-
pression levels can alter the visual interpretation of meteoro-
logical data.

3.1 Compressing ERA5

The choice of optimal compression parameters depends on
the properties of the variable being compressed and on the
application that the data will be used for. Often data are used
for a wide range of applications, which are not necessarily
known in advance. In such cases, it is most reasonable to
use relatively simple error measures to evaluate the quality
of the compressed dataset but to require a high threshold of
accuracy, i.e., to be conservative in discarding information.
In this example, we consider the ERA5 dataset (Hersbach
et al., 2018). Since ERA5 is widely used in weather and cli-
mate studies, the compression specifications must not be spe-
cific to a specific application. The quality criteria used here
for the compressed dataset will be based on previous stud-
ies, and we will investigate the degree of compression that is
possible for different variables using different compression
algorithms. Finally, we will show an example with overly
aggressive compression to provide a visual impression of the
compression artifacts that we want to avoid.

When compressing ERA5 data, we will require that the
correlation with the original field be at least 0.99999. As dis-
cussed in Sect. 1, atmospheric data contain uncertainty and
can be reduced without necessarily affecting the real infor-
mation content. A correlation of 0.99999 has been mentioned
multiple times in the literature as a threshold (for example
by Tao et al., 2019a), and Baker et al. (2014) suggest that
structural similarity can be a useful additional metric. There-
fore, we will also require a structural similarity index metric
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Table 1. List of ERA5 3-D variables used in Fig. 2. The table pro-
vides definitions for the terms used in Fig. 2.

Long name Short name

Divergence d
Fraction of cloud cover cc
Geopotential z
Ozone mass mixing ratio o3
Potential vorticity pv
Relative humidity r
Specific cloud ice water content ciwc
Specific cloud liquid water content clwc
Specific humidity q
Specific rainwater content crwc
Specific snow water content cswc
Temperature t
U component of wind u
V component of wind v
Vertical velocity w
Vorticity vo

higher than 0.99. The search algorithm (see Sect. 2.3) imple-
mented in enstools (Redl et al., 2022) is able to search for
compression parameters that simultaneously guarantee mul-
tiple quality metrics, and this will be applied to a representa-
tive sample of ERA5 variables (listed in Table 1). Of course
there is no guarantee that the quality metrics shown here are
adequate for every application, but they should be an useful
starting point to see what compression ratios can be expected
for different variables when these quality constraints are ap-
plied.

Figure 2 shows the compression ratios that are obtained
when applying lossy compression to different variables us-
ing different compressors and methods. Here, the compres-
sion parameters are selected ensuring that the data that has
been compressed has at least a correlation of 0.99999 and
a structural similarity of at least 0.99 with the original data.
The degree of compression that is possible even with these
conservative criteria is substantial, ranging from a maximum
of 90.8 times for the geopotential to 5.5 times for the vertical
velocity. As might be expected, larger reductions are pos-
sible for smoother fields. Interestingly, the best-performing
method is not the same for all variables. However, we can
see that SZ2 outperforms ZFP for most of the variables in
the dataset.

A particularly challenging problem is to know when the
data have been over-compressed and too much information
is lost without access to the uncompressed data for compari-
son. A rough idea can be obtained by looking for unphysical
artifacts in images of the field. Figure 3 shows a comparison
between non-compressed and compressed total column wa-
ter. With the quality criteria applied in Fig. 2, the differences
would be invisible at this resolution, so an example is shown
with much stronger compression. In particular, SZ3 allowing

a relative error of 5 % was used, giving a compression ratio
of 241.5. Even with this degree of compression, it is diffi-
cult to see differences in the full images, but if we look at
the zoomed section artifacts are more evident. They take the
form of patches of enhanced gradients that are aligned with
the coordinate directions and as a result are easy to identify
as unphysical.

3.2 Error growth analysis

Although a compression level that maintains a correlation of
> 0.99999 seems sufficient for most meteorological appli-
cations, especially given the inherent uncertainty in atmo-
spheric data, there are exceptions where much higher cor-
relations or even lossless compressed data are needed. One
example is studies that investigate the intrinsic limit of pre-
dictability by applying a perfect model assumption and start-
ing simulations from very small differences in the initial con-
ditions (sometimes called identical twin experiments). We
demonstrate the effects of lossy compression for such a case
based on data from our earlier predictability study (Selz et al.,
2022). Figure 4 shows the difference in kinetic energy (DKE)
at 300 hPa for the initial time and different lead times early
in the forecast (see Selz et al., 2022, for a detailed explana-
tion of the experimental design). The DKE has been calcu-
lated twice, from the uncompressed float32 output data and
from data that have been lossy compressed to 8 bits per value
(factor of 4) using ZFP. Both DKE results are shown in the
figure, and the error is shaded. It can be seen that if the initial-
condition uncertainty is reduced to 10 % with respect to cur-
rent levels, some significant errors already occur at the small-
est scales and at the initial time. However, in the experiment
where the initial-condition uncertainty has been further re-
duced down to 0.1 %, the compressed data fails to capture
the relevant information entirely and the DKE spectrum at
the initial time purely consists of noise from the compres-
sion algorithm. In both cases, the errors are negligible at later
forecast lead times (> 24 h) and also in the background spec-
trum. This example demonstrates that the compression rates
must be selected carefully if diagnostics are considered that
involve differences from very similar values.

3.3 Fraction skill scores

The next example considers a forecast skill score derived
from the raw model output through a series of transforma-
tions that include a highly nonlinear threshold, as well as in-
formation that is nonlocal in space. The fraction skill score
(FSS; Roberts and Lean, 2008) is a diagnostic tool used in
many national weather services to evaluate a spatial forecast
skill of binary fields, e.g., the presence of precipitation ex-
ceeding a certain threshold. At each location, FSS counts
the fraction of grid points with precipitation in a rectangu-
lar neighborhood centered at that point and compares it to
corresponding fraction from a second dataset (e.g., forecast
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Figure 2. Compression ratios and bit rates for different ERA5 three-dimensional variables listed in Table 1. Compression parameters are
found keeping a correlation of at least 0.99999 and a DSSIM of at least 0.99.

vs. observation). The results for the individual locations are
then averaged in space. The size of the rectangular neighbor-
hood for which FSS exceeds a specified value can be used as
a maximum scale of good agreement. This scale is named the
believable scale and can be used to represent the time evolu-
tion of spatial variability (Dey et al., 2014; Bachmann et al.,
2018, 2019; Matsunobu et al., 2024). To compute the FSS
from total precipitation, we first need to convert it to a binary
field. We do that using a threshold, which is defined here us-
ing a percentile value of the field to keep the overall number
of precipitating grid points the same between the compared
fields. Because we are using a threshold, small changes in
the precipitation amounts can lead to differences in the bi-
nary fields that might be amplified to distinctive differences
in FSS and believable scales.

Here we use FSS and believable scales to diagnose how
far ensemble precipitation forecasts have diverged from each
other, reproducing the work presented in Matsunobu et al.
(2022). In this case, the believable scale can be interpreted
as the scale where the ensemble members are similar, with
precipitation features on smaller scales differing strongly be-
tween ensemble members. Figure 5 shows the believable
scale as a function of forecast lead time for different lev-
els of compression of the underlying precipitation fields. A
systematic reduction in the believable scale is found for all
compression levels. The effect is more noticeable during the
periods from 06:00–09:00 and 20:00–24:00 UTC, when pre-
cipitation is weak and the threshold for binarization is low.
At these times, small differences introduced by the compres-
sion can have large effects on the number of points exceeding
the threshold, changing the FSS and the believable scale. It
should be noted, however, that the exact values of FSS and
believable scale at such times may not be of great impor-

tance, since our focus tends to be on the time of large precip-
itation amounts.

Interestingly, the believable scale remains qualitatively
similar even for compression that allows a point-wise relative
error of 95 %. This is true even though other statistics such as
the 99th percentile precipitation amount have completely lost
accuracy (dashed lines in Fig. 5). This indicates that the toler-
ance of FSS to information loss is high. However, we should
also keep an eye on the threshold to avoid misinterpretations.
Overall, reasonable amounts of lossy compression do not af-
fect a scientific conclusion drawn by FSS analyses, although
the effective compression level should be carefully assessed.
In this example, a point-wise error tolerance of 5 % still sat-
isfies the required accuracy for both the believable scale and
99th percentile value.

3.4 Interactive 3-D visualization

Visualization is an important and ubiquitous tool in the daily
work of atmospheric researchers and operational weather
forecasters to gain insight into meteorological simulation and
observation data (see overview by Rautenhaus et al., 2018).
In our context, the question arises to which extent visualiza-
tions that are used for data analysis or communication pur-
poses are impacted by usage of compressed data. Would a
scientist or forecaster still draw the same conclusions from
the image, or will artifacts be introduced that will cause mis-
leading conclusions? Of course, the range of possible visual
depictions of meteorological data is large and ranges from 2-
D maps over 3-D depictions to application-specific diagrams
such as ensemble meteograms (Rautenhaus et al., 2018). The
extent to which these depictions will be impacted by com-
pression can also be expected to cover a wide range.
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Figure 3. Total column water from ERA5. Panel (a) shows the un-
compressed reference, panel (b) shows the data that have been com-
pressed, and panel (c) shows the difference between both. The zoom
square shows the region with higher differences. The data have been
compressed using SZ3 with a relative error method with a threshold
of 5 %, leading to a compression ratio of 241.5× with respect to
single precision.

In visualization science, compression has been much dis-
cussed in the context of interactive large data rendering (see
overviews by Balsa Rodríguez et al., 2014; Beyer et al.,
2015). The main challenges are the bottleneck of reading
data from disk into computer memory fast enough for in-
teractive visualization and fitting the data into the memory
of graphical processing units (GPUs). These challenges must
be addressed while retaining properties required for visual-
ization algorithms, including random access if the data are
kept in compressed form in GPU memory, local decompres-
sion (i.e., being able to decompress subsets of the data only),
and real-time demands for decompression during rendering.

Despite recent advances in graphics hardware, including in-
creasing memory sizes (at the time of writing, GPUs ship
with up to 24–48 GB of video memory), the increasing data
volumes output by (not only meteorological) simulations and
observation systems keep these issues salient. Recent related
research includes studies on the trade-off between precision
and resolution on visualization when reducing data volumes
(Hoang et al., 2019, 2021); development of new compres-
sion schemes that fulfill specific application-motivated crite-
ria (e.g., preserving features such as critical points in vec-
tor fields; Liang et al., 2020); and, following the recent ad-
vances in machine learning, investigations of the suitability
of neural-network-based compression schemes for rendering
(e.g., Lu et al., 2021; Weiss et al., 2022).

Here we consider the example of combined 2-D–3-D de-
pictions as generated in interactive visual analysis workflows
and in particular by the meteorological visualization frame-
work Met.3D (Rautenhaus et al., 2015b). Comparable soft-
ware options include Vapor (that also natively supports lossy
wavelet compression; Norton and Clyne, 2012; Li et al.,
2019) and ParaView (Ayachit et al., 2012); see the overview
in Rautenhaus et al. (2018). Met.3D has been used, for in-
stance, for weather forecasting during atmospheric field cam-
paigns, including the 2016 NAWDEX campaign (Schäfler
et al., 2018, e.g., their Fig. SB2). Such forecasting requires
forecast data, as soon as they are available, to be transferred
at minimum time from a weather center (e.g., ECMWF) to
a visualization server. To be more specific, if 3-D ensemble
forecast data are required (note that 3-D visual analysis re-
quires the best possible vertical resolution, i.e., all available
model levels; see Rautenhaus et al. (2015a) for an example
case), datasets generated by current forecast systems encom-
pass multiple datasets of 100 GB or more at the time of writ-
ing. Internet bandwidth is a limiting factor for this applica-
tion, and data compression can make the difference between
being able to use the latest forecast for forecasting or not.

For illustration, we recreate two visualizations with dif-
ferent characteristics that were generated during a demon-
stration session of 3-D visual analysis for forecasting during
the 2019 Cyclone Workshop. All figures have been created
from model-level data from the ECMWF ensemble predic-
tion system, interpolated to a regular latitude–longitude grid
with a grid spacing of 0.5° in both dimensions. The orig-
inal depictions can be found in Rautenhaus et al. (2020).
Figure 6 shows a 3-D depiction of the dynamic tropopause
as represented by the 2 PVU isosurface of potential vortic-
ity (PV). PV has been computed as a derived variable from
compressed fields of horizontal wind and potential tempera-
ture, using the implementation contained in the LAGRANTO
package (Sprenger and Wernli, 2015). Note that PV compu-
tation involves derivatives; for visualizations depicting vari-
ables computed from derivatives of compressed variables, we
expect a stronger impact of compression on the visual result
than for visualizations depicting only the underlying com-
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Figure 4. Spectra of difference in kinetic energy (DKE) from initial-condition sensitivity experiments (Selz et al., 2022). Solid lines show
the results from uncompressed data. Dashed lines show the results from compressed data. The shaded areas highlight the errors introduced
by the compression.

Figure 5. Believable scales for hourly precipitation. Solid lines
show the temporal evolution of believable scale. Dashed lines show
the threshold values used for binarization. Green lines were pro-
duced with the reference data, orange lines were produced with data
that were compressed using SZ2 with a point-wise relative error
mode with a threshold of 0.78 %, the purple line was produced with
a point-wise relative error of 5 %, and the pink line was produced
with a point-wise relative error of 95 %. The number 0.78 % cor-
responds to the results of the automatic method to maximize data
compression on this specific dataset while keeping a 0.99999 Pear-
son correlation and a 0.99 DSSIM with relation to the original data.

pressed variables directly (see also the discussions in Hoang
et al., 2019, and Baker et al., 2016).

We first compress the model variables with the quality
constraints discussed in Sect. 3.1 (i.e., enforcing a correla-
tion of 0.99999 and SSIM of 0.99 between original and com-
pressed data fields) using the automatic optimization of com-
pression parameters discussed in Sect. 2.3. Note that this ap-
proach leads to different compression parameters for each
of the model variables, from which PV is subsequently de-
rived. The resulting visualization achieves a SSIM of 0.89
(Fig. 6b; we also use the SSIM metric to compare the visual-
izations generated from compressed data to a reference gen-
erated from uncompressed data following Wang et al., 2004).
This leads to small but noticeable differences in the isosur-
face structure in the enlarged regions of the image. However,
given the achieved overall compression ratio of 12, the im-
age in its original extent shows only few noticeable visual
artifacts, and we argue that an analyst would likely draw the
same conclusion from this as from the reference visualiza-
tion (Fig. 6a). Note that this statement is subjective and re-
flects the authors’ view. Our objective here is to illustrate how
artifacts caused by lossy compression appear in typical 3-D
meteorological visualizations. A much more detailed study
on the differences that users perceive would need to be car-
ried out to obtain results about “best acceptable compression
settings” for visualization purposes.

Compressing each model variable with the individual
compression parameters inferred from quality constraints
may be undesirable, e.g., if predictable file sizes and hence
a specified compression ratio is required. We hence com-
pare how the visualization is impacted if generated from
datasets in which each model variable has been compressed
with the same compression parameters. Figure 7a shows how
the SSIM of Fig. 6 decreases as compression ratios increase
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Figure 6. Impact of lossy compression on a 3-D visualization of the dynamical tropopause as represented by the 2 PVU potential vorticity
(PV) isosurface, with PV computed from the 3-D Numerical Weather Prediction (NWP) variables horizontal wind and temperature. Panel (a)
is reproduced from Rautenhaus et al. (2020), showing member 24 of the ECMWF ensemble forecast from 00:00 UTC 29 September 2019,
valid at 00:00 UTC 3 October 2019. The colors show the pressure elevation (hPa). (b) Quality constraints of correlation index of 0.99999
and DSSIM of 0.99 imposed on the NWP variables lead to a compression ratio (CR) of 13.4, and the resulting visualization has a SSIM of
0.86 compared to the reference. (c–d) Visualizations produced from the NWP variables compressed with further settings, illustrating artifacts
introduced by the compressors. The information at the top of each panel lists the compression parameters, achieved compression ratio, and
SSIM of the resulting image. Note that the compression ratios are measured with the resulting compressed files and may vary slightly from
theoretical expectations.

Figure 7. Dependence of the visualization SSIM (i.e., the SSIM computed between the visualization image generated from uncompressed
data and that generated from compressed data) of (a) Fig. 6 and (b) Fig. 8 on compression ratios for different compressors. Dots with a black
outline correspond to panels (b)–(d) in Figs. 6 and 8.

for different compression parameters of the SZ2 and ZFP
compressors. Figure 7 clearly shows how different the dif-
ferent compressors perform for the selected example. While
the visualizations generated from data compressed with SZ2
in point-wise relative mode quickly deteriorate in quality
and the visualization’s SSIM drops below 0.7 at a com-
pression ratio of about 7, visualizations generated from data
compressed with SZ3 in “global” relative mode maintain an

SSIM of over 0.8 for compression ratios exceeding 20. The
ZFP compressor performs in between these two results.

Interestingly, the SZ compressor (in particular in the SZ3
version) achieves even higher-quality visualization SSIMs
for the same compression ratio compared to the quality-
constraint-compressed dataset in Fig. 6b. While in general
we consider it desirable to achieve pre-defined error metrics
for each variable’s data (as done in Sect. 3.1 and Fig. 6b), for
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Figure 8. The same as Fig. 6 but for a visualization showing jet stream core lines computed from the horizontal wind field (green tubes, with
the color showing the pressure elevation in hPa), a vertical section (with the color showing the horizontal wind speed in m s−1, the 2 PVU
contour shown in red, and the potential temperature contours shown in gray), and a surface map with contours of mean sea level pressure
(black contours). Panel (a) is reproduced from Rautenhaus et al. (2020). Note the different SSIMs compared to Fig. 6.

the considered type of visualization, compressing each vari-
able with the same compression parameters leads to fewer
visualization artifacts. We hypothesize that nonlinear effects
may increase the error for derived fields. PV is computed
from horizontal wind and temperature, and the errors in these
fields may be distributed differently when using different
compression parameters.

For illustration of artifacts introduced by the compressors,
Fig. 6c and d show examples of visualizations that achieve
SSIMs of 0.75 (using the ZFP compressor with a compres-
sion ratio of 13.4) and 0.5 (using the SZ2 compressor with a
compression ratio of 24.5). As Fig. 6c shows, the large-scale
structure of the PV isosurface is still clearly discernible; how-
ever, when enlarging parts of the image, clearly noticeable
artifacts occur. In Fig. 6d, the visual artifacts that have been
introduced very negatively impact visual analysis of features
of the scale of the enlarged regions.

As a second example, Fig. 8 shows a combination of 2-
D displays (contour lines, color coding) and jet stream core
lines as an example of a visual abstraction of an atmospheric
feature relevant for the analysis (also reproduced from Raut-
enhaus et al., 2020). The core lines have been computed us-
ing the method described by Kern et al. (2018). They also
heavily rely on derivatives. Here, derivatives are computed
from compressed data of the three wind field components (of
which horizontal wind speed is also presented for the verti-
cal section). The plots in Fig. 8 are organized in the same
way as those in Fig. 6, using the same compression parame-
ters. Similarly, Fig. 7b shows how the figure’s SSIM changes
with changing compression parameters. Since in this case
the overall visualization contains larger parts that are not in-

fluenced by compression of the model variables (mainly the
base map and parts of the vertical section where wind speeds
are below the range of the color map), the resulting SSIMs
are higher compared to Fig. 6. For the automatically deter-
mined compression parameters in Fig. 8b, an SSIM of 0.97
is achieved. The resulting visualization looks very much like
the reference, while being based on data compressed with
a ratio of 12. For the contour lines of mean sea level pres-
sure and potential temperature and the color-coded visual-
ization of wind speed, we attribute the high similarity to the
fact that these visual representations have been produced di-
rectly from the model variables with no derivative compu-
tation involved. The jet stream core lines, however, are, in
addition to being based on derivatives, also sensitive to wind
speed thresholds and further filter parameters (Kern et al.,
2018); hence, we expect a larger sensitivity to compression.
In fact, in the upper enlarged region, one of the shorter ar-
rows close to the hurricane center is missing in Fig. 8b. When
using data compressed as in Fig. 6c, visible differences oc-
cur in the detected jet cores, and the ZFP compressor also
introduces blocking artifacts in the mean sea level pressure
contours. When increasing the compression ratio to 25 for
the SZ2 compressor (as in Fig. 6d), the sensitivity of the jet
cores becomes most apparent as many lines from the refer-
ence are missing.

Of course, Figs. 6–8 only illustrate the impact that lossy
compression can have on visualizations of two very specific
cases. We selected the examples to highlight the impact of
lossy compression on typical 2-D visualization elements (in-
cluding contour lines and color coding), derived variables
(including PV), and advanced 3-D visualization elements (in-
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cluding derived features such as jet stream core lines). As
noted above, a much more detailed study that also includes
the aspect of precision vs. resolution (Hoang et al., 2019)
will be necessary to yield more generic results for which
data-reduction approaches are “acceptable” for analysis and
communication by means of visualization. However, it will
be straightforward using our approach to conduct more com-
prehensive statistical analysis on further visual displays, and
we encourage the reader to use our software to perform cor-
responding analyses for their own depictions.

4 Conclusions

The aim of this study has been to demonstrate the practicality
and effectiveness of lossy compression techniques for meteo-
rological and Earth sciences data. The enstools-compression
Python tool offers a seamless way to integrate lossy compres-
sion into NetCDF workflows through its use of the HDF5
compression filter architecture. Advanced compression algo-
rithms like ZFP and SZ (2.x and 3) are employed, and tools
and methods are have been developed to search automati-
cally for compression parameter settings that satisfy given
requirements for data reduction and accuracy.

The results of this study are promising, showing that sub-
stantial data reduction can be achieved without compromis-
ing the overall integrity and usability of the data for scien-
tific analysis. Through the utilization of advanced compres-
sion algorithms like ZFP and SZ (2.x and 3), the study has
illustrated the potential for efficient data management while
maintaining a high level of data accuracy. The use of lossy
compression has been illustrated with series of examples
from current atmospheric science research projects. Signif-
icant compression was found to be possible in all cases with-
out compromising the scientific utility of the data. In most
cases, simply choosing a high level of accuracy, such as a
correlation of 0.99999 and a structural similarity of at least
0.99 with the original data, resulted in compression ratios of
5–100 without changing diagnostics derived from the com-
pressed data significantly. Nevertheless, exceptions like the
example of error growth calculations in Sect. 3.2 show that it
is always necessary to think about how the data will be used.

It will be a significant benefit to science if data volumes
can be significantly reduced while yielding the same results.
We hope that the tools presented, with the addition of the
example use cases, will encourage and enable this.

Appendix A: Usage

We provide selected examples of the use of the Python utili-
ties we provide along with this article. Detailed information
can be found in the documentation (enstools-compression
Contributors, 2023).

Using the command line interface, an existing NetCDF file
can be compressed.

enstools-compression compress
input.nc -o output.nc -compression
lossy,sz,rel,0.0001

The same can be achieved with an xarray dataset present
in a Python script.

enstools.io.write(dataset, "output.nc",
compression="lossy,sz,rel,0.0001")

The resulting files can be read by any software capable of
reading NetCDF using an HDF5 capable backend, as long
as the corresponding HDF5 compression filter is available in
the software.

To determine optimal compression parameters from qual-
ity metrics, the “analyze” keyword is passed to the command
line interface.

enstools-compression analyze input.nc

If neither the compressor nor the method is provided, the
tool considers all implemented compressors and methods and
determines the best-performing example. If the user does not
specify the quality metrics that need to be kept, the default
of a correlation of at least 0.99999 and a structural similarity
of at least 0.99 are used. The command returns the resulting
compression specification for all variables in the dataset.

The code architecture allows the definition of custom met-
rics by defining a Python function with the signature given
below.

from xarray import DataArray
def custom_metric(reference: DataArray,
target:DataArray) -> DataArray:

non_temporal_dimensions = [d for d
in reference.dims if d != "time"]
return ((target - reference)

** 2).mean(dim=non_temporal_
dimensions)

Within a Python script, the custom metric given below can
be used.

# Register the function as a new score
import enstools.scores
enstools.scores.register_score(function=
custom_metric, name="custom_metric")
analyze_files(file_paths=[input_path],
constrains="custom_metric:5")

Custom metrics can also be used from the command line
interface by storing the custom function in a file with the
same name as the function.

enstools-compression analyze
my_files_*.nc \
--constrains custom_metric:5
--plugins /path/to/custom_metric.py
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Consider the example of compressing a dataset consisting
of a large number of files. A possible approach could be to
analyze a fraction of the files to determine a compression
specification.

enstools-compression analyze
my_list_of_files_*.nc

The full dataset can then be compressed using the param-
eters found in the analysis.

enstools-compression compress
my_list_of_files_*.nc -o
/path/to/output/folder
--compression
temperature:lossy,sz,rel,0.001
default:lossless

In addition, the analyze command can output the results
directly in a YAML file.

enstools-compression analyze
output.nc --output
compression_specification.yaml

This file can later be directly used for subsequent compres-
sion.

enstools.io.write(dataset, "output.nc",
compression="compression_speficifation.yaml")

Code and data availability. The software developed for
this study includes both enstools-encoding v2022.11.1
and enstools-compression 2023.11. The enstools-encoding
software can be accessed through its GitHub reposi-
tory (https://github.com/wavestoweather/enstools-encoding,
last access: 14 October 2024) and its corresponding
Zenodo entry (https://doi.org/10.5281/zenodo.7327685,
Tintó Prims, 2022). Similarly, enstools-compression
is publicly available through its GitHub repository
(https://github.com/wavestoweather/enstools-compression, last
access: 14 October 2024) and its corresponding Zenodo entry
(https://doi.org/10.5281/zenodo.7327682, Tintó Prims, 2023). Both
packages are also available through the Python Package Index
(PyPI) and are easily installed via pip. The software is distributed
under the Apache-2.0 license. The repositories contain all the
necessary documentation on how to install, configure, and use the
software.

The software to reproduce the experiments and produce the
figures can be found in https://doi.org/10.5281/zenodo.10998604
(Tintó Prims, 2024).

The data analyses conducted in this study primarily uti-
lize the ERA5 reanalysis dataset. The ERA5 data are not
hosted by us but can be accessed through the Copernicus
Climate Change Service (C3S) Climate Data Store (CDS)
(https://doi.org/10.24381/cds.bd0915c6, Hersbach et al., 2018).
Users interested in accessing the ERA5 dataset can register and
download the data by following the guidelines provided at the CDS
website: https://cds.climate.copernicus.eu/ (last access: 14 Octo-
ber 2024). The ERA5 dataset is provided under specific terms of

use, detailed on the CDS website, which users are encouraged to
review before accessing the data.
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