
Geosci. Model Dev., 17, 8873–8884, 2024
https://doi.org/10.5194/gmd-17-8873-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odelexperim

entdescription
paper

Architectural insights into and training methodology optimization
of Pangu-Weather
Deifilia To1, Julian Quinting2, Gholam Ali Hoshyaripour2, Markus Götz1,3, Achim Streit1, and Charlotte Debus1

1Scientific Computing Center (SCC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
2Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
3Helmholtz AI, Karlsruhe, Germany

Correspondence: Deifilia To (deifilia.to@kit.edu), Julian Quinting (), Gholam Ali Hoshyaripour (), Markus Götz (), Achim
Streit (), and Charlotte Debus ()

Received: 5 June 2024 – Discussion started: 25 June 2024
Revised: 20 September 2024 – Accepted: 13 October 2024 – Published: 13 December 2024

Abstract. Data-driven medium-range weather forecasts have
recently outperformed classical numerical weather predic-
tion models, with Pangu-Weather (PGW) being the first
breakthrough model to achieve this. The Transformer-based
PGW introduced novel architectural components includ-
ing the three-dimensional attention mechanism (3D Trans-
former) in the Transformer blocks. Additionally, it features
an Earth-specific positional bias term which accounts for
weather states being related to the absolute position on Earth.
However, the effectiveness of different architectural compo-
nents is not yet well understood. Here, we reproduce the
24 h forecast model of PGW based on subsampled 6-hourly
data. We then present an ablation study of PGW to bet-
ter understand the sensitivity to the model architecture and
training procedure. We find that using a two-dimensional at-
tention mechanism (2D Transformer) yields a model that is
more robust to training, converges faster, and produces bet-
ter forecasts compared to using the 3D Transformer. The
2D Transformer reduces the overall computational require-
ments by 20 %–30 %. Further, the Earth-specific positional
bias term can be replaced with a relative bias, reducing
the model size by nearly 40 %. A sensitivity study com-
paring the convergence of the PGW model and the 2D-
Transformer model shows large batch effects; however, the
2D-Transformer model is more robust to such effects. Lastly,
we propose a new training procedure that increases the speed
of convergence for the 2D-Transformer model by 30 % with-
out any further hyperparameter tuning.

1 Introduction

Data-driven medium-range weather forecasting models have
experienced rapid progress over recent years. Pangu-Weather
(PGW) was the first model to surpass the performance of
the European Center for Medium-Range Weather Forecasts
(ECMWF) numerical weather prediction (NWP) method,
the Integrated Forecasting System (IFS). Since then, several
other models have been released, including GraphCast (Lam
et al., 2023), FengWu (Chen et al., 2023a), and FuXi (Chen
et al., 2023b). Increasing interest in the field has also led
to the development of foundation models such as ClimaX
(Nguyen et al., 2023), AtmoRep (Lessig et al., 2023), and
Aurora (Bodnar et al., 2024). Many of these models intro-
duce a number of unique architectural components. However,
due to the enormous costs of training them, the related publi-
cations often lack thorough ablation studies, making it diffi-
cult to determine which of the architectural components lead
to the success of the models. This is particularly noteworthy
in PGW, which contains 64 million parameters and requires
an estimated 73 000 GPU hours on NVIDIA V100 GPUs per
lead time to train. The authors of PGW admit that the models
have not arrived at full convergence (Bi et al., 2023a), and
the large size of the model prohibits thorough hyperparame-
ter optimization. In this work, we focus on PGW, as it consti-
tutes a major breakthrough model for the field, but neither the
architecture nor the training procedure is well understood.

The authors of PGW published their trained model weights
and pseudocode (Bi et al., 2023b), which cannot be run.
The pseudocode outlines the architecture, but it is not com-
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plete Python code that can be run without major modifica-
tion. Additionally, the replicated implementations available
on GitHub are either incomplete or not designed in a mod-
ularized manner such that substitution of different architec-
tures is possible; the available research codes would have to
be completely rewritten to perform an ablation study. To the
best of the authors’ knowledge, no ablation study of PGW
has been published to date. Willard et al. (2024) conducted
an ablation study of Transformer-based models for end-to-
end weather prediction based on a Swin Transformer V2 (Liu
et al., 2021) implementation and investigated the effects of
model size, constant channel weighting, and multi-step fine-
tuning.

In this work, we replicate the 24 h model of PGW trained
on a 6-hourly subset of the data. Then we perform an ab-
lation study to determine which of the architectural compo-
nents contribute most to the performance of the model. We
notice that a 2D-Transformer model converges more quickly
and results in lower RMSE values than the proposed 3D-
Transformer model. Through our ablation study, we show
that global batch size is a hyperparameter that strongly af-
fects how quickly the model converges. We also notice that
all variants of the model appear to have two “phases” of train-
ing: one that quickly stagnates until the model learns a good
representation of the input and then another phase in which
the losses rapidly drop, even without adjusting the learning
rate or optimizer. We argue that finding a training procedure
that shortens the length of time in phase 1 is crucial, as it can
drastically reduce the total computational power and time re-
quired to train these models, allowing more resources to be
invested in fine-tuning the model; another benefit is increas-
ing the accessibility of training these models to researchers
who only have access to minimal computational resources.
With this in mind, we propose a new training procedure that
increases the speed of convergence for the 2D-Transformer
model (compared to the original 2D model) by 30 % without
adjusting any other hyperparameters, increasing the possible
performance of the model given a fixed compute budget.

2 Method

2.1 Data

The ECMWF Reanalysis v5 (ERA5; Hersbach et al., 2020)
dataset obtained from WeatherBench 2 (Rasp et al., 2023)
was used. As with PGW and common in other published
models, the variables used were U velocity (U ), V veloc-
ity (V ), temperature (T ), specific humidity (Q), and geopo-
tential (Z) on 13 pressure levels (1000, 925, 850, 700, 600,
500, 400, 300, 250, 200, 150, 100, 50 hPa). The surface vari-
ables were mean sea level pressure (MSP), 10 m U velocity
(U10), 10 m V velocity (V 10), and 2 m temperature (T 2M).
Constant masks of soil type, topography, and land masks
were also included as input. All of the data were normal-

ized by subsampling 6-hourly data and calculating the mean
and standard deviation across all of the variables. Subsam-
pling was required because of the high computational cost
of training on the full dataset. Z-score normalization was ap-
plied. The Pangu-Weather model with a lead time of 24 h was
trained on subsampled 6-hourly data until the model matched
or performed better than IFS according to the RMSE at lead
times of 3 and 5 d for all variables.

2.2 Compute infrastructure

We ran all experiments on a distributed-memory, parallel,
hybrid supercomputer. Each compute node is equipped with
two 38-core Intel Xeon Platinum 8368 processors at 2.4 GHz
base and 3.4 GHz maximum turbo frequency, with 512 GB
local memory, two network adapters, and four NVIDIA
A100-40 GPUs with 40 GB memory connected via NVLink.
Inter-node communication uses a low-latency, non-blocking
NVIDIA Mellanox InfiniBand 4X HDR interconnect with
200 GBs−1 per port. All experiments used Python 3.9.16
with CUDA-enabled PyTorch 2.1.1 (Paszke et al., 2019).

2.3 Reproduction of Pangu-Weather and model
description

The Pangu-Weather (PGW) code was reproduced according
to the details provided in Bi et al. (2023a) and based on the
pseudocode released by the authors (Bi et al., 2023b). Code
is available at https://github.com/DeifiliaTo/PanguWeather
(last access: 3 December 2024) and archived under https://
doi.org/10.5281/zenodo.12720775 (To, 2024). Our code was
written in a modular manner such that different architectural
details such as depth, the hidden dimension, bias terms, and
the dimensionality of attention in the Transformer blocks can
be altered.

PGW is an autoregressive model and uses a hierarchical
temporal aggregation method to roll out the forecasts – four
independent models, with lead times of 1t = 1, 2, 6, and
24 h, are trained. The authors of PGW introduced a three-
dimensional Transformer that was built on a sliding-window
architecture (Swin) (Liu et al., 2021). The architecture of
PGW consists of a patch-embedding step, where the 3D field
data are divided into 3D patches of shape (2, 4, 4). A 3D con-
volution is performed over the individual patches. Then the
patches are fed through a 3D-Transformer block, in which
attention is computed over 3D windows (in the longitude,
latitude, and vertical dimensions) over several layers. In con-
trast, the original Swin architecture was implemented as a
2D Transformer. After one Transformer block, the patches
are downsampled by a factor of (1, 2, 2) and passed through
a linear layer, where the hidden dimension is increased by a
factor of 2. The states are then passed through two more 3D-
Transformer blocks before being upsampled and recovering
the patches through a transpose convolutional layer. PGW
also introduces an Earth-specific position bias (ESB) term,
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which represents a learnable bias term added to the attention
layers (Bi et al., 2023a). The “Earth-specific” terminology
refers to the fact that the bias term is independently learned
in the latitude and vertical dimensions. Due to the large num-
ber of layers, the ESB is a huge parameter, comprising 41
million parameters per lead time.

As a validation case, the full-sized Pangu-Weather model
with a lead time of 24 h was trained until the model matched
or performed better than IFS according to the RMSE at lead
times of 3 and 5 d for all variables. Data from 1979–2017
were used for training, data from 2019 were used for valida-
tion, and data from 2020–2021 were used for testing.

2.4 Training procedure

The validation case was trained with a local batch size of two
on 120 NVIDIA A100-40 GPUs. Unless otherwise specified,
all ablated models were trained with a local batch size of six
on 120 NVIDIA A100-40 GPUs. PyTorch’s ReduceLROn-
Plateau scheduler was used with an initial learning rate of
0.0005, a patience value of 7, and a factor of 0.5. The Adam
optimizer was used with a weight decay value of 3× 10−6.
Gradient checkpointing was used to increase the local mini-
batch size.

2.5 Ablation study

Due to computational constraints, an ablation study was per-
formed based on the lite architecture (PGW-Lite) described
by Bi et al. (2023a) rather than on the full PGW model.
The PGW-Lite model retains all architectural components of
the full-sized model, except for the first embedding step, in
which a (2, 8, 8) patch size is used instead of a (2, 4, 4) patch
size. This reduces the size of the model from 64 million to
40 million free parameters. As explained in Rajbhandari et al.
(2020), the memory requirement of training is much greater
than the size of the model, since intermediate model states
are stored in the forward and backward passes. Reducing the
model size allows a larger local batch size to fit onto a sin-
gle GPU, reducing the overall computational cost of training.
For all ablated models, 6 h subsampled data from 2008–2018
were used as training data, 2019 data were used for vali-
dation, and 2020–2021 data were reserved for testing. The
models were trained to produce 24 h forecasts.

In the ablation study, five models were compared. These
models and the number of parameters are shown in Table 1
and are described in more detail as follows.

In the PGW-Lite model, an absolute ESB term within the
Transformer was implemented according to the description
in Bi et al. (2023a). The formulation of self-attention in the
PGW model is

attention(Q,K,V)= SoftMax
(

QKT /
√
D+BESP

)
V (1)

where Q, K, and V are the query, key, and value matrices and
D is the feature dimensionality of Q. BESP was introduced

by Bi et al. (2023a) to represent a bias term that varies as a
function of latitude and height but is invariant to longitude.
Bi et al. (2023a) reasoned that atmospheric fields are variable
in the latitude and vertical dimensions but remain consistent
in the longitude dimension. Even in the lite model, this term
contains 20 million parameters, comprising 50 % of the over-
all terms in the model. In the relative bias model, the bias is
invariant in all three spatial dimensions, reducing the model
size to 24.3 million parameters. In the positional encoding
model, the patches are given a learnable positional encod-
ing term implemented similarly to in PGW-Lite in that the
patches in the latitude and vertical dimensions learn a posi-
tional embedding with a hidden dimension of C = 192 and
the values stay the same along the longitude dimension. As
this term is completely outside of the attention blocks, it re-
quires far fewer parameters to implement. The three-depth
model increases the depth of the network to three; i.e., two
up- and downsampling layers were implemented. To keep
the model size manageable, only four layers within the deep-
est block were implemented. As with the original model, the
downsampling was implemented in the latitude and longitude
dimensions by patches of (2, 2) and by increasing the hidden
dimension 4-fold with a linear layer. In the 2D-Transformer
model, the structure of PGW-Lite was retained, but the atmo-
spheric variables of the different pressure levels were treated
as different variables (channels). The attention mechanism
in the Transformer block was only applied over values in
the longitude and latitude dimensions. To compensate for the
reduction in parameters associated with a 2D-Transformer
model, the hidden dimension was increased from C = 192 to
C = 288, increasing the dimension of the hidden layer to 48
per attention head as opposed to the original 32. Note that
the latent space in the 2D Transformer now encodes 5 vari-
ables× 13 pressure levels instead of just 5 variables× 1 pres-
sure level as in the 3D case.

2.6 Minibatch size and model training

A study directly comparing the PGW-Lite model, which fea-
tures a 3D-attention mechanism, and the 2D-attention model
was performed. Each of the two models was trained from
scratch five times, varying the global batch size according
to the following values: 16, 32, 64, 480, and 720. More ex-
periments could not be conducted due to computational con-
straints. The details of the local and global minibatch size, as
well as the average total GPU hours per epoch and wall time
per epoch, are shown in Table 3. All models were initialized
with the same random seed, so the orders of the training sam-
ples loaded from the data loader are identical.

2.7 Variable-specific weighted cosine loss scheduling

The loss function in PGW is defined as

loss=
∑
i

wi ·L
1 (prediction, target) , (2)
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Figure 1. Architecture of the Pangu-Weather model and variations considered in the ablation study. The sliding-window mechanism (Swin)
is not depicted in the figure for simplicity. The up- and downsampling layers are also excluded from the figure. (a) Pangu-Weather. (b)
Relative bias. (c) Learned positional embedding. (d) 2D attention.
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Table 1. Overview of models included in the ablation study. All models are based on PGW-Lite.

Model Number of parameters Hidden
(millions) dimension

PGW-Lite (absolute bias) 44.6 192
Relative bias 24.3 192
Positional embedding 24.3 192
2D attention 57.2 288
Three-depth 108.9 192

where i is the variable, w is a weighting factor, L1 is the
L1 loss function, prediction denotes the model outputs, and
target denotes the ground-truth forecast data. The values of
wi are 3.00,0.6,1.5,0.77, and 0.54 for Z, Q, T , U , and V ,
and surface-variable weights are 1.5,0.77,0.66, and 3.00 for
variables MSP,U , V , and T , as specified by Bi et al. (2023a).

After determining that the 2D-Transformer model appears
to converge the fastest and require the fewest computa-
tional resources, we re-train the 2D-Transformer model from
scratch for 300 epochs with a smooth loss function that
weights the variables differently over the epochs. The loss
function is designed so that within 100 epochs, the weights
for each variable cycle through one cosine schedule (Fig. 2).

Given an individual variable i at epoch e, for a period of
nepochs (here, nepoch = 100), the formulation of the weight-
ing factor is as follows: for the pressure variables Z, Q, T ,
U , and V , i = 1, 3, 2, 0, and 0, respectively. For the surface
variables MSP, U10, V 10, and T 2M , i = 1, 0, 0, and 2, re-
spectively.

w(i,e)= cos
(

2π
nepoch

(
e−

i

2

))
+ 1.1 (3)

At each epoch, the pressure variables are normalized to
sum up to the original weights of 3.00+0.60+1.50+0.77+
0.54.

W(i,e)= w(i,e) ·
3.00+ 0.60+ 1.50+ 0.77+ 0.54∑

iw(i,e)
(4)

A similar procedure is applied to the surface variables,
where the numerator is replaced with 1.5+0.77+0.66+3.0.
The ordering of the weights was designed such that the
weights of the velocity and temperature variables (U , U10;
V , V 10; T , T 2M) would peak at similar epochs.

The validation loss is always calculated with the original
weights to maintain consistency. Note that the two schedules
for the pressure level and surface variables are complemen-
tary: the weights for velocity fields and temperature at both
levels are in phase.

3 Results

3.1 Validation

A representative output of the model for a 24 h forecast as
well as the absolute error is visualized in Fig. 3.

Figure 4 shows the RMSE with an increasing lead time
of two surface variables, U velocity at 10 m and the tem-
perature at 2 m, as well as temperature at a pressure level
of 850 hPa, tested over the years 2020 and 2021. We ob-
serve that our PGW model performs better than IFS for three
variables (U10, T 2M , T 850) over the 5 d forecast, but it
performs worse for the Z500 variable. There is still a no-
table difference between the performance of our model and
the published PGW model. We attribute this to training the
model on only a 6 h subsample of the total data trained by the
original authors, as well as to slight differences in the training
procedure such as batch size. While our model cannot com-
pete with the published PGW model by Bi et al. (2023a), this
result gives us enough confidence that complex weather pat-
terns can be learned with our model for us to proceed with
the ablation study.

3.2 Ablation study

The training and validation losses of the different models are
shown in Fig. 5. All of the validation losses closely paral-
lel the training losses, indicating that none of the models are
overfitted. Despite drastic variations in the model architec-
ture and in the size of the networks, all models exhibit similar
loss curves. Furthermore, they reach similar final loss values
upon model convergence.

As the loss function for the model is the L1 loss, we also
wish to verify that meteorologically relevant metrics such as
the RMSE and the anomaly correlation coefficient improve
for specific variables as the L1 loss goes down. Figure 5
shows the weighted RMSE values of the U velocity at 10 m.
Though all models learn with a similar structure, we note
that the 2D Transformer is able to reach some of the lowest
RMSE values at a given epoch, i.e., the compute budget.

The best validation loss as well as the epoch in which that
is reached is shown in Table 2. All models reach a similar
validation loss, with the value for the positional embedding
being the worst at 0.152 and the PGW-Lite, relative bias, and

https://doi.org/10.5194/gmd-17-8873-2024 Geosci. Model Dev., 17, 8873–8884, 2024



8878 D. To et al.: Architectural insights into and training methodology optimization of Pangu-Weather

Figure 2. The weights for variable-specific cosine loss scheduling. The period is 100 epochs. The U - and V -velocity fields for both the
pressure-level variables and the surface variables are superimposed on one another, since they always receive the same values. The weights
are normalized to sum up to the sum of the original weights presented in Bi et al. (2023a). (a) Pressure-level variables. (b) Surface variables.

Figure 3. Representative sample of the U -velocity field at a pressure level of 1000 hPa for a 24 h forecast. The forecast was initialized on
26 January 2020 at 00:00 UTC. (a) U -velocity field. The color bar represents the U velocity in units of ms−1. (b) Absolute error. The color
bar represents the absolute error between the prediction and the ground truth.

Figure 4. RMSE as a function of the forecast lead time of key prog-
nostic variables (T 2M , U10, T 850) in our model compared to IFS
and Pangu-Weather on testing data from 2020–2021. RMSE values
of temperature and velocity are on the left y axis, and the RMSE
values of geopotential are on the right y axis. Pangu-Huawei refers
to the reference model.

Table 2. Best validation loss and total epochs for the different mod-
els.

Model Best validation No. of
loss epochs

PGW-Lite (absolute bias) 0.143 360
Relative bias 0.143 300
Positional embedding 0.152 358
2D attention 0.148 263
Three-depth 0.143 346

three-depth models tying for the best at 0.143. However, it
is important to note that the 2D model converged 40–100
epochs earlier than the other models, reducing computation
by 11 %–28 %. Furthermore, Sect. 3.3 shows that reducing
the batch size allows the 2D Transformer to converge to
lower values of the loss function within fewer epochs com-
pared to PGW-Lite.

Figure 6 shows the development of the RMSE for different
variables as the model continues to learn for the PGW-Lite
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Figure 5. Training curves of ablation study for the PGW-Lite, three-depth, relative bias, positional embedding, and 2D-attention models.
(a) Training and validation loss values as a function of the epochs. (b) RMSE for the 10 m U velocity as a function of the epochs, as evaluated
for the validation samples.

Figure 6. RMSE as a function of epochs for different prognostic
variables for PGW-Lite, as evaluated on the validation dataset. All
values are normalized by their maximum RMSE value.

model trained on a global minibatch size of 720. For the first
230 epochs, the learning rate is kept constant at 5× 10−4.
As paralleled in the validation loss plots in Fig. 5, the model
learns relatively slowly for the first 100 epochs except for
during the initial drop. After that, particularly in the veloc-
ity and geopotential fields, the model is able to learn more
quickly before reaching a second plateau. Though it is not
shown here, we observe similar patterns for all ablated mod-
els.

3.3 Minibatch size effects

Figure 7 shows the validation loss of two models, PGW-Lite
and 2D attention, with a global minibatch size of 16, 32,
64, 480, and 720. Both models train nearly identically for
a minibatch size of 16 but diverge for all other minibatch
sizes. For the 2D-Transformer model, similar final loss val-
ues were reached for minibatch sizes of 16, 64, and 480.
The 2D-Transformer model appears to have instabilities in
the beginning of training for a batch size of 32, leading it
to converge at a worse final loss value. For the 2D model,

it appears that using a small global minibatch size reduces
the time to convergence and improves the final model perfor-
mance. In contrast, the PGW-Lite model converges at sub-
optimal loss values for minibatch sizes of 16, 32, and 480. In
these cases, the models were allowed to train until the learn-
ing rate dropped to 3×10−5. The irregularity of this behavior
can be attributed to the model’s sensitivity to the initial ran-
dom seed.

The global minibatch size greatly affects the speed of
convergence: by training with a smaller global minibatch
size, we reach lower values of the loss function much more
quickly; this also comes with a reduction in overall compute
power but at the cost of longer wall times.

3.4 Variable-specific weighted cosine loss scheduling

Figure 8 shows the RMSE of the variables U10, V 10, T 850,
and T 2M over the course of the cosine loss scheduling.
The final L1 loss value reached was 0.131, lower than all
other models trained in this paper. The large fluctuations in
the training loss reflect the cosine scheduling of the differ-
ent variables. The RMSEs of the different key variables are
shown alongside the training and validation loss in Fig. 8.

Despite the large fluctuations in the training loss, the val-
idation loss continues to decrease. There are some fluctu-
ations in the RMSE variables, reflecting the effects of the
weight scheduling: between epochs 125 and 175, the weights
for the velocity fields are small. In this period, we notice
that the validation RMSEs for the velocity variables increase
slightly as the temperature, weighted highly, decreases.

4 Discussion

4.1 Ablation study

The major finding of this ablation study is that neither of the
two novel ideas introduced by PGW is crucial to its success.
This underscores the idea that the success of PGW is due to
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Figure 7. Validation loss as a function of epochs for global minibatch sizes of 16, 32, 64, 480, and 720 of (a) the 2D attention model and
(b) PGW-Lite.

Table 3. Compute requirements for PGW-Lite and the 2D-attention model (2D Transformer) based on minibatch size.

Global minibatch size Local batch size Average total GPU hours per epoch Wall time/epoch [min]

PGW-Lite 2D PGW-Lite 2D PGW-Lite 2D

720 6 12 11.3 10.6 5.6 10.6
480 6 12 9.2 8.0 6.9 12.0
64 1 1 10.6 8.6 11.3 8.1
32 1 1 10.9 7.8 20.5 14.7
16 1 1 8.5 7.7 31.7 28.8

the Transformer backbone and Swin mechanism rather than
to the particular bias term introduced or the 3D-Transformer
architecture. This is noteworthy because these two architec-
tural components are particularly expensive with respect to
training time and memory requirement. In fact, the PGW-Lite
model does not perform better than the other ablated smaller
models. The three-depth model, the largest and deepest con-
figuration, was expected to perform significantly better. This
is because, in its deepest layers, the individual windows in
Swin are designed to apply attention across greater ranges,
enabling the model to capture and learn far-reaching weather
patterns. Surprisingly, the model appears to be difficult to
train and to have convergence issues; the final performance of
the three-depth model was not better than that of PGW-Lite.
The results of this study show that the massive ESB term can
be replaced by simple learned positional embedding, reduc-
ing the size of the term that learns the Earth-specific locality
by 20.4 million parameters, even in the case of PGW-Lite;
in the case of the full PGW model, this term contains 40.4
million of the total 64.2 million parameters.

Table 2 and Fig. 5 show that the 2D-attention mechanism
is a suitable replacement for the 3D Transformer. They show
that the 2D Transformer learns the representation faster than
any of the 3D models, reaching a comparable validation loss
and RMSE value in fewer epochs. Intuitively, we expect that
the 3D Transformer introduced in Bi et al. (2023a) should
perform better than the 2D Transformer. However, evaluat-
ing these results shows that the 2D Transformer is sufficient.
This can be explained by the change in architecture. After

patch embedding, a representation of all variables in each is
learned and stored in a latent vector of dimension C. With
a 3D-Transformer architecture, each latent vector contains
the information of the five pressure variables (Z, Q, T , U ,
V ) and attention is performed between neighboring patches
in all dimensions. In a 2D-Transformer architecture, the la-
tent vector contains the five pressure variables at all pressure
levels and attention is only performed over the neighboring
patches in the latitude and longitude dimensions. It is pos-
sible that mixing the information across all spatial layers is
more efficient, as it allows the model to learn the relation-
ship between more than two pressure levels at a time. This
has many benefits – by using the 2D-attention model, the in-
dividual attention blocks require much less memory. Specifi-
cally, the attention mechanism requires anO(n2)memory re-
quirement with respect to the size of the sequence (Vaswani
et al., 2017). Reducing the attention blocks to perform atten-
tion over patches from (2, 6, 12) to (1, 6, 12) in the 2D Trans-
former has allowed us to double the local minibatch size per
GPU, reducing the total computational requirements.

Due to the infinitely large hyperparameter space and ap-
parent sensitivity of the model to these parameters, it is un-
clear whether the presence of the 3D Transformer or ESB
is truly detrimental to the convergence and success of the
model. It is entirely possible that, given the correct hyperpa-
rameter configuration, the original PGW model could greatly
outperform these cheaper, ablated models. However, due to
the cost, energy requirements, and associated CO2 emissions
of the compute requirements of the original model, we ar-
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Figure 8. Error metrics for variable-specific weighted cosine loss scheduling applied to the 2D-attention model. The 2D-attention model with
PyTorch’s ReduceLROnPlateau scheduler was maintained as the reference model and compared to the variable-specific weighted cosine loss
scheduling model. (a) RMSE values of the 10 m U and V velocities, as evaluated on the validation dataset, as a function of the epochs.
(b) Training and validation losses for the two models.

gue that it is important to develop easily trainable and robust
models; we strive for a model with little hyperparameter tun-
ing, reducing the compute requirements of training. Figures 5
and 7 show that all models follow two phases of training:
after a certain point, the model learns a suitable embedded
representation and can proceed to learn more quickly. In this
work, we explore different mechanisms to reduce the num-
ber of epochs it takes these models to reach this trigger point;
this reduces the computational burden and makes these data-
driven models accessible to researchers with smaller com-
pute budgets.

4.2 Batch size

The difficulty and the unpredictability of training Trans-
formers are shown in Fig. 7, where the PGW-Lite and 2D-
attention models were trained for different global minibatch
sizes of 16, 32, 64, 480, and 720. All models were initial-
ized with the same random seed. With the exception of mini-
batch size 16, the 2D-attention model was trained within
fewer epochs than the equivalent PGW-Lite model. While
the 2D-attention minibatch 32 model also showed instabil-
ity and difficulty in training, PGW-Lite with minibatches of
32, 64, and 480 failed to converge and leave the phase 1 stage
of training. Despite the learning rate dropping to small val-
ues of 3×10−5, the models did not improve and training was
stopped. The results indicate that the higher model complex-
ity in PGW also increases the difficulty in convergence. The
trends in this experiment are non-monotonous (e.g., global
minibatch sizes of 16 and 64 converged to low loss values in
the 2D-attention model, but a minibatch size of 32 performed
worse) and difficult to explain – we hypothesize that training
several models with different random seeds would help in
finding at least one model that converges to a low loss value.
Given that many researchers face limited compute budgets,
this underscores the benefit of having a model that is robust
to training and hyperparameters.

Table 3 shows that the 2D models consistently require
fewer total GPU hours and less wall time to train compared
to the PGW-Lite models, despite having more model param-
eters. This highlights the computational cost of the atten-
tion mechanism, as the PGW-Lite model performs attention
across windows that are 2 times larger than the 2D-attention
model. For both models, doubling the GPUs results in a
speedup of between 80 %–95 %, revealing the increased syn-
chronization time required with more parallelization. When
comparing the run times for global minibatch sizes of 480
and 720, the 2D-attention model is able to fit 2 times the
number of samples per GPU. This comes at the expense of
wall time, where we see the 2D models requiring between
1.5 and 1.7 times more wall time to complete a given epoch
but having similar overall computational demands.

The relationship between average total GPU hours per
epoch and batch size exhibited by the 2D-attention model
shows that using smaller minibatch sizes will reduce the
computational time per epoch, at the cost of wall time. Com-
bined with the speedup in convergence behavior – i.e., a
smaller global batch size leads to fewer overall epochs re-
quired – the results indicate the benefits of using both smaller
local and smaller global batch sizes when training weather
forecasting models. Our limited results emphasize the need
for more systematic studies on the relationship between local
and global batch sizes, wall time, and convergence.

4.3 Variable-specific weighted cosine loss scheduling

This study highlights the sensitivity of Transformer-based
medium-range weather forecasting models to hyperparam-
eters such as batch size and learning rate. With this in mind,
we wanted to develop some explainable heuristics that could
be applied to the training scheduling. The advantages of
training an autoregressive weather forecasting model are that
the input and output fields are the same and that the fields de-
scribe physical dynamics. We look at the RMSE over epochs
in Fig. 6 to understand how the model learns. We notice a
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few trends: as expected, the U - and V -velocity fields learn at
the same rates. The temperature fields level off more quickly,
whereas the geopotential field continues to improve as train-
ing goes on, even when the loss function appears to have
stagnated.

The design behind the variable-specific weighted cosine
scheduling is because it was observed that the velocity fields,
compared to fields such as geopotential or temperature, take
longer to learn. This is attributed to the sharp and localized
gradients that occur in these fields, making them harder to
learn and generalize. However, in atmospheric models, re-
solving the velocity fields is crucial, since wind vectors, act-
ing as pressure gradients, can drive certain atmospheric pro-
cesses such as advection terms in atmospheric variables. As
such, we decided to schedule the weights in such a way that
the velocity fields are encouraged to improve quickly in the
beginning, at the cost of learning other fields such as the tem-
perature in the beginning.

Figure 8 shows that even as the training loss fluctuates
due to a variable-specific weighted scheduling, the valida-
tion RMSE values of different variables will generally con-
tinue improving, with only minor fluctuations. Particularly in
the beginning of training, the implementation of the variable-
specific weighted cosine loss scheduling allows the model
to converge with approximately 30 % fewer epochs, with all
other hyperparameters and training regimens kept constant.

5 Conclusions

This work presents an ablation study of PGW to determine
the important architectural components that lead to its suc-
cess. It finds that the ESB can be replaced with a simple rel-
ative bias, reducing the overall number of model parameters
by 46 %. We also show that replacing the 3D Transformer
with a 2D Transformer, even though it has 30 % more pa-
rameters, allows for the model to fit more samples on a single
GPU – in our case, 2 times that of the former. Furthermore,
the 2D models consistently train faster than or just as fast as
the three-dimensional models and reach better L1 and RMSE
values upon convergence. An initial study on the batch size
effects of these models shows that the 2D Transformer is
much more robust to training than PGW-Lite, which often
failed to converge. We also show that training either model
with a global minibatch size of 16 and a local batch size of
1 can allow the model to converge within 28 % of the total
epochs, compared to a minibatch size of 720, while maintain-
ing similar total GPU hours per epoch and increasing the wall
time sub-linearly. This points to further work in understand-
ing the relationship between local and global batch sizes, to-
tal GPU hours required, and wall time. We also show that
implementing a simple weighted loss function schedule over
time can push the model to converge with nearly 30 % fewer
epochs, effectively reducing the computational cost to reach

a given performance at no change to the model architecture
or training schedule.

Code and data availability. The raw ERA5 climate reanalysis data
(Hersbach et al., 2023a) are publicly available at DOI https://
doi.org/10.24381/cds.adbb2d47 and DOI https://doi.org/10.24381/
cds.bd0915c6 (Hersbach et al., 2023b). The data were down-
loaded from the WeatherBench 2 API, which is a cloud-
based benchmarking platform from Google that provides pre-
processed data archives of the ERA5 database: https://doi.org/
10.48550/arXiv.2308.15560 (Rasp et al., 2023). Our download
script can be found archived in the Zenodo repository under
data_download/download_era5.py. The code to replicate
all experiments can be found under https://doi.org/10.5281/zenodo.
12720775 (To, 2024). A Jupyter notebook to reproduce figures
in the paper is also found in the same Zenodo directory, under
Paper_plots.ipynb.
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