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Abstract. There has been widespread adoption of down-
scaled products amongst practitioners and stakeholders to
ascertain risk from climate hazards at the local scale (e.g.,
∼ 5 km resolution). Such products must nevertheless be con-
sistent with physical laws to be credible and of value to users.
Here we evaluate statistically and dynamically downscaled
products by examining local co-evolution of downscaled
temperature and precipitation during convective and frontal
precipitation events (two mechanisms testable with just tem-
perature and precipitation). We find that two widely used
statistical downscaling techniques (Localized Constructed
Analogs version 2, LOCA2, and Seasonal Trends and Anal-
ysis of Residuals Empirical Statistical Downscaling Model,
STAR-ESDM) generally preserve expected co-variances dur-
ing convective precipitation events over the historical and
future projected intervals as compared to European Cen-
tre for Medium-Range Weather Forecasts Reanalysis v5
(ERA5) and two observation-based data products (Livneh
and nClimGrid-Daily). However, both techniques dampen
future intensification of frontal precipitation that is other-
wise robustly captured in global climate models (i.e., prior to
downscaling) and with process-based dynamical downscal-
ing across five different regional climate models. In the case
of LOCA2, this leads to appreciable underestimation of fu-
ture frontal precipitation event intensity. This study is one of
the first to quantify a likely ramification of the stationarity
assumption underlying statistical downscaling methods and
identify a phenomenon where projections of future change
diverge depending on data production method employed. Fi-
nally, our work proposes expected co-variances during con-
vective and frontal precipitation as useful evaluation diag-
nostics that can be universally applied to a wide range of sta-
tistically downscaled products.

1 Introduction

Extreme weather events are among the costliest disasters to
the United States. Over the past 4 decades (1980–2023),
there have been more than 370 billion-dollar disasters that
cumulatively cost over 2.6 trillion dollars (NOAA, 2024). To
ascertain risk from climate hazards, a broad community of
practitioners, stakeholders, and policymakers rely on histori-
cal reconstructions and future projections of local to regional
climate that are “downscaled” from coarse global climate
model outputs (Fiedler et al., 2021; Pitman et al., 2022). This
is because global climate model (GCM) data alone are too
coarse in resolution: GCM outputs from the Coupled Model
Intercomparison Project 6 (CMIP6), for instance, have a grid
spacing of ∼ 100 to 300 km in the midlatitudes and cannot
adequately represent finer-scale features like topography and
extreme storms (Eyring et al., 2016).

Numerous climate data products have emerged over the
last several years that represent the contiguous United States
(herein CONUS) at local scales, including dynamically and
statistically downscaled products. Dynamically downscaled
products (e.g., Jones et al., 2023; Liu et al., 2017; Dai et al.,
2020; Rasmussen et al., 2023; Chen et al., 2023) use regional
climate models that simulate local meteorology, providing
a comprehensive set of climate variables that are inherently
self-consistent. While the general expectation is that dynam-
ical downscaling implicitly preserves physical relationships
among variables because they are generated by a modeling
system based on physical laws, it is known that some biases
can arise from insufficient representation of relevant physi-
cal processes (such as eddies; Xu et al., 2019), inherent er-
ror from lateral boundary input (e.g., from GCMs; Rahimi et
al., 2024), and/or sensitivity to regional climate model con-
figurations (the limitations of regional climate models were
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comprehensively reviewed by Giorgi, 2019, and Lloyd et
al., 2021) that must be considered. Statistically downscaled
products (e.g., Abatzoglou and Brown, 2012; Thrasher et al.,
2012, 2022; Pierce et al., 2014, 2023) are derived based on
relationships between coarse climate model outputs and ob-
served local meteorology (e.g., Livneh et al., 2015a; Durre
et al., 2022a). Since they are generated through simple func-
tional relationships, statistically downscaled products can be
generated more rapidly than dynamically downscaled prod-
ucts (albeit for fewer variables as dense observational net-
works are only available for select quantities).

Given their computational convenience, there has been
widespread adoption of statistically downscaled products.
Statistically downscaled products must nevertheless be cred-
ible to be of value to users; the data must be consistent
with physical laws to be trusted for future projections (Cash
et al., 2002). Importantly, common statistical downscaling
methods downscale variables independently of one another
and thus do not explicitly account for co-variances across
variables at the local scale (notwithstanding existing co-
variances generated by climate models prior to downscaling).
This may be problematic as the loss of process-relevant co-
variances, if any, would undermine downstream assessments
of multi-variate hazards (e.g., droughts, flooding, and wild-
fires). Drought and wildfire metrics, for instance, may require
self-consistent inputs of temperature and precipitation. Addi-
tionally, statistical downscaling assumes that observed func-
tional relationships will be preserved in the future (i.e., the
stationarity assumption) despite climate change (Milly et al.,
2008); however, there is no guarantee that historically de-
rived statistical relationships will remain valid in the future.
A precise understanding of the extent to which such an as-
sumption may undermine projections nevertheless remains
elusive.

Here we assess the extent to which two locally relevant
co-variances between temperature and precipitation are pre-
served (or lost), as compared to outputs from global climate
models and their dynamically downscaled counterparts, in
two widely used (e.g., Martin, 2023; Ullrich, 2023; Najibi
et al., 2024; Wang et al., 2024) statistical downscaling tech-
niques selected to accompany the Fifth National Climate As-
sessment (NCA5; the pre-eminent guidance on national cli-
mate risks; USGCRP, 2023): Localized Constructed Analogs
version 2 (LOCA2; Pierce et al., 2023) and Seasonal Trends
and Analysis of Residuals Empirical Statistical Downscal-
ing Model (STAR-ESDM; Hayhoe et al., 2024). A central
goal of our paper is to understand the representation of physi-
cal mechanisms in statistical downscaling products with only
daily surface temperature and precipitation outputs (often the
only two variables available with statistical downscaling).
For this reason, we examine expected co-variances between
temperature and precipitation during convective and frontal
precipitation events, including for the projection interval,
where the stationarity assumption may not hold. Although
the credibility of both LOCA2 and STAR-ESDM has been

evaluated for single variables (e.g., Pierce et al., 2023; Hay-
hoe et al., 2024), we propose, for the first time, diagnostics
for evaluating co-variances that can be universally applied
to a wide range of statistically downscaled products. Collec-
tively, our work attempts to address the following questions:

To what extent is physical consistency across variables
preserved, as compared to observations, when variables are
(i) statistically downscaled independently and (ii) dynami-
cally downscaled concurrently?

How much does the stationarity assumption inherent in
statistical downscaling undermine credibility of projections,
particularly for potentially non-stationary hydrologic pro-
cesses?

2 Data and methods

We employ outputs from eight Coupled Model Intercom-
parison Project Phase 6 (CMIP6) models and their statis-
tically downscaled counterparts (see Table 1). The statisti-
cally downscaled products come from Localized Constructed
Analogs version 2 (LOCA2; Pierce et al., 2023) and Sea-
sonal Trends and Analysis of Residuals Empirical Statistical
Downscaling Model (STAR-ESDM; Hayhoe et al., 2024).
The following description of LOCA2 and STAR-ESDM is
from Ullrich (2023), with minor modifications. LOCA2 is a
statistical downscaling technique based on signal decompo-
sition employing analogs (i.e., days in the historical record
that exhibit regional meteorology most like the regional pat-
terns of a given day in the CMIP6 model). The LOCA2 algo-
rithm first bias-corrects historical CMIP6 outputs to obser-
vations using quantile mapping. It then adjusts the amount
of variability seen in different frequency bands to match ob-
servations using a digital filter (Pierce et al., 2014, 2023).
To downscale data at a given grid cell, the 30 d period in
the historical record best exhibiting regional meteorology as
compared to the CMIP6 model day is identified. The single
day best matching the model day is used as the analog for the
local region around the grid point (Pierce et al., 2023). The
LOCA2 North American product uses an updated version of
Livneh et al. (2015a) with 6 km grid spacing as the training
dataset (Pierce et al., 2021). Outputs from LOCA2 are also
available at 6 km grid resolution.

STAR-ESDM is a statistical downscaling technique based
on signal decomposition (Hayhoe et al., 2024). The STAR-
ESDM algorithm first disaggregates observations and GCM
outputs into four separate components: the long-term trend,
climatological annual cycle, annually varying annual cy-
cle, and high-frequency daily anomalies. For each of these
components, mappings are constructed between observations
and historical GCM outputs. Future projections are bias-
corrected using these mappings, and then components are re-
combined to produce a consistent estimate of future time se-
ries. The STAR-ESDM product uses nClimGrid-Daily data
with 5 km grid spacing for training over CONUS (Durre
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Table 1. (a) List of CMIP6 models analyzed. All models use the r1i1p1f1 member. We examine the same eight models in the LOCA2
and STAR-ESDM downscaled data. ∗ TaiESM1 is only analyzed over the historical interval (and not the future interval) for the raw GCM
due to data availability. Longitude-by-latitude grid resolution is provided in parentheses (rounded to nearest 1/10th of a degree except in
cases where resolution ends exactly in a quarter or eighth of a degree). (b) List of observation-based datasets analyzed. (c) List of statistically
downscaled datasets analyzed. (d) Simulation matrix adapted from NA-CORDEX. The left column shows the underlying boundary condition
(BC) data being dynamically downscaled. The top row shows the regional climate model (RCM) driving the downscaling. The simulations
analyzed show the grid spacing of downscaled model. In addition to global climate models, NA-CORDEX downscales ERA-Interim (top of
left column) across different regional climate models (this allows for a comparison of downscaling across a common dataset).

et al., 2022a). Both the LOCA2 and STAR-ESDM datasets
were chosen for operational use in the Fifth National Climate
Assessment.

We compare convective and frontal precipitation pro-
cesses (specifics of how these processes are defined are
provided in subsequent paragraphs) from (i) the European
Centre for Medium-Range Weather Forecasts Reanalysis
fifth-generation data (ERA5; Hersbach et al., 2020) against
(ii) CMIP6 GCMs and their statically downscaled counter-
parts (LOCA2 and STAR-ESDM). We also examine convec-
tive and frontal precipitation processes in the observation-
based Livneh (Livneh et al., 2015a) and nClimGrid-Daily
(Durre et al., 2022a) hydrometeorological datasets. Finally,
to assess the extent to which the stationarity assumption
affects projections across statistical and dynamical down-
scaling, we compare LOCA2 and STAR-ESMD against the
North America component of the Coordinated Regional
Downscaling Experiment (NA-CORDEX; Mearns et al.,
2017). NA-CORDEX dynamically downscales ERA-Interim

reanalysis data and climate model simulations under histor-
ical and Representative Concentration Pathway 8.5 W m−2

(RCP8.5) forcings with a suite of regional climate models.
We employ five different raw GCM experiments downscaled
with five different regional climate models that provide daily
outputs at ∼ 25 km resolution. See Table 1 for a summary of
all the datasets examined in this paper.

Statistically downscaled products generally only provide
a few variables at daily or higher frequencies, which can
make it difficult to evaluate co-variances. Directly computing
co-variance between temperature and precipitation at daily
timescales may not be useful due to non-linear physical re-
lationships and/or the stochastic nature of weather. We fol-
low Zhang and Boos (2023) in isolating for a single con-
vective precipitation event each year by considering precip-
itation at each grid point coincident with the highest daily
maximum temperature during that year (herein convective
precipitation). Similarly, we isolate for a single (cold) frontal
precipitation event each year by considering precipitation co-
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incident with the greatest drop in surface temperature for
that year (herein convective precipitation). For every grid
point, our method thus identifies one convective precipita-
tion event and one frontal precipitation event per year. To
evaluate our method of identifying precipitation events, we
(i) identify grid by grid the calendar day of convective and
frontal precipitation, respectively, for each year over 1980–
2014, (ii) create histograms of the number of times that the
day of convective or frontal precipitation falls between day 0
and day 365 of each year (days 0–365 are thus effectively his-
togram bins), and (iii) fit a discrete Fourier transform to the
respective histogram to identify the dominant frequency (i.e.,
frequency corresponding to peak day) present in the data.

We examine daily near-surface temperature and precipita-
tion fields on a per-grid basis during convective and frontal
precipitation events over CONUS, focusing on a 21 d win-
dow from 10 d prior to and 10 d following the day of con-
vective and frontal precipitation, respectively (and includ-
ing the day of convective or frontal precipitation itself). For
the raw GCMs and ERA5, we also examine moist static en-
ergy, which we estimate using daily temperature, specific hu-
midity, and geopotential height but monthly surface pressure
(due to data availability). For the purposes of this study, we
examine (i) a 35-year period spanning the 1980–2014 histori-
cal interval and (ii) a 35-year period spanning the 2065–2099
interval under the Shared Socioeconomic Pathway “fossil-
fueled development” scenario with 8.5 W m−2 of radiative
forcing (SSP585). For dynamical downscaling outputs, we
examine the 2065–2098 interval under the RCP8.5 forcing
(note that the years 2006–2014 fall under the RCP8.5 sce-
nario for NA-CORDEX).

3 Results

3.1 Convective and frontal precipitation processes in
observation-based datasets

We first examine convective precipitation in the ERA5
Reanalysis dataset (Fig. 1). Composite time series cen-
tered around the hottest day (day 0) show surface tempera-
ture anomalies increase exponentially from −1 K 10 d prior
(day −10), peak at 3–4 K on the hottest day (day 0) and then
decrease exponentially to −1 K after 10 d (day +10). Spa-
tial composites of the hottest day show warm temperature
anomalies over the CONUS domain, while the fifth day af-
ter shows broad cool anomalies. Coincident composite time
series of precipitation show anomalies that decrease from
day −10 to day 0 (co-occurring with temperature anoma-
lies increasing). Precipitation anomalies are the lowest on
the hottest day (between −1 and −1.5 mm d−1), with the
spatial composite of day 0 showing broad dryness. Precip-
itation anomalies increase rapidly in the immediate days fol-
lowing, coincident with rapid surface temperature anomaly
decreases, and then remain elevated after the onset of con-

vection. The spatial composite of precipitation on day+ 5,
for instance, shows broad wetting indicative of convective
precipitation.

The above co-evolution of surface temperature and precip-
itation are consistent with expectations of convective precip-
itation: surface temperature will rise until it convects, trig-
gering precipitation and cooling surface temperature. Anal-
ysis of coincident moist static energy reinforces this mech-
anism: moist static energy increases until the precipitation
event and rapidly decreases immediately afterwards as the
atmosphere stabilizes (Fig. 1). Finally, our findings extend to
the observation-based Livneh (Fig. S1) and nClimGrid-Daily
(Fig. S2) datasets. Although observational climate datasets
themselves have inherent uncertainties (such as from gener-
ation, sampling, or resolution; Zumwald et al., 2020), strong
consistency across ERA5 and the two observation-based
products indicate our ERA5 results to be robust.

We next examine cold frontal precipitation in ERA5, cen-
tered around the greatest drop in surface temperature (Fig. 2).
Our selection of frontal precipitation events shows a very
different relationship between temperature and precipitation
as compared to convective precipitation. Composite time se-
ries show temperature anomalies to be the highest on the
day of frontal precipitation (day 0), drop to the lowest in
the following 2 days (day +1 to +2), and then return to
∼ 0 by day +10. Spatial composites of surface tempera-
ture show warm anomalies on day 0 and cold anomalies on
day +2. Coincident precipitation time series show anoma-
lies that increase dramatically (from <0 mm d−1 at day −2
to ∼ 4 mm d−1 at day 0) before falling back to <0 mm d−1.
Spatial composites of precipitation anomalies on day 0
show broad wetting, with the eastern half of CONUS show-
ing greater anomalies; spatial composites on day +2 show
largely neutral conditions over most of CONUS. Analysis
of moist static energy reinforces a cold frontal precipitation
mechanism, with a steep decline in moist static energy that
is coincident with a steep decline in surface temperature and
with sudden precipitation (Fig. 2).

To further evaluate our method of identifying precipita-
tion events, we apply a discrete Fourier transform on days of
the year when the convective and frontal precipitation events
are occurring, respectively (Fig. 3). We find that convective
precipitation occurs predominantly in boreal summer (June–
July–August; consistent with when warm days are prevalent).
Frontal precipitation occurs predominantly in boreal win-
ter (December–January–February; consistent with when cold
fronts would be most prevalent), notwithstanding intermoun-
tain regions of the US west, where orographic lifting is preva-
lent (note that this is also the case with raw CMIP6 GCMs;
Fig. S3). We also calculate kernel density estimates (KDEs)
of precipitation anomalies before convection (day −2) and
after convection (day +2) for the 35-year composite of con-
vective precipitation events (Fig. 4); the two KDEs are signif-
icantly different (p<0.01; Kolmogorov–Smirov test). More-
over, we find 97 % of the CONUS grid points have higher
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Figure 1. (a) The 21 d composite (spatially averaged over the contiguous US, CONUS, domain) time series of surface temperature anomalies
(relative to the 21 d average) centered around the day of convective precipitation using ERA5 data over the 1980–2014 interval. (b) Spatial
composite of surface temperature anomalies on the day of convective precipitation. (c) Spatial composite of surface temperature anomalies
5 d after convective precipitation. (d)–(f) Same as (a)–(c) but for precipitation. Note that these are anomalies relative to the 21 d window,
yielding both positive and negative values. (g)–(i) Same as (a)–(c) but for moist static energy (MSE). Moist static energy increases until the
precipitation event and rapidly decreases immediately afterwards as the atmosphere stabilizes.

precipitation anomalies at day +2 relative to day −2. We
perform similar analyses for frontal precipitation: KDEs of
precipitation anomalies during day +0 and day +1 are sig-
nificantly different (p<0.01) from the rest of the 21 d win-
dow; 93 % of the maximum precipitation in our 35-year com-
posite of events occurs on day +0 or day +1. Given the
abovementioned co-variances, demonstrated skill in select-
ing for desired events, and expected seasonal occurrence of
said events, we deem the physical relationships between sur-
face temperature and precipitation observed in ERA5 dur-
ing convective and frontal precipitation (as identified in our
methodology) to be appropriate for evaluating the credibility
of GCMs and their statistically downscaled products.

3.2 Precipitation processes in raw and statistically
downscaled GCMs over the historical interval

Some spread amongst the GCMs notwithstanding, the eight
CMIP6 GCMs analyzed herein behave consistently with

ERA5 for both convective and frontal precipitation over the
1980–2014 historical interval (Fig. 5; see Table 1 for list
of models). That is, convective precipitation anomalies con-
sistently (i) decrease leading up to the hottest day, (ii) are
the lowest about the hottest day, and then (iii) drastically
increase with convection in the immediate days following.
Frontal precipitation is also clearly visible in the GCMs, with
drastic and acute precipitation evident centered around the
day of greatest temperature decrease. The raw GCMs not
only match the temporal co-evolution of surface tempera-
ture and precipitation as demonstrated in ERA5 but also cor-
rectly simulate the magnitude of anomalies during convective
and frontal precipitation events. Our results therefore indi-
cate that the CMIP6 GCMs robustly capture convective and
frontal precipitation processes.

We next examine these same co-evolutions after the GCMs
are statically downscaled using LOCA2 and STAR-ESDM
techniques (Figs. 6 and 7; note that the same eight models are
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Figure 2. (a) The 21 d composite (spatially averaged over the CONUS domain) time series of surface temperature anomalies (relative to the
21 d average) centered around the day of cold frontal precipitation using ERA5 data over the 1980–2014 interval. (b) Spatial composite of
surface temperature anomalies on the day of convective precipitation. (c) Spatial composite of surface temperature anomalies 2 d following
the day of frontal precipitation. (d)–(f) Same as (a)–(c) but for precipitation. (g)–(i) Same as (a)–(c) but for moist static energy.

Figure 3. Peak convective and frontal day of year using the ERA5 dataset. Peak day is determined using a discrete Fourier transform.

examined across the raw GCMs and statistically downscaled
data). For temperature, differences amongst the eight GCMs
(i.e., inter-model spread) are noticeably reduced for both
convective and frontal precipitation (see surface temperature
time series of the 21 d examined in Figs. 6 and 7). This is
somewhat expected as the downscaling method bias-corrects
the GCMs to “match” observations; deviations relative to ob-
servations (Livneh dataset for LOCA2 and nClimGrid-Daily
dataset for STAR-ESDM) will thus be minimized. Spatial
composites of downscaled surface temperature, for instance,
closely mirror those shown in ERA5 for both convective
and frontal precipitation. Inter-model spread for precipita-
tion can also be reduced, though this influence is less pro-

nounced than for temperature. Note that bias-correction dur-
ing statistical downscaling is performed variable by variable
(i.e., independently and without explicit consideration of lo-
cal co-variances across variables) and that our definitions of
convective and frontal precipitation in effect select precipita-
tion fields based on surface temperature characteristics. Inter-
model spread for downscaled precipitation fields is thus not
explicitly prescribed for reduction. Our results suggest that
the LOCA2 and STAR-ESDM downscaling techniques gen-
erally preserve co-variances shown in the raw GCMs with
high fidelity (compare, for instance, mean absolute error val-
ues for raw GCMs against their downscaled counterparts in
Figs. 5–7).
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Figure 4. (a) Kernel density estimates (KDEs) of convective precipitation anomalies before convection (orange; day−2) and after convection
(blue; day+2) for the 35-year composite of convective precipitation events. In total, 97 % of grid points during the 21 d analyzed show higher
precipitation anomalies after convection. The two KDEs are significantly different (p<0.01) as determined by a Kolmogorov–Smirnov test.
(b) KDEs of frontal precipitation anomalies on day +0 and day +1 (blue) and all other days of the 21 d window analyzed (orange; randomly
sampled). Indeed, 93 % of the maximum precipitation occurs on day +0 or day +1. The two KDEs are significantly different (p<0.01) as
determined by a Kolmogorov–Smirnov test.

Figure 5. The 21 d composite time series (spatially averaged over CONUS domain) of (a) surface temperature (K), (b) precipitation
(mm d−1), and (c) moist static energy (MJ) anomalies (relative to the 21 d average) for raw CMIP6 GCM (colored lines; list of GCMs
provided in Table 1) and ERA5 (solid black line) data. Time series are centered around the day of convective precipitation and for the 1980–
2014 period. (d)–(f) Same as (a)–(c) but for frontal precipitation. Mean absolute error (MAE) is calculated between ERA5 time series and
CMIP6 time series and provided in the upper-right corners of plots.
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Figure 6. (a) 21 d composite (spatially averaged over the CONUS domain) time series of surface temperature anomalies (relative to the 21 d
average) centered around the day of convective precipitation using LOCA2 data (colored lines; method that bias-corrects and downscales
climate models) over the 1980–2014 interval. Colored lines indicate the same models as in Fig. 5. (b) Spatial composite of surface temperature
on the day of convective precipitation using LOCA2. (c) Spatial composite of surface temperature 10 d prior to convective precipitation using
LOCA2. (d)–(f) Same as (a)–(c) but for precipitation. (g) The 21 d composite time series (spatially averaged over CONUS domain) of surface
temperature anomalies (relative to the 21 d average) centered around the day of frontal precipitation using LOCA2 data (colored lines) over
the 1980–2014 interval. Colored lines indicate the same models as in Fig. 5. (h) Spatial composite of surface temperature on the day of
convective precipitation using LOCA2 data. (i) Spatial composite of surface temperature anomalies 10 d prior to convective precipitation
using LOCA2 data. (j)–(l) Same as (g)–(i) but for precipitation. Mean absolute error (MAE) is calculated between (i) ERA5 time series and
(ii) LOCA2 time series and provided in the corners of panels (a), (d), (g), and (j).
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Figure 7. Same as Fig. 6 but for STAR-ESDM data.

There are nevertheless clear ensemble mean differences
between the downscaled products and the raw GCMs (and
by extension ERA5 which the raw GCMs simulate with
high skill) that require careful attention. LOCA2 appears
nearly identical to ERA5 for convective precipitation; how-
ever, it dampens frontal precipitation relative to ERA5 (and
the raw GCMs) by up to ∼ 2 mm d−1 (Figs. 5 and 6). Com-
posite time series show LOCA2 frontal precipitation peaks
at lower anomaly values (2.5 mm d−1 for the LOCA2 ensem-
ble mean verses 3.9 mm d−1 in ERA5). The wet pattern ap-
parent in the ERA5 composite is also diminished in the en-

semble mean spatial composite. Importantly, such dampen-
ing is robust across most of the LOCA2 ensemble (Fig. 6),
indicating it is an emergent feature of the LOCA2 down-
scaling method. STAR-ESDM does not exhibit this damp-
ening: it shows frontal precipitation anomalies that closely
match the frontal precipitation anomalies of ERA5 and the
raw GCMs (Fig. 7j–l). STAR-ESDM may slightly overshoot
drying anomalies prior to convective precipitation (by less
than ∼ 0.5 K); this influence is nevertheless modest, and the
STAR-ESDM ensemble simulates a range that encapsulates
the evolution of frontal precipitation shown in ERA5.
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Figure 8. Same as Fig. 5 but for the 2065–2099 interval under SSP585 forcing.

3.3 Precipitation processes in raw and statistically
downscaled GCMs over the future interval

We next examine convective and frontal precipitation in the
raw GCMs over the future interval (2065–2099; Fig. 8). For
convective precipitation, the co-evolution of surface temper-
ature and precipitation (including the magnitude of their re-
spective anomalies) does not change substantially across the
ensemble mean relative to the historical interval (compare
Figs. 5a–c to 8a–c). For frontal precipitation, however, there
is robust intensification that is present across all ensemble
members: frontal precipitation peaks at ∼ 4 mm d−1 over the
historical interval (Fig. 5e) but ∼ 5–6 mm d−1 in the future
interval (Fig. 8e). Scatterplots of surface temperature and
peak frontal precipitation (Fig. S4) show steeper associa-
tions between the two in the future interval, indicating that
frontal precipitation is driven at least in part by temperature
increases. Moist static energy levels prior to frontal precip-
itation are also greater in the future interval relative to the
historical interval (compare Figs. 5f to 8f), which is consis-
tent with frontal precipitation intensification.

We again examine these same co-variances after the
GCMs are statically downscaled for the future interval. Fu-
ture interval time series and spatial composite results for both
LOCA2 and STAR-ESDM products appear nearly identical

to those of the historical interval, respectively, for convective
precipitation (Figs. 9a–f and 10a–f). This is consistent with
expectations as the raw GCMs themselves do not show ap-
preciable changes for convective precipitation relative to the
historical interval. The robust intensification of frontal pre-
cipitation (relative to the historical interval) simulated by the
raw GCMs is not evident in LOCA2 (Fig. 9g–i), some slight
wetting notwithstanding. LOCA2 dampens frontal precipita-
tion over both historical and future intervals; the net effect
is that it substantially underestimates future frontal precip-
itation relative to the raw GCMs. For instance, frontal pre-
cipitation anomalies reach ∼ 7 mm d−1 in the raw GCMs but
less than 4 mm d−1 in LOCA2 (and as little as 2 mm d−1).
Frontal precipitation is intensified in STAR-ESDM (Fig. 10j–
l; ∼ 4–6 mm d−1 in the future interval compared to ∼ 3–
5 mm d−1 in the historical interval), although the magnitude
of the intensification falls short of what is simulated by the
raw GCMs.

3.4 Precipitation processes in NA-CORDEX dynamical
downscaling

Finally, we examine how convective and frontal precipitation
processes are affected post dynamical downscaling across
five different regional climate models. Dynamical downscal-
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Figure 9. Same as Fig. 6 but for the 2065–2099 interval under SSP585 forcing. Colored lines indicate the same models as in Fig. 8.

ing of ERA-Interim preserves expected hydroclimate co-
variances during convective and frontal precipitation pro-
cesses (Fig. S5; note that inter-model differences are en-
tirely attributable to regional climate models as the under-
lying data being downscaled is identical across the five mod-
els). Biases in regional climate models appear to be rela-
tively small and are not prohibitive in representing convec-
tive and frontal precipitation processes at local scales. These
biases are also small when GCM data, instead of observation
data, are downscaled. Convective precipitation processes in
dynamical downscaled GCM data in the future interval do
not change much relative to the historical interval, which is

consistent with the raw GCMs and with statistical downscal-
ing (Fig. 11). However, we find that dynamical downscaling
preserves robust intensification of future frontal precipita-
tion simulated by raw GCMs in strong contrast to the damp-
ening of this intensification seen with statistical downscal-
ing (Fig. 12). For instance, frontal precipitation in the future
interval of dynamically downscaled GCM data is ∼ 1.5 to
2 mm d−1 greater than dynamically downscaled GCM data
in the historical interval (Figs. S6 and 12), which is con-
sistent with the magnitude of intensification seen with the
raw GCMs. This finding is robust across all five regional
climate models examined, indicating low sensitivity to re-
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Figure 10. Same as Fig. 7 but for STAR-ESDM data. Colored lines indicate the same models as in Fig. 8.

gional model biases. Note that the comparison between the
raw CMIP6 GCMs and downscaled CMIP5 outputs may
be somewhat influenced by the specific subset of models
as some CMIP6 GCMs exhibit higher climate sensitivity in
comparison to CMIP5 (e.g., Meehl et al., 2020).

4 Conclusions

Using (only) surface temperature and precipitation outputs,
we have employed convective and frontal precipitation mech-
anisms to evaluate the credibility of statistical (and dy-

namical) downscaling products. We find that the LOCA2
and STAR-ESDM statistical downscaling techniques gen-
erally preserve expected co-variances between temperature
and precipitation during convective precipitation over both
historical and future intervals. Statistical downscaling also
preserves expected co-variances of temperature and precip-
itation during frontal precipitation events over the histori-
cal interval; however, it dampens projected intensification of
frontal precipitation in the future interval that is otherwise
robustly simulated in the raw CMIP6 GCMs (i.e., prior to
downscaling) and with dynamical downscaling.
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Figure 11. The 21 d composite time series of CONUS (a) surface temperature and (b) precipitation anomalies (relative to the 21 d average)
centered around the day of convective precipitation using dynamical downscaling of ERA-Interim data over the 1989–2009 interval. (c)–
(d) Same as (a)–(b) but for the future interval over 2065–2098 under RCP8.5 forcing.

Convective precipitation in the raw GCMs as examined in
our analyses does not exhibit material differences across the
historical and future intervals (as opposed to frontal precip-
itation, which shows robust intensification in the future in-
terval). Convective precipitation is therefore likely more in-
sensitive to the stationarity assumption, notwithstanding the
possibility that CMIP6 models themselves may not effec-
tively resolve global cloud systems (and thus may not capture
non-stationary changes in convective precipitation). Frontal
precipitation, on the other hand, shows robust intensification
over the future interval, providing a useful evaluation insight
into the (in)ability of historical functional relationships in-
herent to statistical downscaling to resolve non-stationary
phenomena. Indeed, the dampening of frontal precipitation
shown suggests that LOCA2 and STAR-ESDM may not ap-
propriately capture structural changes in meteorological phe-
nomena. This is in strong contrast to dynamical downscal-
ing (regardless of the regional climate model chosen), which
preserves non-stationary physical relationships among vari-
ables.

Our results are, to some extent, qualitatively intuitive:
common statistical downscaling methods apply historical
functional relationships to the future under the assumption
that they will be preserved despite climate change. It is there-
fore somewhat expected that such techniques may underesti-
mate changes within non-stationary phenomena. This effect
should be acknowledged when estimating the magnitude of
future change, particularly when considering the dominant
(e.g., Baek et al., 2019, 2021) and/or non-stationary (e.g.,
Baek et al., 2020; Scholz et al., 2022) nature of internal at-
mospheric variability in driving hydrologic hazards. Evalu-
ation frameworks clearly demonstrating this to be the case
have nevertheless proved elusive. Our work addresses this
important gap by demonstrating divergence between statis-
tically and dynamically downscaled methods when estimat-
ing the enhancement of frontal precipitation (an example of
non-stationary process testable with just daily surface tem-
perature and precipitation). These same issues are likely to
arise among data-driven (i.e., machine learning based) cli-
mate models, particularly if those methods are only trained
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Figure 12. The 21 d composite (spatially averaged over the CONUS domain) time series of (a) surface temperature anomalies (relative to
the 21 d average) and (b) precipitation anomalies (relative to the 21 d average) centered around the day of convective precipitation using
NA-CORDEX dynamical downscaling of GCM data over the 1980–2014 interval. (c)–(d) Same as (a)–(b) but for the future interval over
2065–2098 under RCP8.5 forcing. Note that the years 2006–2014 fall under the RCP8.5 scenario for NA-CORDEX.

on historical data and subsequently used for future projec-
tions. Equally as importantly, our work highlights expected
co-evolution of precipitation and temperature during convec-
tive and frontal precipitation events as process-based evalu-
ation diagnostics that can be universally applied to a wide
range of statistically downscaled products.

Code and data availability. Code required to conduct the analy-
ses herein is available at https://doi.org/10.5281/zenodo.11194306
(Baek, 2024). All data used in this study are publicly avail-
able. The raw CMIP6 GCM data (Eyring et al., 2016) can be
downloaded from the USA portal of the Earth System Grid Fed-
eration (https://aims2.llnl.gov/search/cmip6, ESGF LLNL Meta-
grid, 2024a). ERA5 data (Hersbach et al., 2020) can be down-
loaded from the Copernicus Climate Data Store (https://doi.org/
10.24381/cds.adbb2d47, Hersbach et al., 2023). NA-CORDEX
data (Mearns et al., 2017) can be downloaded from the National
Center for Atmospheric Research Climate Data Gateway (https:
//www.earthsystemgrid.org/search/cordexsearch.html, DOI: https://

doi.org/10.5065/D6SJ1JCH). Livneh data (Livneh et al., 2015a) can
be downloaded from the National Centers for Environmental Infor-
mation at https://doi.org/10.7289/v5x34vf6 (Livneh et al., 2015b).
The nClimGrid-Daily data (Durre et al., 2022a) can also be down-
loaded from the National Centers for Environmental Information
(https://doi.org/10.25921/c4gt-r169, Durre et al., 2022b). LOCA2
data (Pierce et al., 2023) can be downloaded from https://cirrus.
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(Hayhoe et al., 2024) can be downloaded from the USA portal of the
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