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Abstract. Spring phenology is a key indicator of temperate
and boreal ecosystems’ response to climate change. To date,
most phenological studies have analyzed the mean date of
budburst in tree populations while overlooking the large vari-
ability of budburst among individual trees. The consequences
of neglecting the within-population variability (WPV) of
budburst when projecting the dynamics of tree communities
are unknown. Here, we develop the first model designed to
simulate the WPV of budburst in tree populations. We cali-
brated and evaluated the model on 48 442 budburst observa-
tions collected between 2000 and 2022 in three major tem-
perate deciduous trees, namely, hornbeam (Carpinus betu-
lus), oak (Quercus petraea) and chestnut (Castanea sativa).
The WPV model received support for all three species, with
a root mean square error of 5.7± 0.5 d for the prediction
of unknown data. Retrospective simulations over 1961–2022
indicated earlier budburst as a consequence of ongoing cli-
mate warming. However, simulations revealed no significant
change for the duration of budburst (DurBB, i.e., the time
interval from BP20 to BP80 (with BP representing budburst
percent), which respectively represent the date when 20 %
and 80 % of trees in a population have reached budburst), due
to a lack of significant temperature increase during DurBB in
the past. This work can serve as a basis for the development
of models targeting intra-population variability of other func-
tional traits, which is of increasing interest in the context of
climate change.

1 Introduction

Phenology, as the study of recurrent biological events such
as budburst in spring, has attracted increasing attention due
to climate warming (Piao et al., 2019). The timing of leaf
phenology in spring is a major indicator of climate warming
(Parmesan and Yohe, 2003) and is mainly modulated by tem-
perature (Menzel et al., 2006; Zhang et al., 2022, 2021; Chen
et al., 2018; Vitasse et al., 2009a), photoperiod (Delpierre et
al., 2016; Fu et al., 2019; Vitasse and Basler, 2013; Meng
et al., 2021) and soil moisture (Liu et al., 2022; Luo et al.,
2021). In the Northern Hemisphere, it is well established that
spring phenological events have been advanced by climate
warming (Walther et al., 2002; Menzel et al., 2006), although
this advancement is currently slowing down (Fu et al., 2015;
Chen et al., 2019). To date, massive efforts have been made to
study the spatiotemporal variability of leaf phenology among
tree populations and across years (Delpierre et al., 2016; Fu
et al., 2015; Meng et al., 2021; Chen et al., 2018). However,
the variability of leaf phenology within populations has re-
ceived little attention to date (Scotti et al., 2016; Delpierre
et al., 2017), which is in line with the general focus of eco-
logical studies on average traits (Violle et al., 2012). This
is intriguing, since the within-population (i.e., tree-to-tree)
variability of phenological events is vast and can even be
equivalent to that observed among populations (Delpierre et
al., 2017; Vitasse et al., 2009a; Rathgeber et al., 2011). It
typically takes 1 to 4 weeks from the first to the last tree
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to burst buds in a population (Denechere et al., 2021), with
an average of 19 d (Delpierre et al., 2017). Furthermore, the
duration from the first to last tree to burst buds in a given
population varies annually (Denechere et al., 2021).

The large within-population variability (WPV) of bud-
burst observed in natural tree populations is considered
to result from their exposure to a wide range of fluctuat-
ing environmental (e.g., frost) and biotic (e.g., herbivores
and pathogens) selection pressures, which alternatively fa-
vor trees that burst buds early or late (Alberto et al., 2011).
From an evolutionary point of view, this phenotypic diver-
sity has an adaptive value at the population scale, because
the environment is likely to change across the lifetime of
trees (Petit and Hampe, 2006; Morente-Lopez et al., 2022;
Blanquart et al., 2013). For instance, if a local climate be-
comes suitable in early spring under climate warming, trees
that burst buds early will benefit from an extended growing
season, thus maximizing their carbon assimilation and possi-
bly their biomass production (Zohner et al., 2020; Delpierre
et al., 2009; Richardson et al., 2010), which will allow them
to gradually occupy a dominant position in the population.
Moreover, early budburst enables trees to escape pathogens
(e.g., for oak, see Dantec et al., 2015). On the contrary, if
freezing events occur frequently in early spring with the ad-
vance of budburst, late trees can grow better by avoiding
freezing injury (Delpierre et al., 2017; Zohner et al., 2020;
Puchalka et al., 2016). Moreover, the WPV also affects in-
teractions with competing plants and herbivores (Hart et al.,
2016; Renner and Zohner, 2018).

The internal mechanism of the WPV of budburst is prob-
ably underpinned by genetic diversity, as evidenced by the
variability of phenological traits among individual trees that
experience similar environmental conditions (Bontemps et
al., 2016; Delpierre et al., 2017). This genetic determin-
ism is further reflected in the year-to-year repeatability of
the phenological ranking of individuals within tree popu-
lations (Delpierre et al., 2017). In addition to this genetic
determinism, the WPV is also likely influenced by micro-
environmental variations such as the unbalanced distribution
of soil-water content within populations, edaphic conditions
or microtopography (Delpierre et al., 2017; Denechere et al.,
2021; Scotti et al., 2016). To the best of our knowledge, the
question of whether and to what extent would the WPV of
budburst be modified in the current context of climate change
has not been addressed so far.

Phenological research has made extensive use of model-
ing to study the response of the spatiotemporal variability
of budburst to climate warming (Zhang et al., 2022; Meng et
al., 2021; Delpierre et al., 2009; Chuine and Regniere, 2017).
The models postulate that temperature and photoperiod are
the main environmental cues that trigger budburst in boreal
and temperate (Delpierre et al., 2009; Kramer, 1994; Hän-
ninen and Kramer, 2007), subtropical (Zhang et al., 2022;
Du et al., 2019) and tropical trees (Chen et al., 2017). In
process-based models for spring phenology, the effects of

environmental factors (mainly air temperature) on budburst
are quantified (Zhang et al., 2022; Hänninen, 2016; Jewaria
et al., 2021). Firstly, dormancy state of buds reached in the
previous autumn is released due to exposure to low tem-
perature, that is, removing the growth-arresting physiologi-
cal factors in the bud (the chilling requirement of dormancy
release). Secondly, when dormancy is relieved to a certain
extent, high temperatures drive the process of ontogenetic
development, that is, visible bud elongation and swelling
that results in budburst (forcing requirement of ontogenetic
growth). Meanwhile, there is an interaction between these
two stages in the models, namely, ontogenetic growth is in-
fluenced by dormancy release (Hänninen, 2016; Hänninen
and Kramer, 2007; Vegis, 1964). Lundell et al. (2020) fur-
ther proved that this interaction can be affected by prevailing
temperatures. One important point is that these models do not
pay attention to the WPV of phenological traits. They have
been parameterized and applied to predict the mean or me-
dian date of budburst in a given tree population (Lundell et
al., 2020; Kramer, 1994; Zhang et al., 2022). In other words,
these models simulate the timing of budburst as a discrete
event in the population without considering the WPV of leaf
phenology. To the best of our knowledge, only two studies
to date, notably (Rousi and Heinonen, 2007) in birch (Betula
pendula) and (Langvall et al., 2001) in Norway spruce (Picea
abies (L.) Karst.), have attempted to establish a link between
WPV and environmental conditions through the temperature
sum required for the opening of buds at the scale of individ-
ual trees. At the scale of tree populations, a distribution of
temperature sums to budburst was also used in the so-called
physio-demo-genetic (PDG) models (Kramer et al., 2008;
Oddou-Muratorio and Davi, 2014) to simulate the adaptive
potential of tree populations. However, a systematic model
for the WPV of budburst is still lacking.

Here we developed a model that simulates the WPV of
budburst in temperate deciduous trees. We calibrated and val-
idated the model over an extensive budburst dataset acquired
from five tree populations at the individual tree scale over
23 years (representing 48 442 observations). Specially, we
aim to (1) develop the WPV model and validate its ability for
predicting the progress of budburst in tree populations and
(2) use the model to in a retrospective simulation exercise
testing whether the duration of budburst period in the popu-
lation changed with climate warming in the recent decades.

2 Materials and methods

2.1 Study sites

We used budburst data collected from two forests lo-
cated near Paris (France): Barbeau (48.476◦ N, 2.780◦ E;
95 m a.s.l.) and Orsay (48.705◦ N, 2.167◦ E; 105 m a.s.l.). At
these sites, the progress of budburst was observed at the in-
dividual scale in populations of three major temperate de-
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ciduous tree species, namely, hornbeam (Carpinus betulus
L.), oak (Quercus petraea (Matt.) Liebl) and chestnut (Cas-
tanea sativa Mill.). Hornbeam is an early leafing tree species,
chestnut is a late species, and oak is intermediate. Hornbeam
and oak are present in both forests, while chestnut is present
in Orsay only (Table 1). For each species, we focused on
healthy and dominant trees, except for hornbeam (an under-
story species). We collected budburst observations from 2000
to 2022, which yielded a dataset comprising five populations
and 103 population years. In each population, we observed
between 28 and 309 individuals (mean 90) (Table 1).

2.2 Phenology dataset

A team of eight local observers (including most of the au-
thors of this paper) conducted the observations of develop-
ing buds in the tree crowns throughout spring. The observers
used binoculars and occasionally received training in order to
reduce observer bias (Liu et al., 2021). The interval between
phenological observations was 4 d on average (from 2 to 7 d).
A tree was considered to have burst its buds when at least
50 % of the buds in the upper third of the crown presented
leaves that extended beyond the tip of the scales, which cor-
responded to stage BBCH 9 (Meier, 1997). At each obser-
vation date, we calculated the percentage of trees that had
reached budburst in the tree population, dividing the number
of trees at BBCH 9 by the total number of trees observed on
that date and multiplying the result by 100.

2.3 Temperature data

We obtained the mean daily temperature data from the mete-
orological station nearest to the study sites (Table 1). How-
ever, there were missing values in the temperature data col-
lected from the stations, especially before 1970. To fill these
gaps and predict the missing data in order to simulate bud-
burst in previous years, we used the Safran reanalysis data
(grid-resolution of 8× 8 km2) (Vidal et al., 2010), which we
de-biased by establishing a linear regression between the lo-
cal and corresponding Safran temperature data from Septem-
ber of the previous year to June.

2.4 Model description

We introduce a novel model, named the within-population
variability (WPV) model, which was constructed to predict
the progress of budburst in tree populations (i.e., percentage
of trees having burst buds at a given date in a tree population).
We hypothesized that the difference between individuals in
the population was reflected in the difference in the forcing
accumulation requirement (F ∗).

We built the WPV model by modifying a state-of-the-art
process-based model that simulated a discrete budburst event
(i.e., budburst of an individual plant or mean budburst date in
a tree population) (Lundell et al., 2020). In short, the model
represents the release of endodormancy through the accumu-

lation of “chilling” temperatures and simulates the ontoge-
netic growth of buds through the accumulation of “forcing”
temperatures. One particularity of the model is that onto-
genetic growth is regulated by the state of rest break and
the prevailing temperature (Lundell et al., 2020; Hänninen,
1990; Hänninen and Kramer, 2007; Vegis, 1964). The onto-
genetic competence, Co (a dimensionless [0, 1] multiplier),
is applied to represent this regulation (Lundell et al., 2020;
Hänninen and Kramer, 2007; Hänninen, 2016). In the model,
budburst is considered to occur at date t when a given sum
of the forcing temperature is reached such that F (t)≥ F ∗.
In the WPV model, we assumed that F ∗ followed a normal
distribution at the level of the tree population (see Fig. S1 in
the Supplement for a flow chart of the model). At each date t ,
the model simulates the proportion of the population (BP, for
budburst percent) that has fulfilled the forcing accumulation
requirement:

F ∗ =
(
µ, σ 2

)
, (1)

BP(t)= 0.5×
(

1+ erf
(

F (t)−µ

(σ × sqrt(2))

))
× 100, (2)

where F(t) is the forcing degree-day accumulation reached
on day t , µ is the mean of normal distribution, σ is the stan-
dard deviation of normal distribution and erf is the Gaussian
error function.

The forcing accumulation F(t) is calculated as the integral
of a “forcing rate” as follows:

F (t)=
∑t

d=270
Rfact, (3)

where d is the start date of forcing accumulation (d =DoY
270 in the previous year, where DoY represents day of the
year). In this model, the stage of dormancy release and the
stage of ontogenetic growth can occur simultaneously (i.e.,
the model belongs to the “parallel” model category) (Hänni-
nen, 2016; Chuine and Regniere, 2017). However, the forcing
rate Rfact, which is the actual rate of ontogenetic growth, is
affected by both temperatures and ontogenetic competence
(Co). It is calculated as follows:

Rfact(t)= Rf(t) ·Co(t), (4)

where Rf(t) is the potential rate of ontogenetic growth on day
t , and Co is the ontogenetic competence on day t ; these two
variables are calculated as follows:

Rf(t)=
{

0, T (t) < Tb,

T (t)− Tb, T (t)≥ Tb,
(5)

where T (t) is the daily mean air temperature on day t ,
and Tb is the temperature threshold (◦C) above which forcing
accumulation occurs.

The ontogenetic competence, Co, varies over time and is
simulated as

Co(t)=max
(

0;min
(

1;g× T (t)+h+
Sr(t)
100
· (1−h),

))
(6)
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Table 1. Description of the phenological and meteorological datasets.

Phenology Coordinates Meteorological Coordinates Species Number of Number of Number of trees Observation
site station years data (min/max/average) years

Orsay 48.705◦ N,
2.165◦ E

Gometz-le-Châtel 48.677◦ N,
2.136◦ E

Quercus 23 153 29/190/85 2000–2022
Carpinus 20 124 29/146/50 2002–2006, 2008–2022
Castanea 21 112 29/192/80 2000–2007, 2010–2022

Barbeau 48.476◦ N,
2.780◦ E

Le Châtelet-en-Brie 48.491◦ N,
2.802◦ E

Quercus 20 87 29/309/154 2003–2022
Carpinus 19 64 28/241/114 2004–2022

where Co(t) is the ontogenetic competence on day t , in the
range [0, 1], which modulates the effect of the state of rest
break on the rate of ontogenetic growth (see Fig. S2). When
Co= 0, ontogenetic growth is stopped. The ability of onto-
genetic growth is restored between Co= 0 and Co= 1 with
rest breaking. Finally, g and h are parameters (Lundell et al.,
2020), and Sr(t) is the state of rest break on day t , which is
calculated as follows:

Sr(t)= Ctot/Ccri, (7)

where Ccri is the chilling requirement for rest completion,
and Ctot is the actual accumulation of chilling temperature,
quantified as the number of chilling units (in chill units C.U.)
and calculated from DoY= 270 of the previous year up to
day t as follows:

Ctot =
∑t

d=270
Rc, (8)

where the daily rate of chilling accumulation (Rc) is calcu-
lated as follows:

Rc=
{

1, T (t) < Tc,

0, T (t)≥ Tc,
(9)

where Tc is the temperature threshold (◦C) below which
chilling accumulation occurs.

2.5 Parameter estimation

We calibrated the model using budburst data obtained dur-
ing the period 2000–2016 in Orsay (all three species: horn-
beam, oak and chestnut) and then validated it using data from
2017–2022 in Orsay (three species) and from 2000–2022 in
Barbeau (two species: hornbeam and oak). The model was
therefore calibrated over 17 years for the three species (Orsay
populations, representing 52, 71, and 50 observation dates
for hornbeam, oak, and chestnut, respectively) and validated
over 29 site years for hornbeam and oak (representing 89
and 114 observation dates, respectively) and 6 years (29 ob-
servation dates) for chestnut. A previous study (Vitasse et
al., 2009b) provided evidence of similar apparent phenologi-
cal responses to temperature among populations of the same
species located as far as 650 km apart, which also suggests
the low differentiation of phenological traits across popula-
tions. Orsay and Barbeau populations are separated by a dis-
tance of 50 km and experience a similar climate. This is why

we used the Barbeau data as a validation counterpart to the
Orsay data used for calibration. The model predicts the per-
centage of budburst in the population (from 0 % to 100 %
budburst) along with the corresponding date. Thus, we cal-
culated the root mean square error (RMSE) over two dimen-
sions (Fig. S3). First, we calculated RMSE over the percent-
age of budburst in the tree population (i.e., comparing the
difference between the observed and predicted budburst per-
cent occurring on the same day of the year, DoY).

RMSEBP =

√√√√√√√√
n∑
i=1

(
√

num×
(
BPobs,i −BPpred,i

)2)
n∑
i=1

√
num

, (10)

where RMSEBP is the root mean square error for budburst
percent (expressed in percent), num is the number of trees
observed on a given day of the year, BPobs,i is the observed
percentage of budburst of datum i, BPpred,i is the predicted
percentage of budburst of the same datum and n is the to-
tal number of data (e.g., n= 50 in a hypothetic case where
the percentage of budburst has been observed five times per
year on average over 10 years in a given population). We
used
√

num as a weight in the calculation of squared errors
to compensate for the fact that a very large number of trees
(i.e., > 300 trees) were observed on some dates: these obser-
vations are more representative of the actual percentage of
budburst in the population (as compared to observations es-
tablished for a smaller number of trees), although they also
tend to over-represent them in the calculation of errors.

We then calculated the RMSE of dates (i.e., comparing the
difference, in number of days, between the observations and
predictions for the same percentage of budburst; Fig. S3).

RMSEDoY =

√√√√√√√√
n∑
i=1

(
√

num×
(
DoYobs,i −DoYpred,i

)2)
n∑
i=1

√
num

, (11)

where RMSEDoY is the root mean square error for the bud-
burst date (in days), num is the number of trees observed,
DoYobs,i is the observed date of budburst of datum i (e.g.,
the date when we observed 24 % budburst for the popula-
tion of interest in a given year), DoYpred,i is the predicted
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date of budburst of the same datum (e.g., the date when the
model predicted 24 % budburst in the same tree population
and year) and n is the total number of data.

Finally, we calculated the total RMSE as follows:

RMSEtot =
RMSEBP

INTBP
+

RMSEDoY

INTDoY
, (12)

where INTBP and INTDoY are the average intervals between
consecutive observations of budburst percent and days, re-
spectively, which are calculated based on observation data
(Table S1 in the Supplement).

We used RMSEtot (unitless) as an aggregate, multi-
objective cost function (similar to, for example, Keenan et
al., 2011) during the calibration procedure. In the defini-
tion of RMSEtot (Eq. 12), we divided the individual ob-
jectives of the cost function (i.e., RMSEBP and RMSEDoY)
by the average intervals between consecutive observations
(INTBP and INTDoY) in order to scale them and make them
contribute similarly to the optimization problem. The val-
ues of INTBP and INTDoY measure the actual resolution
of the observation data and are thus the best achievable
values in the optimization procedure. We used the func-
tion optim to calibrate the model parameters with R statis-
tical software v.4.0.3 (R Development Core Team, 2020).
In order to ensure that the optim algorithm reached the
global minimum of the cost function, we ran it 768 times
for each calibration, starting from different, random com-
binations of initial parameters, which appear in Table S2,
and retained the parameter set yielding the overall lowest
RMSEtot. One possible issue with aggregate multi-objective
cost functions such as Eq. (12) is that the same minimum
RMSEtot can be achieved with multiple combinations of
RMSEBP / INTBP and RMSEDOY / INTDOY. In order to eval-
uate this, we produced a figure to show the relation between
RMSEtot and RMSEBP / INTBP or RMSEDOY / INTDOY
(Fig. S4). One can see that RMSEtot was mostly influenced
by RMSEDOY / INTDOY, with RMSEBP / INTBP playing a
secondary role. In addition to RMSE, we used mean bias er-
ror and the correlation coefficient (r) and p value to evaluate
the model forecast accuracy (in terms of budburst percentage
or days), which are calculated as follows:

mean bias=
1
N

∑N

i=1
(obsi − predi), (13)

where obsi and predi are the ith observation and prediction,
respectively, and N is the number of observations.

r =

∑N
i=1(obsi − obsmean)(predi − predmean)√

N∑
i=1
(obsi − obsmean)2

√
N∑
i=1
(predi − predmean)

2

, (14)

where obsmean and predmean are the mean of observation and
prediction, respectively.

2.6 Evaluating the modeled F ∗ distributions

To validate the modeled F ∗ distribution, we simulated the
distribution of the forcing accumulation at the date of each
BP observation. Because there are different observed BP in
each year. We binned the observed BP data into 11 groups
(i.e., BP0, BP10, BP20, . . . , BP100; for example, we regard
the data between BP5 (date at which 5 % of trees burst buds)
and BP15 (date at which 15 % of trees burst buds) as group
“BP10”; note that BP0 refers to dates at which 5 % or less
trees have burst buds, and BP100 refers to dates at which
95 % or more trees have burst buds). Then we used a sigmoid
function to simulate the relation between BP and averaged
corresponding forcing accumulation across all the years. We
also calculated their first derivatives (i.e., the increasing of
BP per unit of forcing accumulation). Moreover, we calcu-
lated the distribution of observed BP across all the years.

2.7 Evaluating the response of the within-population
variability of budburst to climate warming

We used our model to predict budburst in the past (1961–
2022) using historical daily mean temperature data and gap-
filled data using debiased Safran reanalysis of temperatures
(see above).

As explained earlier, our model simulates the percentage
of budburst in a tree population at a given date. To evalu-
ate the response of the WPV of budburst to climate warm-
ing, we focused on the particular dates at which 20 % and
80 % of trees in a given population had reached budburst
(termed BP20 and BP80, respectively) and the duration be-
tween these two dates (duration of budburst DurBB= BP80–
BP20), which we consider to represent the variability of
budburst within the population for a given year. BP20 rep-
resents the “beginning” of budburst in the tree population,
whereas BP80 represents its “end”. We chose these quan-
tiles instead of more extreme quantiles of distribution (e.g.,
5 % and 95 %), because they are well represented in our
dataset (Fig. 1), thus implying higher model accuracy. For
sake of model evaluation, we calculated the DurBB in ob-
served phenology data. Specifically, we selected years which
had records before BP20 and after BP80. Then the date of
BP20 or BP80 was calculated by using the two nearest data
(one is below BP20 or BP80 and the other is above BP20 or
BP80) through interpolation (e.g., 15 % budburst percent is
on DoY 80 and 25 % budburst percent is on DoY 84. We can
obtain the date of BP20 by interpolation, that is, DoY 82).

2.8 Statistical analyses

For each population, we quantified by linear regression the
sensitivity of budburst date (BP20 and BP80) and the DurBB
to time (d yr−1) and to January–May temperature (d ◦C−1).
Analysis of variance (ANOVA) was used to analyze the sig-
nificance of the regression slopes (α = 0.05). All simulations
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Figure 1. Observed percentage of budburst in five tree populations
during the period 2000–2022. The size of the points is scaled with
the square root of the number of trees observed. The lines connect
the dates of the same year.

and statistical analyses were carried out with R statistical
software v.4.0.3 (R Development Core Team, 2020).

3 Results

3.1 Phenological observations

Figure 1 shows the observed percentages of budburst in the
five tree populations monitored from 2000 to 2022. These
percentage data were established based on 48 442 observa-
tions of budburst collected from individual trees. Among the
species, hornbeam was the earliest to reach budburst, typi-
cally over DoY 70–100, followed by oak over DoY 90–110,
and finally, chestnut over DoY 100–130. The budburst dates
of the oak and hornbeam populations at Barbeau and Orsay
were very close, with average differences of 2 and 1 d (Ta-
ble S3). The duration of budburst in the population (DurBB)
(i.e., time interval, in days, during which the proportion of
trees having reached budburst increases from 20 % to 80 %)
differs for each species depending on the site and year, with
a mean of 8 d over the whole dataset and ranging from 3 d for
hornbeam at Orsay in 2018 and 2021 to 21 d for oak at Orsay
in 2012 (Fig. 1).

Figure 2. Evaluation of the within-population variability (WPV)
model predicting the budburst percentage over calibration (red
points) and validation (blue points) data. The circle symbols rep-
resent data observed in Orsay, and the triangle symbols represent
those observed in Barbeau. The points establish the correspondence
between the observed and predicted percentage of budburst on an
observation day in the population of interest. The one-to-one re-
lation is shown as the black line. RMSE (which is the root mean
square error for the budburst percentage), mean bias and correlation
coefficient (r) are shown. There are 52, 71 and 50 points (i.e., obser-
vation dates) for calibration and 89, 114 and 29 points for validation
for hornbeam, oak and chestnut, respectively. P values of the cor-
relation coefficients appear as follows (∗: P < 0.05, ∗∗: P < 0.01,
∗∗∗: P < 0.001).

3.2 Model performance

For all the populations considered here, the WPV model pre-
dicted with good accuracy the progress of budburst in tree
populations during spring as well as the interannual vari-
ability of budburst (Figs. 2, 3; see Fig. S5 for a compari-
son of observed and simulated time series). The model pre-
dicted the percentage of budburst in tree populations with
an error (RMSEBP) of 16.4 %± 1.1 % for the calibration
dataset (correlation coefficient of predictions vs. observa-
tions: 0.80± 0.01, P < 0.001) and 20.7 %± 1.1 % for the
validation dataset (correlation: 0.73± 0.06, P < 0.001). This
corresponded to prediction errors for the date of budburst
(RMSEDOY) of 3.7± 0.5 d for the calibration dataset (corre-
lation: 0.90± 0.04, P < 0.001) and 5.7± 0.5 d for the val-
idation dataset (correlation: 0.80± 0.09, P < 0.001). This
compared well to the time resolution of the phenological ob-
servations (2–7 d). The mean bias was less than 1 d (Fig. 3).
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Figure 3. Evaluation of the within-population variability (WPV)
model predicting budburst dates over calibration (red points) and
validation (blue points) data. The circle symbols represent data ob-
served in Orsay, and the triangle symbols represent data observed
in Barbeau. The points establish the correspondence between the
observed and predicted budburst date on one observation day in the
population of interest. The one-to-one relation is shown as the black
line. RMSE (which is root mean square error for the budburst date),
mean bias and correlation coefficient (r) are shown. There are 52,
71 and 50 points (i.e., observation dates) for calibration and 89, 114
and 29 points for validation for hornbeam, oak and chestnut, respec-
tively. P values of the correlation coefficients appear as follows (∗:
P < 0.05, ∗∗: P < 0.01, ∗∗∗: P < 0.001).

3.3 Parameter variations across species

As mentioned earlier, we assumed that the forcing require-
ment (F ∗) followed a normal distribution. The calibration
procedure yielded a set of distribution curves that differed
across species (Fig. 4). We observed that the distribution
of F ∗ looked similar for the three species, with a mean
of 146.5± 7.0 degree-days (mean±SD across the three
species) and a standard deviation of 32.5± 4.1 degree-days,
yielding a coefficient of variation of 0.22± 0.02 (Fig. 4, Ta-
ble 2). The distributions of F ∗ compared well to the actual
distribution of forcing accumulation established from obser-
vations (Fig. 5b, e, h), validating the choice of the normal dis-
tribution. However, the modeled distribution did not overlap
exactly the distribution established from observed data, be-
cause the distribution of observations along the BP scale was
uneven (Fig. 5c, f, i). The temperature threshold for chill-
ing accumulation (Tc) ranged from 10.1 ◦C for chestnut to
10.5 ◦C for hornbeam and oak (Table 2). The temperature
threshold for forcing accumulation (Tf) ranged from 3.9 ◦C

Figure 4. Normal distribution of the forcing requirement (F ∗) for
three tree species.

for hornbeam to 7.0 ◦C for chestnut (Table 2, Fig. S2). In all
species, buds could not begin ontogenetic growth until the
accumulation of chilling to a certain extent (i.e., parameter h
was negative for all populations, Table 2). Prevailing temper-
atures could compensate for the lack of chilling accumulation
(positive parameter g; Table 2) for three species.

3.4 Retrospective analysis for within-population
variability of budburst

Over the past 6 decades (1961–2022), spring average tem-
perature increased by +1.9 ◦C in Orsay and +1.4 ◦C in
Barbeau (Fig. S6). Over this time period, our retrospective
simulations suggest that the beginning (20 %, BP20) and
end (80 %, BP80) of budburst in tree populations has ad-
vanced significantly for all the species (Fig. 6), with re-
spectively 1.6± 0.5 d decade−1 (mean±SD across species)
and 1.7± 0.3 d decade−1 and apparent temperature sensitivi-
ties of 5.7± 0.6 d ◦C−1 and 5.5± 0.2 d ◦C−1. These similar
trends regarding the beginning and end of budburst result
in an unchanged duration of the budburst period (DurBB)
in the considered populations over the past 62 years (no
trend in DurBB is significantly different from zero in Fig. 7,
P > 0.05). Meanwhile, the results about temperature sensi-
tivity were similar which were negative for BP20 and BP80
for all three species based on pre-season temperature preced-
ing budburst (Table S4). Notably, the interannual variabil-
ity of DurBB was large (Fig. 6) and fairly simulated by our
model (RMSE of 2.6± 1.4 d).

4 Discussion

To the best of our knowledge, this paper presents the first
model simulating the within-population variability of bud-
burst in tree populations. An added value of this model is that
it can simulate the duration of budburst in tree populations.
The central hypothesis of the model is that F ∗, the amount
of accumulated forcing temperature required for trees to bud-
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Table 2. Parameter values of the WPV model for three populations. µ (degree-days) and σ (degree-days) are the mean and standard deviation
of the distribution of F ∗, respectively (Eq. 1). Tb and Tc (◦C) are the threshold temperatures for the accumulation of forcing and chilling
temperatures, respectively (Eqs. 5 and 9). g (◦C−1) and h (dimensionless) are the parameters determining the interactive effect of the state
of rest break and the prevailing air temperature on the ontogenetic competence (Eq. 6). Ccri (number of days) is the chilling requirement of
rest completion.

Species Site µ σ Tb Tc g h Ccri

Carpinus Orsay 138.4 29.6 3.9 10.5 0.0080 −0.98 155.5
Quercus Orsay 150.4 37.2 5.3 10.5 0.0032 −0.89 153.0
Castanea Orsay 150.7 30.8 7.0 10.1 0.0108 −1.00 152.4

Figure 5. Evaluating the modeled F ∗ distributions. Panels (a), (d) and (g) represent the relation between budburst percentage (BP) and
forcing accumulation. The black points and error bars represent the forcing accumulation required to reach a given budburst percentage in
observed data (average across years± one standard deviation). The red curves represent a sigmoid function fitted to the black dots (a, d, g),
and its first derivative (b, e, h). The blue curve represents predictions based on the parameters in Table 2. Panels (b), (e) and (h) represent the
increasing of BP per unit of forcing accumulation. Panels (c), (f) and (i) show the distribution of observed data points in the budburst dataset.

burst, follows a normal distribution in tree populations. The
ability of the model to simulate the dynamics of budburst
over the calibration and validation data, as well as the good
agreement between the observed and the simulated F ∗ dis-
tributions (Fig. 5), lend support to this hypothesis for all
the species and populations considered. Our model yielded
RMSE for the validation data (5.4 to 6.2 d), which are close
to the temporal resolution of the spring phenology observa-
tion (from 2–7 d) and similar to the typical prediction accu-
racy of models simulating discrete (i.e., population average)
budburst dates (e.g., Basler, 2016).

The variability in the timing of budburst among individ-
uals in tree populations is considered to be mainly deter-

mined by genetic diversity (Bontemps et al., 2016; Delpierre
et al., 2017; Jarvinen et al., 2003; Rousi and Heinonen, 2007;
Rusanen et al., 2003) followed by the influence of the mi-
croenvironment (Delpierre et al., 2017; Rousi and Heinonen,
2007). The phenological ranking of individuals is largely
conserved in tree populations (Delpierre et al., 2017), lead-
ing to the identification of “early”, “intermediate” and “late”
trees (Malyshev et al., 2022). Further, the distribution of bud-
burst categories is not uniform in natural tree populations,
with numerous intermediate individuals and comparatively
fewer early and late trees (Malyshev et al., 2022; Chesnoiu
et al., 2009; Zohner et al., 2018; Caradonna et al., 2014),
which lends further support to a unimodal distribution such
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Figure 6. Simulated occurrence of the beginning (20 %, BP20 in blue) and end (80 %, BP80 in red) of budburst using the WPV model for
three tree species during the period 1961–2022. The fitted lines highlight the trends over the past 62 years. Text in blue (red) shows the
sensitivity of BP20 (BP80) to time and mean spring temperature (from January to May), respectively. The trends (in d decade−1 and d ◦C−1)
are displayed in the figure. The sensitivity values are tested by linear regression analyses (∗: P < 0.05, ∗∗: P < 0.01, ∗∗∗: P < 0.001), and
the adjusted coefficient of determination (R2

adj) is shown.

as the normal law. Our data further show the same trees
are always early/late within the population with correspond-
ing low/high forcing accumulation requirements (Fig. S7).
Our model reproduces this phenomenon, with categories of
early, intermediate and late trees corresponding to increas-
ing values of F ∗. This core assumption of the model is sup-
ported by previous empirical studies, which observe that the
variability of F ∗ could represent the variability of budburst
among trees (Langvall et al., 2001; Rousi and Heinonen,
2007). Nevertheless, we could have chosen to assign the vari-
ance among individuals to one or several other parameters
of the model, related to the fact that genetic variations may
affect any of the plant traits determining the modeled pa-
rameters. For instance, Gauzere et al. (2019) found that the
temperature yielding mid-forcing during ecodormancy (T50)
was more sensitive than F ∗ in the UniChill model, which
suggests that this parameter is another good candidate for
identifying the phenological behavior of individual trees in
a population. Thus, we constructed a model assuming that
the threshold for forcing temperature (Tb, i.e., parameter of
our model analogous to T50) followed a normal distribution,
whereas F ∗ was fitted as a constant parameter for the popu-
lation. This model fitted the data less effectively in both the

calibration and validation steps (see Figs. S8 and S9 com-
pared with Figs. 2 and 3), which further supports our decision
to assign the among-individual variance to F ∗. We further
tested to assign the among-individual variance to the parame-
ters for phase of dormancy release (e.g., chilling requirement
of rest completion (Ccri) and the threshold temperatures for
the accumulation of chilling temperatures (Tc)) also using a
normal distribution. However, the model fitted the data even
worse than in our attempt of fitting a normal distribution of
Tb. Questions remain regarding the actual shape of the F ∗

distribution. Indeed, natural selection can lead to traits that
are not normally distributed (Caradonna et al., 2014), and un-
even distribution of observations may contribute to the non-
perfect overlapping of observed and simulated F ∗ distribu-
tions (Fig. 5). However, earlier results (Vallet, 2020) showed
that the form of the distribution had little influence on the
prediction accuracy.

We built the WPV model based on a two-phase parallel
model framework, which describes the cumulative effect of
chilling and forcing temperatures on the endodormancy and
ecodormancy phases, respectively (Hänninen, 2016; Hänni-
nen and Kramer, 2007; Lundell et al., 2020; Chuine and Reg-
niere, 2017). This model structure is in line with our current
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Figure 7. Simulated duration of budburst in the population (DurBB) using the WPV model for three tree species during the period 1961–
2022. The fitted line depicts the change in DurBB over the past 62 years. The sensitivity of DurBB to time and mean spring temperature (from
January to May) are tested by linear regression analyses (not significant: P > 0.05), and the adjusted coefficient of determination (R2

adj) is

shown. The trends (in d decade−1 and d ◦C−1) are displayed in the figure. The black points are the actual durations of budburst observed in
the data (i.e., restricted to years when both BP20 and BP80 are available in a population).

understanding of the physiological and molecular basis of
dormancy in which the dynamics of the dormancy mecha-
nism are emphasized as opposed to a strict classification be-
tween the dormancy stages (Lundell et al., 2020; Cooke et
al., 2012). In this study, the threshold of chilling accumula-
tion is up to 10.5 ◦C for oak and hornbeam. It is consistent
with the experimental results in Baumgarten et al. (2021),
which challenge the common assumption that optimal chill-
ing temperatures range ca. 4–6 ◦C, showing 10 ◦C is also ef-
fective for chilling accumulation in six dominant temperate
European tree species including oak. Furthermore, the model
uses the concept of ontogenetic competence (Co) to simulate
the process of regulation for the rate of ontogenetic growth
by the state of rest break, a phenomenon that has found sup-
port in phenological experiments (Lundell et al., 2020; Zhang
et al., 2022). Our results demonstrate that, in the investigated
species, Co is equal to 0 until dormancy is released to a cer-
tain extent (Fig. S2); that is, ontogenetic growth cannot start
before a certain amount of chilling accumulation has been
reached, which is consistent with previous findings (Lundell
et al., 2020; Zhang et al., 2022). According to the calibrated
parameter values, ontogenetic competence is also influenced
by the prevailing temperature, although the effect is mini-
mal. Indeed, parameter g, which is related to the effect of the
prevailing temperature, ranges from 0.0032 to 0.0108 (Ta-

ble 2), which is comparable to values found in a previous
study (Lundell et al., 2020). To some extent in this model,
one consequence is that the effect of the prevailing tempera-
ture can compensate for the deficiency of chilling accumula-
tion.

Beyond introducing a model to describe the WPV of bud-
burst in tree populations, our study aimed to quantify the re-
sponse of the duration of budburst (DurBB) to climate warm-
ing. We used temperature data to simulate the occurrence of
20 % (BP20) and 80 % (BP80) budburst, as well as DurBB,
over the past decades. Our results suggest that the start and
end of budburst in tree populations have advanced over the
past 62 years with climate warming (Fig. 6), which is consis-
tent with previous results showing advances in the population
average dates of budburst (Wenden et al., 2020; Menzel et al.,
2006; Fu et al., 2015). In addition, our model simulates sen-
sitivities of budburst to time and temperature that are com-
parable to values reported earlier (Vitasse et al., 2009b; see
Table S5). Our results point to significant sensitivities to both
time and temperature for oak as well as significant sensitiv-
ity to temperature for hornbeam, which is consistent with the
results by Vitasse et al. (2009b). The advancement of bud-
burst would increase the possibility of spring frost damage
(Liu et al., 2018; Vitasse et al., 2018), influencing tree phys-
iology and growth with possible impacts on the productivity
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of forests (Vitasse et al., 2019) or even the distribution of tree
species (Chuine, 2010).

Our retrospective simulations suggest that there was no
trend in the duration of budburst in tree populations, DurBB,
over the past 62 years (Fig. 7), in spite of climate warming
(Fig. S6). Since both BP20 and BP80 advanced at a similar
rate, DurBB did not evolve over time over the 1961–2022 pe-
riod. Interestingly, the analysis of temperature data revealed
no significant warming in the period of time from BP20 to
BP80 over the past decades (P > 0.05, Fig. S10). This could
explain why DurBB (time interval between BP20 and BP80)
did not change over time, in spite of the strong trends in both
BP20 and BP80, caused by climate warming. However, in-
terannual variability of DurBB was large, which was repro-
duced by the WPV model (Fig. 7). Moreover, our study sites
are located in the temperate zone, at the heart (for oak and
hornbeam) and at the north (chestnut) of our study species
distribution areas (Caudullo et al., 2017). At those sites, trees
can accumulate enough chilling, or at least, chilling accumu-
lation is not a limitation for ontogenetic growth in nature so
far, meaning that budburst is still advancing (Wenden et al.,
2020; Piao et al., 2019). Thus, the phenomenon by which
DurBB increased with insufficient chilling accumulation in
a given population (see Zhang et al., 2021, their Figs. 2, 3
and 4 for evidence in subtropical trees) did not appear in
our retrospective simulations. However, we can infer that if
chilling accumulation can not be fulfilled under future, con-
tinuous climate warming, it will take more time to fulfill the
forcing requirement for late trees with a high forcing require-
ment, leading to the prolonging of DurBB. A longer duration
of budburst would increase the possibility of damage (i.e.,
freezing, insect damage).

We acknowledge that the projections of the WPV of bud-
burst produced by the model are uncertain, first and foremost
because the parameter values were inferred from observa-
tion data collected in natural conditions as opposed to con-
trolled experiments (Hänninen et al., 2019). Another cause
of uncertainty is the ability of the phenological response of
plants to acclimatize to the changing climate (Bennie et al.,
2010). Under the hypothesis of plant acclimatization, the pa-
rameters of the WPV model could have changed over the
past decades and would further change with ongoing cli-
mate warming. Consequently, related experiments are ur-
gently needed to improve our understanding of the WPV of
budburst to infer more reliable parameters and analyze the
behavior of phenology models in different climates (Hän-
ninen et al., 2019). However, because our model explicitly
addresses, for the first time, the within-population variation
of the physiological traits affecting phenology, it can con-
tribute as a framework for future experimental studies. In
our study, we only considered the effect of temperature on
budburst. However, other environmental factors may also af-
fect budburst (e.g., photoperiod, soil moisture and the inter-
action between factors). Previous studies showed that pho-
toperiod is expected to modulate the timing of budburst in

late-successional species such as oak and chestnut but not in
early-successional species such as hornbeam (Basler and Ko-
rner, 2012), but see a counterexample on oak in Malyshev et
al. (2018). Moreover, photoperiod may have a more complex
interaction mechanism with temperature in terms of regulat-
ing the time of budburst (Meng et al., 2021). And negative
correlations between spring soil moisture and the start of the
growing season were found in the Mongolian Plateau (Luo et
al., 2021). We envision that improved versions of the WPV of
budburst could be proposed based on a more comprehensive
understanding of the potential mechanism between phenol-
ogy and environmental factors in the future.

5 Conclusions

In conclusion, our work presents a novel model, simulat-
ing the continuity of budburst in tree populations in spring.
This phenological model can be adapted to the study of other
stages of the tree phenological cycle, which are all of contin-
uous nature in tree populations (leaf senescence, wood for-
mation, etc.). We found that budburst was advanced in the
past 62 years due to climate warming. However, the dura-
tion of budburst period of population was not affected by in-
creasing temperature. This is the first model simulating the
within-population variability of budburst in the population.
It provides a basis for implementation of a module in mod-
els directly interested in the within-population variability of
phenological and other functional traits (e.g., physio-demo-
genetic models). It can also be used as a standalone model to
study the dynamics of phenological traits from the scale of
individuals to the population and community in the context
of climate change.
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