
Geosci. Model Dev., 17, 8593–8611, 2024
https://doi.org/10.5194/gmd-17-8593-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Software sustainability of global impact models
Emmanuel Nyenah1, Petra Döll1,2, Daniel S. Katz3, and Robert Reinecke4

1Institute of Physical Geography, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
2Senckenberg Biodiversity and Climate Research Centre (SBiK-F), 60438 Frankfurt am Main, Germany
3NCSA, CS, ECE and iSchool, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
4Institute of Geography, Johannes Gutenberg University Mainz, 55128 Mainz, Germany

Correspondence: Emmanuel Nyenah (nyenah@em.uni-frankfurt.de)

Received: 22 May 2024 – Discussion started: 5 June 2024
Revised: 20 September 2024 – Accepted: 14 October 2024 – Published: 5 December 2024

Abstract. Research software for simulating Earth processes
enables the estimation of past, current, and future world
states and guides policy. However, this modelling software
is often developed by scientists with limited training, time,
and funding, leading to software that is hard to understand,
(re)use, modify, and maintain and that is, in this sense, non-
sustainable. Here we evaluate the sustainability of global-
scale impact models across 10 research fields. We use nine
sustainability indicators for our assessment. Five of these in-
dicators – documentation, version control, open-source li-
cense, provision of software in containers, and the number
of active developers – are related to best practices in soft-
ware engineering and characterize overall software sustain-
ability. The remaining four – comment density, modularity,
automated testing, and adherence to coding standards – con-
tribute to code quality, an important factor in software sus-
tainability. We found that 29 % (32 out of 112) of the global
impact models (GIMs) participating in the Inter-Sectoral Im-
pact Model Intercomparison Project were accessible with-
out contacting the developers. Regarding best practices in
software engineering, 75 % of the 32 GIMs have some kind
of documentation, 81 % use version control, and 69 % have
an open-source license. Only 16 % provide the software in
a containerized form, which can potentially limit result re-
producibility. Four models had no active development after
2020. Regarding code quality, we found that models suffer
from low code quality, which impedes model improvement,
maintenance, reusability, and reliability. Key issues include
a non-optimal comment density in 75 % of the GIMs, insuf-
ficient modularity in 88 % of the GIMs, and the absence of
a testing suite in 72 % of the GIMs. Furthermore, only 5 out
of 10 models for which the source code, either in part or in

its entirety, is written in Python show good compliance with
PEP8 coding standards, with the rest showing low compli-
ance. To improve the sustainability of GIMs and other re-
search software, we recommend best practices for sustain-
able software development to the scientific community. As
an example of implementing these best practices, we show
how reprogramming a legacy model using best practices has
improved software sustainability.

1 Introduction

Simulation models of the Earth system are essential tools
for scientists, and their outcomes are relevant for decision-
makers (Prinn, 2013). They improve our understanding of
complex subsystems of the Earth (Prinn, 2013; Warszawski
et al., 2014) and enable us to perform numerical experiments
that would otherwise be impossible in the real world, e.g.
exploring future pathways (Kemp et al., 2022; Satoh et al.,
2022; Wan et al., 2022). A specific class of simulation mod-
els of the Earth, called impact models, enables us to quanti-
tatively estimate the potential impacts of climate change on
e.g. floods (Sauer et al., 2021), droughts (Satoh et al., 2022),
and food security (Schmidhuber and Tubiello, 2007). These
impact models also quantify the historical development and
current situation of key environmental issues, such as water
stress, wildfire hazard, and fish population. The outputs of
these models, whether data, publications, or reports, thus pro-
vide crucial information for policymakers, scientists, and cit-
izens. The central role of impact models can be seen in model
intercomparison efforts of the Inter-Sectoral Impact Model

Published by Copernicus Publications on behalf of the European Geosciences Union.



8594 E. Nyenah et al.: Software sustainability of global impact models

Intercomparison Project (ISIMIP) (ISIMIP, 2024; Warsza-
wski et al., 2014), which encompasses more than 130 sectoral
models (Frieler and Vega, 2019). ISIMIP uses bias-corrected
climate forcings to assess the potential impacts of climate
change in controlled experiments, and their outputs provide
valuable contributions to the Intergovernmental Panel on Cli-
mate Change reports (Warszawski et al., 2014).

Impact models quantify physical processes related to spe-
cific components of the Earth system at various spatial and
temporal scales by using mathematical equations. The com-
plexity of impact models is influenced by the complexity of
the included physical processes, the choice of the percep-
tual and mathematical model, and the computational effort
needed for simulation, as well as their spatio-temporal reso-
lution and the spatial extent of the simulated domain (Azmi
et al., 2021; Wagener et al., 2021). This complexity can re-
sult in models with very large source codes (Alexander and
Easterbrook, 2015).

The software for these impact models is categorized as
research software, which includes “source code files, al-
gorithms, computational workflows, and executables devel-
oped during the research process or for a research objective”
(Barker et al., 2022). Impact modelling research software is
predominantly developed and maintained by scientists with-
out formal training in software engineering (Barton et al.,
2022; Carver et al., 2022; Hannay et al., 2009; Reinecke et
al., 2022). Most of these researchers are self-taught software
developers (Nangia and Katz, 2017; Reinecke et al., 2022)
with little knowledge of software requirements (specifica-
tions and features of software), industry-standard software
design patterns (Gamma et al., 1994), good coding practices
(e.g. using descriptive variable names), version control, soft-
ware documentation, automated testing, and project man-
agement practices (e.g. Agile) (Carver et al., 2013, 2022;
Hannay et al., 2009; Reinecke et al., 2022). We hypothe-
size that this leads to the creation of source code that is not
well-structured, is not easily (re)usable, is difficult to modify
and maintain, has scarce internal documentation (code com-
ments) and external documentation (e.g. manuals, guides,
and tutorials), and has poorly documented workflows.

Research software that suffers from these shortcomings
is likely difficult to sustain and has severe drawbacks for
scientific research. For example, it can impede research
progress, decrease research efficiency, and hinder scientific
progress, as implementing new ideas or correcting mistakes
in code that is not well-structured is more difficult and time-
consuming. In addition, it increases the likelihood of erro-
neous results, thereby reducing reliability and hindering re-
producibility (Reinecke et al., 2022). We argue that these
harmful properties can be averted, to some extent, with sus-
tainable research software.

There are various interpretations of the meaning of sus-
tainable research software. Anzt et al. (2021) define research
software as software that is maintainable, extensible, and
flexible (adapts to user requirements); has a defined soft-

ware architecture; is testable; has comprehensive in-code
and external documentation, and is accessible (the software
is licensed as open source with a digital object identifier
(DOI) for proper attribution) (Anzt et al., 2021). For ex-
ample, NumPy (https://numpy.org/, last access: 29 Novem-
ber 2024) is a widely used scientific software package that
exemplifies many of these qualities (Harris et al., 2020). Al-
though NumPy is not an impact model, it is an exemplar of
sustainable research software; it is open source, maintains
rigorous version control and testing practices, and is exten-
sively documented, making it highly reusable and extensible
for the scientific community.

Katz views research software sustainability as the pro-
cess of developing and maintaining software that continues
to meet its purpose over time (Katz, 2022). This includes
adding new capabilities as needed by its users, responding to
bugs and other problems that are discovered, and porting to
work with new versions of the underlying layers, including
software and new hardware (Katz, 2022). Both definitions
share common aspects like the adaptation to user require-
ments but differ in scope and perspective. Katz’s definition
is more user-oriented, focusing on the software’s ability to
continue meeting its purpose over time. On the other hand,
Anzt et al.’s definition is more developer-oriented, aiming to
improve the quality and robustness of research software. We
chose to adopt Anzt et al.’s definition in the following be-
cause it provides measurable qualities relevant to this study.
In contrast, Katz’s definition is more challenging to measure
and evaluate but is likely closer to the reality of software de-
velopment. For example, one of the models in our analysis
is more than 25 years old (Nyenah et al., 2023) and was thus
certainly sustained during that period, while at the same time,
it does not meet some of the sustainability requirements in
Anzt et al.’s definition. It is possible that such software can
be sustained but requires substantial additional resources.

Recent advances in developing sustainable research soft-
ware have led to a set of community standard principles: find-
able, accessible, interoperable, and reusable (FAIR) for re-
search software (FAIR4RS), aimed towards increasing trans-
parency, reproducibility, and reusability of research (Barker
et al., 2022; Chue Hong et al., 2022). Software quality, which
impacts sustainability, overlaps with the FAIR4RS princi-
ples, particularly reusability, but is not directly addressed
by them (Chue Hong et al., 2022). Reusable software here
means software can be understood, modified, built upon, or
incorporated into other software (Chue Hong et al., 2022). A
high degree of reusability is therefore important for efficient
further development and improvement of research software
and thus for scientific progress. However, many models are
not FAIR (Barton et al., 2022).

To our knowledge, research software sustainability in
Earth system sciences has not been evaluated before.

As an example of complex research software in Earth sys-
tem sciences, in this study, we assess the sustainability of the
software of global impact models (GIMs) that participate in

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024

https://numpy.org/


E. Nyenah et al.: Software sustainability of global impact models 8595

the ISIMIP project to investigate factors that contribute to
sustainable software development. The GIMs belong to the
following 10 research fields (or impact sectors): agriculture,
biomes, fire, fisheries, health, lakes, water (resources), water
quality, groundwater, and terrestrial biodiversity. In our as-
sessment, we consider nine indicators of research software
sustainability, five of them related to best practices in soft-
ware engineering and four related to source code quality. We
further provide first-order cost estimates required to develop
these GIMs but do not address the cost of re-implementing
or making code reproducible versus the cost of maintaining
old code in this study. We also demonstrate how reprogram-
ming legacy software using best practices can lead to signif-
icant improvements in code quality and thus sustainability.
Finally, we offer actionable recommendations for developing
sustainable research software for the scientific community.

2 Methods

2.1 Accessing GIM source code

ISIMIP manages a comprehensive database of participating
impact models (available in an Excel file at https://www.
isimip.org/impactmodels/download/, last access: 2 Decem-
ber 2024), which provides essential information, such as
model ownership, names, source code links, and simulation
rounds. Initially, we identified 375 models across five sim-
ulation rounds (fast track, 2a, 2b, 3a, and 3b). As the fo-
cus of our analysis is on global impact models, we sorted
the models by spatial domain and filtered out models operat-
ing at local and regional scales, resulting in a subset of 264
GIMs. We then removed duplicate models, prioritizing the
most recent versions for inclusion, resulting in 112 unique
models. For models with available source links, we obtained
their source code directly. In instances where source links
were not readily available, we conducted manual searches for
source code by referring to code availability sections in ref-
erence papers. Additionally, we searched for source code us-
ing model names along with keywords such as “GitHub” and
“GitLab” using Google’s search engine. As of April 2024,
32 out of the 112 unique model source codes were accessi-
ble either through direct links from the ISIMIP database or
via manual searches on platforms like GitHub and GitLab,
as well as in code availability sections of reference papers.
However, it is important to note that our sample may suffer
from a “survivor bias”, as we are not investigating models
that are no longer in use (GIMs that could not be sustained
over time). This bias could potentially skew our analysis to-
wards models that have survived; i.e. they are still in use, and
their source code is accessible. Due to time constraints, we
refrained from contacting developers for models that were
not immediately accessible.

2.2 Research software sustainability indicators

We examine nine indicators of research software sustainabil-
ity, distinguishing five indicators related to best practice in
software engineering and four indicators of source code qual-
ity (Table 1).

In the following, we describe the indicators and their ra-
tionale and how we evaluated the GIMs with respect to each
indicator.

Documentation. Documentation is crucial for understanding
and effectively utilizing software (Wilson et al., 2014). This
includes various materials, such as manuals, guides, and tu-
torials that explain the usage and functionality of the soft-
ware, as well as reference model description papers. When
assessing documentation availability, relying solely on a ref-
erence model description paper may be insufficient, as it
may not provide the level of detail necessary for the effec-
tive utilization and maintenance of the research software. All
GIMs used in this assessment have an associated descrip-
tion or reference paper (see file ISIMIP_models.xlsx in the
Supplement). Therefore, in addition to the reference model
paper, we checked for available manuals, guides, README
files, and tutorials. We regard any of these resources, along-
side the reference model paper, as documentation for the
model. These resources provide essential information, such
as user, contributor, and troubleshooting guides, which are
valuable for model usage and maintenance. In our assess-
ment, we searched within the source code and official web-
sites (if available). We also utilized the Google search en-
gine to find model documentation by inputting model names
along with keywords such as “documentation”, “manuals”,
“readme”, “guides”, and “tutorials”.

Version control. Version control systems such as Git and
Mercurial facilitate track changes and collaborative develop-
ment and provide a history of software evolution. To assess
whether GIMs use version control for development, we fo-
cused on commonly used open-source version control host-
ing repositories such as GitLab, GitHub, Bitbucket, Google
Code, and SourceForge. The host name such as “github”
or “gitlab” in the source link of models provides clear in-
dications of version control adoption in their development
process. For other models, we searched within the Google
search engine using model names and keywords such as “Bit-
bucket”, “Google Code”, and “SourceForge”. While we fo-
cus on identifying the use of version control systems, evalu-
ating how version control was implemented during the devel-
opment process – such as the use of modular commits, pull
requests, discussions, and proper versioning – is an in-depth
analysis that falls beyond the scope of this study. However,
such practices are crucial for ensuring high-quality software
development and collaborative practices.

Use of an open-source license. We determined the exis-
tence of open-source licenses by checking license files within
repositories or official websites against licenses approved

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024

https://www.isimip.org/impactmodels/download/
https://www.isimip.org/impactmodels/download/


8596 E. Nyenah et al.: Software sustainability of global impact models

Table 1. Indicators used for the assessment of research software sustainability.

No. Indicator Description

Best practices in software engineering

1 Documentation Enables software use and also makes software maintenance easier (Wilson et al.,
2014).

2 Version control Provides transparency and traceability throughout the software development
life cycle and enables collaboration between developers and user
communities (Wilson et al., 2014).

3 Use of an open-source license Allows code copying and reuse. This openness fosters a collaborative environment
where the user community can provide valuable feedback and support. Users can
potentially contribute to the software’s development and maintenance, enhancing its
overall quality (Jiménez et al., 2017).

4 Number of active developers Prevents single points of failure in the development process and makes software
development and maintenance easier (Long, 2006).

5 Containerization Makes the software easy to install and facilitates reproducibility (Nüst et al., 2020;
Wilson et al., 2014).

Source code quality

6 Public availability of an (automated)
testing suite

Shows that software functionality can be or was tested.

7 Compliance with coding standards
(e.g. PEP8)

Improves code quality and readability and makes maintenance easier (Capiluppi et
al., 2009; Simmons et al., 2020; Wang et al., 2008).

8 Comment density Precursor to software maintainability and reusability (Arafat and Riehle, 2009;
He, 2019; Stamelos et al., 2002).

9 Modularity Necessary for extensible and flexible research software (Sarkar et al., 2008;
Stamelos et al., 2002).

by the Open Source Initiative (OSI) (https://opensource.org/
licenses, last access: 2 December 2024). Specifically, we
looked for licenses that conform to the definition of open
source, which ensures that software can be freely used, modi-
fied, and shared (Colazo and Fang, 2009; Rashid et al., 2019).
There are two major categories of open-source licenses: per-
missive licenses, such as MIT or Apache, which allow for
minimal restrictions on how the software can be used (e.g.
providing attribution), and copyleft licenses, like GPL, which
require derivatives to maintain the same licensing terms (Co-
lazo and Fang, 2009; Rashid et al., 2019). Although these
licenses differ in their terms, both contribute to collaboration
and transparency. In this study, we only check if the software
is open source, regardless of the type of open-source license.

Number of active developers. The presence of multiple ac-
tive developers serves as a safeguard against halts within the
development process. In instances where a sole developer de-
parts or transitions roles, the absence of additional develop-
ers could lead to disruptions or challenges in maintaining and
advancing the software. We measured the number of active
developers by counting the individuals who made commits
or contributions to the project’s codebase within the period
of 2020–2024. A higher number of developers indicates a
greater capacity for bug review (enhancing source code qual-
ity) and code maintenance. It can also lead to more frequent
updates to the source code. On the other hand, the absence of

active developers suggests potential stagnation in software
evolution, possibly impacting the relevance and usability of
the software.

Containerization. Containerization provides convenient
ways to package and distribute software, facilitating repro-
ducibility and deployment. It encapsulates an application
along with its environment, ensuring consistent opera-
tion across various platforms (Nüst et al., 2020). Despite
these benefits, containerization in high-performance com-
puting systems encounters challenges like performance,
prompting the proposal of solutions (Zhou et al., 2023).
Some popular containerization solutions include Docker
(https://www.docker.com/, last access: 2 December 2024)
and Apptainer (https://apptainer.org/, last access: 2 De-
cember 2024). There are also cloud-supported container
solutions, such as Binder (https://mybinder.org/, last access:
2 December 2024), with the capacity to execute a model
with computational environment requirements analogous
to the concept of analysis-ready data and cloud-optimized
formats for datasets (Abernathey et al., 2021). To evalu-
ate the availability of container solutions, we conducted
searches through reference papers, official websites, and
software documentation for links to container images or
image-building files such as “Dockerfiles” and an “App-
tainer definition file (.def file)”. In addition, we also searched
through source code repositories to identify the previously

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024

https://opensource.org/licenses
https://opensource.org/licenses
https://www.docker.com/
https://apptainer.org/
https://mybinder.org/


E. Nyenah et al.: Software sustainability of global impact models 8597

stated images or image-building files. Lastly, we utilized the
Google search engine, inputting the name of the GIM, the
sector, and keywords such as “containerization” to ascertain
if any other containerized solutions exist.

Public availability of an (automated) testing suite. Test cov-
erage, which verifies the software’s functionality, is the prop-
erty of actual interest. However, research software may have
an automatic testing suite but not provide information on test
coverage or test results. As a practical approach, we con-
sider the availability of a testing suite as a proxy for the
ability to test software functionality. By examining testing
suites within repositories, we gain insights into the devel-
opers’ commitment to software testing, which contributes to
enhancing software quality.

Compliance with coding standards. Coding standards are a
set of industry-recognized best practices that provide guide-
lines for developing software code (Wang et al., 2008).
Analysing the conformance to these standards can be com-
plex, particularly when the source code is written in mul-
tiple languages. Different languages may have various cod-
ing styles or style guides. For instance, multiple style guides
are available and accepted by the Julia community (Ju-
liaReachDevDocs, 2024). As an example analysis, we fo-
cused on GIMs containing Python in their source code as it
is one of the most prevalent languages used in development.
The tool used, known as Pylint, is designed to analyse Python
code for potential errors and adherence to coding standards
(Molnar et al., 2020; Obermüller et al., 2021). Pylint evalu-
ates source files for their compliance with PEP8 conventions.
To quantify adherence to this coding standard, it assigns a
maximum score of 10 as perfect compliance but has no lower
bound (Molnar et al., 2020). We consider scores below 6 as
indicative of weak compliance as the code contains several
violations.

Comment density. Good commenting practice is valuable for
code comprehension and debugging. Comment density is an
indicator of maintainable software (Arafat and Riehle, 2009;
He, 2019). Comment density is defined as

Comment density=
Number of lines of comment

Total lines of code
. (1)

Here, the total lines of code (TLOC) metric includes both
comments and source lines of code (SLOC) (SLOCCount,
2024). The SLOC metric is defined as the physical non-
blank, non-comment lines in a source file. Arafat and Riehle
(2009) and He (2019) suggest that comment density between
30 %–60 % may be optimal. For most programming lan-
guages, this range is considered to represent a compromise
between providing sufficient comments for code explanation
and having too many comments that may distract from the
code logic (Arafat and Riehle, 2009; He, 2019).

Modularity. Researchers typically pursue new knowledge by
asking and then attempting to answer new research ques-
tions. When the questions can be answered via computation,

this requires building new software, adding new source code,
or modifying existing source code. Addition and modifica-
tion of source code are more easily achieved if the software
has a modular structure that is implemented as extensible and
flexible software (McConnell, 2004). Therefore, modularity
is chosen as another indicator of research software sustain-
ability. Modular programming is an approach where source
codes are organized into smaller and well-manageable units
(modules) that execute one aspect of the software function-
ality, such as the computation of evapotranspiration in a hy-
drological model (Sarkar et al., 2008; Trisovic et al., 2022).
The aim is that each module can be easily understood, modi-
fied, and reused. Depending on the programming language, a
module can be a single file (e.g. Python) or a set of files (e.g.
C++).

To assess the modularity of research software, we use the
TLOC per file as a metric. This metric reflects the organiza-
tion of the source code into modules, each performing a spe-
cific function (Sarkar et al., 2008; Trisovic et al., 2022). We
opted for this approach over measuring TLOC per function or
subroutine due to variations in programming languages and
the challenges associated with accurately measuring different
functions using programme-specific tools. For instance, in
Python, a module that contains a significantly higher TLOC
metric than usual (here a TLOC value of over 1000) likely
includes multiple functions. These functions may perform
more than one aspect of the software’s functionality, such as
reading input files and computing other functions (e.g. evap-
otranspiration function), which contradicts the principle of
modularity. Keeping the length of code in each file concise
also enhances readability.

The ideal number of TLOC per file can vary with the
language, paradigm (e.g. procedural or object-oriented), and
coding style used in a software project (Fowler, 2019; Mc-
Connell, 2004). However, a common heuristic is to keep the
code size per file under 1000 lines to prevent potential per-
formance issues such as crashes or slow programme execu-
tion with some integrated development environments (IDEs)
(Fowler, 2019; McConnell, 2004). IDEs are software appli-
cations that provide tools like code editors and debuggers and
build automation tools. As reported by Trisovic et al. (2022),
based on interviews with top software engineers, a module
with a single file should contain at least 10 lines of code,
consisting of either functions or statements (Trisovic et al.,
2022). We used this heuristic as a criterion for good modu-
larity, assuming that a TLOC per file value of 10–1000 indi-
cates adequate modularity. We also varied the upper bounds
of the total lines of code to 5000 and 500 to investigate how
modularity changes across models and sectors.

2.3 Source code counter

To count the SLOC, comment lines, and TLOC of com-
putational models, the counting tool developed by Ben
Boyter (https://github.com/boyter/scc, last access: 2 Decem-

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024

https://github.com/boyter/scc


8598 E. Nyenah et al.: Software sustainability of global impact models

ber 2024) was used (Boyter, 2024). This tool builds on the
industrial standard source code counter tool called Source
Lines of Code Count (SLOCCount) (SLOCCount, 2024).

2.4 Software cost estimation

The cost of developing research software is mostly unknown
and depends on many factors, such as project size, comput-
ing infrastructure, and developer experience (Boehm, 1981).
A model that attempts to estimate the cost of software de-
velopment is the widely used Constructive Cost Model (CO-
COMO) (Boehm, 1981; Sachan et al., 2016), which com-
putes the cost of commercial software by deriving the person
months required for developing the code based on the lines
of code. Sachan et al. (2016) used the TLOC and effort esti-
mates of 18 very large NASA projects (average TLOC value
of 35 000) to optimize the parameters of the COCOMO re-
gression model (Sachan et al., 2016). Effort in person months
is estimated following Eq. (2):

Effort= 2.022817(kTLOC)0.897183, (2)

where total lines of code are expressed in a TLOC value of
1000 (kTLOC) (Sachan et al., 2016). We use this cost model
to estimate the cost of GIMs.

3 Results and discussion

3.1 GIM programming languages and access points

The source code of the 32 GIMs is written in 10 program-
ming languages (Fig. 1a). Fortran and Python are the most
widely used, with 11 and 10 models, respectively. The dom-
inance of Fortran stems from its performance and the fact
that it is one of the oldest programming languages designed
for scientific computing (Van Snyder, 2007) and was the
main programming language used at the time some of the
GIMs were originally built. This specialization makes it par-
ticularly suitable for tasks involving numerical simulations
and complex computations. On the other hand, Python en-
joys popularity among model developers due to readability,
a large user community, and a rich ecosystem of packages,
including those supporting parallel computing. R and C++
follow with five models and C with four (Fig. 1a). GIMs
may employ one or more programming languages to target
specific benefits the programming languages offer, such as
readability and performance. For example, one of the stud-
ied models, HydroPy, written in Python, enhances its runtime
performance by integrating a routing scheme built in Fortran
(Stacke and Hagemann, 2021a).

We find that 24 (75 %) of the readily accessible 32 GIMs
are hosted on GitHub (Fig. 1b). The rest are made available
on GitLab (2 or 6 %), Zenodo (4 or 12 %), or the official web-
site of the model (2 or 6 %) (Fig. 1b).

We note that for one of the GIMs used for analysis, Wa-
terGAP2.2e, only part of the complete model (the global hy-

drology model) was accessed (Müller Schmied et al., 2023).
This might be the case for other models as well.

3.2 Indicators of software sustainability

3.2.1 Software engineering practices

Documentation.
Our analysis reveals that 75 % of the GIMs (24 out of 32)
have publicly accessible documentation (Table 2). We ob-
served a range of documentation formats across these GIMs.
Specifically, 6 GIMs provided README files, 13 had dedi-
cated web pages for documentation, and 5 included compre-
hensive manuals (see file ISIMIP_models.xlsx in the Supple-
ment). While README files tend to be more minimal and
sometimes difficult to navigate, we observed that they gen-
erally contain essential information such as instructions on
how to run the research software. The prevalence of docu-
mentation practices among most models underscores the im-
portance of documenting research software. However, a no-
table portion (25 %) of the studied models either lacks docu-
mentation or does not have publicly available documentation
(Table 2).

Version control.
We find that 81 % (26 out of 32) of GIMs use Git as their
version control system, reflecting the widespread acceptance
of Git across the sectors (Table 2). In the remaining cases,
information about the specific version control system used
for these GIMs was unavailable.

Use of an open-source license.
Most of the research software, 69 % (22 out of 32), have
open-source licenses (Table 2), with the GNU General Pub-
lic License being the most commonly used license (56 %, 18
out of 32) (Fig. 2). However, the remaining 31 % (10 out of
32) either have no information on the license even though
the source code is made publicly available (8 or 25 % of
GIMs) or use a license which is not OSI-approved (one GIM
each with a creative commons license and user agreement)
(Fig. 2). This ambiguity in or absence of licensing details can
deter potential users and contributors, as it raises uncertain-
ties about the permissions and restrictions associated with the
software.

Number of active developers.
Our results reveal a diverse distribution of active developers
across the GIMs. We have excluded GIMs without version
control information from our results, as those without it could
not be evaluated for this indicator, resulting in data for 26
GIMs. Notably, GIMs such as ParFlow, CWatM, LPJmL, and
GOTM have a significant number of active developers, with
28, 12, 11, and 8 developers, respectively (Fig. 3). These val-
ues correlate with the size of GIM source codes, as evidenced
by TLOC (282 722 for ParFlow, 33 236 for CWatM, 136 002
for LPJmL, and 29 477 for GOTM). However, models such
as WAYS, VIC, BioScen1.5-MEM, and CGMS-WOFOST

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024



E. Nyenah et al.: Software sustainability of global impact models 8599

Figure 1. Programming languages for model development and model accessibility. (a) Bar plots showing programming languages used for
developing 32 global impact models. (b) Bar plot showing open-source hosting platforms where 32 global impact models were accessed.

Table 2. Availability of documentation, version control, open-source licenses, test suites, and containers for 32 global impact models across
10 sectors in Earth system science. “+”, “–”, “not valid”, and “no info” represent the availability of information, the unavailability of
information, a license that is not OSI-approved, and the absence of information, respectively.

No. Sector Model Year of Language Documentation Version Open-source Test Container
latest control license suite
version

1 Agriculture CGMS-WOFOST no info Fortran + + + – –
2 Agriculture DSSAT-Pythia 2024 Python + + no info + +

3 Agriculture EPIC-TAMU 2023 Fortran + no info + – –
4 Agriculture LPJmL 2024 C and JavaScript + + + – –
5 Agriculture ACEA 2024 Python + no info not valid – –
6 Agriculture LPJ-GUESS 2021 C++ + no info + – –
7 Biomes CLASSIC 2020 Fortran + + + + +

8 Biomes MC2-USFS-r87g5c1 2022 C++, Fortran, and C + + + – –
9 Fire SSiB4/TRIFFID-Fire 2021 Fortran – + no info – –
10 Fisheries BOATS no info MATLAB – + no info – –
11 Fisheries DBPM no info R – + no info + –
12 Fisheries EcoTroph no info R + + no info – –
13 Fisheries FEISTY no info MATLAB – + no info – –
14 Fisheries ZooMSS 2020 R and C++ + + + – –
15 Groundwater G3M 2018 C++ + + + + –
16 Groundwater ParFlow 2024 C, Tcl, Python + + + + +

17 Lakes ALBM 2024 Fortran + + + – –
18 Lakes GOTM 2024 Fortran + + + + –
19 Lakes SIMSTRAT-UoG 2024 Fortran + + + + +

20 Terrestrial
biodiversity

BioScen1.5-SDM-GAM/GBM no info R – + no info – –

21 Terrestrial
biodiversity

BioScen1.5-MEM-GAM/GBM no info R – + + – –

22 Vector-borne
diseases (health)

VECTRI no info Fortran and Python + + + – –

23 Water CWatM 2023 Python + + + + –
24 Water DBH 2006 Fortran + no info not valid – –
25 Water HydroPy 2021 Python + no info + – –
26 Water PCR-GLOBWB 2023 Python + + + – –
27 Water WBM 2023 Perl + + + – –
28 Water WaterGAP2.2e 2023 C++ – no info + – –
29 Water VIC 2021 C and Python + + + + +

30 Water H08 2024 Fortran and Shell + + + – –
31 Water WAYS no info Python – + + – –
32 Water quality DynQual 2023 Python + + no info – –

Total 24 26 22 9 5

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024



8600 E. Nyenah et al.: Software sustainability of global impact models

Figure 2. License distribution for 32 global impact models across
10 sectors. Eight (25 %) GIMs lack license information, and two
(6 %) GIMs have licenses that are not OSI-approved.

had no active developers during the considered period of
2020 to 2024 (Fig. 3).

Containerization.
Only 5 (16 %) of the GIMs have implemented containerized
solutions (Table 2). While the CLASSIC model uses App-
tainer, the other four models use Docker as their containeriza-
tion technology. The CLASSIC container is shared via Zen-
odo, whereas the Docker containers for the remaining models
are distributed through GitHub. Despite the recognized ben-
efits of containerization in promoting reproducible research,
provisioning of the software in containers is not yet a com-
mon practice in GIM development.

3.2.2 Code quality indicators

Public availability of an (automated) testing suite.
Our research indicates that 28 % (9 out of 32) of the exam-
ined GIMs have a testing suite in place to test the software’s
functionality (Table 2). The models with test suites do not
use a preferred programming language but have various lan-
guages, including Python, Fortran, R, and C++ (Table 2).
While the choice of programming language can influence the
ease of implementing test suites (e.g. due to the availabil-
ity of testing libraries), we observe that for these complex
models, which often prioritize computational performance,
implementing a test suite remains essential regardless of the
programming language used. A typical test might involve en-
suring that a global hydrological model such as CWatM runs
without errors with different configuration file options (e.g.
different resolutions and basins) (Burek et al., 2020). How-
ever, this practice is not widespread in the development of
GIMs, with the majority (72 %) lacking a testing suite (Ta-
ble 2). This absence of testing suites in GIM development
highlights a deficiency in the developers’ dedication to soft-
ware testing. The presence of a testing suite could lead to
more frequent testing, thereby enhancing the overall quality
of the software.

Compliance with coding standards.

We restricted our analysis to GIMs that include Python in
their source code due to the challenges described in Sect. 2.2.
Among the 10 models we examined, we observed varying
levels of adherence to the PEP8 style guide for Python.
Five models (DSSAT-Pythia, ParFlow, HydroPy, VIC, and
WAYS) demonstrated good compliance, each achieving a lint
score above 6 out of a maximum of 10 (Fig. 4). Good compli-
ance indicates minimal PEP8 code violations. However, the
remaining five models showed lower compliance, with lint
scores between 0 and 3 (Fig. 4). This suggests numerous vi-
olations, leading to potential issues like poor code readability
and an increased likelihood of bugs, which could hinder code
maintenance.

Comment density.
Our results indicate that 25 % (8 of 32) of the GIMs have
well-commented source code; i.e. 30 %–60 % of all source
lines of code are comment lines (Fig. 5). The remaining 75 %
(24) of the GIMs have too few comments, which indicates
that commenting practice is generally low across the studied
research fields.

Modularity.
The investigated GIMs have TLOC values between 262 and
500 000, distributed over 6–2400 files (Fig. 6). Only 4 out
of the 32 (12 %) simulation models (EcoTroph, ZooMSS,
HydroPy, and BioScen1.5-SDM) meet the criterion of hav-
ing a TLOC per file value of between 10 and 1000 (Fig. 6).
The remaining 28 GIMs either had at least one file with a
TLOC value exceeding 1000, which likely could be divided
into smaller modules with distinct functionality, or had at
least one file with a TLOC value of less than 10, which
makes source code harder to navigate and understand, es-
pecially if the files are not well-named or documented. We
also performed a sensitivity analysis by changing the cri-
terion to a TLOC per file value of 5000 and 500 with the
same lower limit of a TLOC value of 10. Nine simulation
models (LPJmL, MC2-USFS-r87g5c1, EcoTroph, ZooMSS,
BioScen1.5-SDM, BioScen1.5-MEM, H08, HydroPy, and
DynQual) meet the 5000-line criterion, and two models
(EcoTroph, ZooMSS) meet the 500-line criterion (Fig. 6).
Because code comments, which are included in TLOC, aid
code comprehension, we also assessed modularity using the
criterion of an SLOC value of 1000 instead of a TLOC value
of 1000 with an SLOC value of 10. Three GIMs (ZooMSS,
BioScen1.5-SDM, and HydroPy) meet the criterion of an
SLOC value of 10–1000 (see Fig. S1 in the Supplement).

3.3 Cost of GIM software development

To provide a rough cost estimate for the software develop-
ment of the 32 impact models, we use the cost estimate model
from Sachan et al. (2016) (see Sect. 2.4) in a scenario of
“What if we hired a commercial software company to de-
velop the source code of the global impact models?” This
cost estimate does not include the costs of developing the sci-

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024



E. Nyenah et al.: Software sustainability of global impact models 8601

Figure 3. Number of active developers within 5 years (2020–2024) for 26 global impact models across 10 sectors. The results for the six
remaining GIMs could not be measured since version control information could not be found. A value of zero means there were no active
developers within the 5-year period. The models are sorted within each sector by the number of active developers.

Figure 4. Lint scores of GIMs containing Python code.

ence (e.g. concepts, algorithms, and input data) or the costs
of documenting, running, and maintaining the software; it
only includes the implementation of code. We assume that
the COCOMO model is transferable to research software as
the NASA projects used in the cost model contain software
that is similar to research software. As the TLOC of the im-
pact model codes range from a TLOC value of 262 to 500 000
(Fig. 7), the effort required to produce these models ranges
from 1 to 495 person months (Fig. 7). With a small addi-
tive change of±0.1 of the COCOMO model coefficients, the
range of estimated effort changes to 1 to 255 person months
in the case of−0.1 and to 1 to 960 person months in the case
of +0.1 (Fig. S2 in the Supplement).

The results suggest that these complex research software
programmes are expensive tools that require adequate fund-

ing for development and maintenance to make them sustain-
able. This is consistent with previous studies that have high-
lighted funding challenges in developing and maintaining
sustainable research software in various domains (Carver et
al., 2013, 2022; van Eeuwijk et al., 2021; Merow et al., 2023;
Reinecke et al., 2022). Merow et al. (2023) also emphasized
that the accuracy and reproducibility of scientific results in-
creasingly depend on updating and maintaining software.
However, the incentive structure in academia for software
development – and especially maintenance – is insufficient
(Merow et al., 2023).

3.4 Case study: reprogramming legacy simulation
models with best practices

Legacy codes often suffer from poor code readability and
poor documentation, which hinder their maintenance, exten-
sion, and reuse. To overcome this problem, some GIMs, such
as HydroPy, (Stacke and Hagemann, 2021a, b) have been re-
programmed, while others (e.g. WaterGAP2.2e, Nyenah et
al., 2023) are in the process of being reprogrammed. We
compared the global hydrological legacy model MPI-HM (in
Fortran) and its reprogrammed version HydroPy (in Python)
in terms of the sustainability indicators. The reprogrammed
model has improved modularity (Fig. 8a), which supports
source code modification and extensibility. HydroPy has
good compliance with the PEP8 coding standard, which im-
proves readability and lowers the likelihood of bugs in source
code (Fig. 4). It has an open-source license and a persistent
digital object identifier, which makes it easier to cite (Edi-

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024



8602 E. Nyenah et al.: Software sustainability of global impact models

Figure 5. Comment density per model across 10 sectors. The grey zone denotes the optimal comment density (Arafat and Riehle, 2009; He,
2019). Models are sorted within each sector by decreasing comment density.

torial, 2019). This research software refers users to its asso-
ciated publication for a detailed model description, as well
as to instructions on Zenodo for setting up and running Hy-
droPy. A software testing suite and container have not been
made available yet.

We find that HydroPy has a comment density of 25 %
(Fig. 8b), which is below the desired 30 %–60 % range, but
the developers argue that “the code is self-explanatory and
comments are added only when necessary” (Tobias Stacke,
personal communication, 2023). MPI-HM has more com-
ments (49 %, Fig. 8b) because of its legacy Fortran code that
limits variable names to a maximum length of eight char-
acters, so they have to be described in comments. Another
reason is that the MPI-HM developers kept track of the file
history in the header, which adds to the comment lines in
MPI-HM. This raises the question “Is the comment density
threshold metric still valid if a code is highly readable and
comprehensive?” The need for comments can depend on the
language’s readability (Python vs. Fortran), the complexity
of the implemented algorithms and concepts, and the coder’s
expertise. While a highly readable and well-structured code
might require fewer explanatory comments, the definition of
“readable” itself can be subjective and context dependent.
Nevertheless, comment density remains a valuable metric,
especially for code written by novice developers.

The HydroPy model is a great starting point for sustainable
research software development, as it illustrates the applica-
tion of the sustainability indicators. Reprogramming legacy
code not only allows developers to use more descriptive

variable names, which increases code readability and main-
tainability, but also enables them to share their code and
documentation with the scientific community through open-
source platforms and tools. This practice enhances trans-
parency and accountability, as the code can be inspected,
verified, and reproduced by others. Reprogramming legacy
code with best practices always improves code quality, which
makes software more sustainable.

4 Limitations

Our study has limitations in the following regards. In the
interest of timely analysis, we did not contact the develop-
ers of models that were not readily available. This means
that older software, particularly that written in less common
or outdated programming languages, might be underrepre-
sented. Additionally, software with higher code quality and
better documentation is more likely to be made readily avail-
able and thus may have been selected more frequently. This
selection process could introduce bias in the distribution of
models. Specifically, the simulation model distribution does
not favour certain sectors. For instance, only 2 out of the
18 global biome impact models were readily available and
therefore included in our assessment. This may affect the
generalizability of our findings across different domains of
Earth system sciences.

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024



E. Nyenah et al.: Software sustainability of global impact models 8603

Figure 6. Letter value plot (Hofmann et al., 2017) of the total lines of code (TLOC) per file (logarithmic scale) of 32 global impact models
across 10 sectors. The dotted blue, black, and green lines show upper modularity limits, and the dotted red line shows the lower limit. The
values (x | y) in the upper section of Fig. 6 show, for each GIM, the TLOC and number of files.

Moreover, our sustainability indicators do not cover other
relevant aspects of sustainable research software, such as
user base size, code development activity (e.g. frequency of
code contributions and date of last update or version), num-
ber of publications and citations, coupling and cohesion, in-
formation content of comments, software adaptability to user
requirements, and interoperability. A larger user base often
results in more reported bugs, which ultimately enhances
software reliability. However, determining the exact size of
the user base presents challenges due to data reliability is-
sues. Additionally, there is the question of whether to include
model output (data) users as part of the user base. Code de-
velopment activity, such as the frequency of code contribu-
tions, indicates an ongoing commitment to improving and

maintaining the software, but it does not necessarily reflect
the quality of those contributions. In addition, the date of the
last update or version is a useful metric, but it can be com-
plex to interpret. For instance, research software might have
an old last update date but may still be widely used and reli-
able. Hence, these metrics were not evaluated here. The num-
ber of publications and citations referencing a model serves
as an indicator of its impact and relevance within the re-
search community. Yet, collecting and analysing this data are
a time-consuming and complex task. We further did not eval-
uate the interdependence of software modules (coupling) and
how functions in a module work towards the purpose of the
module (cohesion) (Sarkar et al., 2008), as language-specific
tools are required to evaluate such properties.

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024



8604 E. Nyenah et al.: Software sustainability of global impact models

Figure 7. Effort estimates of 32 global impact models across 10 sectors. Models are sorted within each sector by decreasing the amount of
the developer’s effort.

In addition to the previously discussed limitations, the in-
dicators analysed in this study are quantitative metrics that
can be measured. Factors such as the information content of
comments, software adaptability to user requirements, and
interoperability (Chue Hong et al., 2022) are examples of
qualitative metrics that contribute to software sustainabil-
ity. However, qualitative analysis is outside the scope of this
study. We focus on measurable metrics that can be easily ap-
plied by the scientific community and by novice developers.

Moreover, we did not explore the analysis of code com-
pliance to standards for other programming languages used
for GIM development. Specifically for Python, the Pylint
tool provides a lint score for all source code analysed, mak-
ing it easier to interpret results. However, the tools for other
languages (e.g. lintr for R) do not have this feature, which
presents challenges in result interpretation.

Furthermore, future research could compare the sustain-
ability levels of impact models developed by professional
software design teams with those created in academic set-
tings by non-professional software developers.

5 Recommendations

Making our research software sustainable requires a com-
bined effort of the modelling community, scientific publish-
ers, funders, and academic and research organizations that
employ modelling researchers (Barker et al., 2022; Barton
et al., 2022; McKiernan et al., 2023; Research Software Al-
liance, 2023). Some scientific publishers, research organi-

zations, funders, and scientific communities have adopted
and proposed solutions to this challenge, such as (1) requir-
ing that authors make source code and workflows available;
(2) implementing FAIR standards; (3) providing training and
certification programmes in software engineering and repro-
ducible computational research; (4) providing specific fund-
ing for sustainable software development; (5) establishing
the support of permanently employed research software en-
gineers for disciplinary software developers; and (6) recog-
nizing the scientific merit of sustainable research software
by acknowledging and rewarding the development of high-
quality, sustainable software as valuable scientific output in
evaluation, hiring, promotions, etc. (Carver et al., 2022; Döll
et al., 2023; Editorial, 2018; van Eeuwijk et al., 2021; Merow
et al., 2023). This software should be treated as a citable aca-
demic contribution and included, for instance, in PhD theses
(Merow et al., 2023).

To assess the current state of these practices in Earth sys-
tem science, we conducted an analysis of sustainability in-
dicators across global impact models. Our findings reveal
that while some best practices are widely adopted, others
are significantly lacking. Specifically, we found high imple-
mentation rates for documentation, open-source licensing,
version control, and active developer involvement. However,
four out of eight sustainability indicators showed poor im-
plementation: automated testing suites, containerization, suf-
ficient comment density, and modularity. Additionally, only
50 % of Python-specific models adhere to Python-based cod-
ing standards. These results highlight the urgent need for im-

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024



E. Nyenah et al.: Software sustainability of global impact models 8605

Figure 8. Modularity and commenting practice of a legacy (MPI-HM) and reprogrammed (HydroPy) global simulation model. (a) Letter
value plot of the total lines of code per file (logarithmic scale) of each model. The dotted black (red) line shows the upper (lower) modularity
limit defined as the maximum of 1000 (minimum of 10) total lines of code per file. The values (x | y) shown in the upper section of Fig. 8a
correspond to the TLOC and number of files per model. (b) Comment density per model. The grey zone in Fig. 8b denotes the optimal
comment density.

proved software development practices in Earth system sci-
ence. Based on the results of our study, as well as the findings
from existing literature, we propose the following actionable
best practices for researchers developing software (summa-
rized in Fig. 9):

– Choose project management practices that align with
your institutional environment, culture, and project re-
quirements. This can help plan, organize, and monitor
your software development process, as well as improve
collaboration and communication within your team and
with stakeholders. Project management practices also

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024



8606 E. Nyenah et al.: Software sustainability of global impact models

Figure 9. Actionable best practices for sustainable research software. The image summarizes the actions that modelling communities and in-
dividual developers should take, such as following project management practices, coding standards, reviews, documentation, and community
engagement strategies. These actions can help produce high-quality, robust, and reusable software that can be maintained.

help identify and mitigate risks, manage changes, and
deliver quality software on time and within budget
(Anzt et al., 2021). While traditional methods may be
better suited for projects with fixed requirements, cer-
tain principles from more flexible frameworks, such as
Agile, can provide benefits in environments where re-
quirements evolve or adaptability is critical. For exam-
ple, Agile’s iterative approach allows for the incorpora-
tion of changing research questions and hence software
modifications or extensions, improving responsiveness
to new developments (Turk et al., 2005).

– Consider software architecture (organization of soft-
ware components) and requirements (user needs). This
will help design your software in a way that meets the
needs and expectations of your users. Considering soft-
ware architecture (such as model–view–controller, Gua-
man et al., 2021) and user requirements helps to design
a software system that has a clear and coherent struc-
ture, a well-defined functionality, and suitable quality
(Jay and Haines, 2019).

– Select an open-source license. Choosing an open-source
license will make your software accessible and open
to the research community, enable collaborations with
other developers and contributors, and protect your in-
tellectual property rights (Anzt et al., 2021; Carver et
al., 2022). Accessible software is crucial for reducing
reliance on email requests (Barton et al., 2022).

– Use version control. Version control can help you track
and manage changes to your source code, which ensures
the traceability of your software and facilitates repro-
ducibility of scientific results generated by all prior ver-

sions of the software (Jiménez et al., 2017). Platforms
like GitHub and GitLab are commonly used for this pur-
pose. However, it is important to note that these plat-
forms are not archival – the code can be removed by the
developer at any time. A current best practice is to use
both GitHub and GitLab for development and to archive
major releases on Zenodo or another archival repository.

– Use coding standards accepted by your community (e.g.
PEP8 for Python), good and consistent variable names,
design principles, code quality metrics, peer code re-
view, linters, and software testing. Coding standards
help you write clear, consistent, and readable code that
follows the best practices of your programming lan-
guage and domain. It is key that developers consistently
follow a coding style recognized by the relevant lan-
guage community. Good variable names are descriptive
and meaningful, reflecting the role and value of the vari-
able. Design principles promote adherence to the prin-
ciples of sustainable research software, such as modu-
larity, reusability, and interoperability. These principles
also guide the design of software by determining, for
instance, the interaction of classes addressing aspects
such as separation of concerns, abstraction, and encap-
sulation (Plösch et al., 2016).

Code quality metrics can help measure and improve the
quality of source code in terms of readability, maintain-
ability, reliability, modularity, and reusability (Stame-
los et al., 2002). Peer code review and linters (tools that
analyse source code for potential errors) can help detect
and fix errors and vulnerabilities in your code, as well
as improve your coding skills and knowledge (Jay and

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024



E. Nyenah et al.: Software sustainability of global impact models 8607

Haines, 2019). Software testing verifies if the research
software performs as intended.

– Make internal and external documentation comprehen-
sible. This can help you explain the purpose, func-
tionality, structure, design, usage, installation, deploy-
ment, and maintenance of your software to yourself and
others. Internal documentation refers to the comments
and annotations within your code that describe what
the code does and how it works. External documenta-
tion refers to manuals, guides, tutorials, and any ma-
terials that provide information about your software to
users and developers. Comprehensible documentation
can help you make your software more understandable,
maintainable, and reusable (Barker et al., 2022; Carver
et al., 2022; Jay and Haines, 2019; Reinecke et al., 2022;
Wilson et al., 2014).

– Engage the research software community in the soft-
ware development process. This will help you to get
feedback, support, and advice; promote collaboration
and contributions; and obtain recognition from other re-
searchers and developers who share your interests and
goals. Engaging the research software community via
conferences and workshops can also help you dissem-
inate your software to a wider audience, increase its
impact and visibility, and foster open science practices
(Anzt et al., 2021). Additionally, consider utilizing con-
tainerization technologies, such as Docker, to simplify
the installation and usage of your software (Nüst et al.,
2020). It helps eliminate the “it works on my machine”
problem. This approach also facilitates easy sharing of
your software with software users. Furthermore, imple-
ment continuous integration and automated testing to
maintain the quality and reliability of your code (Ståhl
and Bosch, 2014). Continuous integration merges code
changes from contributing developers frequently and
automatically into a shared repository.

– Integrate automation in development practices. Au-
tomation plays a key role in streamlining software de-
velopment by reducing manual effort and ensuring con-
sistency (Wijendra and Hewagamage, 2021). We en-
courage developers to integrate automation into their
workflows to improve efficiency. For instance, develop-
ers can use GitHub Actions to automate various tasks
like running test suites, generating documentation, en-
suring adherence to coding standards, and managing de-
pendencies.

6 Conclusion

The studied Earth system models are valuable and com-
plex research tools that exhibit strengths and weaknesses in
the use of certain software engineering practices (strengths,

for example, in version control, open-source licensing, and
documentation). However, notable areas of improvement re-
main, particularly in areas such as containerization and fac-
tors affecting code quality like comment density, modularity,
and the availability of test suites. These shortcomings hin-
der the sustainability of such research software; they limit
research reliability, reproducibility, collaboration, and scien-
tific progress. To address this challenge, we urge all stake-
holders, such as scientific publishers, funders, and academic
and research organizations, to facilitate the development and
maintenance of sustainable research software. We also pro-
pose using best practices for the developers of research soft-
ware, such as using project management and software design
techniques, coding reviews, documentation, and community
engagement strategies. We further suggest reprogramming
the legacy code of well-established models. These practices
can help achieve higher-quality code that is more understand-
able, reusable, and maintainable.

Efficient computational science requires high-quality soft-
ware. While our study primarily focuses on Earth system sci-
ences, our assessment method and recommendations should
be applicable to other scientific domains that employ com-
plex research software. Future research could explore addi-
tional sustainability indicators, such as user base size, code
development activity (e.g. frequency of code contributions),
software adaptability, and interoperability, as well as code
compliance standards for various programming languages.

Code and data availability. The Python scripts utilized for anal-
ysis can be accessed at https://doi.org/10.5281/zenodo.10245636
(Nyenah et al., 2024). Additionally, the line-counting tool devel-
oped by Ben Boyter is available through the GitHub repository:
https://github.com/boyter/scc (Boyter, 2024).

The results obtained from the line count analysis are accessible
at https://doi.org/10.5281/zenodo.10245636 (Nyenah et al., 2024).

For the convenient download of the global impact models,
links to the 32 global impact models, along with their respec-
tive dates of access, can be found in an Excel sheet named
“ISIMIP_models.xlsx.”, present in the Zenodo repository.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-8593-2024-supplement.

Author contributions. EN and RR designed the study. EN per-
formed the analysis and wrote the paper with significant contribu-
tions from PD, DSK, and RR. RR and PD supervised EN.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024

https://doi.org/10.5281/zenodo.10245636
https://github.com/boyter/scc
https://doi.org/10.5281/zenodo.10245636
https://doi.org/10.5194/gmd-17-8593-2024-supplement


8608 E. Nyenah et al.: Software sustainability of global impact models

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Emmanuel Nyenah, Robert Reinecke, and Pe-
tra Döll acknowledge support from the Deutsche Forschungsge-
meinschaft (DFG) (grant no. 443183317).

Financial support. This research has been supported by the
Deutsche Forschungsgemeinschaft (grant no. 443183317).

This open-access publication was funded by Goethe Univer-
sity Frankfurt.

Review statement. This paper was edited by Fabien Maussion and
reviewed by Rolf Hut and Facundo Sapienza.

References

Abernathey, R. P., Augspurger, T., Banihirwe, A., Blackmon-
Luca, C. C., Crone, T. J., Gentemann, C. L., Hamman,
J. J., Henderson, N., Lepore, C., McCaie, T. A., Robin-
son, N. H., and Signell, R. P.: Cloud-Native Reposito-
ries for Big Scientific Data, Comput. Sci. Eng., 23, 26–35,
https://doi.org/10.1109/MCSE.2021.3059437, 2021.

Alexander, K. and Easterbrook, S. M.: The software architec-
ture of climate models: a graphical comparison of CMIP5 and
EMICAR5 configurations, Geosci. Model Dev., 8, 1221–1232,
https://doi.org/10.5194/gmd-8-1221-2015, 2015.

Anzt, H., Bach, F., Druskat, S., Löffler, F., Loewe, A., Renard,
B., Seemann, G., Struck, A., Achhammer, E., Aggarwal, P.,
Appel, F., Bader, M., Brusch, L., Busse, C., Chourdakis, G.,
Dabrowski, P., Ebert, P., Flemisch, B., Friedl, S., Fritzsch, B.,
Funk, M., Gast, V., Goth, F., Grad, J., Hegewald, J., Her-
mann, S., Hohmann, F., Janosch, S., Kutra, D., Linxweiler,
J., Muth, T., Peters-Kottig, W., Rack, F., Raters, F., Rave, S.,
Reina, G., Reißig, M., Ropinski, T., Schaarschmidt, J., Sei-
bold, H., Thiele, J., Uekermann, B., Unger, S., and Weeber, R.:
An environment for sustainable research software in Germany
and beyond: current state, open challenges, and call for action
[version 2; peer review: 2 approved], F1000Research, 9, 295,
https://doi.org/10.12688/f1000research.23224.2, 2021.

Arafat, O. and Riehle, D.: The comment density of open source
software code, in: 2009 31st International Conference on Soft-
ware Engineering – Companion Volume, 16–24 May 2009,
Vancouver, BC, Canada, 195–198, https://doi.org/10.1109/ICSE-
COMPANION.2009.5070980, 2009.

Azmi, E., Ehret, U., Weijs, S. V., Ruddell, B. L., and Perdigão,
R. A. P.: Technical note: “Bit by bit”: a practical and gen-
eral approach for evaluating model computational complexity
vs. model performance, Hydrol. Earth Syst. Sci., 25, 1103–1115,
https://doi.org/10.5194/hess-25-1103-2021, 2021.

Barker, M., Chue Hong, N. P., Katz, D. S., Lamprecht, A.-L.,
Martinez-Ortiz, C., Psomopoulos, F., Harrow, J., Castro, L. J.,
Gruenpeter, M., Martinez, P. A., and Honeyman, T.: Introduc-
ing the FAIR Principles for research software, Sci. Data, 9, 622,
https://doi.org/10.1038/s41597-022-01710-x, 2022.

Barton, C. M., Lee, A., Janssen, M. A., van der Leeuw, S.,
Tucker, G. E., Porter, C., Greenberg, J., Swantek, L., Frank,
K., Chen, M., and Jagers, H. R. A.: How to make mod-
els more useful, P. Natl. Acad. Sci. USA, 119, e2202112119,
https://doi.org/10.1073/pnas.2202112119, 2022.

Boehm, B. W.: Software engineering economics, Prentice-Hall, En-
glewood Cliffs, NJ, 57–96, ISBN 0138221227, 1981.

Boyter, B.: boyter/scc, GitHub [code], https://github.com/boyter/
scc, last access: 3 March 2024.

Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M.,
Guillaumot, L., Zhao, F., and Wada, Y.: Development of the
Community Water Model (CWatM v1.04) – a high-resolution
hydrological model for global and regional assessment of inte-
grated water resources management, Geosci. Model Dev., 13,
3267–3298, https://doi.org/10.5194/gmd-13-3267-2020, 2020.

Capiluppi, A., Boldyreff, C., Beecher, K., and Adams, P. J.: Quality
Factors and Coding Standards – a Comparison Between Open
Source Forges, Electronic Notes in Theoretical Computer Sci-
ence, 233, 89–103, https://doi.org/10.1016/j.entcs.2009.02.063,
2009.

Carver, J., Heaton, D., Hochstein, L., and Bartlett, R.: Self-
Perceptions about Software Engineering: A Survey of
Scientists and Engineers, Comput. Sci. Eng., 15, 7–11,
https://doi.org/10.1109/MCSE.2013.12, 2013.

Carver, J. C., Weber, N., Ram, K., Gesing, S., and Katz, D.
S.: A survey of the state of the practice for research soft-
ware in the United States, PeerJ Computer Science, 8, e963,
https://doi.org/10.7717/peerj-cs.963, 2022.

Chue Hong, N. P., Katz, D. S., Barker, M., Lamprecht, A.-L., Mar-
tinez, C., Psomopoulos, F. E., Harrow, J., Castro, L. J., Gruen-
peter, M., Martinez, P. A., Honeyman, T., Struck, A., Lee, A.,
Loewe, A., van Werkhoven, B., Jones, C., Garijo, D., Plomp,
E., Genova, F., Shanahan, H., Leng, J., Hellström, M., Sand-
ström, M., Sinha, M., Kuzak, M., Herterich, P., Zhang, Q., Is-
lam, S., Sansone, S.-A., Pollard, T., Atmojo, U. D., Williams,
A., Czerniak, A., Niehues, A., Fouilloux, A. C., Desinghu, B.,
Goble, C., Richard, C., Gray, C., Erdmann, C., Nüst, D., Tar-
tarini, D., Ranguelova, E., Anzt, H., Todorov, I., McNally, J.,
Moldon, J., Burnett, J., Garrido-Sánchez, J., Belhajjame, K.,
Sesink, L., Hwang, L., Tovani-Palone, M. R., Wilkinson, M.
D., Servillat, M., Liffers, M., Fox, M., Miljković, N., Lynch,
N., Martinez Lavanchy, P., Gesing, S., Stevens, S., Martinez
Cuesta, S., Peroni, S., Soiland-Reyes, S., Bakker, T., Rabem-
anantsoa, T., Sochat, V., Yehudi, Y., and RDA FAIR4RS WG:
FAIR Principles for Research Software (FAIR4RS Principles),
https://doi.org/10.15497/RDA00068, 2022.

Colazo, J. and Fang, Y.: Impact of license choice on Open Source
Software development activity, J. Am. Soc. Inf. Sci. Tec., 60,
997–1011, https://doi.org/10.1002/asi.21039, 2009.

Döll, P., Sester, M., Feuerhake, U., Frahm, H., Fritzsch, B., Hezel,
D. C., Kaus, B., Kolditz, O., Linxweiler, J., Müller Schmied, H.,
Nyenah, E., Risse, B., Schielein, U., Schlauch, T., Streck, T., and
van den Oord, G.: Sustainable research software for high-quality
computational research in the Earth System Sciences: Recom-

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024

https://doi.org/10.1109/MCSE.2021.3059437
https://doi.org/10.5194/gmd-8-1221-2015
https://doi.org/10.12688/f1000research.23224.2
https://doi.org/10.1109/ICSE-COMPANION.2009.5070980
https://doi.org/10.1109/ICSE-COMPANION.2009.5070980
https://doi.org/10.5194/hess-25-1103-2021
https://doi.org/10.1038/s41597-022-01710-x
https://doi.org/10.1073/pnas.2202112119
https://github.com/boyter/scc
https://github.com/boyter/scc
https://doi.org/10.5194/gmd-13-3267-2020
https://doi.org/10.1016/j.entcs.2009.02.063
https://doi.org/10.1109/MCSE.2013.12
https://doi.org/10.7717/peerj-cs.963
https://doi.org/10.15497/RDA00068
https://doi.org/10.1002/asi.21039


E. Nyenah et al.: Software sustainability of global impact models 8609

mendations for universities, funders and the scientific commu-
nity in Germany, https://doi.org/10.23689/fidgeo-5805, 2023.

Editorial: Does your code stand up to scrutiny?, Nature, 555, 142–
142, https://doi.org/10.1038/d41586-018-02741-4, 2018.

Editorial: Giving software its due, Nat. Methods, 16, 207–207,
https://doi.org/10.1038/s41592-019-0350-x, 2019.

Fowler, M.: Refactoring, 2nd edn., Addison Wesley, Boston, MA,
ISBN 0134757599, 2019.

Frieler, K. and Vega, I.: ISIMIP & ISIpedia – Inter-sectoral im-
pact modeling and communication of national impact assess-
ments, Bonn Climate Change Conference, 19 June 2019, ses-
sion SBSTA 50, https://unfccc.int/documents/197148 (2 Decem-
ber 2024), 2019.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.: Design pat-
terns, Addison Wesley, Boston, MA, ISBN 0201633612, 1994.

Guaman, D., Delgado, S., and Perez, J.: Classifying Model-
View-Controller Software Applications Using Self-Organizing
Maps, IEEE Access, 9, 45201–45229, https://doi.org/10.1109/
ACCESS.2021.3066348, 2021.

Hannay, J. E., MacLeod, C., Singer, J., Langtangen, H. P.,
Pfahl, D., and Wilson, G.: How do scientists develop
and use scientific software?, in: 2009 ICSE Workshop on
Software Engineering for Computational Science and En-
gineering, 23 May 2009, Vancouver, BC, Canada, 1–8,
https://doi.org/10.1109/SECSE.2009.5069155, 2009.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Vir-
tanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith,
N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett,
M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-
Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi,
H., Gohlke, C., and Oliphant, T. E.: Array programming with
NumPy, Nature, 585, 357–362, https://doi.org/10.1038/s41586-
020-2649-2, 2020.

He, H.: Understanding Source Code Comments at Large-Scale, in:
Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, 26–30 August 2019, Tallinn,
Estonia, 1217–1219, https://doi.org/10.1145/3338906.3342494,
2019.

Hofmann, H., Wickham, H., and Kafadar, K.: Letter-Value Plots:
Boxplots for Large Data, J. Comput. Graph. Stat., 26, 469–477,
https://doi.org/10.1080/10618600.2017.1305277, 2017.

ISIMIP: https://www.isimip.org/, last access: 23 March 2024.
Jay, C. and Haines, R.: Reproducible and Sustainable Research

Software, in: Web Accessibility: A Foundation for Research,
edited by: Yesilada, Y. and Harper, S., Springer, London, 211–
221, https://doi.org/10.1007/978-1-4471-7440-0_12, 2019.

Jiménez, R. C., Kuzak, M., Alhamdoosh, M., Barker, M., Batut,
B., Borg, M., Capella-Gutierrez, S., Hong, N. C., Cook, M.,
Corpas, M., Flannery, M., Garcia, L., Gelpí, J. L., Gladman,
S., Goble, C., Ferreiro, M. G., Gonzalez-Beltran, A., Griffin,
P. C., Grüning, B., Hagberg, J., Holub, P., Hooft, R., Ison, J.,
Katz, D. S., Leskošek, B., Gómez, F. L., Oliveira, L. J., Mel-
lor, D., Mosbergen, R., Mulder, N., Perez-Riverol, Y., Pergl,
R., Pichler, H., Pope, B., Sanz, F., Schneider, M. V., Stodden,
V., Suchecki, R., Vařeková, R. S., Talvik, H.-A., Todorov, I.,
Treloar, A., Tyagi, S., van Gompel, M., Vaughan, D., Via, A.,
Wang, X., Watson-Haigh, N. S., and Crouch, S.: Four simple rec-

ommendations to encourage best practices in research software,
https://doi.org/10.12688/f1000research.11407.1, 13 June 2017.

JuliaReachDevDocs: https://juliareach.github.io/JuliaReachDev
Docs/latest/guidelines/, last access: 11 September 2024.

Katz, D. S.: Research Software: Challenges & Actions. The Future
of Research Software: International Funders Workshop, Amster-
dam, the Netherlands, https://doi.org/10.5281/zenodo.7295423,
2022.

Kemp, L., Xu, C., Depledge, J., Ebi, K. L., Gibbins, G., Kohler,
T. A., Rockström, J., Scheffer, M., Schellnhuber, H. J., Stef-
fen, W., and Lenton, T. M.: Climate Endgame: Exploring catas-
trophic climate change scenarios, P. Natl. Acad. Sci. USA, 119,
e2108146119, https://doi.org/10.1073/pnas.2108146119, 2022.

Long, J.: Understanding the Role of Core Developers in Open
Source Development, Journal of Information, Information Tech-
nology, and Organizations (Years 1–3), 1, 075–085, 2006.

McConnell, S.: A Practical Handbook of Software Construction,
in: Code Complete, 2nd edn., Microsoft Press, USA, 565–596,
ISBN 0735619670, 2004.

McKiernan, E. C., Barba, L., Bourne, P. E., Carter, C., Chandler, Z.,
Choudhury, S., Jacobs, S., Katz, D. S., Lieggi, S., Plale, B., and
Tananbaum, G.: Policy recommendations to ensure that research
software is openly accessible and reusable, PLOS Biol., 21, 1–4,
https://doi.org/10.1371/journal.pbio.3002204, 2023.

Merow, C., Boyle, B., Enquist, B. J., Feng, X., Kass, J. M.,
Maitner, B. S., McGill, B., Owens, H., Park, D. S., Paz,
A., Pinilla-Buitrago, G. E., Urban, M. C., Varela, S., and
Wilson, A. M.: Better incentives are needed to reward aca-
demic software development, Nat. Ecol. Evol., 7, 626–627,
https://doi.org/10.1038/s41559-023-02008-w, 2023.

Molnar, A.-J., Motogna, S., and Vlad, C.: Using static analysis
tools to assist student project evaluation, in: Proceedings of
the 2nd ACM SIGSOFT International Workshop on Education
through Advanced Software Engineering and Artificial Intelli-
gence, ESEC/FSE ’20: 28th ACM Joint European Software En-
gineering Conference and Symposium on the Foundations of
Software Engineering, Virtual, 9 November 2020, USA, 7–12,
https://doi.org/10.1145/3412453.3423195, 2020.

Müller Schmied, H., Trautmann, T., Ackermann, S., Cáceres, D.,
Flörke, M., Gerdener, H., Kynast, E., Peiris, T. A., Schiebener,
L., Schumacher, M., and Döll, P.: The global water resources
and use model WaterGAP v2.2e: description and evaluation
of modifications and new features, Geosci. Model Dev. Dis-
cuss. [preprint], https://doi.org/10.5194/gmd-2023-213, in re-
view, 2023.

Nangia, U. and Katz, D. S.: Track 1 Paper: Survey-
ing the U. S. National Postdoctoral Association Re-
garding Software Use and Training in Research,
https://doi.org/10.6084/m9.figshare.5328442.v3, 2017.

Nüst, D., Sochat, V., Marwick, B., Eglen, S. J., Head, T., Hirst, T.,
and Evans, B. D.: Ten simple rules for writing Dockerfiles for
reproducible data science, PLoS Comput. Biol., 16, e1008316,
https://doi.org/10.1371/journal.pcbi.1008316, 2020.

Nyenah, E., Reinecke, R., and Döll, P.: Towards a sustainable
utilization of the global hydrological research software Wa-
terGAP, EGU General Assembly 2023, Vienna, Austria, 24–
28 Apr 2023, EGU23-4453, https://doi.org/10.5194/egusphere-
egu23-4453, 2023.

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024

https://doi.org/10.23689/fidgeo-5805
https://doi.org/10.1038/d41586-018-02741-4
https://doi.org/10.1038/s41592-019-0350-x
https://unfccc.int/documents/197148
https://doi.org/10.1109/ACCESS.2021.3066348
https://doi.org/10.1109/ACCESS.2021.3066348
https://doi.org/10.1109/SECSE.2009.5069155
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/3338906.3342494
https://doi.org/10.1080/10618600.2017.1305277
https://www.isimip.org/
https://doi.org/10.1007/978-1-4471-7440-0_12
https://doi.org/10.12688/f1000research.11407.1
https://juliareach.github.io/JuliaReachDevDocs/latest/guidelines/
https://juliareach.github.io/JuliaReachDevDocs/latest/guidelines/
https://doi.org/10.5281/zenodo.7295423
https://doi.org/10.1073/pnas.2108146119
https://doi.org/10.1371/journal.pbio.3002204
https://doi.org/10.1038/s41559-023-02008-w
https://doi.org/10.1145/3412453.3423195
https://doi.org/10.5194/gmd-2023-213
https://doi.org/10.6084/m9.figshare.5328442.v3
https://doi.org/10.1371/journal.pcbi.1008316
https://doi.org/10.5194/egusphere-egu23-4453
https://doi.org/10.5194/egusphere-egu23-4453


8610 E. Nyenah et al.: Software sustainability of global impact models

Nyenah, E., Döll, P., Katz, D. S., and Reinecke, R.: Software sus-
tainability of global impact models (Dataset and analysis script),
Zenodo [data set], https://doi.org/10.5281/zenodo.10245636,
2024.

Obermüller, F., Bloch, L., Greifenstein, L., Heuer, U., and
Fraser, G.: Code Perfumes: Reporting Good Code to En-
courage Learners, in: The 16th Workshop in Primary and
Secondary Computing Education, WiPSCE ’21: The 16th
Workshop in Primary and Secondary Computing Educa-
tion, Virtual Event, 18–20 October 2021, Germany, 1–10,
https://doi.org/10.1145/3481312.3481346, 2021.

Plösch, R., Bräuer, J., Körner, C., and Saft, M.: Measuring,
Assessing and Improving Software Quality based on Object-
Oriented Design Principles, Open Computer Science, 6, 187–
207, https://doi.org/10.1515/comp-2016-0016, 2016.

Prinn, R. G.: Development and application of earth sys-
tem models, P. Natl. Acad. Sci. USA, 110, 3673–3680,
https://doi.org/10.1073/pnas.1107470109, 2013.

Rashid, M., Clarke, P. M., and O’Connor, R. V.: A sys-
tematic examination of knowledge loss in open source
software projects, Int. J. Inform. Manage., 46, 104–123,
https://doi.org/10.1016/j.ijinfomgt.2018.11.015, 2019.

Reinecke, R., Trautmann, T., Wagener, T., and Schüler, K.: The crit-
ical need to foster computational reproducibility, Environ. Res.
Lett., 17, 4, https://doi.org/10.1088/1748-9326/ac5cf8, 2022.

Research Software Alliance: Amsterdam Declara-
tion on Funding Research Software Sustainability,
https://doi.org/10.5281/ZENODO.8325436, 2023.

Sachan, R. K., Nigam, A., Singh, A., Singh, S., Choudhary, M.,
Tiwari, A., and Kushwaha, D. S.: Optimizing Basic COCOMO
Model Using Simplified Genetic Algorithm, Procedia Comput.
Sci., 89, 492–498, https://doi.org/10.1016/j.procs.2016.06.107,
2016.

Sarkar, S., Kak, A. C., and Rama, G. M.: Metrics for Mea-
suring the Quality of Modularization of Large-Scale Object-
Oriented Software, IEEE T. Software Eng., 34, 700–720,
https://doi.org/10.1109/TSE.2008.43, 2008.

Satoh, Y., Yoshimura, K., Pokhrel, Y., Kim, H., Shiogama, H.,
Yokohata, T., Hanasaki, N., Wada, Y., Burek, P., Byers, E.,
Schmied, H. M., Gerten, D., Ostberg, S., Gosling, S. N.,
Boulange, J. E. S., and Oki, T.: The timing of unprecedented
hydrological drought under climate change, Nat. Commun., 13,
3287, https://doi.org/10.1038/s41467-022-30729-2, 2022.

Sauer, I. J., Reese, R., Otto, C., Geiger, T., Willner, S. N., Guil-
lod, B. P., Bresch, D. N., and Frieler, K.: Climate signals in river
flood damages emerge under sound regional disaggregation, Nat.
Commun., 12, 2128, https://doi.org/10.1038/s41467-021-22153-
9, 2021.

Schmidhuber, J. and Tubiello, F. N.: Global food security under
climate change, P. Natl. Acad. Sci. USA, 104, 19703–19708,
https://doi.org/10.1073/pnas.0701976104, 2007.

Simmons, A. J., Barnett, S., Rivera-Villicana, J., Bajaj, A., and
Vasa, R.: A large-scale comparative analysis of Coding Standard
conformance in Open-Source Data Science projects, in: Proceed-
ings of the 14th ACM/IEEE International Symposium on Empiri-
cal Software Engineering and Measurement (ESEM), ESEM ’20:
ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement, 5–9 October 2020, Bari, Italy, 1–11,
https://doi.org/10.1145/3382494.3410680, 2020.

SLOCCount: https://stuff.mit.edu/iap/debian/solutions/
sloccount-2.26/sloccount.html, last access: 4 March 2024.

Stacke, T. and Hagemann, S.: HydroPy (v1.0): a new global hy-
drology model written in Python, Geosci. Model Dev., 14, 7795–
7816, https://doi.org/10.5194/gmd-14-7795-2021, 2021a.

Stacke, T. and Hagemann, S.: Source code for the
global hydrological model HydroPy, Zenodo [code],
https://doi.org/10.5281/zenodo.4541381, 2021b.

Ståhl, D. and Bosch, J.: Modeling continuous integration practice
differences in industry software development, J. Syst. Software,
87, 48–59, https://doi.org/10.1016/j.jss.2013.08.032, 2014.

Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G. L.:
Code quality analysis in open source software development,
Inform. Syst. J., 12, 43–60, https://doi.org/10.1046/j.1365-
2575.2002.00117.x, 2002.

Trisovic, A., Lau, M. K., Pasquier, T., and Crosas, M.: A large-scale
study on research code quality and execution, Sci. Data, 9, 60,
https://doi.org/10.1038/s41597-022-01143-6, 2022.

Turk, D., Robert, F., and Rumpe, B.: Assumptions Underlying Agile
Software-Development Processes, J. Database Manage., 16, 62–
87, https://doi.org/10.4018/jdm.2005100104, 2005.

van Eeuwijk, S., Bakker, T., Cruz, M., Sarkol, V., Vreede, B.,
Aben, B., Aerts, P., Coen, G., van Dijk, B., Hinrich, P., Kar-
vovskaya, L., Ruijter, M. K., Koster, J., Maassen, J., Roelofs, M.,
Rijnders, J., Schroten, A., Sesink, L., van der Togt, C., Vinju,
J., and de Willigen, P.: Research software sustainability in the
Netherlands: Current practices and recommendations, Zenodo,
https://doi.org/10.5281/zenodo.4543569, 2021.

Van Snyder, W.: Scientific Programming in Fortran, Scientific Pro-
gramming, 15, 3–8, https://doi.org/10.1155/2007/930816, 2007.

Wagener, T., Gleeson, T., Coxon, G., Hartmann, A., Howden, N.,
Pianosi, F., Rahman, M., Rosolem, R., Stein, L., and Woods, R.:
On doing hydrology with dragons: Realizing the value of per-
ceptual models and knowledge accumulation, WIREs Water, 8,
e1550, https://doi.org/10.1002/wat2.1550, 2021.

Wan, W., Döll, P., and Zheng, H.: Risk of Climate Change for Hy-
droelectricity Production in China Is Small but Significant Re-
ductions Cannot Be Precluded for More Than a Third of the
Installed Capacity, Water Resour. Res., 58, e2022WR032380,
https://doi.org/10.1029/2022WR032380, 2022.

Wang, Y., Zheng, B., and Huang, H.: Complying with Coding
Standards or Retaining Programming Style: A Quality Outlook
at Source Code Level, Journal of Software Engineering and
Applications, 1, 88–91, https://doi.org/10.4236/jsea.2008.11013,
2008.

Warszawski, L., Frieler, K., Huber, V., Piontek, F.,
Serdeczny, O., and Schewe, J.: The Inter-Sectoral Im-
pact Model Intercomparison Project (ISI–MIP): Project
framework, P. Natl. Acad. Sci. USA, 111, 3228–3232,
https://doi.org/10.1073/pnas.1312330110, 2014.

Wijendra, D. R. and Hewagamage, K. P.: Software Complexity
Reduction through the Process Automation in Software De-
velopment Life Cycle, in: 2021 Fourth International Confer-
ence on Electrical, Computer and Communication Technolo-
gies (ICECCT), 15–17 September 2021, Erode, India, 1–7,
https://doi.org/10.1109/ICECCT52121.2021.9616781, 2021.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis,
M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M.,
Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P.: Best

Geosci. Model Dev., 17, 8593–8611, 2024 https://doi.org/10.5194/gmd-17-8593-2024

https://doi.org/10.5281/zenodo.10245636
https://doi.org/10.1145/3481312.3481346
https://doi.org/10.1515/comp-2016-0016
https://doi.org/10.1073/pnas.1107470109
https://doi.org/10.1016/j.ijinfomgt.2018.11.015
https://doi.org/10.1088/1748-9326/ac5cf8
https://doi.org/10.5281/ZENODO.8325436
https://doi.org/10.1016/j.procs.2016.06.107
https://doi.org/10.1109/TSE.2008.43
https://doi.org/10.1038/s41467-022-30729-2
https://doi.org/10.1038/s41467-021-22153-9
https://doi.org/10.1038/s41467-021-22153-9
https://doi.org/10.1073/pnas.0701976104
https://doi.org/10.1145/3382494.3410680
https://stuff.mit.edu/iap/debian/solutions/sloccount-2.26/sloccount.html
https://stuff.mit.edu/iap/debian/solutions/sloccount-2.26/sloccount.html
https://doi.org/10.5194/gmd-14-7795-2021
https://doi.org/10.5281/zenodo.4541381
https://doi.org/10.1016/j.jss.2013.08.032
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1046/j.1365-2575.2002.00117.x
https://doi.org/10.1038/s41597-022-01143-6
https://doi.org/10.4018/jdm.2005100104
https://doi.org/10.5281/zenodo.4543569
https://doi.org/10.1155/2007/930816
https://doi.org/10.1002/wat2.1550
https://doi.org/10.1029/2022WR032380
https://doi.org/10.4236/jsea.2008.11013
https://doi.org/10.1073/pnas.1312330110
https://doi.org/10.1109/ICECCT52121.2021.9616781


E. Nyenah et al.: Software sustainability of global impact models 8611

Practices for Scientific Computing, PLOS Biol., 12, e1001745,
https://doi.org/10.1371/journal.pbio.1001745, 2014.

Zhou, N., Zhou, H., and Hoppe, D.: Containerisation for
High Performance Computing Systems: Survey and
Prospects, IEEE T. Software Eng., 49, 2722–2740,
https://doi.org/10.1109/TSE.2022.3229221, 2023.

https://doi.org/10.5194/gmd-17-8593-2024 Geosci. Model Dev., 17, 8593–8611, 2024

https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1109/TSE.2022.3229221

	Abstract
	Introduction
	Methods
	Accessing GIM source code
	Research software sustainability indicators
	Source code counter
	Software cost estimation

	Results and discussion
	GIM programming languages and access points
	Indicators of software sustainability
	Software engineering practices
	Code quality indicators

	Cost of GIM software development
	Case study: reprogramming legacy simulation models with best practices

	Limitations
	Recommendations
	Conclusion
	Code and data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

