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Abstract. Simple climate models (also known as emula-
tors) have re-emerged as critical tools for the analysis of
climate policy. Emulators are efficient and highly parame-
terised, where the parameters are tunable to produce a diver-
sity of global mean surface temperature (GMST) response
pathways to a given emission scenario. Only a small frac-
tion of possible parameter combinations will produce histor-
ically consistent climate hindcasts, a necessary condition for
trust in future projections. Alongside historical GMST, ad-
ditional observed (e.g. ocean heat content) and emergent cli-
mate metrics (such as the equilibrium climate sensitivity) can
be used as constraints upon the parameter sets used for cli-
mate projections. This paper describes a multi-variable con-
straining package for the Finite-amplitude Impulse Response
(FaIR) simple climate model (FaIR versions 2.1.0 onwards)
using a Bayesian framework. The steps are, first, to gener-
ate prior distributions of parameters for FaIR based on the
Coupled Model Intercomparison Project (CMIP6) Earth sys-
tem models or Intergovernmental Panel on Climate Change
(IPCC)-assessed ranges; second, to generate a large Monte
Carlo prior ensemble of parameters to run FaIR with; and,

third, to produce a posterior set of parameters constrained
on several observable and assessed climate metrics. Different
calibrations can be produced for different emission datasets
or observed climate constraints, allowing version-controlled
and continually updated calibrations to be produced. We
show that two very different future projections to a given
emission scenario can be obtained using emissions from the
IPCC Sixth Assessment Report (AR6) (fair-calibrate
v1.4.0) and from updated emission datasets through 2022
(fair-calibrate v1.4.1) for similar climate constraints
in both cases. fair-calibrate can be reconfigured for
different source emission datasets or target climate distribu-
tions, and new versions will be produced upon availability of
new climate system data.

1 Introduction

Simple climate models (also known as emulators) are de-
signed to replicate the large-scale behaviour of more complex
Earth system models. Emulators can be statistically based,
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such as Gaussian process emulators, or physically based,
where the equations of the model can be written analyti-
cally, and relationships are based on physical understand-
ing, where possible. The Finite-amplitude Impulse Response
(FaIR) model (Millar et al., 2017; Smith et al., 2018; Leach
et al., 2021) and many other reduced complexity climate
models (Nicholls et al., 2020, 2021) are of the latter type.
Emulators project mean temperatures for the whole globe
or a few aggregated regions on a monthly or annual time
step, rather than replicating a full 3D atmosphere and ocean
at sub-hourly time steps such as in Earth system models
(ESMs). What emulators lack in spatial, temporal, and phys-
ical detail is made up for in efficiency and flexibility. Some
emulators may only report global mean surface temperature
(GMST) as a climatic output. However, several regional cli-
mate variables (Mathison et al., 2024; Wells et al., 2023) and
climate impacts (Shiogama et al., 2022) are shown to scale
with GMST, and GMST is often used as a proxy for impacts
and damages in climate policy discussions (e.g. the 1.5 and
2 °C warming levels of the Paris Agreement) and economic
models (Howard and Sterner, 2017). Emulators are efficient
and may run at tens, hundreds, or thousands of model years
per wall clock second, compared to the model years per wall
clock day yardstick for Earth system models. Simple climate
models are also flexible and highly parameterised, meaning
that a wide range of climate behaviour can be explored by
varying parameter choices.

These two features of efficiency and flexibility make it
possible to run large probabilistic ensembles using emula-
tors to explore the range of climate uncertainty to a given
emission scenario. While a number of ESMs exist, allow-
ing us to explore differences in model responses to forcing,
their relatively small number represent an ensemble of op-
portunity (Tebaldi and Knutti, 2007), meaning that projec-
tions using ESMs alone likely under-explore the uncertainty
space. It has also been well-publicised that several Coupled
Model Intercomparison Project (CMIP6) models have equi-
librium climate sensitivity (ECS) outside of the very likely
(nominal 5 %–95 %) range assessed by the Intergovernmen-
tal Panel on Climate Change (IPCC) Sixth Assessment Re-
port (AR6) (Forster et al., 2021), with other expert assess-
ments coming to similar conclusions about the range of ECS
(Sherwood et al., 2020). Many CMIP6 models show a poor
reconstruction of historical temperatures (Smith and Forster,
2021), with future climate projections run with only a small
number of Shared Socioeconomic Pathway (SSP) scenarios
(O’Neill et al., 2016) that start in 2015. These simulations
are therefore rapidly becoming outdated, which means that
unadjusted GMST projections from CMIP6 models are often
not appropriate for understanding climate change responses
to anthropogenic emissions and assessing impacts of climate
policy, particularly on the short timescales that policymakers
need.

Flexibility can be a double-edged sword. Emulators are
only useful if the climate projections they provide are re-

liable. It is therefore critical that emulators are calibrated
to reproduce, at the very least, the time series of historical
GMST to a satisfactory standard. The IPCC AR6 Working
Group 1 (WG1) provided a rigorous calibration of four em-
ulators (MAGICC v7.5.3, FaIR v1.6.2, CICERO-SCM, and
OSCAR v3.1.1) against historical observations of GMST and
ocean heat content (OHC) change and IPCC-assessed dis-
tributions of ECS, transient climate response (TCR), tran-
sient climate response to cumulative CO2 emissions (TCRE),
present-day aerosol forcing, and future projections of warm-
ing under SSP scenarios, including their uncertainties. Three
of the emulators, including FaIR, were assessed to be suit-
able to be taken forward for use by the IPCC AR6 Work-
ing Group 3 (WG3) to produce warming projections from
emission pathways derived from integrated assessment mod-
els (IAMs) (Riahi et al., 2022). Over 1800 scenarios were as-
sessed by WG3, rendering this task impossible for ESMs and
necessitating the existence of reliable, well-calibrated emula-
tors.

In this paper, we develop and formalise the calibration
code for FaIR, developed originally as part of the IPCC AR6
WG1–WG3 handshake over the course of 2021 and 2022
(Kikstra et al., 2022). The fair-calibrate package is
available as an open-source Python and R library that builds
upon the IPCC AR6 WG1 calibration process for the FaIR
model and is designed to work with FaIR model versions
starting at v2.1.0, with a future backport to v2.0.0 planned.
The versions of fair-calibrate described in this pa-
per are run with FaIR v2.1.3. fair-calibrate is de-
signed to be flexible, easy to update, and has a clearly de-
fined version control strategy. We aim to provide updated
constrained probabilistic projections of near-term and 21st
century warming using FaIR at least annually to coincide
with the Indicators of Global Climate Change (IGCC) project
(Forster et al., 2023) as new emissions and data for updat-
ing observational constraints become available. The headline
calibration version in this paper, v1.4.1, is the first example
of this, with emissions and observational constraints updated
through 2022. For comparison, we also provide an updated
IPCC AR6 calibration (v1.4.0), using historical emissions up
to 2014 and projections thereafter, showing the significant
impact of using different historical emission datasets for pro-
jections.

Section 2 discusses the code requirements and version
control strategy. Section 3 describes the process chain for cal-
ibrating FaIR, focusing on fair-calibrate v1.4.1. Sec-
tion 4 shows the results of the calibrations v1.4.1 and v1.4.0
compared to IPCC-assessed climate indicators and their up-
dates. Section 5 concludes.
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2 Calibration requirements, versions, and versioning
strategy

2.1 Requirements and reproduction

fair-calibrate is a collection of Python and R scripts
and is developed on GitHub, with each version’s source code,
intermediate data, and final output released with digital ob-
ject identifiers (DOIs) on Zenodo (Smith, 2024). Required
dependencies are Python version 3.8 or later and R ≥ 4.1.1.
The fair-calibrate package requirements are man-
aged through the Anaconda Python and R package manager,
which is also required. fair-calibrate sits indepen-
dently of the FaIR source code, which is deliberately kept
clean.

Each calibration release contains one or more comma-
separated value (CSV) files of parameters and model con-
figuration settings that allow for the reproducibility of the
calibration of any emission scenario run in FaIR and a larger
ZIP file containing all results, source files, and intermediate
output data produced by the calibration code so that users can
inspect and quickly perform their own analysis on the prior
ensemble generated without having to re-run the calibration.
The ZIP files also contain diagnostic plots generated by the
code, many of which are included in this paper. Intermediate
output files and plots are not part of the GitHub repository,
owing to their file sizes.

2.2 Version control strategy

fair-calibrate does not strictly adhere to semantic
versioning, but sequential version control allows for ex-
act reproducibility and easy comparison of calibrations. As
with semantic versioning, the version string is of the form
vX.Y.Z. Any change in calibration strategy that represents
a departure from previous logic would increment the major
version X, congruent with a “breaking change” in semantic
versioning parlance. If an update to an existing calibration or
constraining process would change previously submitted re-
sults if they were to be re-run with the same emissions and
constraints, then this is a minor version Y increment. Exam-
ples of minor version updates include bug fixes and changes
in some of the prior distribution ranges used for sampling
(Sect. 3.2). The micro-version Z pertains to either the con-
straint set or the historical emission data used. This allows
different sets of emissions or constraints to be run with the
same overall calibration strategy for easy comparison. Unlike
in semantic versioning, an increment of Z does not necessar-
ily imply a bug fix or that a more recent version is in some
way superior than an older version or any parallels in the Z
value between different vX.Y since calibrations are devel-
oped and released whenever a new use case arises. It is not
always possible for different Z micro-versions to be exactly
directly comparable, but the overall sentiment should be to

change as little as possible, other than emissions and/or con-
straints.

2.3 Calibration versions in the v1.4 series

The most recent minor version 1.4 is the focus of this paper.
While the methods and results presented here are specific to
v1.4, this paper is designed to serve as an overall reference
to the fair-calibrate method and is intended to be a
valid guidance document for many future versions.

2.3.1 v1.4.1: best-estimate historical emissions
1750–2022

fair-calibrate v1.4.1 uses up-to-date historical emis-
sions as far as possible, and the emissions are as follows:

– CO2 emissions for fossil fuel and industrial (FFI)
and agriculture, forestry, and other land use (AFOLU)
CO2 are from the Global Carbon Project 2023 v1.0
(Friedlingstein et al., 2023).

– CH4 and N2O from non-biomass-burning sources, plus
SF6, NF3, and aggregated hydrofluorocarbons (HFCs)
and perfluorocarbons (PFCs), are from PRIMAP-Hist
v2.5 (Gütschow and Pflüger, 2023; Gütschow et al.,
2016), prioritising third-party (TP) data sources over
country reported emissions.

– Short-lived climate forcers, comprising black carbon
(BC), organic carbon (OC), sulfur dioxide (SO2), ni-
trogen oxides (NOx), ammonia (NH3), carbon monox-
ide (CO), and volatile organic compounds (VOCs)
from fossil, industrial, and agricultural sources, are
from the Community Emissions Data System (CEDS)
v2021.04.06 (O’Rourke et al., 2021; Hoesly et al.,
2018).

– Biomass burning emissions of CH4, N2O, and short-
lived climate forcers (SLCFs) are taken from the Global
Fire Emissions Database (GFED) (van der Werf et al.,
2017) v4.1, which includes the BB4CMIP dataset pre-
pared for CMIP6 historical simulations (van Marle
et al., 2017).

– Emissions of Montreal Protocol greenhouse gases
(CFCs, HCFCs, halons, and chlorinated and brominated
gases), along with SO2F2, are estimated using inverse
greenhouse gas concentrations that have been prepared
for the IGCC (Forster et al., 2023), as no inventories of
these emission datasets are available to our knowledge.

All emission datasets are produced for 1750–2022, except
CEDS, which has a 2019 end-date. To extend SLCFs from
CEDS to 2022, we use the “2-year blip” scenario that es-
timates the decline and recovery from emissions due to
COVID-19 from Forster et al. (2020) and is extended by
Lamboll et al. (2021), based on proxy activity data. We take
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the ratios of SLCF emission species over 2020–2022 to 2019
in the 2-year blip scenario and apply them as a scaling factor
to CEDS emissions in 2019. Such a version-controlled strat-
egy allows for the calibration to be updated as newer emis-
sion data become available. Emission data prepared to the
end of 2023 will be available over the course of 2024, and an
anticipated update to CEDS should also bring non-biomass-
burning SLCFs until at least the end of 2022 (Hoesly et al.,
2023). This demonstrates that “operational” calibrations are
often a moving target.

We use the “third-party” emissions from PRIMAP-Hist
rather than country-reported values, based on the assump-
tion that we expect solely country-reported values to be an
underestimate of true emissions. We demonstrate that third-
party emissions still appear to be an underestimate for many
species, based on best-estimate greenhouse gas lifetimes and
concentration estimates.

2.3.2 v1.4.0: RCMIP historical emissions prepared for
AR6 (1750–2014)

For consistency and comparison with the FaIR projections
used in the IPCC AR6, we produce a calibration using his-
torical emissions from RCMIP (Nicholls et al., 2020, 2021)
using v5.1.0 of the Reduced Complexity Model Intercom-
parison Project (RCMIP) emission dataset available from
Nicholls and Lewis (2021). The RCMIP emissions contain
global annual total emissions of CO2 and SLCFs that were
prepared for running CMIP6 models. Emissions of non-
CO2 greenhouse gases were back-calculated to reproduce the
CMIP6 best-estimate historical concentrations (Meinshausen
et al., 2017). These concentrations time series were also used
to drive CMIP6 models.

For SSP scenarios, emissions from 2015 to 2100 were pro-
duced using IAMs, which were then extended to 2500 us-
ing simplified assumptions (Meinshausen et al., 2020). We
use the same climate constraints on GMST, CO2 concentra-
tion, and OHC as for v1.4.1 (Sect. 3.3) datasets, which run
to 2022. For the bridging period 2015–2022 between the end
of the CMIP6 historical and the observational climate data,
we use emissions from SSP2-4.5, expected to be the closest
Tier 1 SSP to current policies (Hausfather and Peters, 2020)
and, as shown later, the closest Tier 1 scenario to post-2015
emissions.

One adjustment is made to the RCMIP emissions to cor-
rect NOx . For accounting purposes, we express NOx in units
of Tg NO2 yr−1. The source datasets for RCMIP were earlier
versions of CEDS, which reports emissions in Tg NO2 yr−1

for fossil fuel and agricultural emissions, and GFED, which
reports emissions in Tg NO yr−1 for biomass burning. The
conversion for GFED emission data was not made in RCMIP
v5.1.0.

Neither v1.4.1 nor v1.4.0 of fair-calibrate includes
forcing from aviation contrails. Forcing from contrails and its
temperature impact were assessed in the IPCC AR6 WG1

(Forster et al., 2021), with best-estimate contributions to
present-day forcing of 0.06 W m−2 and warming of 0.02 °C,
and were included in the WG1 calibration of FaIR. However,
contrail forcing was excluded from the WG3 IAM emission
projections, rendering the WG1 and WG3 projection sets
slightly inconsistent. To project contrail forcing into the fu-
ture requires estimates of aviation activity. FaIR can accept a
time series of contrails forcing directly or estimate it, using
a linear combination of emission species. By default, FaIR
uses NOx emissions from the aviation sector to estimate con-
trail forcing (Smith et al., 2018). Neither aviation activity nor
NOx emissions from aviation are provided in IAM scenar-
ios in general, so contrail forcing could not be assessed in
WG3. Aviation NOx emissions are provided in the RCMIP
historical and SSP future emissions and could be included in
fair-calibrate v1.4.0. However, in order to apply the
calibrations consistently to as many scenarios as possible, we
calibrate without them.

3 Process

The set of output FaIR parameters is produced in three
steps: (1) calibration, (2) sampling, and (3) constraining.
The description and results in this section apply generally
to all calibration versions to date. We focus on calibra-
tion v1.4.1 and describe methods pertinent to v1.4.0 where
they differ. Figure 1 details the general process chain of
fair-calibrate v1.4.1.

3.1 Calibration

3.1.1 Climate response

The climate response module of FaIR v2.1.3 is an im-
pulse response formulation of the three-layer stochastic en-
ergy balance model of Cummins et al. (2020). We cali-
brate this model using 150-year 4×CO2 experiments from
49 CMIP6 models and using GMST (1T1) and the top-of-
atmosphere energy imbalance (1N ) as anomalies relative to
each model’s pre-industrial control run, subtracting a linear
trend from the appropriate branch point of each model’s con-
trol to account for any residual drift. This calibration is per-
formed using the maximum likelihood method of Cummins
et al. (2020), and the EBM R package that accompanies Cum-
mins et al. (2020) is used in the fair-calibrate process
chain (Cummins, 2021).

The three-layer stochastic energy balance model is written
as

C1
dT1(t)

dt
= F(t)− κ1T1(t)− κ2(T1(t)− T2(t))+ ξ(t), (1)

C2
dT2(t)

dt
= κ2(T1(t)− T2(t))− εκ3(T2(t)− T3(t)), (2)

C3
dT3(t)

dt
= κ3(T2(t)− T3(t)). (3)

Geosci. Model Dev., 17, 8569–8592, 2024 https://doi.org/10.5194/gmd-17-8569-2024
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Figure 1. Schematic of the process chain in fair-calibrate v1.4.1. Square brackets detail sources of data, and round brackets detail
section numbers in which processes are described in more detail. Dashed borders are optional processes which are not required to calibrate
the history only.

In Eqs. (1)–(3), T1, T2, and T3 are the temperature anoma-
lies of the three ocean layers (starting from the surface); C1,
C2, and C3 are their heat capacities; κj represents the heat
transfer coefficients between layers j − 1 and j for j ≥ 2;
−κ1 is the climate feedback parameter (often denoted λ); ε is
the deep-ocean efficacy parameter (Held et al., 2010; Winton
et al., 2010; Geoffroy et al., 2013); ξ is a stochastic distur-
bance term in the temperature response that does not affect
the top-of-atmosphere energy imbalance; and F is the effec-
tive radiative forcing (ERF).

The effective radiative forcing is the sum of a determin-
istic and stochastic component F = Fdet+ ζ . The stochastic
forcing component ζ is modelled as a continuous-time red
noise process

dζ
dt
=−γ ζ + η, (4)

where η is white noise, and γ > 0 controls the strength of
temporal auto-correlation (Cummins et al., 2020). In FaIR,
the stochastic behaviour can be switched off, and Eqs. (1)–
(4) reduce to a deterministic energy balance model when ξ =
η = 0 (Geoffroy et al., 2013; Leach et al., 2021).

The top-of-atmosphere energy imbalance N is given as

N(t)= F(t)− κ1T1(t)+ (1− ε)κ3(T2(t)− T3(t)), (5)

and the Earth’s energy uptake, used as a model constraint, is
the time integral of N .

For each of the 49 CMIP6 models, we obtain a set of 11
parameters {C1,C2,C3,κ1,κ2,κ3,ε,γ,σξ ,ση,F4×CO2} that
describes the magnitude and rate of warming to a 4×CO2
forcing and the behaviour of internal variability, where σξ
and ση are the standard deviations of ξ and η around the
zero mean. F4×CO2 is the effective radiative forcing from a
quadrupling of pre-industrial CO2 concentrations. The com-
parison of one stochastic realisation of each model’s energy
balance model calibration (black) compared to the actual
CMIP6 model (red) for the temperature response to an abrupt
4×CO2 forcing is shown in Fig. 2. In almost all cases, the
FaIR calibration is an excellent representation of the under-
lying CMIP6 model. The calibrated parameters are shown in
Table S1.

The energy balance model parameters can be written as
a matrix equation that describes the time evolution of each
temperature layer (Cummins et al., 2020; Leach et al., 2021).
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Figure 2. Comparison of temperature projections from abrupt 4×CO2 simulations as calibrated in FaIR (black) to the original CMIP6 model
results (red) for 49 CMIP6 models. For FaIR, we show one realisation with stochastic internal variability included; different random seeds
would produce different internal variability profiles.

The impulse response form of the temperature evolution in
each layer can be calculated from the eigenvalues and eigen-
vectors of the energy balance matrix. From this, the ECS
and “theoretical” TCR for each model calibration can be di-
rectly estimated from the impulse response coefficients as de-
scribed in Leach et al. (2021, Sect. 2.4). The ECS calculated
here is a true equilibrium value rather than as a regression
over a 150-year simulation as usually performed from ESM
output (the so-called effective sensitivity, EffCS). The theo-

retical TCR is not precisely what each model would predict
after 70 years of a 1 % compound increase in atmospheric
CO2 concentrations but is usually close and has the advan-
tage that model simulations do not need to be run to deter-
mine this value (Fig. S1b in the Supplement).
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3.1.2 Minor greenhouse gas emissions

This section describes the emission adjustment procedure in
fair-calibrate v1.4.1 for emissions of minor green-
house gases. In this context, “minor” means any species
that is not CO2 or CH4. This includes N2O, hydrofluorocar-
bons (HFCs), perfluorocarbons (PFCs), SF6, and NF3. This
emission adjustment is not required in v1.4.0, where emis-
sions from all species are provided by the RCMIP emission
datasets (Sect. 2.3.2).

HFCs and PFCs are provided in PRIMAP-Hist as aggre-
gate values reported in CO2-equivalent (AR6 GWP100) emis-
sions. We disaggregate these emissions by scaling the an-
nual historical emission totals in CO2-equivalent emissions
from RCMIP historical+SSP2-4.5 for 1750–2022 to the
PRIMAP-Hist reported values and then by multiplying this
scaling by the RCMIP individual species emission value in
each year. Table S2 details the HFC and PFC gases included
in the disaggregation.

The following step calculates atmospheric concentrations
when run forward using a single time-constant decay model
with the PRIMAP-Hist emission and time constants equal
to atmospheric lifetimes assessed in IPCC AR6 (Smith et al.,
2021b). The calculated concentration time series is compared
to the best-estimate historical concentrations from Forster
et al. (2023), which is an update of the AR6 concentrations in
IPCC (2021) to 2022 using recent AGAGE and NOAA sta-
tion data. In many cases, the calculated and observed concen-
trations differ substantially, and the calculated concentrations
are usually lower than the observed. This implies that either
the reported emissions in PRIMAP-Hist do not capture all
true emissions or that the reported atmospheric lifetimes are
too short (a third, less likely, possibility is that the reported
concentrations are too high). A correction can be obtained
by either lengthening the lifetimes or scaling up the emis-
sions. We choose to adjust the emissions on the basis that
countries under-reporting due to incomplete data is plausible,
and scaling the emissions brings some species much closer
to RCMIP estimates which are derived from inverting atmo-
spheric concentrations. The scaling is performed in order to
match the projected concentrations to the historical best es-
timates in 2019. In many cases the scaling is mild (for N2O,
emissions are scaled up by a factor of 1.08; Fig. 3a) but can
be large (NF3 is scaled by a factor of 7.5; Fig. S2). This im-
plies that countries are severely under-reporting emissions of
some greenhouse gases (GHGs) compared to the increasing
stock of these gases observed in the atmosphere.

PRIMAP-Hist does not provide emissions of SO2F2 or of
Montreal Protocol GHGs. We estimate their emissions by in-
verting the concentrations time series in Forster et al. (2023).

For future projections, we harmonise to 2022 (Gidden
et al., 2018) the eight Tier 1 and Tier 2 SSP scenarios to our
scaled calculated historical emissions. This produces SSPs
that take into account the recent past. We can then compare
the harmonised adjusted future concentration projections to

those created for the SSP scenarios that used MAGICC6
(Meinshausen et al., 2020). Figure 3b shows recreated histor-
ical and future N2O concentration projections to 2100 under
eight SSP scenarios using the harmonised scaled emissions
(thick lines) in FaIR and their comparison to the SSP con-
centrations time series (thin lines) from Meinshausen et al.
(2017, 2020). Note that the historical concentrations differ
between Fig. 3a and b as the dataset sources differ. For N2O,
the correspondence between FaIR and CMIP6 is very good
for all eight SSPs for future projections.

3.1.3 Methane lifetime

A new feature of FaIR introduced in v2.1.0 is a variable
methane lifetime that depends on burdens of chemically re-
active species and climate. This is an update from v2.0.0 that
used a methane lifetime self-feedback (methane concentra-
tions and temperature affect climate) and previous versions
that did not modify the lifetime of methane at all.

A methane lifetime scaling factor αCH4 is applied to the
base lifetime τCH4,base calculated as

logαCH4 = log(1+ ST1T1)+
∑
i

log(1+ Si1Ai) . (6)

In Eq. (6), Si denotes a sensitivity to species i or GMST
anomaly (1T1), and 1Ai represents abundances of species
i (emissions rate for SLCFs and concentrations for GHGs)
of chemically reactive species. If the anomalies in tempera-
ture and abundances are relative to the pre-industrial period,
αCH4 = 1 in pre-industrial conditions and τCH4,base is the pre-
industrial lifetime.

Unlike for minor GHGs, emissions are not scaled for
CH4 in fair-calibrate v1.4.1, and we instead calibrate
the atmospheric chemical lifetime. Owing to dependence
of the lifetime of several simultaneously changing emission
species, as well as climate, there is not a unique invertible
concentration to emission pathway for methane.

The UKESM1.0-LL, GFDL-ESM4, GISS-E2.1-G, and
MRI-ESM2.0 Earth system models provide a complete set
of results from the Aerosol Chemistry Model Intercompari-
son Project (AerChemMIP) single-forcing experiments that
enable the estimation of the sensitivity in methane lifetime
to climate (Thornhill et al., 2021a) and chemically reac-
tive species (Thornhill et al., 2021b). We use results re-
ported in Thornhill et al. (2021b) and Thornhill et al. (2021a)
for methane lifetime in 1850 and its relative sensitivity
to changes in CH4, N2O, and equivalent effective strato-
spheric chlorine (EESC) concentration; emissions of NOx
and VOCs; and global mean surface temperature between
1850 and 2014 in each of the four models. For each atmo-
spheric species, the fractional change in lifetime in 2014 rel-
ative to 1850 is normalised by the burden change to provide
lifetime changes in each model in terms of parts per billion
(ppb) concentration change or Mt yr−1 emissions. The four
models that provide data are used as minimum and maxi-
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Figure 3. (a) Comparison of best-estimate historical N2O emissions (black), the concentration projected from emissions in PRIMAP-
Hist+GFED (dotted grey), and the concentrations after scaling up the emissions by a factor of 1.08 to get correct recent historical con-
centrations (solid grey). Note that a single lifetime cannot accurately reproduce best-estimate historical concentrations between 1850 and
1950. (b) Harmonised SSP projections using the scaled historical emissions (thick lines) compared to the SSP historical+ future projections
(thin lines) from Meinshausen et al. (2017, 2020).

mum ranges of a parameter search (in v1.4.1, we expand
the search range by a factor of 2, since the PRIMAP-Hist
methane emissions are again likely to be an underestimate
and do not find suitable parameters within the model range)
to minimise the difference between observed CH4 concen-
trations from Forster et al. (2023) and those calculated from
Eq. (6). The 1750 emissions are subtracted from the time se-
ries when performing the lifetime calibration, as it is assumed
that pre-industrial concentrations of methane are in approxi-
mate equilibrium with pre-industrial emissions.

The historical best-estimate calibrations are shown in
Table 1. It can be seen that the methane lifetime in
fair-calibrate v1.4.1 is nearly 17 years in the pre-
industrial period, which is much longer than typically de-
termined from ESMs. The best-estimate lifetime in FaIR
from historical emissions is shown in Fig. 4a (grey line)
and is indeed longer than that calculated from the sensi-
tivities in each CMIP6 model across most of the histori-
cal period, though close to the AR6 value in the present
day. In Fig. 4b, the historical concentrations from Forster
et al. (2023) (black) are compared to the best estimate from
FaIR using the lifetime calculated in Fig. 4a and run forward
with best-estimate historical emissions. In Fig. 4c, the SSP
methane concentrations are projected with the harmonised
emissions, starting in 2022, and compared to the SSP con-
centrations time series (Meinshausen et al., 2017, 2020). In
general, the harmonised methane concentration projections
from fair-calibrate v1.4.1 are lower than in CMIP6
for high-methane emission scenarios and higher for low-
emission futures. This is due in part to the nearly 10 years
of additional historical emissions in the best-estimate time
series compared to the SSPs, which started to diverge from
a common history in 2015. For these projections, we use the

best-estimate GMST anomalies from the SSPs derived in Lee
et al. (2021).

The lifetimes, historical concentrations, and future con-
centrations for the RCMIP emissions (calibration v1.4.0)
are shown in Fig. S3, where it is observed that lifetimes
and concentration projections are much closer to AR6 and
CMIP6. This demonstrates that, first, the calibration is plau-
sible (CMIP6 emissions give CMIP6 concentrations) and,
second, that the methane lifetime calibration is very sensitive
to the historical emission time series used. In Fig. S4b, we
compare the methane emissions from the v1.4.0 and v1.4.1
calibrations. As 1750 emissions are subtracted from the total
to report changes away from a pre-industrial equilibrium, the
change in emissions (1750–2022) in v1.4.1 from PRIMAP-
Hist is smaller than in v1.4.0, leading to longer atmospheric
lifetimes necessary to reproduce concentrations.

Unlike in versions of FaIR prior to 2.0.0, we do not assume
any natural methane emissions. In v1.3 of FaIR, for example,
natural emissions were back-calculated with the assumption
of a constant methane lifetime and held constant for future
projections (Smith et al., 2018). It is well-known that wet-
lands emit large quantities of methane, and it is very likely
that this effect is climate-dependent (Zhang et al., 2017). As
the climate continues to warm, biogenic methane will be re-
leased from permafrost soils and clathrates – sources that
most ESMs do not include at present. Including these nat-
ural sources is a development priority for future versions of
FaIR.

It should be noted that the methane lifetimes derived are
the best fits to observed concentrations across the 1750 to
present-day period for each emission pathway and may not
necessarily maintain an equilibrium concentration in 1750
with 1750 emissions. In v1.4.1, methane emissions in 1750
were around 38 Mt CH4 and around 19 Mt CH4 in v1.4.0,
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Figure 4. Methane lifetime calibration (v1.4.1). (a) Methane lifetime in the historical+SSP3-7.0 scenario for four ESMs (colours) and
the lifetime from the FaIR calibration (grey). (b) Methane concentration calculated from historical methane emissions from PRIMAP-
Hist+ biomass burning emissions using the lifetime in panel (a), using FaIR (grey), and using the observed atmospheric concentrations
(black) for 1750–2022 from IGCC (Forster et al., 2023). (c) Methane concentrations calculated from methane emissions for the eight main
SSP scenarios using the harmonised future emission projections (thick lines) compared to the SSP scenarios (thin lines) (Meinshausen et al.,
2017, 2020).

Table 1. Baseline CH4 lifetime and sensitives (Si ) in lifetime due to changes in greenhouse gas concentrations, short-lived climate forcer
emissions, and temperature in calibrations v1.4.1 and v1.4.0. Note that ppt stands for parts per trillion.

Variable Best historical fit v1.4.1 Best historical fit v1.4.0

Lifetime in 1750 16.8 years 10.0 years
CH4 sensitivity 1.67× 10−4 ppb−1 2.54× 10−4 ppb−1

N2O sensitivity −9.50× 10−4 ppb−1
−7.23× 10−4 ppb−1

EESC sensitivity 2.53× 10−5 ppt−1
−5.33× 10−6 ppt−1

NOx sensitivity −3.42× 10−3 (Mt NO2 yr−1)−1
−2.52× 10−3 (Mt NO2 yr−1)−1

VOC sensitivity 1.98× 10−3 (Mt VOC yr−1)−1 1.62× 10−3 (Mt VOC yr−1)−1

Temperature sensitivity −0.0463 K−1
−0.0408 K−1

though v1.4.0 has a shorter lifetime for the same concentra-
tion. Methane emissions were not in equilibrium in 1750 and
have steadily climbed over the last 2000 years (Meinshausen
et al., 2017), with substantial variations due to agricultural
and natural influences before then (Singarayer et al., 2011).
Methane’s relatively short lifetime and reactive nature make
its calibration more difficult than longer-lived greenhouse
gases such as CO2 and N2O, and the calibration strategy of
the methane cycle depends on the goal of the user. In most
cases using FaIR, this will be historical and future anthro-
pogenic influences on climate for which the calibration that
ensures historical emissions reproduce historical concentra-
tions is most appropriate. Other use cases may require differ-
ent calibration strategies.

3.1.4 Carbon cycle feedbacks

The carbon cycle is parameterised as a simple atmospheric
decay model with four time constants, based on the impulse
response functions of Joos et al. (2013). The time constants
are scaled by a lifetime scaling factor that mimics the influ-
ence of carbon cycle feedbacks. This treatment is unchanged

since the work of Leach et al. (2021, Sect. 2.1). A positive
carbon cycle feedback reduces the efficacy of carbon sinks,
thus effectively lengthening the atmospheric lifetime of CO2.

The lifetime scaling factor is a function of the time-
integrated airborne fraction of a CO2 pulse over 100 years
I100 (Millar et al., 2017). I100 is modified as

I100 = r0+ rU1CU+ rT1T + rA1CA, (7)

where r0, rU, rT, and rA are the pre-industrial time-integrated
airborne fraction and its sensitivity to cumulative carbon
uptake in land and ocean sinks 1CU, surface temperature
anomaly 1T , and airborne carbon 1CA respectively. Total
cumulative emissions since pre-industrial is 1CA+1CU.

The process for calibrating the carbon cycle feedbacks to
11 CMIP6 ESMs containing interactive carbon cycles is de-
scribed in Leach et al. (2021, Sect. 3.2). The same coeffi-
cients derived in Leach et al. (2021) for the 11 ESMs are
used in all calibrations to date.
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3.1.5 Aerosol–cloud interactions

The effective radiative forcing due to aerosol–cloud interac-
tions ERFaci has been generalised:

ERFaci = β

[
log

(
1+

∑
i

siAi

)
− log

(
1+

∑
i

siAi,base

)]
, (8)

where Ai is the emissions or concentration of a species,
and the base subscript denotes its reference (usually pre-
industrial) abundance. β is a scale factor, and si describes
how sensitive a species is in contributing to ERFaci. The
generalisation allows for inclusion of more species that af-
fect ERFaci in addition to SO2, BC, and OC that was mod-
elled previously. The generalisation is useful as there is evi-
dence of a large ERFaci response to CH4 in UKESM1-0-LL
through methane’s effect on competing for atmospheric ox-
idants, including OH, affecting the rate of new particle for-
mation (O’Connor et al., 2022). As with earlier versions of
FaIR, the form of Eq. (8) is inspired by Stevens (2015) but
without any physical significance attached to the sensitivi-
ties si , allowing near-linear global mean responses in ERFaci
to changes in precursor abundances as postulated by some
authors (Booth et al., 2018; Kretzschmar et al., 2017) and
exhibited in some models (Smith et al., 2021a).

A total of 13 CMIP6 models provided results from tran-
sient aerosol experiments in AerChemMIP and the Radia-
tive Forcing Model Intercomparison Project (RFMIP) (Ta-
ble 2) that allow calculation of aerosol ERF. The breakdown
of shortwave aerosol ERF into aerosol–radiation interactions
(ERFari) and ERFaci is performed using the approximate
partial radiative perturbation (APRP) method (Taylor et al.,
2007), following the logic of Zelinka et al. (2014, 2023).
Longwave contributions to ERFaci are estimated from the
cloud radiative effect, with ERFari estimated as the difference
between the longwave components of ERF and ERFaci.

From the diagnosed ERFaci in each model, a least squares
curve fit of ERFaci to historical emissions by fitting sSO2 , sBC,
sOC, and β is found (Table 2) using Eq. (8). The comparison
of model-derived ERFaci to the best fit from Eq. (8) is shown
in Fig. 5.

Using Eq. (8), a wide range of ERFaci trajectories are pos-
sible, and parameter estimates for β and individual species
sensitivities span orders of magnitude. Where one or two
of sSO2 , sBC, and sOC are close to zero (CanESM5 and
UKESM1-0-LL), this indicates that the species has little
influence on ERFaci in that model (e.g. UKESM1-0-LL’s
ERFaci response is purely driven by sulfate in aerosol-only
forcing experiments). Where all three of sSO2 , sBC, and sOC
are close to zero, and β has large magnitude (the two Geo-
physical Fluid Dynamics Laboratory (GFDL) models and
NorESM2-LM), this indicates that ERFaci behaves linearly in
emissions from the Taylor expansion of log(1+ x) for small
x (Smith et al., 2021a). In the case of NorESM2-LM, the co-
efficient for BC is so small that it is effectively zero, with the
ERFaci response being linear with sulfate and OC.

3.1.6 Ozone

The best-estimate historical ozone ERF time series from
Skeie et al. (2020) is used to calibrate the role of ozone
precursors to ozone forcing. As in AR6, tropospheric and
stratospheric ozone are not considered separately. Again fol-
lowing the AR6 methodology, we select six models from
the 12 coupled historical CMIP6 models analysed in Skeie
et al. (2020) that are relatively independent from each
other, have full stratospheric and tropospheric chemistry en-
abled, and reproduce expected behaviour for the overall
time history of ozone ERF. The six models used are BCC-
ESM1, CESM2(WACCM6), GFDL-ESM4, GISS-E2-1-H,
MRI-ESM2-0, and OsloCTM3. Skeie et al. (2020) provides
historical ozone forcing for 1850–2010 in these models, and
following Skeie et al. (2020), we add +0.03 W m−2 to the
time series to represent the change from 1750 to 1850. The
Oslo-CTM3 model provided results under SSP2-4.5 to 2020,
which was also used in calibration.

As ozone ERF includes a contribution from temperature
change and is calibrated from coupled historical runs, his-
torical warming is backed out using a temperature feedback
of −0.037 W m−2 K−1 (Thornhill et al., 2021a) and histori-
cal GMST from Forster et al. (2023). For this “no-feedback”
ERF time series, we find a least squares fit to the change
in emissions of NOx , VOC, and CO and concentrations of
CH4, N2O, and EESC (Fig. 6). The lower and upper bounds
of the search ranges for the parameter fits are the very likely
range for each precursor in Thornhill et al. (2021b), which is
also scaled up to account for the difference in best-estimate
ozone forcing between models participating in AerChemMIP
in Thornhill et al. (2021b) and the six-model subset in Skeie
et al. (2020).

Similar to the methane lifetime calibration, we derive a co-
efficient for each precursor species relating emissions or con-
centrations of each to the ozone ERF. Uncertainty sampling
for the prior distribution is described in Sect. 3.2.5.

3.2 Sampling

We produce a 1.6 million member prior ensemble of FaIR
projections, with parameter choices drawn from probability
distributions that are informed by CMIP6 model calibrations
(Sect. 3.1) or AR6-assessed ranges. Different components of
FaIR are sampled independently, but within each component
(e.g. climate response), the correlation structure between pa-
rameters is maintained to ensure internally consistent param-
eter choices. In many cases, probability distributions for pa-
rameters are constructed from a Gaussian kernel density es-
timate, which is a non-parametric method that attempts to
estimate the underlying probability density function from a
finite sample size, and can be used to preserve correlation
structure in multi-variate cases (Scott, 1992).

Kernel density estimates to sample parameters are used
since several parameters do not have many CMIP6 models
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Table 2. Models used to calibrate forcing from aerosol–cloud radiation interactions and their parameter best fit values from Eq. (8).

Model CMIP6 protocol β sSO2 [(Mt SO2 yr−1)−1] sBC [(Mt BC yr−1)−1] sOC [(Mt OC yr−1)−1]

CanESM5 RFMIP −0.856 0.0199 0.394 1.25× 10−16

CNRM-CM6-1 RFMIP −1.50 0.00601 0.0460 0.0111
E3SM-2-0 RFMIP −1.44 0.0715 1.29× 10−41 0.352
GFDL-CM4 RFMIP −4507 1.10× 10−6 5.94× 10−7 2.13× 10−6

GFDL-ESM4 AerChemMIP −13202 2.54× 10−7 2.70× 10−6 6.07× 10−7

GISS-E2-1-G RFMIP −0.585 0.00819 1.28 5.36× 10−11

HadGEM3-GC31-LL RFMIP −0.941 0.0222 4.81× 10−33 0.0367
IPSL-CM6A-LR RFMIP −1.26 0.00266 1.76× 10−16 0.00190
MIROC6 RFMIP −1.03 0.00730 0.149 6.27× 10−18

MPI-ESM-1-2-HAM AerChemMIP −2.35 0.00718 3.85× 10−13 0.00975
MRI-ESM2-0 AerChemMIP −7.74 0.000776 0.00412 5.27× 10−27

NorESM2-LM RFMIP −12527 6.91× 10−7 2.78× 10−114 1.62× 10−6

UKESM1-0-LL AerChemMIP −0.723 0.0335 8.76× 10−37 6.38× 10−13

Figure 5. Calibrations of the ERFaci relationship in FaIR (Eq. 8; coloured lines) to the derived ERFaci from 13 CMIP6 models (grey lines).
Extrapolation back to 1750 is shown in all cases, and extrapolation forward to 2100 is shown under SSP2-4.5 emissions where model
simulations were not extended beyond 2014.

to calibrate to (a data-sparsity issue), parameter values can
span several orders of magnitude, and correlations between
parameters that arise from the calibration can be included.
In each case, we use the scipy.stats.gaussian_kde
implementation of the multivariate kernel density es-

timate (https://docs.scipy.org/doc/scipy/reference/generated/
scipy.stats.gaussian_kde.html, last access: 30 June 2024). In-
cluding the correlation between parameters reduces (though
does not eliminate) the likelihood of physically implausible
combinations being sampled, and using kernel density esti-
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Figure 6. Comparison of the ozone ERF time series from Skeie
et al. (2020) (black) to the estimate from emissions and concen-
tration precursors (grey). The estimated impact of temperature on
ozone forcing has been backed out of the time series from Skeie
et al. (2020) and is not included in the model fit.

mates rather than parametric multivariate distributions allows
for variability in the distribution shapes of each parameter,
such as admitting left-skewed and multi-modal shapes. Ker-
nel density methods have drawbacks, such as being sensitive
to outliers. However, parametric distributions assume some
prior knowledge about the dataset, and selecting one model
per parameter does not fully sample the potential space of
plausible climate models.

In this section, prior distributions that are not sampled
from kernel density estimate calibrations to CMIP6 models
are shown in individual tables.

In total, 45 parameters are sampled. In the processing
chain, fixed random seeds are used to ensure reproducibility.
Internal variability is switched on, and again each parameter
set has a random seed associated with it in order to reproduce
the same pattern, and key climate metrics are saved out of the
prior ensemble.

3.2.1 Climate response

An 11-dimensional kernel density estimate is generated from
the energy balance model parameters that were calibrated on
49 CMIP6 models (Fig. S5). F4×CO2 is not used in the cli-
mate response of FaIR but is used in the theoretical calcula-
tion of ECS and TCR. All parameters of the energy balance
model are strictly positive, so parameter sets containing neg-
ative values are discarded and redrawn until the 1.6 million
threshold is reached. We also discard and redraw instances

of κ1 < 0.3 W m−2 K−1, C1 < 1.8 W yr m−2 K−1, C3 < C2,
C2 < C1, and γ < 0.5. The κ1 threshold puts an upper bound
on the ECS prior of around 13 °C, and the other limits ensure
model stability.

3.2.2 Aerosol–cloud interactions

Similar to the climate response, we draw correlated kernel
density estimates for log(sSO2 ), log(sBC), and log(sOC). We
calculate an unscaled ERFaci for the 2005–2014 mean rela-
tive to 1750 for each parameter set. The unscaled ERFaci is
then scaled to reproduce a draw from a trapezoid distribu-
tion with limits at −2.2 and +0.2 W m−2 and plateau from
−1.6 to −0.4 W m−2 to represent the ERFaci for 2005–2014
relative to 1750, which selects the β value to use for that
parameter set. This process is similar to that of both Smith
et al. (2021a) and AR6 (Forster et al., 2021). The prior distri-
bution is chosen to give a wide but plausible range around the
ERFaci distribution for the present day assessed by the IPCC
(Forster et al., 2021), which was −1.0 W m−2 for a nominal
2014 date relative to 1750.

3.2.3 Aerosol–radiation interactions

The ERFari contributions are not sampled directly from
CMIP6 models, though much of the basis of this assess-
ment is rooted in AerChemMIP (Thornhill et al., 2021b).
AR6 assessed that several species (CH4, N2O, halogenated
compounds, sulfate, BC, OC, nitrate, and VOCs) contribute
directly or indirectly to ERFari, though only sulfate, BC, OC,
and NH3 are significant. We use the contributions to ERFari
assessed in AR6 with the relative uncertainty from each pre-
cursor (Szopa et al., 2021) as prior distributions (Table 3)
and scale both the best-estimate and uncertainty range of
the ERFari from each precursor to reproduce the IPCC AR6
distribution of −0.3± 0.3 W m−2 (Forster et al., 2021). All
ranges quoted are for 5th to 95th percentile, unless otherwise
stated.

3.2.4 Carbon cycle and initial CO2 concentration

A four-dimensional kernel density estimate is drawn from the
r0, rU, rT, and rA parameters from the 11 models calibrated
in Leach et al. (2021). As part of the carbon cycle sampling,
we draw CO2 concentration values in 1750 using the IPCC
AR6 best estimate and uncertainty of the 278.3± 2.9 ppm
(5 %–95 %) range (Gulev et al., 2021), using a Gaussian dis-
tribution.

3.2.5 Ozone

The coefficients relating emissions or concentrations of
chemically relevant precursors to ozone ERF take their mean
value from the bounded least square fit derived in Sect. 3.1.6,
and their uncertainty values are sampled by applying the
scaled 5 %–95 % uncertainty range from Thornhill et al.
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Table 3. Distributions of the contributions to the direct aerosol ERF sampled in fair-calibrate v1.4.1. Uncertainty ranges are shown
as 90 % ranges and sampled from a Gaussian distribution.

Precursor Contribution to direct aerosol ERF

BC 0.0279± 0.0239 W m−2 (Mt BC yr−1)−1

OC −0.00433± 0.00306 W m−2 (Mt OC yr−1)−1

SO2 −0.00308± 0.00229 W m−2 (Mt SO2 yr−1)−1

NH3 −6.21× 10−4
± 6.90× 10−5 W m−2 (Mt NH3 yr−1)−1

NOx −8.17× 10−5
± 3.15× 10−5 W m−2 (Mt NO2 yr−1)−1

VOC −1.75× 10−5
± 2.68× 10−5 W m−2 (Mt VOC yr−1)−1

CH4 −2.56× 10−6
± 1.65× 10−6 W m−2 ppb−1

N2O −3.70× 10−5
± 2.78× 10−5 W m−2 ppb−1

EESC −8.26× 10−6
± 1.57× 10−6 W m−2 ppb−1

(2021b) to this best-estimate value. This means that some
precursor ranges are outside the range of that described by
Thornhill et al. (2021b), though only seven models (fewer
for some precursors) provided the necessary experiments in
Thornhill et al. (2021b), and thus AerChemMIP represents a
small ensemble of opportunity.

3.2.6 ERF scalings

Forcing uncertainties in ERFari, ERFaci, and ozone are sam-
pled from the contribution to total forcing from their precur-
sor species, as described in previous sections. For other major
categories of forcings, we use the IPCC AR6 ranges (Forster
et al., 2021) as relative uncertainty factors to scale the ERF
(Table 5).

For CO2, we use the sampled F4×CO2 value from the cli-
mate response calibration and perform a quantile mapping
to derive a scaling factor for CO2 forcing that is Gaussian.
While this does not preserve the shape of the F4×CO2 distri-
bution kernel, it does map low 4×CO2 forcings to low CO2
scalings, and vice versa.

3.3 Constraining

The 1.6 million member prior ensemble of FaIR climate pro-
jections is compared to historical observations and assess-
ments of climate metrics from either the IPCC AR6 (Forster
et al., 2021) or their updates, based on more recent data
(Forster et al., 2023).

3.3.1 Step 1: root mean squared difference with respect
to historical

The root mean squared (rms) difference in each ensemble
member’s GMST anomaly projection compared to the his-
torical values for 1850–2022 is used as a simple pass/fail cri-
terion for ruling out parameter sets that are inconsistent with
historical observed warming. Ensemble members that have
an rms difference that is greater than 0.17 °C are rejected.
The mean of four GMST datasets (HadCRUT5, Berkeley

Earth, NOAAGlobalTemp, and Kadow) from Forster et al.
(2023) is used as the historical GMST dataset for compari-
son. The choice of 0.17 °C is somewhat arbitrary, which bal-
ances sufficient variability in the historical record to allow for
observational uncertainty with the need for projections that
are true to observations. By design, this threshold roughly
reproduces the uncertainty range in present-day GMST rela-
tive to the pre-industrial range assessed by the IPCC (Gulev
et al., 2021), whereas a more stringent threshold may over-
constrain both the historical observational uncertainty and
scope for future climate projection uncertainty (Fig. 7). Inter-
nal variability is switched on for this historical comparison to
allow for the possibility that the historical record can be well-
simulated by chance in mean state climate configurations that
would be warmer or cooler than expected (e.g. a strong pat-
tern effect; Andrews et al., 2018). This step reduces the en-
semble size from 1.6 million to 224 342, ruling out around
86 % of the original ensemble.

Figure 7 compares the 10 ensemble members with the low-
est RMSE relative to observations (blue; RMSE ≈ 0.10 °C)
with the 10 largest RMSE members that still meet the RMSE
constraint (red; RMSE ≈ 0.17 °C). Figure 7 shows that runs
with low internal variability tend to result in the closest cor-
respondence with historical observed temperature, and there-
fore, the final ensemble could be biased towards ensemble
members with smaller variability. A formal analysis of the
internal variability characteristics in relation to observations
is not performed in this version of fair-calibrate,
though it could be added to the constraining criteria in the
future.

Alongside or instead of RMSE, a correlation metric could
be used to evaluate goodness of fit between the observations
and the model. However, RMSE encapsulates goodness of fit
into a single number and is sensitive to model runs that over-
all warm too quickly or too slowly. Correlation coefficients
would not differentiate simulations that had the right shape
of historical warming but warmed too quickly or slowly.
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Table 4. Distributions of the contributions to the ozone ERF sampled in fair-calibrate v1.4.1. Uncertainty ranges are shown as 90 %
ranges and sampled from a Gaussian distribution.

Precursor Contribution to ozone ERF

CH4 2.35× 10−4
± 6.18× 10−5 W m−2 ppb−1

N2O 1.18× 10−3
± 4.73× 10−4 W m−2 ppb−1

Chlorinated and brominated GHGs −5.48× 10−5
± 1.20× 10−4 W m−2 (ppt CFC-11 EESC)−1

CO 2.34× 10−5
± 1.33× 10−4 W m−2 (Mt CO yr−1)−1

VOCs 2.73× 10−4
± 3.67× 10−4 W m−2 (Mt VOC yr−1)−1

NOx 1.19× 10−3
± 1.17× 10−3 W m−2 (Mt NO2 yr−1)−1

Table 5. Forcing scaling factors used to translate the raw best estimate from FaIR to IPCC-assessed uncertainty ranges (Forster et al., 2021).
Scaling uncertainty ranges are 5 %–95 %. Except for the solar trend, median distribution values are 1.

Forcing Relative uncertainty and distribution

CO2 ±0.12, Gaussian
CH4 ±0.20, Gaussian
N2O ±0.14, Gaussian
Halogenated GHGs ±0.19, Gaussian
Stratospheric water vapour from methane oxidation ±1.00, Gaussian
Land use change ±0.50, Gaussian
Volcanic ±0.25, Gaussian
Solar amplitude ±0.50, Gaussian
Solar linear trend 1750–2019 +0.01 (−0.06 to +0.08) W m−2, Gaussian
BC on snow 5th and 95th percentiles at (0.00, 2.25), skew normal
Contrails∗ 5th and 95th percentiles at (0.33, 1.72), skew normal

∗ Contrail forcing is not used in v1.4.0 and v1.4.1 but is included in other versions.

3.3.2 Step 2: reweighting based on observed and
assessed climate metrics

The second constraining step takes the ensemble members
that passed the RMSE threshold and simultaneously fits the
projections to eight target distributions (Fig. 8). For each tar-
get distribution, either a Gaussian (if symmetric) or skew
normal (if asymmetric) continuous probability distribution is
constructed from the 5th, 50th, and 95th percentiles of the
variable’s uncertainty range. As a three-parameter distribu-
tion, a skew normal can uniquely fit three specified quantiles.
For symmetric distributions, the number of degrees of free-
dom is reduced to two (by imposition of symmetry), and the
Gaussian is a natural choice, as well as being a general form
of the skew normal. The percentiles of the target distribu-
tions are shown in the first eight rows of Table 6. Emergent
parameters (ECS, TCR, and aerosol forcing ranges) are taken
from the IPCC AR6 WG1 Chap. 7 (Forster et al., 2021), and
updated climate observations (GMST, OHC, and CO2 con-
centrations) are taken from the Indicators of Global Climate
Change 2022 (Forster et al., 2023).

The ensemble size in the final reweighted constrained dis-
tribution is a user choice. Typically, ensemble sizes of a few
hundred to a few thousand are used for projections using
reduced-complexity models (Nicholls et al., 2021), which al-

lows for full exploration of the uncertainty space while keep-
ing the number of simulations small enough to allow for effi-
cient computation. For the final posterior distribution in cali-
brations v1.4.0 and v1.4.1, we select 841 ensemble members
from an effective ensemble size of 4356. Moreover, 841 is
1 more than a highly composite number and allows many
quantiles of the full distribution to correspond to a single-
ensemble member at each point in time.

The posterior ensemble size being one more than a highly
composite number is simply an author preference; it is more
important to ensure that the posterior is (1) large enough
to provide a dense coverage of posterior constraint distribu-
tions and (2) small enough that it can provide an unbiased
sample size after likelihood weighting. Condition (1) gen-
erally imposes a lower bound of around 500 ensemble mem-
bers, and condition (2) suggests that the effective sample size
should be around 5 or more times larger than the target pos-
terior size. If both conditions cannot be simultaneously met,
a larger or differently sampled prior or a relaxation of one or
more constraints is required.

The evolution of GMST projections from the prior en-
semble to the historical RMSE constraint, and finally the
reweighted constrained ensemble, is shown in Fig. 9. The
prior ensemble allows for a wide range of projections, the
majority of which are clearly incompatible with historical
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Figure 7. Comparison of the 10 ensemble members with the small-
est RMSE error (blue) compared to the historical best-estimate
GMST from the Indicators of Global Climate Change 2022 (Forster
et al., 2023) (black) with 10 of the largest RMSEs (red) that passed
this first historical constraining step.

GMST (Fig. 9a). The RMSE threshold step, alongside pro-
ducing historically reasonable projections, substantially re-
duces the range in projected future warming (Fig. 9b). How-
ever, low and particularly very high future warmings pass the
historical RMSE constraint. The reweighting step provides
a narrower band on historical warming, as well as reducing
the spread in future warming further (Fig. 9c). The 5 %–95 %
ranges of future warming are similar between the RMSE con-
straint and the reweighted posterior, but the latter distribution
constrains out much of the warm and cool tails of the distri-
bution that passes the RMSE constraint.

Figure 10 shows the distributions of the 45 parameters
used to construct the prior samples (blue histograms) and the
reweighted posterior (red histograms). Table S3 lists the pa-
rameters and the part of the model that is being affected, as
well as its location within the paper. For some distributions,
the constraining steps create posteriors that are differently
shaped to the priors. Sometimes this is by design. For exam-
ple, κ1, the climate feedback parameter, is inversely related to
ECS, and the IPCC constraint downweights the likelihood of
“hot” combinations (noting that the prior distribution is con-
structed from CMIP6 models, many of which have higher
climate sensitivity than the 95th percentile of 5 °C assessed
in IPCC AR6). Occasionally, distributions are multi-modal,
such as the parameters that define the ERFaci shape, due to
the model calibrations themselves spanning several orders of
magnitude.

4 Characteristics of calibrations v1.4.1 and v1.4.0

As a demonstrative case, we show GMST projections for the
eight Tier 1 and Tier 2 SSPs using the harmonised emis-
sion scenarios in Fig. 11 using calibration v1.4.1. Along-
side SSP projections, we use the posterior parameter sets
and run concentration-driven runs with a compound 1 % per
year CO2 concentration increase for 140 years. This allows
the determination of the airborne fraction of CO2 at the time
of doubling (70 years) and quadrupling (140 years), an esti-
mate of the TCRE obtained at the point of crossing 1000 Gt C
of emissions, and a CMIP-consistent approach to calculating
TCR (Fig. S1).

For the emission-driven SSP scenarios, the large-scale
warming behaviour is in line with expectations, with high-
emission scenarios such as SSP5-8.5 and SSP3-7.0 show-
ing several degrees of warming over the next 2 centuries,
and lower-emission scenarios warming less. Scenarios where
CO2 emissions turn net negative (SSP1-1.9, SSP1-2.6, and
SSP5-3.4 overshoot) show peak and decline behaviour in
the ensemble median, though some extreme high-ensemble
members continue to warm beyond net zero, owing to a
positive zero-emission commitment (Palazzo Corner et al.,
2023).

For a more rigorous comparison, we compare the
reweighted constrained posterior from fair-calibrate
v1.4.1 to the assessed ranges in the AR6 WG1 assessments in
Table 6 (see Cross Chapter Box 7.1 in Forster et al., 2021, and
Smith et al., 2021b). The first eight rows of the table are the
distributions used to reweight the posterior. By design, the
fit to the target distribution in these eight cases is very good
(in most cases, the “Relative difference” columns in Table 6
are not in bold type). The slight disagreement with the lower
bound of the transient climate response is due to the IPCC
assessment of the lower end of the very likely range of TCR
being lower than the lowest TCR in any of the CMIP6 mod-
els which are used to create the prior distribution sample. A
better fit to the IPCC-assessed range could be achieved by
increasing the samples in the prior TCR distribution at the
lower end. The disagreement in the upper bound of ERFaci is
large in relative terms but small in absolute terms. Similarly,
no comparison for the upper bound of ERFari is provided to
avoid division by zero.

The remaining assessed ranges in Table 6 are used for
validation- and sense-checking. FaIR under-predicts and pro-
vides a narrower range of airborne fraction at 2×CO2 and
4×CO2 and TCRE. However, the sensitivities of the carbon
cycle feedbacks in FaIR are already well-constrained when
comparing the 1750 to 2022 CO2 emissions with observed
concentrations, which places a tight bound on the histori-
cal cumulative airborne fraction. The IPCC assessment of
airborne fraction is taken from CMIP6 idealised 1pctCO2
runs and is entirely based on the CMIP6 model (Arora et al.,
2020), and emission-driven CMIP6 ESMs do not reproduce
present-day CO2 concentrations as tightly as our observa-
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Figure 8. Comparison of distributions of key climate metrics (Table 6) in each step of the constraining process. The prior distributions from
the 1.6 million member prior ensemble are in blue. The first constraining step using the RMSE comparison to historical temperature is in
yellow. The second constraining step that reweights each distribution to its target is in red. The target distribution is in black. The goal is for
the red distribution to be as close as possible to the black across all metrics.

tional constraint (Lee et al., 2021). In idealised frameworks,
TCRE is proportional to the product of airborne fraction and
TCR (Jones and Friedlingstein, 2020). The IPCC TCRE as-
sessment is wider than the product of the TCR and airborne
fraction individual assessments in quadrature, and as such,
distribution fitting to the AR6-assessed ranges of TCR, air-
borne fraction, and TCRE simultaneously is not possible.

We also compare the emission-driven SSP temperature
projections in FaIR to the assessed ranges from the IPCC
AR6 WG1 (Lee et al., 2021). For the strong mitigation sce-
narios SSP1-1.9 and SSP1-2.6, the SSP warming is above the
IPCC-assessed ranges, particularly at the 95th percentile. We
suggest three reasons. First, concentration (not emission)-
driven runs were used to derive the IPCC warming ranges,
which excludes the impact of carbon cycle sensitivity un-
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Figure 9. Progression of projections using the historical+ harmonised SSP2-4.5 emissions for (a) all prior ensemble members, (b) the RMSE
< 0.17 °C first constraining step, and (c) the final reweighted and constrained posterior. In each plot, progressively darker shaded regions
correspond to the minimum–maximum, 5 %–95 %, and 16 %–84 % ranges. The black line is the ensemble median, and the blue line is a
historical best-estimate GMST from the Indicators of Global Climate Change 2022 (Forster et al., 2023).

Table 6. Comparison of IPCC AR6 WG1 (Forster et al., 2021; Lee et al., 2021; Gulev et al., 2021) or updated (Forster et al., 2023) obser-
vational and assessed distributions (“Target” columns), the distributions of the posterior from calibration v1.4.1 (“Reweighted posterior”),
and the relative percentage difference. Distributions denoted with an asterisk were assessed as likely ranges in IPCC AR6 WG1, interpreted
as ±1 SD (standard deviation), and have been converted to 5 %–95 % ranges here for consistency with other values. Metrics with “Yes” in
the “Fit?” column are part of the multiple constraining described in Sect. 3.3.2. Bold text in the “Relative difference” column shows where
metrics are more than 5 % from the target for the central estimate and more than 10 % from the target for the upper and lower ranges.

Target Reweighted posterior Relative difference

Metric 5 % 50 % 95 % 5 % 50 % 95 % 5 % 50 % 95 % Fit?

ECS (K) 2.00 3.00 5.00 2.01 2.96 4.99 +1 % −1 % 0 % Yes
TCR (K) 1.20 1.80 2.40 1.31 1.79 2.38 +9 % 0 % −1 % Yes
GMST 2003–2022 rel. 1850–1900 (K) 0.87 1.03 1.13 0.86 1.03 1.13 −1 % 0 % 0 % Yes
EEU 2020 rel. 1971 (ZJ) 356.8 465.3 573.8 355.5 466.9 587.3 0 % 0 % +2 % Yes
Aerosol ERF 2005–2014 rel. 1750 (W m−2) −2.0 −1.3 −0.6 −1.94 −1.27 −0.56 −3 % −2 % −7 % Yes
ERFari 2005–2014 rel. 1750 (W m−2) −0.6 −0.3 0.0 −0.58 −0.30 0.00 −3 % −2 % Yes
ERFaci 2005–2014 rel. 1750 (W m−2) −1.7 −1.0 −0.3 −1.66 −0.96 −0.35 −2 % −4 % +15 % Yes
CO2 concentration 2022 (ppm) 416.2 417.0 417.8 416.1 417.0 417.8 0 % 0 % 0 % Yes
WMGHG ERF 2019 rel. 1750 (W m−2) 3.03 3.32 3.61 3.01 3.32 3.62 −1 % 0 % 0 %
CH4 ERF 2019 rel. 1750 (W m−2) 0.43 0.54 0.65 0.45 0.56 0.66 +4 % +3 % +1 %
Airborne fraction at 2×CO2

∗ 0.43 0.53 0.63 0.47 0.48 0.49 +10 % −9 % −22 %
Airborne fraction at 4×CO2

∗ 0.44 0.60 0.76 0.47 0.55 0.59 +7 % −8 % −22 %
TCRE∗ (K (1000 Gt C)−1) 0.58 1.65 2.72 1.09 1.47 1.92 +88 % −11 % −29 %
SSP1-1.9 2021–2040 rel. 1995–2014 (K) 0.38 0.61 0.85 0.38 0.65 0.97 +1 % +7 % +14 %
SSP1-1.9 2041–2060 rel. 1995–2014 (K) 0.40 0.71 1.07 0.44 0.83 1.39 +9 % +17 % +30 %
SSP1-1.9 2081–2100 rel. 1995–2014 (K) 0.24 0.56 0.96 0.24 0.73 1.48 0 % +31 % +54 %
SSP1-2.6 2021–2040 rel. 1995–2014 (K) 0.41 0.63 0.89 0.40 0.67 0.97 −1 % +6 % +9 %
SSP1-2.6 2041–2060 rel. 1995–2014 (K) 0.54 0.88 1.32 0.57 0.99 1.55 +5 % +12 % +17 %
SSP1-2.6 2081–2100 rel. 1995–2014 (K) 0.51 0.90 1.48 0.47 1.02 1.81 −7 % +13 % +22 %
SSP2-4.5 2021–2040 rel. 1995–2014 (K) 0.44 0.66 0.90 0.41 0.65 0.91 −6 % −2 % +1 %
SSP2-4.5 2041–2060 rel. 1995–2014 (K) 0.78 1.12 1.57 0.72 1.09 1.57 −7 % −3 % 0 %
SSP2-4.5 2081–2100 rel. 1995–2014 (K) 1.24 1.81 2.59 1.06 1.71 2.66 −14 % −6 % +3 %
SSP3-7.0 2021–2040 rel. 1995–2014 (K) 0.45 0.67 0.92 0.41 0.64 0.89 −8 % −5 % −3 %
SSP3-7.0 2041–2060 rel. 1995–2014 (K) 0.92 1.28 1.75 0.79 1.12 1.54 −15 % −13 % −12 %
SSP3-7.0 2081–2100 rel. 1995–2014 (K) 2.00 2.76 3.75 1.63 2.31 3.18 −19 % −16 % −15 %
SSP5-8.5 2021–2040 rel. 1995–2014 (K) 0.51 0.76 1.04 0.45 0.69 0.98 −11 % −9 % −5 %
SSP5-8.5 2041–2060 rel. 1995–2014 (K) 1.08 1.54 2.08 0.94 1.37 1.97 −11 % −9 % −5 %
SSP5-8.5 2081–2100 rel. 1995–2014 (K) 2.44 3.50 4.82 2.12 3.09 4.37 −13 % −12 % −9 %
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Figure 10. Prior (blue) and reweighted posterior (red) distributions of the 45 parameters sampled. For a description of what the parameters
correspond to, refer to Table S3.

certainty in a future spread in CO2 concentrations and thus
over-constraining the uncertainty range. In addition, no other
line of evidence used by the IPCC for ranges for temperature
projections from SSP scenarios included uncertainties in the
CO2 concentrations due to differing carbon cycle feedbacks.
Second, the spread in aerosol forcing in our calibration is
larger than in CMIP6 (Smith et al., 2020) and the constrained
emulator used in the IPCC (Forster et al., 2021). Third and

most importantly, the starting point for the future scenario is
now 2023 rather than 2015, and emissions have been higher
in reality over the last 8 years than in the original SSP1-1.9
and SSP1-2.6 scenarios. The influences of the first and third
effects can be visualised by comparing the emissions and
projected concentrations of CO2, and the projected global
mean surface temperature anomalies, between v1.4.0 (dot-
ted lines) and v1.4.1 (dashed lines; Fig. 12). Figure 12a also
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Figure 11. Projections using the weighted posterior for the eight main SSP scenarios. Shaded ranges are (from dark to light) minimum to
maximum, 5 %–95 %, and 16 %–84 % of the distribution. Solid lines are distribution medians, and black lines are best-estimate historical
warming.

Figure 12. (a) CO2 emissions in calibration v1.4.1 (GCP 2023 v1.0 up to 2022, harmonised SSP projections after) in solid lines, calibration
v1.4.0 (RCMIP v5.1.0) in dotted lines. (b) Median CO2 concentration projections from v1.4.1, v1.4.0, and CMIP6 (thin lines). The range
of 5 %–95 % from v1.4.1 is shown in shaded regions. (c) Median global mean surface temperature projections from calibration v1.4.1
(solid lines), v1.4.0 (dotted lines), and v1.4.0 calibration with historical emissions extended to 2022 under SSP2-4.5 and future scenarios
harmonised from 2022 (dashed lines).

confirms that CO2 emissions in the recent past can be well-
approximated with the SSP2-4.5 scenario.

Conversely, the high-emission SSP3-7.0 and SSP5-8.5
scenarios are projected to warm less in fair-calibrate
v1.4.1 compared to the assessments in AR6 WG1 (Fig. 12c).
As for the low-emission scenarios, the high-emission sce-
narios have started to diverge from recent history for CO2
(Fig. 12a). The emission-driven projections from FaIR tend
to result in lower CO2 concentrations than in the equivalent
CMIP6 scenarios (derived using MAGICC6), likely due to

the carbon cycle sensitivities being higher in the CMIP6 cal-
ibration of MAGICC6 (Fig. 12b). We can also test the influ-
ence of different emissions with the same calibration. Fig-
ure 12c shows median warming projections from the five
main SSPs for the v1.4.0 calibration but with historical emis-
sions updated to 2022 under SSP2-4.5 and other SSPs har-
monised from a 2022 start date (dashed lines). Compar-
ing dashed and dotted lines, it can be seen that the higher-
emission scenarios are projected to warm less, and lower-
emission scenarios warm more, for a 2022 harmonisation
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compared to SSPs that started in 2015, showing the influence
of updating historical simulations for future projections.

We show the comparison to the AR6-assessed ranges for
fair-calibrate v1.4.0 in Table S4. In general, these are
closer to the IPCC assessments than for v1.4.1, particularly
for SSP warming projections, noting that the SSP emissions
start in 2015. One reason for the “narrowing” of projections
in v1.4.1 (lower scenarios are warmer; higher scenarios are
cooler) is the additional 8 years of near-constant CO2 emis-
sions for the 2015–2022 period in the harmonised scenarios
used, reducing the range of climate outcomes in 2100 that
are possible with SSP scenarios that satisfy recent historical
constraints. One important corollary of this is that median
peak warming in the updated harmonised SSP1-1.9 scenario
is 1.69 °C in calibration v1.4.1 compared to 1.57 °C in v1.4.0,
meaning that is now very unlikely that any realistic mitiga-
tion scenario could limit warming to 1.5 °C with no or low
overshoot (Dvorak et al., 2022).

5 Conclusions

This paper describes a package, fair-calibrate, that
calibrates the responses of the FaIR simple climate model to
complex Earth system models, generates a large Monte Carlo
ensemble sample, and constrains the results to observations
and expert assessments. We claim that a rigorous calibra-
tion process that produces ensemble results that are consis-
tent with historically observed climate is a necessary (though
not sufficient) condition for trustworthy future climate pro-
jections using simple climate models.

We demonstrate two calibrations in this paper: v1.4.1,
based on the most up-to-date estimates of all emitted green-
house gases and short-lived climate forcers, and v1.4.0,
which uses emission time series prepared for CMIP6 and
AR6 (but are now becoming increasingly outdated). The two
different versions presented in this paper produce notably
different future projections. The choice of calibration to use
depends on user application, and care should be taken to en-
sure the correct calibration is used for the supplied emissions.
Additional calibrations using alternative emission time se-
ries and/or constraints can be generated under similar pro-
cedures to that described in the paper and accompanying
code. Furthermore, the calibration mechanism could be ex-
tended to account for different constraints, for example, on
TCRE, the zero-emission commitment, warming rates, or fu-
ture scenario warming. Addition of further constraints should
be done with care to ensure internal consistency, particularly
when correlated with other constraints, and would likely re-
quire a larger prior ensemble size or alternative sampling
strategy.

We intend to produce operational updates to
fair-calibrate on at least an annual basis. A cal-
ibration could be updated based on new climate constraints
such as the anticipated yearly updates to Indicators of Global

Climate Change (Forster et al., 2023), new source emissions
(such as an expected update to CEDS, which will update
SLCF emissions to 2022), or new future emission scenarios
(such as those from Network for Greening the Financial
System). Operationally updated calibrations of emulators
and scenarios that reflect the latest scientific knowledge,
from which near-future warming can be assessed, will be a
beneficial tool in tracking progress towards Paris Agreement
aims.

Code and data availability. Code is available at https://github.
com/chrisroadmap/fair-calibrate (last access: 26 November 2024)
and is archived, along with intermediate and output data, at
https://doi.org/10.5281/zenodo.10566813 (Smith, 2024).
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