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Abstract. Models of glacial isostatic adjustment (GIA) play
a central role in the interpretation of various geologic and
geodetic data to understand and simulate past and future
changes in ice sheets and sea level, as well as to infer rhe-
ological properties of the deep Earth. During the past few
decades, a major advance has been the development of mod-
els that include 3D Earth structure, as opposed to 1D spher-
ically symmetric (SS) structure. However, a major limitation
in employing 3D GIA models is their high computational ex-
pense. As such, we have developed a method using artificial
neural networks (ANNs) and the Tensorflow library to pre-
dict the influence of 3D Earth models with the goal of more
affordably exploring the parameter space of these models,
specifically the radial (1D) viscosity profile to which the lat-
eral variations are added.

Our goal is to test whether the use of an ANN to produce
a fast surrogate model can accurately predict the difference
in GIA model outputs (i.e., relative sea level (RSL) and up-
lift rates) for the 3D case relative to the SS case. If so, the
surrogate model can be used with a computationally efficient
SS (Earth) GIA model to generate output that replicates that
from a 3D (Earth) GIA model. Evaluation of the surrogate
model performance for deglacial RSL indicates that it is able
to provide useful estimates of this field throughout the pa-
rameter space when trained on only ≈ 15% (≈ 50) of the
parameter vectors considered (330 in total).

We applied the surrogate model in a model–data compar-
ison exercise using RSL data distributed along the North
American coasts from the Canadian Arctic to the US Gulf
Coast. We found that the surrogate model is able to success-

fully reproduce the model–data misfit values such that the
region of minimum misfit either generally overlaps the 3D
GIA model results or is within two increments of the radial
viscosity model parameter space (defined here as lithosphere
thickness, upper-mantle viscosity, and lower-mantle viscos-
ity). The surrogate model can, therefore, be used to accu-
rately explore this aspect of the 3D Earth model parameter
space. In summary, this work demonstrates the utility of ma-
chine learning in 3D Earth GIA modelling, and so future
work to expand on this initial proof-of-concept analysis is
warranted.

1 Introduction

Global models of glacial isostatic adjustment (GIA) have
been in development since the 1970s and have several im-
portant applications (e.g., Spada, 2017; Whitehouse, 2018).
Broadly speaking, through comparison of model output to
a variety of both geological and geodetic datasets, they can
be used to improve our understanding of ice sheet and sea
level changes on decadal to 100 kyr timescales and place
constraints on the rheological properties of Earth’s mantle.
For example, geological reconstructions of relative sea level
(RSL) provide key information on past changes in regional
and global ice extent during the Quaternary (e.g., Milne,
2015). Calibrated GIA models are commonly used to predict
and remove the contribution of this process to observations of
contemporary RSL, land motion, and gravity changes. This
is done in order to better isolate signals associated with other
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processes, such as contemporary ice mass change (Shepherd
et al., 2012) or secular changes in regional hydrology (e.g.,
Steffen et al., 2008; van der Wal et al., 2008; Wang et al.,
2013).

To date, most GIA modelling studies have applied Earth
models with a spherically symmetric geometry and so only
capture variations in viscosity with depth. However, a variety
of laboratory and geophysical investigations indicate strong
lateral variability in Earth viscosity structure at all depths in
the mantle (Karato, 2008). In the past few decades, a ma-
jor improvement in the realism of GIA models has been the
development of Earth models that can accommodate later-
ally variable viscosity structures (e.g., Latychev et al., 2005;
Paulson et al., 2005; Wu, 2005; Klemann et al., 2007; Wang
et al., 2008), resulting in what are referred to as “3D” Earth
models. Since the development of these more realistic Earth
models, a number of GIA studies have shown that the influ-
ence of lateral structure is important with respect to the ap-
plications outlined above (e.g., Paulson et al., 2007; Auster-
mann et al., 2013; van der Wal et al., 2013, 2015; Kuchar
et al., 2019). Therefore, it is important to continue to apply
3D models and improve constraints on Earth viscosity struc-
ture.

A primary limitation of 3D (Earth) GIA models (here-
after simplified to “3D GIA models”) is their greater com-
putational expense, which, in addition to the much larger
parameter set associated with two additional spatial dimen-
sions within the Earth model, makes exploring the parameter
space a major challenge. As a result, determining the opti-
mal parameter set and quantifying parameter uncertainty has
not been done with any degree of rigour. The majority of
studies that have applied 3D GIA models to date have fo-
cused on considering a relatively small number of 3D Earth
viscosity models (O(1–10)) to consider the influence of the
additional two dimensions on predicting surface observables
(e.g., Whitehouse et al., 2006; van der Wal et al., 2015; Pow-
ell et al., 2021). In defining 3D models of mantle viscosity
structure, most past studies have used global and/or regional
seismic velocity models to infer lateral variability in viscos-
ity and a spherically symmetric (SS) model of viscosity vari-
ation on which to superimpose the lateral viscosity structure
(e.g., Latychev et al., 2005; Wu et al., 2013). In most studies
to date, only a handful, O(1), of these key model inputs have
been explored. In comparison, studies focusing on the appli-
cation of SS (i.e., 1D) Earth models often consider O(100)
viscosity models and/or order O(1–10) ice loading histo-
ries to explore the model parameter space and map out the
parametric uncertainty (e.g., Steffen and Kaufmann, 2005;
Love et al., 2016; Caron et al., 2017). Recent studies us-
ing 3D Earth models have considered larger parameter sets
(e.g., Bagge et al., 2021; Yousefi et al., 2021; Li et al., 2022;
Pan et al., 2022). However, they remain limited sample sets
of the complete Earth model parameter space. This incom-
plete exploration of the model parameter space is likely one
of the reasons why the quality of data : model fits based on

3D Earth models has yet to improve substantially upon those
obtained using 1D Earth models (e.g., Steffen et al., 2006;
Spada et al., 2006; van der Wal et al., 2013; Li et al., 2018;
Yousefi et al., 2021). One route to addressing this problem,
in terms of identifying an optimal parameter set, is using ad-
joint methods (Crawford et al., 2018).

The work presented here is aimed at improving our abil-
ity to explore the parameter space of 3D GIA models via the
use of a machine learning tool chain to emulate the output
from a 3D GIA model. Full emulation requires the gener-
ation of a predictive probability distribution for full model
output given model inputs. In this study, an artificial neural
network (ANN) is used to predict a single estimate of model
output for specified input, and so the term “surrogate model”
is more appropriate than “emulator”. However, we often use
the term “emulator” instead of “surrogate model” to improve
clarity and readability. This approach has been employed
successfully in other disciplines where model computational
expense has been a limiting factor in exploring the parame-
ter space (Tarasov et al., 2012; Sellevold and Vizcaino, 2021;
Williams et al., 2023). A recent study (Lin et al., 2023) ap-
plied a graph-based spherical convolutional neural network
algorithm to the GIA problem. Their focus was on emulat-
ing RSL for a single 1D Earth model for a wide range of ice
history models, which is very different from the aims of this
study. Given the high computational efficiency of the 1D GIA
model, a relatively large training set of 1200 simulations was
used in their analysis. In general, good results were obtained,
indicating the potential utility of ANN methods in GIA ap-
plications. A primary challenge for the 3D case considered
here is the much reduced computational efficiency, limiting
the number of simulations that can be performed to generate
a training set.

We view this study as developing a proof of concept that
future studies can build upon. In this regard, we have cho-
sen to focus this work on optimizing one of the key inputs
to a 3D GIA model. Specifically, for a given model of lat-
eral structure (lithosphere and seismic model) and ice load-
ing, we seek to determine whether it is possible to success-
fully emulate model output for ≈ 300 different SS refer-
ence viscosity models based on a relatively small training
set (O(10−100)) simulations). Our results indicate that suf-
ficiently precise emulation can be achieved with a training
set of≈ 40–60 simulations, resulting in computational (wall)
time saving of ≈ 85%. Given this success, we considered an
application of the emulator based on a typical GIA dataset –
geological (proxy) reconstructions of RSL – to seek an op-
timal SS reference viscosity model for our chosen models
of lateral lithosphere thickness and sub-lithosphere viscosity
variations. Our inference of the optimal SS viscosity model
parameters using the emulator is close to that inferred using
output from the numerical 3D GIA model, thus indicating
the potential of the ANNs to more efficiently search the 3D
Earth model parameter space.
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2 Experimental design and methods

Here we describe the individual components of the numeri-
cal models and overall experimental design of this investiga-
tion. We introduce, in Sect. 2.1, the individual models used,
and then we introduce the method by which model output is
processed to produce training data (Sect. 2.2). We then pro-
vide some details on the implementation and training of the
ANNs (Sect. 2.3). Finally, we outline the data used in the
proxy-data : model comparison (Sect. 2.4).

2.1 GIA models

We use two separate GIA models to compute RSL and ra-
dial displacement. Both solve the sea level equation (Far-
rell and Clark, 1976; Mitrovica and Milne, 2003; Kendall
et al., 2005) and model the solid Earth response to the load-
ing and unloading of Earth’s surface through time. They each
have equivalent feature sets with respect to the inclusion of
compressibility (Wu and Peltier, 1982), migrating shorelines
(Milne and Mitrovica, 1998; Mitrovica and Milne, 2003), and
rotational feedback (Milne and Mitrovica, 1998; Mitrovica
et al., 2005). However, the computational methods are dif-
ferent: the model that can accommodate 3D Earth structure
uses a numerical finite-volume approach (Latychev et al.,
2005), whereas the simpler and computationally less expen-
sive 1D GIA model relies on the computation of viscoelas-
tic Love numbers (Peltier, 1974) for a specified radial struc-
ture (density, elastic moduli, and viscosity). Once the Love
numbers have been computed (e.g., via a normal-mode anal-
ysis, Peltier, 1976; Mitrovica and Peltier, 1992), calculation
of various GIA observables, such as RSL, is computationally
efficient (Mitrovica and Peltier, 1991). Hereafter this model
will be referred to as the normal-mode SS model (abbreviated
to “NMSS” model). A model run with a duration equivalent
to a glacial cycle during the Late Pleistocene (approximately
100 kyr) typically requires less than 0.5core hours1 on con-
temporary computer hardware (surface resolution being a
key factor in determining the computational time). As a re-
sult of this computational efficiency, large-scale sampling of
the GIA model parameter space is feasible, with recent stud-
ies presenting results for many thousands of simulations ex-
ploring the parameter space of Earth model and ice sheet re-
constructions (e.g., Steffen and Kaufmann, 2005; Love et al.,
2016; Caron et al., 2017). The more complex and compu-
tationally expensive model that we use here – the Seakon
model of Latychev et al. (2005) – does not have the limit-
ing assumption of a spherically symmetric Earth structure.
However, this model requires ≈ 1.75core years for a typical
glacial cycle experiment, which precludes its use for gener-
ating large ensembles of model output. Contemporary inves-

1Core hours and core years are equivalent to 1 h (or 1 year) of
a CPU core at full utilization. Here, we generally use either In-
tel Xeon E5-2683 v4 Broadwell processors clocked at 2.1GHz or
AMD EPYC 7401P processors clocked at 2.0GHz.

tigations with the Seakon model are limited to ensembles of
several dozen simulations (e.g., Pan et al., 2022), and more
typically fewer than a dozen simulations.

To define a 3D viscosity structure in the Seakon model, lat-
eral viscosity variations are applied on top of a chosen spher-
ically symmetric (radial) viscosity model. Here we employ a
commonly used three-layer parameterization of this spheri-
cally symmetric viscosity structure, as in the NMSS model,
composed of a high-viscosity (i.e., elastic) lithosphere above
two regions with uniform viscosity. These two regions are the
upper mantle (base of the lithosphere to≈ 670km depth) and
lower mantle (≈ 670 to ≈ 2900km depth). Sub-lithosphere
lateral variations are applied via a set of relationships be-
tween shear-wave velocity anomalies and various depth-
dependent parameters in Latychev et al. (2005) – see their
Eqs. (27)–(29). Lateral lithosphere variations can be intro-
duced using constraints that are independent of the adopted
global seismic model (see the next section) and are repre-
sented as a viscoelastic layer of varying thickness with a very
high (1×1037 Pa·s) viscosity such that the response is essen-
tially that of an elastic material on GIA timescales.

In order to increase the number of parameter vectors (i.e.,
model runs) which can be examined with the available com-
putational resources, we use a reduced-resolution configura-
tion of the Seakon model. The reduced-resolution configura-
tion has a horizontal surface resolution of ≈ 33km and uses
≈ 6million nodes versus ≈ 15km and ≈ 17million nodes
for the default configuration. This change results in a re-
duction in the CPU time to approximately one-third of the
default configuration. Comparing the model output of RSL
using these two grids at various times indicates that the dif-
ferences are generally largest at the Last Glacial Maximum
(≈ 20000years ago; Fig. S1 in the Supplement), reaching an
amplitude of ≈ 5m, and decrease for later times. Given the
limited spatial resolution of inputs to Seakon (e.g., ice and
seismic models), we consider the lower-resolution grid to be
sufficiently accurate for the purpose of this analysis. As a
result, with Seakon we were able to explore all 330 combi-
nations of lithosphere thickness (LT), upper-mantle viscos-
ity (UMV), and lower-mantle viscosity (LMV) for which we
have calculated the required Love numbers for the NMSS
model, representing ≈ 150core years of computational re-
sources.

Despite the broad overlap in function of the Seakon and
NMSS models, they have distinct roles in this investigation.
We seek to train an ANN to simulate the difference in model
output between Earth models with 3D and SS structure. The
Seakon numerical model is used (in 3D and SS configura-
tions) to generate this model output. We use the Seakon code
in a SS configuration rather than the NMSS code to avoid
introducing any error into the calculated 3D minus 1D sig-
nal due to differences between the output of the Seakon and
NMSS codes (for the same 1D configuration). Once the ANN
is successfully trained, generating model output for a 3D
Earth model is achieved by simply adding the ANN-derived
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3D minus 1D signal to output from an efficient NMSS model
with the relevant SS structure. Thus, the Seakon model is
used to generate the training and validation data for the ANN.
The output from the NMSS model was only used to convert
the differential (3D minus 1D) signal to the full 3D signal
(for both explicitly modelled (Seakon) and emulated (ANN)
output).

2.2 Generation of model training inputs using the
Seakon numerical model

The Seakon model is used in both SS and 3D Earth model
configurations to produce the input datasets used to train the
ANNs. The SS configuration (i.e., parameters varying only
with depth) is used to compute the differential (3D minus
1D) signal. The primary configurations of the Seakon model
used in this investigation are as follows:

1. spherically symmetric (i.e., varying only with depth and
defined by three variables, LT, UMV, and LMV, as de-
fined previously);

2. spherically symmetric perturbed using S-wave veloci-
ties from the S40RTS model (S40RTS) (Ritsema et al.,
2010, plots of the relative viscosity variations in Fig. 1);

3. spherically symmetric perturbed using S-wave veloci-
ties from the S40RTS model with the addition of later-
ally variable lithosphere thickness from the LR18 litho-
sphere model (S40RTS + LR18) (Ritsema et al., 2010;
Afonso et al., 2019, plot of lithosphere model LR18 in
Fig. 1); and

4. spherically symmetric perturbed using S-wave veloci-
ties from the Savani model with the addition of lat-
erally variable lithosphere thickness from the LR18
lithosphere model (Savani + LR18) (Auer et al., 2014;
Afonso et al., 2019, plot of the relative viscosity varia-
tions in Fig. S2 in the Supplement).

The (full 3D) S40RTS + LR18 configuration is used to ex-
plore the application of ANNs considered here and in the
proxy-data : model comparison. The Savani + LR18 configu-
ration is used to examine the impact of an alternative later-
ally variable viscosity model on the ANN training and misfit
results. The semi-3D S40RTS configuration is used to exam-
ine the impact of the inclusion of a laterally variable litho-
sphere model on the ANN results via a comparison to the
S40RTS + LR18 results. The SS configuration of Seakon is
used throughout the investigation to determine the differen-
tial 3D minus SS output on which the ANNs are trained
and tested (as detailed below). Within each of the SS con-
figurations we explore the parameter space of elastic LT as
well as UMV and LMV. The ranges of the LT (71–120 km),
UMV (0.05–5×1021 Pa ·s), and LMV(1–90×1021 Pa ·s) val-
ues used in this study are in line with previous studies which
constrain these values (e.g., Lambeck et al., 2014; Roy and

Peltier, 2017). The parameter space of LT, UMV, and LMV
values is sampled using a Latin hypercube scheme with the
goal of maximizing parameter space coverage within compu-
tational resource limitations. As a result, from the combined
total of 330 realizations for each Seakon configuration (e.g.,
S40RTS + LR18), up to 63 parameter vectors were drawn
to train the ANNs, while the remainder were only used for
comparison against the emulator output. The configurations
from which the training and validation data are drawn use the
same ice loading history: ICE6G (Peltier et al., 2015; Roy
and Peltier, 2017). In total, considering both the SS and 3D
cases, the Seakon numerical model was run 1320 times for
this analysis (i.e., 330 runs for each of the four configura-
tions defined above).

Preliminary results (not shown here) indicated that emula-
tion based on the rate of change (ROC), with respect to time,
of the 3D minus SS resulted in smaller prediction misfits
compared to emulating RSL or radial displacement (RAD)
directly. Therefore, these are the model datasets considered
in the remainder of this analysis. Given that RSL is defined
as 0 m at present, we can readily recover the full time series
of the field by integrating the ROC of RSL backwards in time
from the present.

For each 3D minus SS parameter vector, we then sample
the ROC of RSL (or RAD) at 1 ° regular spacing in both lat-
itude and longitude for each model time step (from 36 ka to
present, 59 time steps in total). From each parameter vec-
tor (PV) we extract the ROC of RAD and RSL from files
constructed for model performance evaluation (or training
without any filtering). The ROC values of RAD and RSL
are concatenated across all PVs and then evaluated using the
NumPy histogram function to generate probability density
functions of the ROC of RSL and RAD. This global (with
respect to space, time, and Earth model parameters) distri-
bution is then used to resample the GIA model output data
points of each parameter vector for more effective and effi-
cient training of the ANNs. The resampling or filtering is im-
plemented such that, the most common values, i.e., those 3D
minus 1D ROC values closest to 0 mm/yr , which are largely
located in far-field regions, have their occurrence reduced by
several orders of magnitude in the training data. This filter-
ing reduces the input training dataset from ≈ 4600000 to
≈ 500000 data points per ensemble member (i.e., the LT–
UMV–LMV parameter vector for a given 3D minus 1D con-
figuration). The net result of this processing is a reduction
in the network training time and computer memory require-
ments and increased quality of fits in regions with larger (3D
minus 1D) ROC RSL or ROC RAD anomalies (i.e., near-
and intermediate-field locations). Each parameter vector re-
sults in unique input training (i.e., filtered) and comparison
(i.e., unfiltered) dataset files. These files are then combined
as required into a single data file for either training or com-
parison purposes.
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Figure 1. Panels (a) and (b) show spatial viscosity variations as log(ν3D/νSS) for two depths in the mantle, i.e., 400 and 1021km. A value
of 0 indicates that the viscosity value at that location is equivalent to the background spherically symmetric Earth model. Panel (c) shows
the lithosphere thickness distribution of the LR18 model. Note that these thickness values are scaled such that the global average thickness
is equivalent to the value specified in the SS configurations. The scaling depends on the target global value for the “reference” 1D viscosity
profile. For most cases, the scaling is less than 1, and so the values shown are significantly reduced (by ≈ 10 %–40 %).

2.3 Training of the ANNs

The training and implementation of the ANNs is accom-
plished via the Tensorflow framework (v2.8.0, Abadi et al.,
2015; TensorFlow Developers, 2022). The choice of frame-
work or library was motivated by the available support at the
high-performance computing center where the network train-
ing was conducted. We anticipate that comparable results can
be achieved with other frameworks. Using the model output
described in Sect. 2.2, we train separate ANNs for each of
the combinations of laterally variable Earth structure mod-
els (i.e., S40RTS, S40RTS + LR18, and Savani + LR18) and
ice sheet history (i.e., ICE6G). As a result, each combina-
tion of laterally variable Earth structure and ice sheet his-
tory produces a separate set of ANN weights to be used with
the emulator. The inputs to the ANNs can be grouped into
four aspects: radial viscosity model, location, ice loading,
and SS input data, more specifically (1) LT, (2) UMV, (3)
LMV, (4) longitude, (5) latitude, (6) ice thickness values and
timing for the current and four previous time steps, and (7)
ROC of RSL or RAD prediction from the SS configuration
of the Seakon model.

The prediction of the ANNs is the 3D minus 1D anomaly
for the ROC of either RSL or RAD at the location and time,
which corresponds to the input to the ANN. Prior to training,
the input dataset is split into the online training and valida-
tion sets, with 75% of the input data used for training and the
remaining 25% used for validation. As discussed, the train-
ing data are already filtered at this stage to emphasize regions
with greater amplitude signals. Within the context of model
training, the “validation set” is only used to monitor the ANN
training for evidence of overfitting and contains data from all
PVs included in the input dataset. ANN training and model
construction (i.e., specification of the size and number of hid-
den layers) is done via the Keras Application Programming
Interface. Training of an individual ANN usually requires no
more than a dozen hours of wall time using a single NVIDIA
P100 Pascal Graphics Processing Unit (GPU). The training
of a given ANN is iterated until an early stopping condition,
based on the mean square error (MSE) of the ANN prediction
against the training dataset, is activated. This early stopping
condition for RSL is set such that, if there is no improve-
ment to the MSE of at least 0.01mm2 yr−2 within 50 training
epochs, the training stops and the set of weights which re-
sult in the lowest MSE are chosen. This approach is used to
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prevent, or at least minimize, overfitting of the trained ANNs
(Chollet, 2021). We note there was no evidence of overfitting
in the training diagnostics. The choice of using ice thick-
ness values for the previous four time steps was motivated
by preliminary testing and evaluating tradeoffs with respect
to hardware limitations and quality of predictions. Generally,
providing more previous time steps to the networks resulted
in reduced misfits, but there were rapidly diminishing returns
and technical issues (largely due to memory and storage con-
straints on the hardware used for training) with adding sig-
nificantly more past time step data. Four previous time steps
were found to be a useful balance between model expense
and useful predictions.

With the Keras Application Programming Interface, we
construct multilayer perceptron feed-forward ANNs. The
structure of the ANN is composed of an input layer, eight
fully connected hidden layers of width 512, followed by eight
fully connected hidden layers of width 256, and followed by
the output layer. Between the fully connected hidden layers
are normalization layers which shift and scale their inputs
such that the resulting distribution has a mean of 0 and a stan-
dard deviation of 1. The addition of the normalization layers
helped with the convergence of the network as network depth
(i.e., model layer count) increased. A variety of ANN struc-
tures were evaluated. For example, layer counts from 2 to
20 layers and widths from 8 to 1024, in steps of 2n, were
varied using an initial test dataset. Some results from these
initial explorations are summarized in Fig. S3 in the Supple-
ment, which shows a ROC RSL MSE for ANNs with network
widths of 64 to 1024 nodes and fully connected hidden layers
(with normalization layers) between 2 and 10 nodes. Optimal
results were generally found for network widths of 512 and
1024 as well as depths of 8 or 10. The configuration out-
lined above provides a good balance between performance
and training expense. The Python scripts used for training
and implementing the ANNs and for producing various GIA
predictions are available in the Supplement.

2.4 Model–data comparison: source data and analysis
methods

For the RSL proxy-data : model comparison, we use the RSL
databases of Engelhart and Horton (2012), Love et al. (2016),
and Vacchi et al. (2018), which span the eastern North Amer-
ican coastline from the Canadian Arctic to the US Gulf
Coast. Combined, these databases contain a total of > 2500
data points (including sea level index and limiting points).
The locations of these data points are shown in Fig. S4 in the
Supplement.

In order to quantify the data : model RSL misfits, we use
the same metric as in Baril et al. (2023) for sea level index
points (SLIPs) and limiting data, which are reproduced here

for reference.

δSLIP =
1
N

√√√√√√√
N∑
n=1

(
RSLdata,n−RSLmodel,n

1RSL,n

)2

+

(
tdata,n−tmodel,n

1t,n

)2
(1)

δlimit =
1
N

√√√√ N∑
n=1

(
RSLdata,n−RSLmodel,n

1RSL,n

)2

(2)

In Eq. (1), the RSLmodel,n and tmodel,n values are the model
RSL and time value from the point of closest approach of the
model curve to the nth SLIP. However, for limiting data, the
misfit (Eq. 2) is calculated using the same time value as the
data point itself. In the case of limiting data, if the RSL curve
for a given model falls above/below a marine or terrestrial
data point within the range of dating uncertainty, then the
misfit for that data point is set to 0 (Baril et al., 2023). When
examining the total δ for a given RSL database, the following
values are provided: δSLIP, δML, δTL, and δTotal. Where δSLIP
is the value from Eq. (1) for a given SLIP database, δML and
δTL are the values from Eq. (2) for marine and terrestrial lim-
iting data, respectively, and δTotal = δSLIP+ (δML+ δTL)/2.
Contributions from limiting data are normalized by 2 since
these data only provide one-sided constraints on RSL.

3 Results and discussion

3.1 Network training and performance

In this section we determine how many parameter vectors
(LT/UMV/LMV) are required in the training set to obtain
useful predictions from the emulator (we use “emulator” here
to refer to the combination of output from the trained ANN
with output from the NMSS model). In order to estimate this
number, we construct several Seakon (3D minus 1D) ensem-
bles consisting of increasing quantities of parameter vectors
in the training dataset. These ensembles were determined us-
ing the S40RTS model to construct lateral viscosity varia-
tions in the mantle with lithosphere variations derived from
the LR18 model. Each trained ANN incorporated the same
core set of nine extreme ensemble members (i.e., members
that include LT/UMV/LMV parameter values at the begin-
ning or end of the ranges defined in Sect. 2.2). Additional
supplemental parameter vectors were added to this baseline
set, with 9, 18, 36, and 54 members each. The lowest num-
ber of nine supplemental parameter vectors was used to de-
termine whether we could accurately predict the 3D minus
SS difference as a function of LT/UMV/LMV, with only the
core parameter vector set and a single intermediate parameter
vector between each of these end-member cases (18 param-
eter vectors in total: 9 core plus 9 supplemental). From there
we doubled the supplemental set to 18 and subsequently 36.
Finally, rather than doubling the number of supplemental pa-
rameter vectors a third time, we defined an upper limit of
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54 based on the rationale that requiring a larger training set
would not be sufficiently resource-effective. Combining the
core and supplemental sets resulted in four trained networks
with N= 18, 27, 45, and 63 members, respectively. To quan-
tify the generalization of the ANNs (i.e., their accuracy with
respect to parameter vectors not in the training ensemble) as
a function of the training ensemble size, the mean square er-
ror (MSE) for each parameter vector in the LT/UMV/LMV
space is calculated. The MSE for a given parameter vector
is averaged over all locations and time steps (i.e., the full
dataset described in Sect. 2.2).

Plots of the MSE for the S40RTS + LR18 configuration
through the LT/UMV/LMV parameter space for the ROC
RSL are shown in Fig. 2 for the different training sub-
ensembles (results for N= 18 are not shown). It is notable
that the reduction in the MSE in going from N= 27 to
N= 45 is more marked compared to the change from N= 45
to N= 63. This indicates that N= 45 is close to an optimal
value in terms of performance (lowering the MSE) versus the
size of the training set. In general, throughout the parameter
space, the MSE decreases as the number of members in the
training set increases (this is particularly evident when con-
sidering the median and lowest MSE values). Furthermore,
Fig. 2 shows that the thickness of the elastic lithosphere is
generally a weak predictor of the 3D minus SS ROC RSL.
In general, regions in the parameter space that have at least
one member in the training ensemble, independent of the LT
value, have lower MSE values compared to those with none.
This finding is also supported by the input layer weights,
where LT is consistently the lowest weight input (and thus
has the lowest impact on predictions) when training ANNs.
Figure 2 also shows that the prediction accuracy for a given
parameter vector is generally larger when it is adjacent to
another that is part of the training ensemble. As such, the
distribution of training parameters is an important considera-
tion when training the ANNs. These results indicate that the
ANN has useful levels of predicative ability when consider-
ing LT/UMV/LMV values outside the training dataset.

Comparing the results in Fig. 2 to those for the other full
3D configuration, Savani + LR18 (Fig. S5 in the Supplement)
indicates that these findings are valid across different veloc-
ity models. The MSE decreases as N increases, though the
MSE does not appear to decrease with N as quickly as for
the S40RTS + LR18 configuration. The overall lateral viscos-
ity structure of the Savani + LR18 configuration is not signif-
icantly different from that of the S40RTS + LR18 configura-
tion (selected layers shown in Figs. S2 and 1). As such, it is
not immediately clear why there is a difference in MSE for
the same values of N for different 3D Earth models. How-
ever, the general success of applying this method to two fully
3D Earth models indicates that this approach should be gen-
erally applicable regardless of the adopted velocity model.
However, this preliminary conclusion should be investigated
further in future work.

Despite the MSE of the full spatiotemporal datasets be-
ing a useful metric for comparison between different ANN
architectures and training ensembles, it is of limited utility
in describing the effectiveness of a given ANN in repro-
ducing the geophysical output of interest. Therefore, plots
showing the difference between emulated output and mod-
elled output (for S40RTS + LR18) are provided for the RSL
field at 10 ka (Figs. 3 and S6 in the Supplement, for the east-
ern North America and global domains, respectively) and the
uplift rate at present (Figs. 4 and S7 in the Supplement, for
the eastern North America and global domains, respectively).
They show RSL and ROC RAD predictions for the parameter
vector, which has the median MSE from the validation (i.e.,
not used as part of the ANN training) sub-ensemble for the
N= 45 case.

Comparing the scale of the emulator : model anomaly to
the RSL field itself (Fig. 3), we see that the misfit is O(1m),
where the RSL field itself is generally O(10–100 m). The
intermediate-field region (e.g., proximal to and south of the
zero contour in Fig 3) is problematic, as the emulator : model
anomaly does not decrease with the same spatial pattern as
the RSL field itself (although it does broadly share the same
spatial pattern), and thus there is a region where the anomaly
is comparable to the RSL field itself. The spatial distribu-
tion of the emulator : model anomaly for RSL does not have
a clear source, such as the viscosity and LT variations shown
in Fig. 1. However, it is important to note that the sub-
lithosphere (lateral) viscosity variations change with depth,
and so the patterns shown are only representative within lim-
ited depth ranges. The magnitude of the pattern scales with
that of RSL, and so the ice loading history is one controlling
factor.

To complement Fig. 3, we also provide plots of the pre-
dicted RSL time series for the emulated and model-predicted
output (together with the difference) in Fig. 5. Examining
the time series data in Fig. 5, we obtain similar findings to
those of Fig. 2 in that the emulator : model misfit decreases
as the number of parameter vectors in the training dataset in-
creases in most locations (e.g., there is a decrease in perfor-
mance when N is increased from 45 to 63 at the Hudson Bay
locality). This result is generally found across ice-covered,
near-field, intermediate-field, and far-field regions. The in-
termediate field (e.g., northern South Carolina) is the most
difficult portion of the field to emulate. The results show that
≈ 45 training members are generally sufficient to reproduce
RSL using 3D Earth models for the ice-covered, near-field,
intermediate-field, and far-field regions shown here. Exami-
nation of results using fewer training members (N= 18, not
shown) also indicates that fewer training members may be
sufficient to produce acceptable results for regions with a
greater density of training data (e.g., ice-covered regions).
For the N= 18 case, misfits for Hudson Bay are on the same
order compared to the N= 45 case. We note that, depending
on the site, the difference in predicted RSL between the em-
ulator and the Seakon results is generally small (i.e., of the
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Figure 2. This plot shows the MSE (for all locations and time steps) through the parameter space (LT/UMV/LMV) for input training datasets
with N = 27 (a–c), 45 (d–f), and 63 (g–i) for the S40RTS + LR18 ROC RSL ANN. The parameter vectors included in the training dataset
are indicated by grey circles. The columns give results for the three values of global-mean elastic lithosphere thickness: 71 km (a, d, g),
96 km (b, e, h), and 120 km (c, f, i). Note that results which are anomalous and affected by technical issues for specific ensemble members
are rendered here in grey.

same scale as proxy-data uncertainties) during the Holocene,
the time interval for which the majority of RSL data exist.
Although the aims and methods of this study are quite differ-
ent from those in Lin et al. (2023), the RSL emulator errors
obtained are broadly similar (e.g., compare our results for
Hudson Bay and Barbados, respectively, to those in Fig. 2d
and e in Lin et al., 2023).

When examining the emulator : model differences (or
anomalies) for contemporary uplift rates, we find this method
to be less accurate in comparison to RSL. The anomalies are
generally of the same order of magnitude as the total mod-
elled uplift rates for most regions (Figs. 4 and S7). However,

the overall MSE results (e.g., as shown for the ROC RSL
in Fig. 2) are comparable when examined over the whole
spatiotemporal dataset, and so a performance comparable to
that for RSL is obtained for earlier time intervals (e.g., 10 ka;
Fig. S8 in the Supplement). The spatial distribution of the
emulator : model anomaly for the present-day ROC of RAD
more closely follows the overall distribution of the 3D Earth
model’s uplift field compared to the RSL results. While not
investigated here, we suggest that the poorer results for this
model output are a result of the input vector construction,
specifically the way in which the ice sheet history is encoded.
The ice sheet history comprises over half of the input vector
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Figure 3. RSL anomaly: emulated RSL field minus the explicit (3D
minus SS Seakon + NMSS) RSL field for the S40RTS + LR18 case
at 10ka. Contours denote the RSL field (from the explicit case) in
25m increments. The Earth model parameter vector used to gen-
erate these results is that with the median MSE, calculated for all
spatiotemporal data for the N= 45 case. A global map of the same
field is shown in Fig. S6.

to the ANN, and predictions of the 3D minus SS uplift dif-
ference have no change in ice sheet history within the time
range used to emulate the ROC of RAD at present (previous
four time steps; for ICE6G these are 0.5, 1.0, 1.5, and 2.0 ka).
That is, at present, the ANN has no information to distinguish
a near-field location from a far-field location when consider-
ing the input ice history data. Restricting the training data
input to the ANNs or providing alternative ice history infor-
mation (e.g., maximum ice thickness at that location within
the last 10 kyr) may provide greater ANN accuracy. Given
the relatively low accuracy of our results for contemporary
uplift rates, we do not conduct data : model comparisons in
Sect. 3.2.

Comparing the above results to those for the semi-3D
Earth model case, i.e., S40RTS with a SS lithosphere, we
find similar amplitudes of emulator : model misfit with re-
spect to contemporary uplift rates. The emulator : model mis-
fit for RSL is generally smaller for the same number of train-
ing parameter vectors for this simpler Earth model – of par-
ticular note is that performance within intermediate-field lo-
cations is improved (see Fig. S9 in the Supplement). Without
exploring additional 3D Earth models, we cannot conclude
whether this feature is a result of considering a simpler Earth
model which does not incorporate the spatially variable elas-
tic lithosphere or whether it is a limitation of our methodol-
ogy (e.g., network training or architecture). Despite this, of

Figure 4. Emulated RAD field minus the explicit (3D minus SS
Seakon + NMSS) field for the S40RTS + LR18 case at present. Con-
tours denote the total modelled ROC RAD field (from the explicit
case) in 2mmyr−1 increments; the red line denotes the 0mmyr−1

contour. The plotted parameter vector is that with the median MSE,
calculated for all spatiotemporal data for the N= 45 ANN. A global
map of the same field is shown in Fig. S7, and an equivalent map
but for 10ka is shown in Fig. S8.

the configurations tested here, we find that similar numbers
of parameter vectors are required in the training dataset to
obtain usable accuracy even for this simpler 3D Earth model.

Overall, we are able to successfully reproduce the influ-
ence of 3D Earth structures using ANNs trained using 45,
or more, parameter vectors (out of a total of 330 for the
LT/UMV/LMV values considered here) when considering
past RSL and uplift rates. However, model–emulator misfits
are generally of the same order of magnitude as the uplift
and RSL rate field when considering contemporary values.
As such, the emulator developed here has limited utility for
comparisons to contemporary uplift and RSL rates derived
from geodetic data.

Several logical extensions to the methodology applied
here became apparent over the course of this investigation.
The first extension would be to implement a probabilistic
Bayesian artificial neural network (BANN, e.g., as described
in Jospin et al., 2022). A BANN can provide estimates of
the accuracy of a given prediction. Given that any error in
the ROC of RSL or RAD propagates throughout the whole
prediction (with respect to time), this information could be
used to potentially reduce emulator : model misfits (e.g., via
a cut-off where the ANN is not employed for a given pre-
diction if the prediction confidence is too low). The second
extension would be to include a parameter, or multiple pa-
rameters, in the inputs to the ANNs such that some infor-
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Figure 5. RSL time series for near-field (Hudson Bay), intermediate-field (northern South Carolina), and far-field (Barbados) locations for
the N= 27, 45, and 63 ANN training sets. RSL curves are computed using the parameter vector corresponding to the median MSE for each
validation ensemble. As the parameter vector for the mean MSE generally varies with N, the resulting RSL curves also change.

mation about the lateral Earth structure is encoded into the
networks (e.g., scaling from seismic velocity anomaly to vis-
cosity). This would allow evaluation across multiple realiza-
tions of lateral Earth structures without the need for sep-
arately trained datasets, as was done in this investigation.
The final extension would be to train the ANNs on multi-
ple ice sheet histories in order to generalize their predictions
across variations of this input parameter (Lin et al., 2023).
Doing so requires no changes to the ANN or training data
construction, only conducting and processing of additional
Seakon simulations with multiple ice sheet histories. A brief
exploration (not shown here) using the ANNs trained on the
ICE6G ice sheet history to emulate model output correspond-
ing to the Australian National University (ANU) ice sheet re-
construction (Lambeck et al., 2014) resulted in large emula-
tor : model RSL differences. This initial test underscores the
need to train on multiple ice histories to produce more accu-
rate results. Clearly, this would represent a challenge for the
3D case due to the computational inefficiency of the forward
model.

3.2 Use of the emulator to identify the optimal SS
viscosity model

The emulator (i.e., output from the trained ANN in com-
bination with output from the NMSS model) is used here
to examine the effects of imposing 3D viscosity variations,
specifically those from the S40RTS + LR18 configuration,
on reconstructions of RSL and the associated inferences of
Earth structures. The ANNs were trained using 45 parameter
vectors, as identified in Sect. 3.1, to provide a balance be-
tween computational expense and accuracy. As part of the
validation process for the emulator and to assess the scale of
impacts resulting from emulator : model differences, we cal-
culate the model : data misfit values (Sect. 2.4) for the RSL
database described in Sect. 2.4 for three different sources of
model output: the NMSS model, the NMSS model combined
with emulated 3D minus SS output, and the NMSS model
combined with explicit 3D minus SS Seakon output. The
choice to combine NMSS model output with the emulated
3D minus SS output is an end goal of the workflow, and we
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note that the SS Seakon output is, for the purposes of cal-
culating the misfit, equivalent to that of the NMSS model.
The results of these calculations, considering the total misfit
(i.e., all RSL proxy-data types), are shown in Fig. 6. Mis-
fit values for SLIPS, the limiting data, and all the data are
shown in Fig. S10 in the Supplement for the explicit (3D mi-
nus SS + NMSS) output, with comparable misfit plots for the
emulator output in Fig. S11 in the Supplement and the NMSS
model output in Fig. S12 in the Supplement. These results in-
dicate that the total misfit values are dominated by the SLIP
and marine-limiting data for each of the three cases of model
output.

The misfit results for the NMSS model runs are used as
a baseline (or reference) for the two cases that include the
influence of lateral Earth structure (modelled via Seakon or
emulated via the ANNs). Comparing the results in the bottom
two rows of Fig. 6 to those in the top row, we find that the em-
ulator largely captures the impact of 3D viscosity structure
on the misfit values but does not result in values that are in-
distinguishable from those determined from the explicit out-
put. The emulated results are, upon visual inspection, more
similar to the explicit results than the NMSS results alone. To
quantify the effectiveness of the emulator across the entirety
of the LT/UMV/LMV parameter space, we use the MSEs of
the proxy-data : model misfit between the emulator and the
explicit data as well as between the emulator and the NMSS
data. For example, the emulator : NMSS MSE for the SLIP
data is

MSEemulator:NMSS =
1

nLTnUMVnLMV

nLT∑
LT=1

nUMV∑
UMV=1

nLMV∑
LMV=1(

δemulator
SLIP (LT,UMV,LMV)− δNMSS

SLIP (LT,UMV,LMV)
)2
, (3)

where nLT, nUMV, and nLMV are, respectively, the number of
LT, UMV, and LMV values in the explored parameter space,
and δemulator

SLIP and δNMSS
SLIP are the SLIP misfit values as de-

scribed in Sect. 2.4 for the emulator and NMSS data, respec-
tively. The MSE provides a metric which allows for com-
parison of the calculated proxy-data : model misfits for the
emulator, NMSS, and explicit results. In the ideal case of the
misfits calculated using the emulator being identical to those
from the explicit model, the emulator : explicit MSE value
would be 0. MSE values for the SLIP data demonstrate that
the emulator misfits are closer to those of the explicit model
(MSESLIP = 0.74× 10−3) than those of the NMSS model
(MSESLIP = 7.11×10−3), which can also be concluded from
Fig. 6.

Upon dividing the RSL dataset into the three regional sub-
sets Canadian Arctic–Atlantic Coast (CAAC, Vacchi et al.,
2018), US East Coast (USEC, Engelhart and Horton, 2012),
and US Gulf Coast (USGC, Hijma et al., 2015; Love et al.,
2016), we find similar results (Figs. S13, S14, and S15 in
the Supplement) to those for the whole database. Overall, the
proxy-data : model misfits calculated using the output of the

emulator are more like the explicit results than the NMSS
results alone. This result is obtained both visually and when
considering the MSE values for the emulator : explicit and
emulator : NMSS misfits. Since the emulator has more diffi-
culty in reproducing the influence of lateral Earth structures
in the intermediate field, for N= 45, compared to near- and
far-field locations (Fig. 5), it is interesting to compare the re-
sults for the USEC database (intermediate field) to the other
two. For both the near-field CAAC database and the rela-
tively distant USGC database, the MSE values of the emu-
lator : explicit misfit results are 1 to 2 orders of magnitude
smaller than the emulator : NMSS misfit. In comparison, for
the intermediate-field USEC database, the MSE values of the
emulator : explicit misfit results are the same order of magni-
tude as the emulator : NMSS misfit results.

The misfit data presented in Fig. 6 and Table 1 demon-
strate that the emulator, as employed here, is successful at re-
producing the region in the LT/UMV/LMV parameter space
which produces the lowest proxy-data : model misfits and re-
producing the relative values of proxy-data : model misfits
throughout the parameter space. For the CAAC database,
the use of the emulator results in a parameter vector with
a minimum misfit that is either the same or within two
parameter value increments (with respect to the evaluated
LT/UMV/LMV values) of the explicitly derived minimum
misfit parameters. This accuracy is also obtained when con-
sidering the combined dataset. For all the databases exam-
ined, the parameter vector which produces the minimum mis-
fit obtained by emulation is closer (in parameter space) to the
explicit 3D minus SS + NMSS case than the NMSS case. As
such, using the emulator, we are able to identify the region
of the LT/UMV/LMV parameter space that optimizes the fit
for a given lateral structure model (S40RTS + LR18), e.g., the
sub-region defined by UMV (0.1–0.3×1021 Pa · s) and LMV
(1–10×1021 Pa · s) (Fig. 6). This smaller region of parame-
ter space could then be explored using the explicit model to
more accurately determine the optimal parameter vectors.

Previous work has typically used spatially confined,
regional-scale analyses to mitigate the influence of lateral
Earth structure when using the assumption of spherical sym-
metry in the GIA model (e.g., Love et al., 2016; Yousefi et al.,
2018). The expectation is that, as spatial scales grow larger,
those Earth models which incorporate 3D structures will out-
perform SS Earth models. Examining the misfit results in
Fig. 6 and Table 1, we do not find that the 3D Earth model
considered here consistently outperforms SS Earth models
on large spatial scales. As noted in the Introduction, this has
been demonstrated in many past studies (e.g., Steffen et al.,
2006; Spada et al., 2006; van der Wal et al., 2013; Li et al.,
2018). For some cases in our results, e.g., δSLIP for the US
Gulf Coast, the 3D model produces a lower misfit in com-
parison to the SS model. However, that the 3D model results
in lower proxy-data : model misfits on regional scales is ex-
pected given that we are effectively adding at least two addi-
tional parameters to the model to find the minimum proxy-
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Table 1. Misfits for the Canadian Arctic–Atlantic Coast (Vacchi et al., 2018), US East Coast (Engelhart and Horton, 2012), and US Gulf
Coast (Hijma et al., 2015; Love et al., 2016) RSL databases broken down into the contributing misfits for sea level index points, marine-
and terrestrial-limiting, and the combined total as defined in Sect. 2.4. The lowest misfit for each of the data types (i.e., SLIP, ML, TL,
and total) and the corresponding combinations of SS lithospheric thickness (km), upper-mantle viscosity (×1021 Pa · s), and lower-mantle
viscosity (×1021 Pa · s) are given for each region. Values are given for output generated using the NMSS, emulator (ANN-derived 3D minus
SS + NMSS), and explicit (Seakon 3D minus SS + NMSS) cases. Note that the LT/UMV/LMV values for misfits of 0 in the limiting data
columns for USEC are not unique and are thus left blank.

δSLIP δML δTL δTotal

CAAC

NMSS
Minimum misfit 0.075 0.021 0.108 0.383
LT/UMV/LMV 96/0.30/2 46/0.80/5 120/0.80/90 71/0.50/2

EMU
Minimum misfit 0.184 0.334 0.564 0.944
LT/UMV/LMV 71/0.20/1 71/0.20/2 96/0.30/90 71/0.20/1

EXP
Minimum misfit 0.188 0.286 0.566 0.885
LT/UMV/LMV 71/0.20/2 71/0.30/2 120/0.80/90 71/0.20/1

US East Coast

NMSS
Minimum misfit 0.07 0 0 0.154
LT/UMV/LMV 71/3.00/50 71/3.00/90

EMU
Minimum misfit 0.064 0 0 0.125
LT/UMV/LMV 71/0.50/50 120/0.50/30

EXP
Minimum misfit 0.068 0 0 0.130
LT/UMV/LMV 71/0.30/3 120/0.80/50

US Gulf Coast

NMSS
Minimum misfit 0.164 0.188 1.688 1.613
LT/UMV/LMV 71/1.00/20 120/1.00/90 120/0.08/90 71/1.00/20

EMU
Minimum misfit 0.149 0.179 1.959 1.619
LT/UMV/LMV 96/0.05/3 120/0.80/90 120/0.08/90 96/0.05/3

EXP
Minimum misfit 0.156 0.164 1.830 1.631
LT/UMV/LMV 120/0.05/3 120/0.80/90 120/0.08/90 71/0.80/5

Combined

NMSS
Minimum misfit 0.091 0.288 0.977 0.823
LT/UMV/LMV 96/0.30/2 46/0.50/2 71/0.10/90 96/0.30/2

EMU
Minimum misfit 0.111 0.302 1.003 0.836
LT/UMV/LMV 71/0.20/5 71/0.30/3 71/0.10/90 71/0.20/1

EXP
Minimum misfit 0.103 0.273 0.969 0.823
LT/UMV/LMV 71/0.20/2 71/0.30/3 71/0.10/90 71/0.20/2

data : model misfit. Despite these findings, there are features
in Fig. 6 which can be used to guide future investigations.
For example, the distribution and number of minima through-
out the parameter space are different between the 3D and SS
Earth models. The region of minimum misfit for the 3D Earth
model is fairly broad but defines a single minimum in the
explored parameter space rather than two distinct but rela-
tively localized minima determined using the SS Earth mod-
els. There is a shift in the preferred UMV: for example, the
UMV for the minimum misfit Earth model for the USEC

δSLIP is 3× 1021 Pa · s for the SS Earth model compared to
0.3× 1021 Pa · s) for the 3D Earth model. This shows that
radial viscosity structure inferred using a SS model can be
significantly biased (e.g., Lau et al., 2018; Li et al., 2022).

Overall, the SS Earth models still result in the lowest
proxy-data : model misfits for the combined dataset. This
suggests that our inputs to the 3D GIA model are incorrect.
Given that we have investigated (in this section) only a sin-
gle realization of lateral variability (to impose on a back-
ground SS Earth model) and a single ice sheet reconstruction,
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Figure 6. Proxy-data : model misfit using the RSL database (Sect. 2.4) for the NMSS model (a–c), the emulator (EMU, d–f), and the explicit
3D minus SS RSL output from Seakon added to the NMSS RSL output (EXP, g–i). The misfit varies as a function of global-mean lithosphere
thickness from left to right. Results are for the S40RTS + LR18 3D model configuration.

it is not possible to determine which one (if any) dominates
in producing the higher-than-expected misfit results. Since
ice sheet reconstructions (like ICE6G) are developed assum-
ing a SS GIA model, it is not surprising that the SS Earth
models outperform or give a similar quality of fit to the 3D
Earth models in ice-covered areas (e.g., van der Wal et al.,
2013; Li et al., 2020). This is also the reason why the opti-
mum LT/UMV/LMV parameter set inferred here is a good
approximation to the radial viscosity model assumed when
constructing ICE6G (i.e., VM5a).

An important aim of future work will be to develop ice
sheet models that are consistent with inferred 3D Earth struc-
tures. Previous investigations (e.g., Gomez et al., 2018; van
Calcar et al., 2023) demonstrated that coupling 3D Earth

models to a dynamical ice sheet model applied to Antarc-
tica results in considerable local ice thickness changes while
not significantly impacting ice sheet volume when compared
to results for a SS Earth model. These more consistent 3D
Earth–ice model pairings would hopefully result in improved
fits to GIA-related datasets in near-field regions (compared to
the SS Earth–ice model fits). In this regard, one potentially
important extension of this work is to consider developing
an ANN that can emulate results with different ice sheet his-
tories. Lin et al. (2023) demonstrated that good results can
be obtained with a 1D Earth model, and so there is poten-
tial to consider the case of a 3D Earth model. Again, a key
challenge will be to obtain useful results in near-field regions
with a relatively small training set. If successful, such an em-
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ulator could be used in coupled GIA ice sheet modelling to
include the effect of lateral variations on Earth structure. This
would result in computation times that are equivalent to those
for coupled SS GIA–ice sheet models (i.e., ≈ 10000 times
more efficient than the reduced-resolution configuration used
in this study).

4 Conclusions

This study provides an initial proof-of-concept assessment of
using ANNs to emulate the influence of lateral Earth struc-
ture on GIA model output. We used the Tensorflow soft-
ware library to produce ANNs, implement an emulator, and
test the effectiveness of the emulator using model output
of past (deglacial) sea level change and present-day verti-
cal land motion from a 3D (Earth) GIA numerical model
and a commonly used SS (Earth) GIA model. Our goal is
to test whether the emulator can accurately predict the differ-
ence in these outputs (i.e., RSL and uplift rates) for the 3D
case relative to the SS case. We pursued this application for
three realizations of (global) lateral Earth structure (S40RTS,
S40RTS + LR18, and Savani + LR18, Ritsema et al., 2010;
Afonso et al., 2019; Auer et al., 2014) and a commonly
used ice history model (ICE6G, Peltier et al., 2015; Roy and
Peltier, 2017).

Our results indicate that the emulator : model differences,
while not negligible, are of a scale such that useful predic-
tions of deglacial RSL changes can be made. Evaluation of
the emulator performance for deglacial RSL indicates that it
is able to provide useful estimates of this field throughout
the LT/UMV/LMV parameter space when trained on only
≈ 15% (45) of the parameter vectors considered (330 in to-
tal). In contrast, results for present-day vertical land motion
are poorer, with emulator errors on a similar order to the 3D
minus SS model output. Better results when emulating ver-
tical land motion were obtained for model time steps when
ice was still present, suggesting that the performance of the
emulator (for present-day rates) could be improved by mod-
ifying inputs provided to the ANNs with respect to the input
ice history information (e.g., maximum ice thickness at that
location within the last 10 kyr and/or a time history extend-
ing beyond the past four time steps). An important extension
of this work is to consider different ice sheet models to de-
termine whether useful results can also be achieved for vari-
ations in this important GIA model parameter.

Given the relatively accurate results obtained for RSL,
we applied the emulator in a proxy-data : model compari-
son exercise using RSL data distributed along North Ameri-
can coasts, from the Canadian Arctic to the US Gulf Coast.
The goals of this data : model comparison are two-fold: to
determine whether the emulator can produce accurate mis-
fit values through the entire LT/UMV/LMV parameter space
considered and to evaluate whether the 3D Earth models can
produce improved fits compared to the SS Earth models (for

the chosen ice sheet and lateral Earth structure models). We
find that the emulator is able to successfully reproduce the
data : model misfit values such that, generally, the region of
minimum misfit either overlaps the 3D GIA model results or
is within two increments in the parameter space. The emu-
lator can, therefore, be used to more efficiently explore this
aspect of the 3D Earth model parameter space. Furthermore,
the parameter values that give the best fits for the 3D and SS
models are quite different, supporting previous work show-
ing that inferences of radial viscosity structure can be sig-
nificantly biased when assuming a SS structure. Thus, future
work on the application of ANNs to further explore the pa-
rameter space of 3D Earth models and ice sheet histories is
required.

Code and data availability. The software packages for train-
ing the artificial neural networks, model network weights,
and various utilities which comprise the emulator or surro-
gate model are available in the Supplement via Zenodo at
https://doi.org/10.5281/zenodo.10045462 (Love et al., 2023a) and
are licensed under the GNU Public License (GPL) v3. Example
datasets, for use as templates and for testing, are also included in
the Supplement. Training data for the filtered datasets are avail-
able via Zenodo at https://doi.org/10.5281/zenodo.10042047 (Love
et al., 2023b) and are licensed under the Creative Commons Attri-
bution 4.0 licence. Unfiltered training data are available only upon
request due to the large file sizes involved. Additional model output
beyond the scope of the above availability statement may be avail-
able upon request. The source codes for the GIA models used in this
study are available from the respective developers.
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