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Abstract. This paper presents the development of a stochas-
tic particle method to simulate advection in regional-scale
models with a particle-resolving aerosol representation. The
new method is based on finite-volume discretizations with
the flux terms interpreted as probabilities of particle trans-
port between grid cells. We analyze the method in 1D and
show that the stochastic particle sampling during transport
injects energy at high spatial frequencies, which can be par-
tially compensated for with the choice of a dissipative odd-
order finite-volume scheme. We then apply the stochastic
third- and fifth-order advection algorithms with monotonic
limiters in WRF-PartMC, using idealized and realistic wind
fields in 2D and 3D. In all cases we observe the expected
convergence rates of the stochastic particle method to the
finite-volume solution as the number of computational parti-
cles is increased. This work enables the use of particle-based
aerosol models on the regional scale.

1 Introduction

Aerosol particles influence the climate system as cloud con-
densation nuclei (CCN), as ice nucleating particles, and as
scatterers and absorbers of radiation (Masson-Delmotte et
al., 2021). Estimating the magnitude of the aerosol impact
on climate requires not only the information of bulk aerosol
composition and size distribution, but also the information
of the aerosol mixing state (Riemer et al., 2019), i.e., the way
the chemical species are distributed across the particle popu-
lation (Winkler, 1973). The aerosol mixing state can vary be-

tween a fully external mixture, where each particle contains
only one chemical species which can differ between different
particles, and a fully internal mixture, where each particle is
composed of the same mixture of species. In reality, the mix-
ing state is in between these two extreme cases (Bondy et
al., 2018; O’Brien et al., 2015; Ye et al., 2018; Healy et al.,
2014). Furthermore, many physical and chemical processes
change the mixing state during the aerosol’s lifetime in the
atmosphere (Li et al., 2016). Representing these processes
in models poses large challenges but is needed to predict
the aerosol climate impact (Bauer et al., 2013; Fierce et al.,
2017).

Atmospheric three-dimensional chemical transport mod-
els or Earth system models utilize a variety of aerosol rep-
resentations that differ in their levels of detail. These can
be categorized into bulk approaches (Koch, 2001; Tegen and
Miller, 1998), modal modeling approaches (Whitby and Mc-
Murry, 1997), and sectional modeling approaches (Seigneur
et al., 1986). These methods have in common that they do
not fully resolve the mixing state of the aerosol but instead
use a priori assumptions. For example, modal models assume
that each mode is internally mixed, while different modes
can differ in the set of species that they track. Sectional mod-
els capture the size dependence of aerosol composition, but
within one section only the average aerosol composition is
known. These approaches can be refined by introducing ad-
ditional modes (Bauer et al., 2008; Liu et al., 2012, 2016), ad-
ditional one-dimensional sectional distributions (Jacobson,
2002; Zhang et al., 2014), or additional dimensions to the
bin structure itself (Matsui et al., 2013; Matsui, 2016; Zhu et
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al., 2015; Ching et al., 2016), where each dimension repre-
sents one species or group of species. Comparing these more
sophisticated types of models against versions that use more
simplified mixing-state representations shows that mixing-
state approximations impact the estimation of optical and
CCN properties and contribute to the structural and paramet-
ric model uncertainties. For example, Zhu et al. (2016) per-
formed simulations with a sophisticated mixing-state-aware
model (SCRAMS) for the region of Paris, France. Different
mixing-state treatments caused differences in aerosol water
uptake, which propagated into differences in aerosol optical
depths of up to 70 %. Lee et al. (2016) carried out simula-
tions with a mixing-state-resolving (source-oriented) version
of WRF-Chem for the region of the Californian Central Val-
ley. They found a decrease in the ratio of CCN to total aerosol
number concentration from 94 % with an internal mixture as-
sumption to 80 % with a more detailed source-oriented mix-
ture. Furthermore, the range of uncertainties can depend on
the degree to which mixing state is represented. This was
shown by Matsui et al. (2018), who quantified the sensitivity
of the present-day BC direct radiative effect due to uncer-
tainties in emission size distributions. They found that the
uncertainty is 5–7 times larger when the BC mixing state is
sufficiently resolved compared to a simplified model repre-
sentation where an internal mixture is assumed.

It is important to note that the storage requirements for
multi-dimensional bin structures grow exponentially with the
number of species (the curse of dimensionality). Therefore,
in practice, the multi-dimensional bin approach is limited to
two or three dimensions, whereas the composition space of
the atmospheric aerosol contains tens or even hundreds of
species. Hence, although this model approach carries more
detail than 1D bin structures, it is still not able to resolve the
mixing state fully.

In contrast to the above-mentioned distribution-based
methods, particle-resolved methods provide a different ap-
proach to representing the atmospheric aerosol (Riemer et al.,
2009; Shima et al., 2009; Grabowski et al., 2019). They use
a collection of discrete computational particles, where each
particle can be thought of as a vector that stores the masses
of each aerosol species and other particle attributes (e.g., in-
formation about particle shape or particle source) and that
evolves over the course of the simulation. Aerosol mixing
state is therefore intrinsically resolved and does not require
any ad hoc assumptions. Furthermore, it is straightforward to
add more attributes to the particles as this does not result in
an exponential increase in storage. Instead, it scales linearly
with the number of particles. Particle methods are therefore
beneficial for problems where high-dimensional data are in-
volved as they break the curse of dimensionality.

In this paper we describe the development of stochastic ad-
vection algorithms that enable the particle-resolved aerosol
model PartMC to be used on the regional scale, embedded
within the Weather Research and Forecast (WRF) model.
While we only present the development of stochastic advec-

tion schemes based on the finite-volume methods in WRF,
the methodology described here is applicable to any finite-
volume scheme or transport scheme such as corner-transport
upwind (Colella, 1990; LeVeque, 2002) or flux-form semi-
Lagrangian (Lin and Rood, 1996, 1997) that can be found in
other host models. This paper builds on previous work of de-
veloping the stochastic, particle-resolved PartMC-MOSAIC
box model (Riemer et al., 2009; DeVille et al., 2011; Curtis
et al., 2016; DeVille et al., 2019) and the one-dimensional
single-column model WRF-PartMC-MOSAIC-SCM (Cur-
tis et al., 2017). These modeling tools have been used to
investigate the black carbon aging process (Riemer et al.,
2010; Fierce et al., 2015), to quantify the role of the mix-
ing state in determining CCN concentration (Ching et al.,
2012, 2016, 2017) and aerosol optical properties (Fierce et
al., 2016; Yao et al., 2022), and to determine structural un-
certainty in more approximate aerosol models (Fierce et al.,
2017; Zheng et al., 2021).

The methods for particle transport due to turbulent diffu-
sion described in Curtis et al. (2017) and for mean wind ad-
vection described in this paper are based on the idea that the
movement of particles between grid cells is represented by
stochastic sampling. Importantly, the particle position within
the grid cell is not tracked. This concept is therefore dis-
tinct from the particle-based Lagrangian techniques in the
cloud modeling community (Heus et al., 2010; Arabas et
al., 2015; Grabowski et al., 2018). These methods are simi-
lar to ours in that they also explicitly simulate microphysical
processes on a population of computational particles (called
super-particles in the cloud physics community), each rep-
resenting a large number of real particles. However, they are
different in that they simulate transport by tracking the super-
droplet positions within the Eulerian grid.

There are advantages and disadvantages to each method.
First, a stochastic algorithm can be constructed analogously
to the finite-volume transport schemes used in numerical
weather models and chemical transport models, as we will
show in this paper. This is beneficial for direct comparisons
of different aerosol representations, which is one of our main
motivations for developing particle-resolved aerosol models
on the regional scale. Second, stochastic methods are more
easily implemented in models that rely on different numeri-
cal grid structures, because they are based on the discretiza-
tions of the host model on the host grid. Lastly, stochas-
tic methods for transport are computationally less expensive
than tracking and updating particle positions throughout the
simulation. However, stochastic transport algorithms have
the disadvantage of numerical diffusion, similar to finite-
volume methods. This is in contrast to Lagrangian particle
tracking methods that are inherently free of numerical diffu-
sion.

The contribution of this paper is the development
of stochastic transport algorithms for advection that re-
move the modeling limitations of the single-column model
(WRF-PartMC-MOSAIC-SCM) by enabling a fully three-
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dimensional model to allow particle-resolved simulations
on the regional scale (WRF-PartMC). WRF-PartMC is a
tool for error quantification and benchmarking of traditional
chemistry-transport models (e.g., WRF-Chem or CMAQ)
that apply simplified aerosol-mixing-state representation,
without the advection schemes being a potential source of
differences.

The paper is structured as follows. Section 2 develops
the stochastic particle advection method. Section 3 analyzes
a series of four numerical experiments of increasing com-
plexity, ranging from simple one-dimensional test cases with
constant, uniform wind fields to a simulation with complex
terrain and evolving meteorological fields. Section 4 sum-
marizes our work. See Table G1 for a list of symbols used
throughout the paper.

2 Stochastic particle transport scheme

This section describes the spatial and temporal discretization
of the advection equation and then explains the stochastic
sampling algorithm for the use in particle-resolved models.
We will present the detailed derivation for one spatial di-
mension. The generalization to three dimensions in space is
straightforward and for brevity will not be explicitly writ-
ten out, although see Sect. 2.3 for notes on implementa-
tion details. In this study, we adopted the advection methods
implemented by the host model WRF, rather than explor-
ing alternative approaches. This choice ensures that future
comparisons between WRF-PartMC and other aerosol rep-
resentations in WRF-Chem will be fair and consistent. The
WRF-PartMC model was developed using WRFv3.9.1.1,
coupled with chemistry for gas scalar transport and PartMC-
MOSAIC for gas and aerosol chemistry, with an additional
interface for simulating stochastic particle transport.

2.1 Spatial and temporal discretization

The one-dimensional advection equation of a scalar quantity
with (number) concentration n(x, t) can be written as

∂n(x, t)

∂t
=−u

∂n(x, t)

∂x
, (1)

where u > 0 is the velocity of the advecting wind field (as-
sumed to be constant in time and uniform in space here), x is
the spatial coordinate, and t is time.

We discretize this equation spatially as

∂ni(t)

∂t
=−

1
1x

(
f
i+ 1

2
(t)− f

i− 1
2
(t)
)
, (2)

where1x is the grid spacing in the x coordinate, and f
i+ 1

2
(t)

and f
i− 1

2
(t) are the fluxes through the right and left grid

cell boundaries of grid cell i at time t , respectively, for
i = 0, . . .,Nx− 1.

The fluxes can be spatially discretized to different orders,
with the WRF schemes of orders 1 to 6 written as (Wicker
and Skamarock, 2002; Shu, 2009)

f 1st
i− 1

2
= uni−1, (3)

f 2nd
i− 1

2
=
u

2
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2
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6
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and similarly for the fluxes through the other boundary, f
i+ 1

2
.

We will explore the effect of using different orders of dis-
cretization in the context of stochastic particle-based advec-
tion in Sect. 3.1 and 3.2.

For the temporal discretization, we use a third-order
Runge–Kutta method, analogous to the approach in WRF
(Wicker and Skamarock, 2002), where the concentration at
time `+ 1 is calculated from the values at time ` as

n
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where 1t is the time step. The fluxes f †
i+ 1

2
, f †
i− 1

2
, f ††
i+ 1

2
, and

f
††
i− 1

2
are calculated as given in Eqs. (3)–(8), using the con-

centrations n†
i and n††

i , respectively.
Next, we will show how the discretized equations defined

above are translated to specify the probabilities of parti-
cles moving between grid cells. Although we are presenting
the method using the particular discretizations above, it is
straightforward to derive stochastic versions of other spatial
and temporal discretizations in the same way.

2.2 Stochastic sampling

To transform the method from Sect. 2.1 to a stochastic par-
ticle method, we consider a set of N`

i particles in grid cell
i at time step `. In reality, each particle will have an exact
spatial location with a well-defined x coordinate and will be
moving with constant velocity u. However, in our stochastic
method we will not track this per-particle spatial location and
instead only track the set of particles in each grid cell. This is

https://doi.org/10.5194/gmd-17-8399-2024 Geosci. Model Dev., 17, 8399–8420, 2024



8402 J. H. Curtis et al.: Stochastic advection algorithms

equivalent to the usual finite-volume method of tracking the
concentration in each grid cell, except that we are now sam-
pling the concentration with a finite set of particles, allowing
us to capture the high-dimensional variation in particle prop-
erties.

Note that the full WRF-PartMC model implementation ex-
plicitly tracks each particle in each grid cell so that it can
store additional information about each particle (particle di-
ameter, chemical constituents, etc.). In the following exposi-
tion we will not explicitly track the particles but instead will
only track the number of particles,N`

i , in each grid cell. Sec-
tion 2.4 contains further comments on translating the count-
based scheme to a true per-particle method.

To advect the particles, we relate the number of particles
in each grid cell to the concentration in that grid cell, using

n`i =
N`
i

V
, (12)

where V is the computational sampling volume within each
grid cell. We can think of V as controlling the “resolution” of
the particle sampling, and it will generally be much smaller
than the true grid cell volume.

Having computed the values of n`i for each grid cell, we
then compute the finite-volume fluxes f ††

i+ 1
2

through each

boundary from Eq. (11). This tell us that the average num-
ber of particles that should cross boundary i+ 1

2 is

F
`

i+ 1
2
= V

1t

1x
f

††
i+ 1

2
. (13)

We interpret this probabilistically to mean that each of the
N`
i particles has a probability of

p`
i+ 1

2
=

F
`

i+ 1
2

N`
i

(14)

of crossing the boundary and leaving grid cell i. We then
sample the number of particles that actually cross the bound-
ary using a binomial distribution withN`

i trials and probabil-
ity p`

i+ 1
2

to give the discrete particle flux across the boundary

to be

F `
i+ 1

2
= Binom

(
N`
i ,p

`

i+ 1
2

)
. (15)

Finally, we update the number of particles in each grid cell
according to

N`+1
i =N`

i −F
`

i+ 1
2
+F `

i− 1
2
. (16)

Note that this method obviously conserves the total number
of discrete particles, because the F `

i+ 1
2

particles that leave

grid cell i will all be transferred to grid cell i+ 1. In addi-
tion, because the mean of a binomial distribution is equal to
the number of trials times the probability of success, we see

that the average value of N1
i is exactly equal to V n1

i for the
first time step. However, because the next time step will start
from the stochastically sampled discrete value N1

i , the aver-
age value ofN2

i will not be exactly equal to the average value
of V n2

i .
Since probabilities larger than 1 are not meaningful, the

time step needs to be chosen such that the probability (14)
is less than or equal to 1. As a result, WRF-PartMC may
need to take somewhat smaller time steps than required by
the finite-difference advection in WRF.

2.3 Three-dimensional advection

The above derivation is for a one-dimensional domain, but
the extension to three dimensions is straightforward. In three
dimensions, we have a set of N`

i,j,k particles in grid cell
(i,j,k) at time step `. The fluxes are then defined as f `

i+ 1
2 ,j,k

,

f `
i,j+ 1

2 ,k
, and f `

i,j,k+ 1
2

for the fluxes through the three posi-

tive boundaries of grid cell (i,j,k), respectively. The fluxes
through the other boundaries are defined similarly. The fluxes
are then computed from a 3D finite-volume discretization,
but with the concentrations ni replaced by the number of par-
ticles N`

i,j,k . This then yields probabilities of particles cross-
ing each boundary by extending Eq. (14) from i to three
dimensions (i,j,k). However, we now have three different
probabilities, one for each boundary, corresponding to the
three different directions in which particles can move. The
time step should be chosen so that the sum of these probabil-
ities is at most 1. We then sample the number of particles that
move in each direction using a multinomial distribution with
N`
i,j,k trials and probabilities p`

i+ 1
2 ,j,k

, p`
i,j+ 1

2 ,k
, and p`

i,j,k+ 1
2

for the three directions, respectively. See Curtis et al. (2017)
for a detailed description of the multinomial sampling algo-
rithm. Finally, the number of particles in each grid cell is up-
dated by extending Eq. (16) from one dimension (i) to three
dimensions (i,j,k).

2.4 Explicit tracking of individual particles

Much of the power of a particle-based aerosol model is
the ability to track the chemical composition and poten-
tial morphology of individual particles, as is done by the
PartMC (Riemer et al., 2009) model, which explicitly tracks
a set of particles 5`i,j,k in grid cell (i,j,k) at time step `. To
apply the stochastic advection algorithm of Sect. 2.2 to such
a case, the stochastic fluxes can be computed using the total
number, N`

i,j,k , of particles in each grid cell to give F `
i+ 1

2 ,j,k
,

F `
i+ 1

2 ,j,k
, and F `

i+ 1
2 ,j,k

as the number of particles that will

cross each boundary. However, rather than simply updating
the particle counts using the fluxes, we uniformly randomly
sample F `

i+ 1
2 ,j,k

particles from the set 5`i,j,k to move across

the boundary and similarly for the other two directions. This
approach is used in the WRF-PartMC model.
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2.5 Monotonicity

It is advisable in WRF-Chem simulations to use mono-
tonic, positive-definite advection schemes (Wang et al., 2009;
Chapman et al., 2009). WRF advection schemes without lim-
iters have the tendency to overshoot as well as locally pro-
duce unrealistically low values. This is particularly problem-
atic for chemical variables that have strong gradients due to
the heterogeneity of emissions. The host WRF model fea-
tures only a fifth-order scheme for monotonic limiters. How-
ever due to the high computational expense of WRF-PartMC
and the required domain decomposition to adequately meet
that expense, we implemented third-order advection with
monotonic limiters in WRF. This implementation utilized the
existing third-order positive-definite scheme in WRF and ap-
plied the same limiter as used in the fifth-order monotonic
scheme term (Skamarock, 2006; Wang et al., 2009). We fo-
cused on third- and fifth-order advection schemes because
they combine good accuracy with some numerical dissipa-
tion at high spatial frequencies to suppress stochastic oscilla-
tions, as we will see in Sect. 3.1 and 3.2.

2.6 Mixing ratio versus concentration

Many 3D atmospheric models such as WRF track the aerosol
mixing ratio q (units of particleskg−1) rather than the num-
ber concentration n (units particlesm−3) because this re-
moves the need to adjust the tracer for changes in air density.
However, the stochastic advection algorithm described above
is based on the number concentration. In WRF-PartMC we
convert the aerosol number concentration to a mass mixing
ratio via q = n/ρ, compute mixing-ratio fluxes using WRF’s
finite-volume discretization, convert these back to number-
concentration fluxes by multiplying by ρ, and then sample
the stochastic particle transport with Eqs. (14)–(16).

2.7 Variable sampling volumes and grid cell sizes

In Sect. 2.2 we assumed that the sampling volume V is a
constant. However, in the WRF-PartMC model the sampling
volume is allowed to vary in space and time. This is done
by defining a set of V `i,j,k volumes in each grid cell (i,j,k)
at time step `, and this allows the “particle resolution” to be
adaptive to increase the accuracy while minimizing the com-
putational cost. In such simulations a target number of parti-
cles per grid cell, Np, is chosen to be a fixed value, and the
sampling volume is then adapted using a halving/doubling
procedure to maintain the actual number of particles per grid
cell close to Np (Riemer et al., 2009).

As described in detail in Curtis et al. (2017), the variable
sampling volumes mean that the number of particles that
move out of a grid cell (the particle loss) is no longer gen-
erally equal to the number of particles that move into the
neighboring cell (the particle gain). Instead, ifF `

i+ 1
2 ,j,k

parti-

cles move out of grid cell (i,j,k), then the number of parti-

cles that move into grid cell (i+1,j,k) is scaled by the ratio
of the sampling volumes. That is, the number of particles that
move into grid cell (i+ 1,j,k) is

F `
i+ 1

2 ,j,k

V `i+1,j,k

V `i,j,k

. (17)

Similarly, if the grid cells have different physical volumes
Vol`i,j,k , then the above expression must be additionally
scaled by the ratio Vol`i,j,k/Vol`i+1,j,k . The advection algo-
rithm in WRF-PartMC implements this scaling following
the method in Curtis et al. (2017), which uses a variance-
minimizing sampling algorithm that first samples the larger
of the particle loss and gain terms and then subsamples
from this to determine the other term. A potential concern
is that the repeated resampling due to varying computational
volumes, grid cell volumes, and air densities may cause
the high-dimensional information carried by particles (see
Sect. 2.4) to degenerate into overly similar representations.
For example, if the particles carry a diameter sampled from
a size distribution, the repeated resampling may cause the
particles to converge to a single diameter. In Sect. 3.4 we in-
vestigate this numerically and see that it is not a significant
issue in practice.

2.8 Computational cost

Regarding the computational costs of the finite-volume,
stochastic sampling, and Lagrangian particle tracking ap-
proaches, we consider a domain consisting of Ng grid cells
and Np computational particles per grid cell. The finite-
volume method, which only depends on the number of grid
cells, has a cost O(Ng). In contrast, the Lagrangian particle
tracking and stochastic methods depend on both the number
of grid cells and the number of particles. Therefore, these
methods scale as O(Ng×Np), but the Lagrangian method
has a higher cost as each particle must be checked and up-
dated. In contrast, the cost of the stochastic method depends
on the number of particles that actually move from one grid
cell to another, which is frequently only a small fraction of
the total number.

2.9 Comparison to Lagrangian particle tracking

With particles transported by deterministic advection there is
no variance in the final position of particles that start in the
same initial position. However, when we quantize space and
only store which grid cell a particle is in, we can no longer
move particles to the exact position where they should be
located. That is, we are forced to incur some error. In a clas-
sic bias–variance tradeoff, we could achieve zero variance by
moving all collocated particles to the same new grid cell, but
this would result in an incorrect average position of the parti-
cles and a large bias. Alternatively, as we do in this paper, we
can move some particles and not others, resulting in the cor-
rect mean velocity (zero bias) at the expense of introducing
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Figure 1. One-dimensional soft-hat test case (Sect. 3.1): a single ensemble member of the stochastic solution is shown in blue for first- to
sixth-order methods, the deterministic finite-volume solution is represented by the solid red line, and the analytical solution is shown as a
dashed black line. The stochastic solution was simulated using Np = 104 computational particles per grid cell.

variance in particle position. Consequently, some particles
will move faster and some slower than the mean velocity.
To quantify the magnitude of this effect, see the example in
Sect. 3.2 and Fig. 7.

3 Numerical experiments

The total error of a stochastic transport scheme can be
bounded by two error terms that can be evaluated indepen-
dently: (1) the stochastic error between the stochastic solu-
tion and the finite-volume solution and (2) the determinis-
tic error due to the space–time discretization of the finite-
volume scheme. That is, for a stochastic solution nstoc, a
finite-volume solution nFV, and an exact true solution ntrue,
we can write∥∥nstoc

−ntrue∥∥︸ ︷︷ ︸
total error

≤
∥∥nstoc

−nFV∥∥︸ ︷︷ ︸
stochastic error

+
∥∥nFV

−ntrue∥∥︸ ︷︷ ︸
deterministic error

. (18)

In this section we focus on the stochastic error. We do not
consider the refinement of 1x→ 0 or 1t→ 0 as it is well
understood how the finite-volume methods converge to the
true solution (deterministic error goes to zero) in these limits.

We present numerical examples of increasing complex-
ity and discuss their convergence properties as the number

of computational particles increases. Section 3.1 presents a
one-dimensional test case with a soft-hat initial condition
advected by a constant, uniform wind velocity to quantify
the convergence as the number of computational particles
increases. Section 3.2 simplifies the 1D test case to a uni-
form initial condition to study how the order of the advection
scheme impacts convergence. Section 3.3 presents an ideal-
ized two-dimensional test case for solid-body rotational flow
developed within WRF-PartMC using monotonic advection
schemes. Finally, Sect. 3.4 shows stochastic particle transport
for a realistic model domain and with realistic and evolv-
ing meteorological fields as simulated by the WRF-PartMC
model.

To quantify the accuracy of the stochastic particle-resolved
transport algorithm described above, we use the relative root
mean square error (RRMSE) between two solutions n and n′

as given by

RRMSE(n,n′)=

√∑Nx
i (ni − n

′

i)
2√∑Nx

i (n
′

i)
2

. (19)

To determine the mean and confidence intervals for the
RRMSE, we ran an ensemble of simulations with differ-
ent random seeds for the stochastic sampling algorithm. The
RRMSE was computed for each simulation run, and then the
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overall mean and standard deviation were calculated, with
the standard deviation being used to determine the 95 % con-
fidence interval for the RRMSE mean.

3.1 One-dimensional test case: soft hat advected by
uniform wind

We begin with the 1D soft-hat test case from Wicker and
Skamarock (2002), with initial condition

n(x, t = 0)= 0.5+
0.5

1+ exp80(|x−0.5|−0.15) (20)

on the periodic domain x ∈ [0,1]. Equation (20) was modi-
fied from the expression in Wicker and Skamarock (2002) to
include a background concentration so that there are some
particles everywhere throughout the domain. The uniform
velocity field was u= 1 (all quantities are taken as dimen-
sionless here). For all presented results, the number of grid
cells was Nx = 50 and the time step was 1t = 0.008, result-
ing in a Courant number of 0.4. The simulation duration was
T = 2, giving two full revolutions of the domain. Simula-
tion results were produced for first- to sixth-order advection
schemes with no limiters applied.

Figure 1 shows the solution to the soft-hat problem after
two revolutions (t = 2) for the finite-volume method and one
ensemble member of the stochastic method. Considering the
finite-volume solutions, we observe that the even-order meth-
ods (second, fourth, sixth) produce more oscillatory solu-
tions than the odd-order methods. This disparity between the
even- and odd-order methods also occurs for the stochastic
method, where the even-order solutions contain significantly
more high-frequency noise than the odd-order solutions. We
will analyze this phenomenon in more detail in Sect. 3.2.

We now turn to understanding the convergence of the
stochastic particle method as the number of particles is in-
creased. Figure 2a shows the ensemble mean error for the
particle solution compared to the finite-volume solutions for
each order of advection; i.e., this is the error due to using
a finite particle number but does not include any spatial dis-
cretization error as that is present for the stochastic and finite-
volume methods. As the number of computational particles
per grid cell, Np, increased, the solution converged to the de-
terministic finite-volume solution. The rate of convergence
for these stochastic methods is expected to be 1/

√
Np due

to the central limit theorem and is denoted by the dashed
line with slope −1/2. The stochastic error is largest for the
even-order methods and smallest for the first-order method.
In Sect. 3.2 we will show that this is because the odd-order
methods benefit from the damping of high-frequency noise,
and the first-order method has the lowest stochastic error be-
cause it has the most damping.

Figure 2b shows the ensemble mean error for the parti-
cle solution compared to the analytical solution, i.e., the to-
tal error (finite-volume error plus stochastic error). As the
number of particles increases, the ensemble mean error ap-

Figure 2. One-dimensional soft-hat test case (Sect. 3.1). (a) Rela-
tive root mean square error (RRMSE) between the stochastic parti-
cle solution and the deterministic finite-volume solution for first- to
sixth-order advection with varying number of computational parti-
cles. The dashed line shows the expected 1/

√
Np convergence rate.

(b) Relative root mean square error (RRMSE) between the particle
solution and the analytical solution for first- to sixth-order advec-
tion with varying number of computational particles per grid cell at
t = 2. Error bars denote the 95 % confidence interval as determined
from an ensemble of 25 simulations.

proaches a constant value, which is the error due to the finite-
volume discretization. No matter how many computational
particles are used, the total error cannot become smaller
than the error introduced by the finite-volume discretization.
The finite-volume error decreases in magnitude as the order
of the advection method increases. For small values of Np,
the stochastic error dominates the total error. The odd-order
methods (third- and fifth-order) have lower stochastic error
than the even-order methods, which results in the total error
converging to the finite-volume error with fewer computa-
tional particles. In contrast, the first-order method has such
a large finite-volume error, shown with the poor comparison
of the finite-volume solution to the true solution in Fig. 1,
and such a low stochastic error, shown in Fig. 2, that the
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Figure 3. One-dimensional uniform concentration advected by uniform wind: a single ensemble member of the stochastic solution is shown
in blue for first- to sixth-order methods, the deterministic finite-volume solution is represented by the solid red line, and the analytical solution
is shown as a dashed black line. The stochastic solution was simulated using Np = 104 computational particles per grid cell.

finite-volume error dominates the total error immediately. In
all cases the finite-volume error could also be reduced by
decreasing the grid cell size, following the standard conver-
gence analysis of finite-volume methods (Durran, 2010).

In summary, these results show that the stochastic error
of particle-resolved advection converges as expected with
the rate of 1/

√
Np. Conservative even-order schemes exhibit

high-frequency oscillations in the finite-volume solution that
are compounded by high-frequency noise from the stochastic
sampling. For the dissipative odd-order schemes, numerical
dissipation damps the high-frequency oscillations, as will be
shown in Sect. 3.2. We therefore recommend the use of dissi-
pative (odd-order) advection schemes. We also note that the
stochastic advection scheme will be especially useful in open
domains where we have an outflow boundary condition. In
this case, the artificial noise injected by the stochastic sam-
pling will be advected out of the domain and will not accu-
mulate.

3.2 One-dimensional test case: uniform concentration
advected by uniform wind

The difference observed in Fig. 1 between the even- and odd-
order solutions is of course due to the amount of numerical
dissipation in the methods, where the even-order methods are
conservative, while the odd-order methods have numerical

dissipation of energy at high spatial frequencies (see, e.g.,
Durran, 2010, Sect. 3.3.2–3.3.3). To understand how this in-
teracts with the stochastic particle solution, we derived a sim-
ple explicit model for the power spectrum of the stochastic
solution. The details of this derivation are given in Appen-
dices C–E. Briefly, we considered the uniform initial condi-
tion

n(x, t = 0)= 1 (21)

on the periodic domain x ∈ [0,1] with the uniform velocity
field u= 1. We used a computational volume of V = 10000,
which thus means the stochastic particle system started with
Np = 10000 particles per grid cell.

Figure 3 shows the solution to the case with uniform con-
centration and uniform wind after two revolutions for the
finite-volume method and for one ensemble member of the
stochastic method using the same parameters as for Fig. 1,
i.e., Nx = 50 grid cells and a time step of 1t = 0.008 result-
ing in a Courant number of 0.4. The exact solution to this
problem is clearly n(x, t)= 1 for all x and t , and the finite-
volume solution yields this solution exactly. However, as the
stochastic method moves particles from one grid cell to the
next, it samples a per-grid random number that is uncorre-
lated between grid cells and thus injects energy at high spa-
tial frequencies. As we will show with further analysis, this
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energy may then be dissipated by the numerical dissipation
of the spatial discretization, and the question is whether the
dissipation can effectively dampen the energy injection. To
answer this question we will derive a simple model for the
power spectrum of the stochastic solution.

We start by writing n̂k for the discrete Fourier transform
(DFT) of ni and recalling the classical fact that the power
spectrum of the spatially discretized system evolves accord-
ing to

P `+1
k = exp(Ak)P `k , (22)

where P `k = |n̂
`
k|

2 is the power at wavenumber k and time
step `, and Ak is the amplification factor at wavenumber k
(see Appendix A for details). Figure 4 shows the amplifica-
tion factors for the different spatial discretizations. From this,
we see that the even-order methods have an amplification
factor of zero at all wavenumbers, meaning that these meth-
ods are exactly conservative. In contrast, the odd-order meth-
ods have negative amplification factors at higher wavenum-
bers, showing that these methods will dissipate high-spatial-
frequency components.

To understand the interaction between the stochastic sam-
pling and the spatial discretization dissipation, Appendix D
derives a recurrence relation for the power spectrum of an
approximation to the stochastic solution:

P̃ `+1
k = exp(Ak)P̃ `k +Ek, (23)

where P̃ `k is the power at wavenumber k and time step ` of
the approximate stochastic solution Ñ , Ak is the amplifica-
tion factor of the spatial discretization, and Ek is a stochastic
excitation term (see Appendix D for details). Figure 4b plots
the excitation term, and we see that it injects energy at higher
wavenumbers, due to the uncorrelated random noise in each
grid cell from the stochastic transport. By comparing panels
(a) and (b) in Fig. 4, we see that the negative amplification
factors at high wavenumbers will tend to suppress the energy
injection.

To improve the clarity of results, we discretized withNx =

50 grid cells, a time step of1t = 0.00125, and total time T =
2 to give 1600 time steps for two revolutions, and all simu-
lations were run without limiters. Figure 5 shows the power
spectrum of the stochastic solution for third- and fourth-order
advection after 1, 100, 400, and 1600 time steps, with the
black lines showing the model prediction for the power spec-
trum (see Appendix E for details). Here we see the constant
energy injection at high wavenumbers, with the fourth-order
method steadily scaling up the power spectrum by the ex-
citation term at each time step. In contrast, the third-order
method has dissipation at higher wavenumbers which par-
tially suppresses the injected energy and eventually reaches
an equilibrium. This serves to suppress the high-frequency
noise in the solution and explains the difference between the
even- and odd-order stochastic solutions in Fig. 1.

Figure 4. One-dimensional uniform test case (Sect. 3.2). (a) Am-
plification factors, Ak , for the first- to sixth-order spatial discretiza-
tions. See Eqs. (B8)–(B13) for details. (b) Excitation term, Ek . See
Eq. (D12) for details.

This point is further emphasized in Fig. 6 where all the
stochastic methods are compared after 1600 time steps. The
conservative even-order schemes all fall on the same curve,
increasing in power at higher frequencies. For the dissipa-
tive odd-order methods, high frequencies are damped. As ex-
pected from Fig. 4, the damping was least pronounced for the
fifth-order method and most pronounced for first order. In
general, stochastic methods are less stable than their finite-
volume counterparts as the stochastic noise injects energy on
average. Conservative even-order methods are uncondition-
ally unstable due to this noise injection, because the scheme
itself will never damp any of this additional energy.

Finally, to study the effect of spatial quantization where
some particles move faster and some slower, causing vari-
ance in particle velocity and position (Sect. 2.9), let us con-
sider the following example. If we assume a constant solu-
tion at all times (as in Appendix C), then the probability that
a particle moves k grid cells is Binom(k;Nt,p), where Nt is
the number of time steps and p is the probability of moving
each step, which is equal to the Courant number. To inves-
tigate this, we refined the grid spacing and time step by a
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Figure 5. One-dimensional uniform test case (Sect. 3.2): mean power spectra for third- and fourth-order advection methods after 1, 100,
400, and 1600 time steps. The overlaid black lines indicate the model prediction for each method at each time step. Each stochastic case was
repeated 100 times to obtain the mean power spectra.

Figure 6. One-dimensional uniform test case (Sect. 3.2): power
spectra for first- to sixth-order advection methods after 1600 time
steps (two full revolutions of the system). The overlaid black lines
indicate the model predictions for each method.

factor of 10 to be 1x = 0.002 (Nx = 500) and 1t = 0.0008,
which preserves the Courant number of C = p = 0.4 of the
original simulation, and we took T = 1 (Nt = 1250) for one
revolution. Then, using the binomial distribution, the mean
number of grid cells moved in one revolution is µ=Ntp =

500, which is an exact approximation (zero bias), while the
standard deviation is σ =

√
Ntp(1−p)= 17.3. This corre-

sponds to a physical distance of xσ = σ1x = 0.035. To un-
derstand the limiting behavior, we can use Nt = T/1t and
p = C = u1t/1x to rewrite xσ as

xσ =1x

√
T

1t

u1t

1x
(1−C)=

√
T u(1−C)1x. (24)

Now consider refining the grid (1x→ 0) and time step
(1t→ 0) while keeping constant the Courant number C, the
final time T , and the velocity u. In this limit, we can see that
xσ → 0, so that the numerical diffusion of particles caused
by the stochastic method vanishes.

Figure 7 shows the numerical result of the diffusion after
one revolution for the particles originating in grid cell 250
(in blue), with the analytical binomial model shown in red.
During sampling, some particles will travel faster and some
will travel slower, resulting in the binomial distribution of
particles around the mean position.

3.3 Two-dimensional test case: Gaussian cone advected
by solid-body rotational wind field

To test the schemes in 2D, we used a scalar advection prob-
lem modified from Wicker and Skamarock (2002), where a
Gaussian cone is advected in a square domain by a prescribed
solid-body rotation flow. Simulations were conducted using
third- and fifth-order monotonic advection schemes. Figure 8
shows the initial conditions. The domain is 100× 100 nondi-
mensional units, and the velocity field is defined as u(x,y)=
−ω(y− 50) and v(x,y)= ω(x− 50), where ω = 2π

628 . We
took1x =1y = 1 and1t = 0.5, so that one full rotation re-
quires 1256 time steps. The maximum Courant number was
0.5. The initial particle mixing ratio was given as

q(x,y)=max

(
1010 exp

(
−

(
r

r0

)2
)
,10−15

)
, (25)

where r =
√
(x− 50)2+ (y− 75)2 and r0 = 6. The grid cell

average values were constructed using 5× 5 point Gaussian
quadrature.

Figure 9 shows the solution after one revolution for the
region of interest with 100, 1000, and 10 000 computational
particles per grid cell as well as the finite-volume solution. As
the number of computational particles increased, the solution
became less noisy and more similar to the finite-volume so-
lution. This is quantified in Fig. 10, which shows the error of
the particle solution compared to the finite-volume solution.
As expected, the stochastic error of the Monte Carlo method
has a rate of convergence of 1/

√
Np. As the convergence of

finite-volume solutions to the analytical solution is well stud-
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Figure 7. One-dimensional uniform test case (Sect. 3.2) for the effect of spatial quantization on the stochastic solution. (a) Initial condition
showing the uniform number concentration in all grid cells and the location of number concentration originating in grid cell 250 at about
x = 0.5. (b) Number concentration of particles originating from grid cell 250 after one revolution at time t = 1 (blue points) with the
analytical binomial model (solid red line). The vertical dashed line separates particles that moved too fast (to the right) and too slow (to the
left).

Figure 8. Two-dimensional test case (Sect. 3.3): (a) rotational wind field, (b) true solution of the Gaussian cone after one complete revolution,
and (c) true solution of the red outlined region in panel (b).

ied (Wicker and Skamarock, 2002), we do not include results
showing convergence in 1x and 1y.

3.4 Three-dimensional test case: plume transported by
WRF-simulated meteorology

For this simulation we used WRF to fully simulate the mete-
orology, resulting in an evolving velocity field in 3D. We pre-
scribed an idealized initial condition of particle mixing ratio
and gas tracer mixing ratio for the model domain of Northern
California. The gas tracer mixing ratio was used as a proxy
for the solution of the finite-volume method. The domain
comprised 170× 160× 40 grid cells, with 1x =1y = 4 km
and 1z increasing logarithmically from an average value of
55 m near the surface to 650 m near the top of the model do-
main. The model time step was set to 1t = 20 s, ensuring

that the sum of particle cell transfer probabilities did not ex-
ceed 1. For this case, an initial cloud of aerosol particle mix-
ing ratio and gas mixing ratio was determined by

qgrid(x,y,z)= (26)

max

1010 exp

−

√√√√√√√

(
x−x0
rx

)2
+

(
y−y0
ry

)2

+

(
z− z0

rz

)2


 ,10−15

 ,
where rx = ry = 6 and rz = 4, and the cloud is centered at
grid cell x0 = 75, y0 = 75, and z0 = 1. Here qgrid(x,y,z) is
specified in grid coordinates (each grid cell is a square of size
1×1×1 grid units) before being transformed to physical co-
ordinates for the simulation. Figure 11a shows the initial con-
dition described by Eq. (26) at the lowest model layer. The
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Figure 9. Two-dimensional test case (Sect. 3.3): stochastic particle solution for 100, 1000, and 10 000 computational particles per grid cell
and the finite-volume solution after one revolution for the region shown in red in Fig. 8b.

Figure 10. Two-dimensional test case (Sect. 3.3): relative root mean
square error (RRMSE) between the particle solution and the finite-
volume solution for third- and fifth-order monotonic advection. Er-
ror bars indicate the 95 % confidence interval from 10 simulations.
The black reference line indicates the theoretical convergence rate
with slope 1/

√
Np.

initial condition was advected by the dynamic meteorology
over a 12 h period beginning at 00:00 UTC on 7 June 2010
using a time step of 1t = 20 s. Meteorological initial and
boundary conditions were based on analyses from the Na-
tional Centers for Environmental Prediction’s North Amer-
ican Mesoscale Forecast System (NAM) model. The tem-
poral evolution of the wind field is shown in Fig. 11b–d in
increments of 6 h. Gases and particles are subject only to ad-
vection and do not experience turbulent diffusion or any re-
moval processes. Gas and aerosol boundary conditions were
prescribed from initial values given in Eq. (26). When flow
enters the domain at a boundary grid cell, the prescribed
value is applied. Conversely, when flow exits the domain, the
boundary grid cell assumes a zero gradient condition, consis-

tent with the host model WRF. Simulations were conducted
using third- and fifth-order monotonic advection.

Figure 12 shows the solution after 12 h for a varying num-
ber of computational particles per grid cell, with the finite-
volume solution for comparison. The simulation with 10 par-
ticles per grid cell is noisy as expected, capturing only gen-
eral features of the particle number mixing ratio. As the num-
ber of computational particles was increased, the particle
number mixing-ratio field became smoother and similar to
the finite-volume solution.

Figure 13 shows the convergence of the three-dimensional
test case for third-order monotonic advection. As the num-
ber of computational particles increased, the error when com-
pared to the finite-volume solution converged at the expected
rate of 1/

√
Np. Due to the stochastic nature of the problem,

monotonic limiters may be applied to the particle number
mixing-ratio field that does not exist in the finite-volume so-
lution. As a result, a perfect 1/

√
Np convergence rate is not

expected.
Figure 14 confirms that the stochastic solution converges

to the finite-volume solution for the three-dimensional test
case and that the variance decreases as the number of com-
putational particles increases. For reference, Fig. 14a shows
an x–y cross section of the mean mixing ratio in the lowest
model layer at t = 12 h. The mean mixing ratio was calcu-
lated by averaging the stochastic solution over five simula-
tions using Np = 100 computational particles.

Figure 14b–d show different transects through the three-
dimensional space and time. The star in Fig. 14a marks the
location of the vertical mixing-ratio profile (log-scaled) in
Fig. 14b and the time series shown in Fig. 14d. The red line
denotes the transect shown in Fig. 14c. The finite-volume so-
lution is compared to the ensemble mean of 10, 100, and
1000 computational particles with error bars denoting the
95 % confidence interval. As the number of particles in-
creased, the variance decreased and the solution converged
to the finite-volume solution.

Geosci. Model Dev., 17, 8399–8420, 2024 https://doi.org/10.5194/gmd-17-8399-2024



J. H. Curtis et al.: Stochastic advection algorithms 8411

Figure 11. Three-dimensional test case (Sect. 3.4): (a) the initial condition and (b–d) snapshots of the wind velocity field at times t = 0, 6,
and 12 h in the lowest model layer.

Figure 12. Three-dimensional test case (Sect. 3.4): lowest layer mixing ratios after 12 h of simulation for 10, 100, and 1000 computational
particles per grid cell and the deterministic finite-volume solution reference solution.

Figure 13. Three-dimensional test case (Sect. 3.4): convergence of
the relative root mean square error (RRMSE) between the stochastic
solution and the finite-volume solution as the number of computa-
tional particles per grid cell increases. Error bars show the 95 %
confidence interval from an ensemble of five simulations.

In Sect. 2.7, we discussed sampling complexities due to
different computational volumes, grid cell volumes, and air
densities. When these quantities substantially differ in adja-
cent grid cells, it could lead to undersampling of rare particle
types. In our three-dimensional example, the largest ratio in
density was 1.29, and the largest grid cell volume ratio was
1.96. For most of the grid cells, these ratios were closer to 1,
indicated by domain average ratios of 1.01 and 1.11, respec-
tively, at t = 12 h.

To investigate whether undersampling occurred in prac-
tice, we ran the same scenario but sampled the particle diam-
eter (a 1D attribute carried by particles) from a log-normal
size distribution so that rare large and small particles existed
while most computational particles resided in the center of
the size distribution. We then compared the final size distri-
butions with the initial size distributions to determine to what
extent the rare large and small particles were systematically
lost due to undersampling.

Figure 15a shows the locations for the initial and final size
distribution plots. The locations of the initial and final points
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Figure 14. Three-dimensional test case (Sect. 3.4): (a) ensemble mean mixing ratio averaged over five simulations after 12 h for the lowest
model layer with Np = 100 computational particles per grid cell; (b) vertical profile of the mixing ratio on a logarithmic scale for stochastic
solutions of Np = 10, 100, and 1000 computational particles per grid cell at x = 75 and y = 75 at time t = 12 h; (c) x transect at y = 25 for
stochastic solutions of Np = 10, 100, and 1000 computational particles per grid cell at t = 12 h; and (d) time series at x = 75 and y = 25
for Np = 10, 100, and 1000 computational particles per grid cell. The finite-volume solutions for the profile, transect, and time series are
denoted by black lines. Points show means of five simulations, and error bars denote the corresponding 95 % confidence intervals.

were chosen so that the final point is downwind of the initial
point. All grid cells were initialized with 100 computational
particles drawn from a single log-normal mode, all with a
constant geometric mean diameter and geometric standard
deviation where only the magnitude of the distribution was
adjusted. Figure 15b shows the normalized mean particle size
distribution at the initial time and the final time at two single
grid cells. Each distribution was averaged over five ensemble
runs.

As we see from Fig. 15b, the size distribution at the final
time was similar to that at the initial time, with some stochas-
tic noise. To reduce the stochastic noise, Fig. 15c shows the
normalized mean particle size distribution at the initial time
and the final time for two 15×15 grid cell patches surround-
ing the points chosen for Fig. 15b. Here the normalized size
distributions were nearly identical, indicating that the size
distribution information was not lost in the sampling proce-
dure.

4 Conclusions

In this paper we presented the development of a stochas-
tic particle advection method and demonstrated its perfor-
mance for particle-resolved atmospheric aerosol transport in
the combined WRF-PartMC model. The method is based
on finite-volume advection schemes but interprets the fluxes
as probabilities of particle transport, which can then be
stochastically sampled. We analyzed the method in the one-
dimensional setting to show that the stochastic particle sam-
pling injects noise at high spatial frequencies, and so the
method performs best when using dissipative finite-volume
discretizations, such as the third- and fifth-order schemes
used in WRF.

We applied the new method in WRF-PartMC with the ex-
isting monotonic limiter for the fifth-order scheme and a new
limiter for third order. We considered two test cases: a solid-
body rotational wind field in 2D and an atmospherically rel-
evant dynamic wind field over complex terrain in 3D. In both
cases we observed the expected rates of convergence of the
stochastic particle transport to the finite-volume solution as
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Figure 15. (a) Locations and patches where the normalized size distributions were computed. (b) Normalized size distributions at single grid
cell locations shown in panel (a) using an ensemble of five simulations. (c) Mean normalized size distributions for the 15× 15 subdomain
patches shown in panel (a). Solid blue lines show the initial distributions computed at t = 0 h and at the initial point/region, while dashed red
lines show the final distributions computed at t = 12 h and at the final point/region.

the number of computational particles per grid cell was in-
creased. For these examples, significant stochastic noise was
evident in simulations with 100 computational particles per
grid cell, but stochastic noise was found to be less than 10 %
for simulations with 1000 particles per grid cell. This is con-
sidered a reasonable number of computational particles for
large-scale WRF-PartMC simulations, as these simulations
typically use on the order of 10 000 computational particles
to accurately capture properties of the aerosol mixing state
(Gasparik et al., 2020).

The value of this work is to enable direct comparison of
particle-resolved aerosol representations to models that use
approximate aerosol representations with simplified assump-
tions regarding size and composition (e.g., internally mixed
modes or bins). Because the stochastic particle method is
based on the same finite-volume schemes used for the ap-
proximate representations, model comparisons can isolate
the differences arising due to aerosol representation. Ad-
ditionally, the new stochastic transport scheme allows the
WRF-PartMC model to be used on the regional scale to quan-
tify the impact of aerosol mixing state on climate-relevant
aerosol properties, such as aerosol absorption and CCN con-
centration, and to compare these findings to existing studies
(Matsui et al., 2013; Zhang et al., 2014; Zhu et al., 2016).

Appendix A: One-dimensional advection in the
frequency domain

To understand the behavior of the 1D deterministic and
stochastic numerical methods it is helpful to write them in
the frequency domain. To do this, we start in this section by
considering only the deterministic (finite-volume) case. We
will then extend this to the stochastic case in the next sec-
tion. We will use the vector notation

n= [n0,n1, . . .,nNx−1], (A1)
f =

[
f 1

2
,f3/2, . . .,fNx−

1
2

]
. (A2)

We assume periodicity, so ni = ni+Nx and f
i− 1

2
= f

i− 1
2+Nx

for any i. Similarly, we encode the finite-difference stencils
as vectors:

r1st
= [1,0, . . .,0], (A3)

r2nd
=

1
2
[1,0, . . .,0,1], (A4)

r3rd
=

1
6
[5,−1,0, . . .,0,2], (A5)

r4th
=

1
12
[7,−1,0, . . .,0,−1,7], (A6)

r5th
=

1
60
[47,−13,2,0, . . .,0,−3,27], (A7)

r6th
=

1
60
[37,−8,1,0, . . .,0,1,−8,37]. (A8)

This allows us to express the flux Eqs. (3)–(8) via a convolu-
tion:

f = ur ∗n, (A9)

f
i+ 1

2
= u

Nx−1∑
j=0

ri−jnj . (A10)

Next, define the finite-difference stencil

d = [1,−1,0, . . .,0] (A11)

so we can approximate the spatial derivative as

∂n

∂x
≈

1
1x

d ∗n. (A12)

Using this we can write the spatially discretized advection
Eq. (2) as

∂n

∂t
=−

1
1x

d ∗f (A13)

=−
u

1x
d ∗ r ∗n. (A14)

We denote the discrete Fourier transform (DFT) using a hat,
so n̂= F(n) and similarly for other variables, and recall that
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the DFT is given by

n̂k =

Nx−1∑
j=0

nj exp(−i2πjk/Nx), (A15)

where i is the imaginary unit. Taking the DFT of Eq. (A14)
gives

∂n̂k

∂t
=−

u

1x
dkrknk (A16)

for each wavenumber k. The solution over one time step is
then given by

n̂`+1
k = exp

(
−Cd̂k r̂k

)
n̂`k, (A17)

where C is the Courant number given by

C =
u1t

1x
. (A18)

Composing ` time steps gives the solution at time step ` as

n̂`k = exp
(
− `Cd̂k r̂k

)
n̂0
k. (A19)

To understand the numerical effect of the finite-difference
approximation we can compute the evolution of the power
spectrum of the solution. The power spectrum is given by

Pk = |n̂k|
2, (A20)

and the evolution of the power spectrum over one time step
is given by∣∣n̂`+1
k

∣∣2 = n̂`+1n̂
(`+1)∗
k (A21)

=
(

exp
(
−Cd̂k r̂k

)
n̂`k
)(

exp
(
−Cd̂k r̂k

)
n̂`k
)∗ (A22)

= exp
(
−Cd̂k r̂k

)
exp

(
−Cd̂∗k r̂

∗

k

)
n̂`kn̂

`∗
k (A23)

= exp
(
− 2CRe

(
d̂k r̂k

))∣∣n̂`k∣∣2. (A24)

The energy amplification of the method is thus given by

Ak =−2CRe
(
d̂k r̂k

)
, (A25)

and we can write the power spectrum evolution as

P `+1
k = exp(Ak)P `k . (A26)

If Ak is zero then the method conserves the energy in
wavenumber k, while negative values indicate that the
method will dissipate energy with each time step.

Appendix B: DFT of finite-difference stencils

The DFT of the finite-difference stencils d and r is found by
applying Eq. (A15) to Eq. (A11) and Eqs. (A3)–(A8). This
gives

d̂k = 1− exp(−i2πk/Nx) (B1)

and

r̂1st
k = 1, (B2)

r̂2nd
k =

1
2

(
exp(i2πk/Nx)+ 1

)
, (B3)

r̂3rd
k =

1
6

(
2exp(i2πk/Nx)+ 5− exp(−i2πk/Nx)

)
, (B4)

r̂4th
k =

1
12

(
− exp(i2π2k/Nx)+ 7exp(i2πk/Nx)

+ 7− exp(−i2πk/Nx)
)
, (B5)

r̂5th
k =

1
60

(
− 3exp(i2π2k/Nx)+ 27exp(i2πk/Nx)

+ 47− 13exp(−i2πk/Nx)

+ 2exp(−i2π2k/Nx)
)
, (B6)

r̂6th
k =

1
60

(
exp(i2π3k/Nx)− 8exp(i2π2k/Nx)

+ 37exp(i2πk/Nx)+ 37
− 8exp(−i2πk/Nx)

+ exp(−i2π2k/Nx)
)
. (B7)

The amplification Ak of the above stencils can now be found
by evaluating Eq. (A25) to give

A1st
k = C

(
− 2+ 2cos(2πk/Nx)

)
, (B8)

A2nd
k = 0, (B9)

A3rd
k =

C

3

(
− 3+ 4cos(2πk/Nx)− cos(2π2k/Nx)

)
, (B10)

A4th
k = 0, (B11)

A5th
k =

C

30

(
− 20+ 30cos(2πk/Nx)

− 12cos(2π2k/Nx)+ 2cos(2π3k/Nx)
)
, (B12)

A6th
k = 0. (B13)

Appendix C: An approximate model for particle
advection in 1D

We want to model the stochastic particle advection process as
a deterministic advection process with some additional noise.
We start by writing Eq. (15) as

F `
i+ 1

2
= Binom

(
N`
i ,p

`

i+ 1
2

)
(C1)

= E
[
F `
i+ 1

2

]
+ S`

i+ 1
2

(C2)

= p`
i+ 1

2
N`
i + S

`

i+ 1
2

(C3)

= F
`

i+ 1
2
+ S`

i+ 1
2
, (C4)

where F
`

i+ 1
2

is the deterministic mean flux and S`
i+ 1

2
is a

zero-mean random variable representing the stochastic noise,
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given by

S`
i+ 1

2
= Binom

(
N`
i ,p

`

i+ 1
2

)
−F

`

i+ 1
2
. (C5)

We approximate this stochastic noise by assuming that it is
sampled from a constant uniform particle state with exactly
N̆ particles per grid cell. From Eq. (12) we have

n̆=
N̆

V
, (C6)

and because the velocity u is constant and uniform the dis-
cretized flux is given by

f̆ ††
= un̆. (C7)

From Eqs. (13) and (14) we then have

˘F = V
1t

1x
f̆ †† (C8)

= V
1t

1x
u
N̆

V
(C9)

= CN̆, (C10)

p̆ =

˘F

N̆
(C11)

= C. (C12)

We can thus write the approximate stochastic noise by mod-
ifying Eq. (C5) to give

S̆i = Binom(N̆, p̆)− ˘F (C13)

= Binom(N̆,C)−CN̆. (C14)

We want to write the approximate stochastic model in
the frequency domain by taking a DFT. It is thus helpful to
rewrite the equations in vector form, as we did in Sect. A.
Similarly to Eqs. (A1) and (A2), we can write the particle
counts N`

i and particle fluxes F `
i− 1

2
as vectors N` and F `,

and we can also do the same for other variables such as the
average particle flux F

`

i+ 1
2

and probabilities p`
i+ 1

2
.

Using the above vector notation and the difference stencil
Eq. (A11), we can write the temporal update Eq. (16) as

N`+1
i =N`

i −F
`

i+ 1
2
+F `

i− 1
2
, (C15)

N`+1
=N`

+ d ∗F ` (C16)

=N`
+ d ∗F

`
+ d ∗ S`. (C17)

Taking the DFT now gives

N̂`+1
k = N̂`

k + d̂kF̂
`
k + d̂kŜ

`
k (C18)

≈ exp
(
−Cd̂k r̂k

)
N̂`
k + d̂kŜ

`
k (C19)

≈ exp
(
−Cd̂k r̂k

)
N̂`
k + d̂k

ˆ̆
Sk. (C20)

In Eq. (C19) we approximated the update of the determinis-
tic component with the exact solution of the deterministic ad-
vection equation, as in Eq. (A17). That is, we approximated
the Runge–Kutta time step update with the exact solution.
We then approximated the update of the stochastic compo-
nent in Eq. (C20) by using the approximate stochastic noise
S̆.

Defining Ñ to be the solution of the approximate model,
we can write the final approximate model from Eqs. (C20)
and (C14) as

ˆ̃
N`+1
k = exp

(
−Cd̂k r̂k

) ˆ̃
N`
k + d̂k

ˆ̆
Sk, (C21)

S̆i = Binom(N̆,C)−CN̆. (C22)

We observe that the approximate stochastic noise has mean
and variance given by

E[S̆i] = 0, (C23)

Var[S̆i] = C(1−C)N̆, (C24)

for all i. The initial condition for the approximate model is
given by Ñ0

i = N̆ for all i, which has DFT given by

ˆ̃
N0
k =NxN̆δk,0. (C25)

Appendix D: Recurrence relations for the first and
second moments of the approximate model

Our aim is to solve the approximate model Eqs. (C21)
and (C22) analytically. Because the process is stochastic, we
will solve for the first two moments of the particle counts
Ñ in the frequency domain, and in this section we begin by
deriving the appropriate recurrence relations.

Taking an expected value of Eq. (C21) gives the following
recurrence relation for the first moment:

E
[ ˆ̃
N`+1
k

]
= E

[
exp

(
−Cd̂k r̂k

) ˆ̃
N`
k + d̂k

ˆ̆
Sk
]

(D1)

= exp
(
−Cd̂k r̂k

)
E
[ ˆ̃
N`
k

]
+ d̂kE

[ ˆ̆
Sk
]

(D2)

= exp
(
−Cd̂k r̂k

)
E
[ ˆ̃
N`
k

]
, (D3)

where we used the fact that the stochastic noise has zero
mean.

Next we obtain a recurrence relation for the second mo-
ment of the particle counts. We use Eq. (C21) to compute

E
[ ˆ̃
N`+1
k
ˆ̃
N
(`+1)∗
k

]
= E

[(
exp

(
−Cd̂k r̂k

) ˆ̃
N`
k + d̂k

ˆ̃
Sk
)

×
(

exp
(
−Cd̂k r̂k

) ˆ̃
N`
k + d̂k

ˆ̆
Sk
)∗] (D4)

= exp
(
−Cd̂k r̂k −Cd̂

∗

k r̂
∗

k

)
E
[ ˆ̃
N`
k
ˆ̃
N`∗
k

]
+ d̂k exp

(
−Cd̂∗k r̂

∗

k

)
E
[ ˆ̃
N`
k
ˆ̆
S∗k
]

(D5)
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+ exp
(
−Cd̂k r̂k

)
d̂kE

[ ˆ̆
Sk
ˆ̃
N`∗
k

]
+ d̂k d̂

∗

kE
[ ˆ̆
Sk
ˆ̆
S∗k
]

(D6)

= exp
(
− 2CRe

(
d̂k r̂k

))
E
[ ˆ̃
N`
k
ˆ̃
N`∗
k

]
+ d̂k d̂

∗

kE
[ ˆ̆
Sk
ˆ̆
S∗k
]
. (D7)

In the final step above we used the fact that the approximate

stochastic noise, ˆ̆Sk , has zero mean and is uncorrelated with
the current solution, ˆ̃Nk , because the noise is sampled from
a fixed distribution, Eq. (C22), at each time step. This means

that E[ ˆ̃N`
k
ˆ̆
S∗k ] = E[ ˆ̆Sk

ˆ̃
N`∗
k ] = 0, and so the cross terms vanish.

To compute the expected value of the squared magnitude

of the stochastic noise, E[ ˆ̆Sk
ˆ̆
S∗k ], we use Eq. (F7) and the

statistics Eqs. (C23) and (C24) of the stochastic noise to ob-
tain

E
[ ˆ̆
Sk
ˆ̆
S∗k
]
=N2

x
∣∣E[S̆0]

∣∣2δk,0+NxVar[S̆0] (D8)

=NxC(1−C)N̆. (D9)

Substituting this into Eq. (D7) gives the recurrence relation

E
[∣∣ ˆ̃N`+1

k

∣∣2]= exp(Ak)E
[∣∣ ˆ̃N`

k

∣∣2]
+
∣∣d̂k∣∣2NxC(1−C)N̆, (D10)

where we have also used the amplification factor Ak given
by Eq. (A25).

Define the power at wavenumber k by

P̃ `k = E
[∣∣ ˆ̃N`

k

∣∣2] (D11)

and the excitation as

Ek =
∣∣d̂k∣∣2NxC(1−C)N̆, (D12)

where we can evaluate∣∣d̂k∣∣2 = 2− 2cos(2πk/Nx). (D13)

Using the above expressions we can write the final recurrence
relation for the second moment (the power) as

P̃ `+1
k = exp(Ak)P̃ `k +Ek. (D14)

The first term on the right-hand side represents the evolu-
tion of the second moment due to the discretized advection
scheme, which may preserve the second moment or dissipate
it depending on the scheme. This first term is identical to the
evolution of the power for the semi-discretization Eq. (A26).
The second term on the right-hand side represents a constant
injection of variance (energy) due to the stochastic noise.

Appendix E: Analytical solution for the moments of the
approximate model

In Appendix D we derived the recurrence relations for
the first and second moments of the approximate model.

In this section we solve these recurrence relations analyti-
cally. Starting with the first moment, the recurrence relation
Eq. (D3) has the solution

E
[ ˆ̃
N`
k

]
= exp

(
− `Cd̂k r̂k

)
E
[ ˆ̃
N0
k

]
(E1)

= exp
(
− `Cd̂k r̂k

)
NxN̆δk,0 (E2)

= exp
(
− `Cd̂0r̂0

)
NxN̆δk,0 (E3)

=NxN̆δk,0 (E4)

= E
[ ˆ̃
N0
k

]
, (E5)

where we used the initial condition Eq. (C25) and the fact
that d̂0 = 0. From this we see that the first moment of the
approximate model is constant in time and thus equal to its
initial condition. We can write this as

E
[
Ñ`
k

]
= N̆, (E6)

for all i and `. We thus see that the mean of the approximate
model is identical to the solution Eq. (A19) of the determin-
istic spatial semi-discretization Eq. (A16), which is also con-
stant for a uniform initial condition. That is, the approximate
model mean is exactly the same as the exact time integration
of the finite-volume discretization, which is consistent with
the observation that in Fig. 1 the particle solution oscillates
around the finite-volume solution.

To solve the recurrence relation for the second moment
Eq. (D14) we first recall that the linear first-order recurrence
relation

z`+1
= az`+ b (E7)

for a ∈ [0,1] has the solution

z` =

{
a`z0
+ (1− a`)z∞ if a < 1,

z0
+ `b if a = 1,

(E8)

where z0 is the initial condition and z∞ is the steady-state
solution in the decaying case, given by

z∞ =
b

1− a
. (E9)

Applying this to Eq. (D14) gives

P̃ `k =


exp(`Ak)P̃ 0

k + (1− exp(`Ak))P̃∞k
if Ak < 0,

P̃ 0
k + `Ek if Ak = 0,

(E10)

where the limiting moments are

P̃ 0
k =N

2
x N̆

2δk,0, (E11)

P̃∞k =
Ek

1− exp(Ak)
, (E12)

using Eq. (C25). To evaluate the above expression we need
the amplification factor Eqs. (B8)–(B13), the excitation
Eq. (D12), and the squared magnitude Eq. (D13).
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Appendix F: Power identity for vectors with
i.i.d. random components

Consider a vector of independent and identically distributed
(i.i.d.) random variables zi for i = 0, . . .,Nx− 1. We want to
compute the expected value of the squared magnitude of the
DFT of this vector, i.e., E

[∣∣ẑk∣∣2] for each wavenumber k.
We start by observing that E[ziz∗j ] = E[zi]E[zj ] =∣∣E[z0]

∣∣2 for i 6= j because the random variables are in-
dependent. We also have E[ziz∗i ] = E

[
|zi |

2]
= E

[
|z0|

2]
=

Var[z0] +
∣∣E[z0]

∣∣2. We can thus write

E
[
ziz
∗

j

]
=
∣∣E[z0]

∣∣2+Var[z0]δi,j , (F1)

for all i,j , where δi,j is the Kronecker delta.
We can now compute the expected value of the squared

magnitude of the DFT:

E
[
|ẑk|

2]
= E

[
ẑk ẑ
∗

k

]
(F2)

= E

[(
Nx−1∑
j=0

zj exp(−i2πjk/Nx)

)

×

(
Nx−1∑
`=0

z∗` exp(i2π`k/Nx)

)]
(F3)

=

Nx−1∑
j=0

Nx−1∑
`=0

E[zjz∗`]exp(−i2π(j − `)k/Nx) (F4)

=

Nx−1∑
j=0

Nx−1∑
`=0

(
|E[z0]|

2
+Var[z0]δj,`

)
× exp(−i2π(j − `)k/Nx) (F5)

=
∣∣E[z0]

∣∣2Nx−1∑
j=0

Nx−1∑
`=0

exp(−i2π(j − `)k/Nx)

+Var[z0]

Nx−1∑
j=0

Nx−1∑
`=0

δj,`

× exp(−i2π(j − `)k/Nx). (F6)

Consider the first term in the above expression. When k = 0
the sum is N2

x and when k 6= 0 the sum is zero because the
inner sum consists of Nx complex numbers that are spaced
around the unit circle in a symmetric fashion. Now consider
the second term. This collapses to

∑Nx−1
j=0 exp(−i2π(j −

j)k/Nx)=Nx for all k. We thus have the final expression

E
[∣∣ẑk∣∣2]=N2

x
∣∣E[z0]

∣∣2δk,0+NxVar[z0]. (F7)

We see that the power spectrum consists of a uniform com-
ponent that depends on the variance of the random variable
and a DC component that depends on the mean of the random
variable.

Appendix G: Symbols used in this paper

Table G1 lists the symbols used in this paper.

Table G1. Symbols used in this paper.

Symbol Description Reference

A Amplification factor Eq. (A25)
C Courant number Eq. (A18)
d Finite-difference derivative stencil Eq. (A11)
δ Kronecker delta Eq. (F1)
1t Time step Eqs. (9)–(11)
1x Spatial grid spacing Eq. (2)
E Excitation Eq. (D12)
f Concentration flux Eq. (2)
F Average particle flux Eq. (13)
F Discrete Fourier transform (DFT) Eq. (A15)
i Spatial grid index Eq. (2)
k Wavenumber index Eq. (A15)
` Time step index Eqs. (9)–(11)
n Number concentration Eq. (1)
n̂ DFT (discrete Fourier transform) of n Eq. (A15)
N Number of computational particles in

a grid cell
Sect. 2.2, Eq. (12)

Ñ Solution to the approximate model Eq. (C21)
ˆ̃
N DFT (discrete Fourier transform) of

Ñ

Eq. (C21)

N̆ Initial particle number for the approx-
imate model

Eq. (C6)

Np Number of computational particles
per grid cell

Eq. (2)

Nx Number of spatial grid points Eq. (2)
p Probability Eq. (14)
P Power spectrum of the semi-discrete

solution
Eq. (A20)

P̃ Power spectrum of the approximate
model solution Ñ

Eq. (D11)

5 Particle set Sect. 2.4
q Mixing ratio Sect. 2.6
r Finite-difference stencil coefficient Eqs. (A3)–(A8)
S Stochastic noise Eq. (C5)
t Time Eq. (1)
T Total simulation duration Sect. 3
u Velocity Eq. (1)
V Computational volume Eq. (12)
x Spatial coordinate Eq. (1)
y Spatial coordinate Sect. 3.3, 3.4
z Spatial coordinate or generic complex

variable
Sect. 3.4,
Appendix E, F

Code and data availability. WRF-PartMC version 1.0 is avail-
able at https://doi.org/10.5281/zenodo.10794890 (Curtis et al.,
2024a). The current version of WRF-PartMC is available at
https://github.com/open-atmos/wrf-partmc (last access: 1 Novem-
ber 2024). The Python Jupyter notebooks and WRF-PartMC sim-
ulation data to reproduce figures contained within this paper are
available at https://doi.org/10.13012/B2IDB-3847217_V2 (Curtis
et al., 2024b).
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the data analysis. MW derived the analytical equations for the 1D
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