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Abstract. The geography of changes in the fluxes of heat,
carbon, freshwater and other tracers at the sea surface is
highly uncertain and is critical to our understanding of cli-
mate change and its impacts. We present a state estimation
framework wherein prior estimates of boundary fluxes can
be adjusted to make them consistent with the evolving ocean
state. In this framework, we define a discrete set of ocean
water masses distinguished by their geographical, thermo-
dynamic and chemical properties for specific time periods.
Ocean circulation then moves these water masses in geo-
graphic space. In phase space, geographically adjacent wa-
ter masses are able to mix together, representing a conver-
gence, and air–sea property fluxes move the water masses
over time. We define an optimisation problem whose solu-
tion is constrained by the physically permissible bounds of
changes in ocean circulation, air–sea fluxes and mixing. As a
proof-of-concept implementation, we use data from a histor-
ical numerical climate model simulation with a closed heat
and salinity budget. An inverse model solution is found for
the evolution of temperature and salinity that is consistent
with “true” air–sea heat and freshwater fluxes which are in-
troduced as model priors. When biases are introduced into
the prior fluxes, the inverse model finds a solution closer to
the true fluxes. This framework, which we call the optimal
transformation method, represents a modular, relatively com-
putationally cost-effective, open-source and transparent state
estimation tool that complements existing approaches.

1 Introduction

As the climate warms, the ocean acts as a giant reservoir, ab-
sorbing excess heat (Cheng et al., 2022) and exchanging vast
amounts of biologically critical gases (Friedlingstein et al.,
2022). Accurately projecting future climate change hinges
on a deeper understanding of this exchange of properties at
the sea surface and the subsequent ocean response via mix-
ing and circulation. Estimates of past changes in air–sea ex-
change have large uncertainties, hampering efforts to accu-
rately model them. There is broad disagreement between in-
dividual atmospheric reanalysis products on the trends in air–
sea heat fluxes since the 1970s, particularly outside the equa-
torial Pacific (Cheng et al., 2022; Friedlingstein et al., 2022;
Chaudhuri et al., 2013; Bentamy et al., 2017), and these
trends in air–sea heat fluxes do not correspond to in situ ob-
servations of the change in ocean temperatures over the same
period (e.g. Valdivieso et al., 2017). The same is true for air–
sea freshwater flux products, which can deviate significantly
from one another and from observations of ocean salinity
change (Grist et al., 2016). Therefore, new techniques are
needed to translate observations of the changes in the dis-
tribution of ocean properties into estimates of the rates of
air–sea exchange, mixing and circulation.

Changes in the concentrations of key oceanic properties
such as temperature, salinity, oxygen and carbon can be mea-
sured directly. From these observations, air–sea fluxes can
be inferred by fitting a physical model of the ocean. This
is called “inverse modelling” or “state estimation” (Wun-
sch, 2006). A number of common approaches have been em-
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ployed in the past to produce oceanic state estimates, includ-
ing hindcasts, four-dimensional variational assimilation (4D-
Var), Green’s functions and water-mass-based methods.

Hindcasts are derived by taking a forward-marching nu-
merical model of the ocean, which is initialised with our best
guess of the initial distribution of ocean properties and forced
at the sea surface by observational estimates of the atmo-
spheric state, including wind, speeds, air, temperature and
humidity. This yields a physically consistent estimate of the
state of the ocean over a given time. With careful considera-
tion of model drift, hindcasts have been used to produce ac-
curate descriptions (or “state estimates”) of recent ocean tem-
perature changes, and therefore heat fluxes from hindcasts
have been interpreted as providing plausible descriptions of
recent changes (Drijfhout et al., 2014; Huguenin et al., 2022).
However, such hindcasts do not typically describe other trac-
ers such as salinity accurately without surface salinity being
restored (Griffies et al., 2009).

Four-dimensional variational assimilation (Wunsch and
Heimbach, 2007, also described as the “adjoint method”) is
a more sophisticated extension to hindcasts where, during a
model run, the state of the model is differentiated with re-
spect to initial and boundary conditions. Through iteration,
boundary and initial conditions are adjusted (in effect sys-
tematically tuned) to minimise the least-squares difference
between the model and observations, leading to as physically
consistent a model state as is feasible from which plausible
air–sea fluxes can result. Four-dimensional variational assim-
ilation is, however, computationally expensive, meaning that
simulations typically focus on the very recent past. For ex-
ample, the latest data product from the Estimating the Circu-
lation and Climate of the Ocean (ECCO) project covers the
period 1992–2017 (Forget et al., 2015). In addition, the state
estimate is closely tied to the specific numerical schemes of
the model used. For example, if the model’s resolution and
advection scheme cannot capture a boundary current accu-
rately, then no change to model boundary and initial condi-
tions can change that.

The state estimation approach we propose here is not in-
tended to be a competitor to 4D-Var but rather an alternative
approach with distinct use cases. The method we propose is
rooted in both ocean transport and water mass theory, both of
which we will review briefly in the context of state estima-
tion.

A common approach to ocean state estimation, particu-
larly in terms of ocean tracers, is to consider every point
in the ocean at time t as being a mixture of contributions
transported from other regions of the ocean at previous times
given by a Green function (GF; Haine and Hall, 2002). In
its pure form a GF provides a complete description of all as-
pects of ocean circulation and mixing. A complete GF is too
high-dimensional to be solved for using an inverse model (a
GF linking each point in space and time to each other point
in space and time would be eight-dimensional). That said,
GF-based methods have been put to practical use by assum-

ing ocean circulation is steady and by only considering the
connection between a limited number of surface patches and
interior ocean points (Khatiwala et al., 2009; Zanna et al.,
2019).

In practice, a GF is inversely fitted to a set of observational
estimates of both surface and interior concentrations or cal-
culated directly based on a steady numerical model. A sim-
ilar approach is to directly fit a so-called “transport matrix”
(Khatiwala, 2007). GF and transport matrix methods have
been used to infer transient changes in the air–sea fluxes of
properties (such as anthropogenic carbon; Mikaloff Fletcher
et al., 2006; Khatiwala et al., 2009) and to infer long-term
changes in ocean properties (such as ocean heat content;
Zanna et al., 2019; Newsom et al., 2020). In addition to
steady-state assumptions, implicit in these approaches is the
assumption that the air–sea exchange of properties is pro-
portional to the anomaly of that property at the sea surface.
These assumptions can lead to substantial errors and restrict
the range of variables that can be described (Wu and Gre-
gory, 2022). We aim to develop a method that does not rely
on these assumptions.

A water mass is typically defined as a body of wa-
ter with distinct thermodynamic and/or chemical properties.
Water-mass-based methods are rooted in the fact that only
sources and sinks of properties at the sea surface and mix-
ing can change the underlying volumetric distribution of wa-
ter masses in terms of their properties (Groeskamp et al.,
2019). For instance, adiabatic ocean circulation cannot di-
rectly change the volume of water that is warmer than a given
value. Because sources and sinks of properties and mixing
are typically far larger near the sea surface than in the deep
ocean, the properties of water masses are often thought to
indicate a common formation history.

Traditional box inverse methods (Wunsch, 1978) and their
extensions (such as the tracer contour method; Zika et al.,
2009) effectively use a water mass approach since properties
are conserved within isopycnal layers or along temperature–
salinity isocontours on isopycnals. More recently, the unique
properties of water mass transformation have been exploited
with the thermohaline inverse method (THIM). In THIM,
Groeskamp et al. (2014b) frame the inverse problem in terms
of the global conservation of volume in multiple tracer (tem-
perature and salinity) coordinates. This approach has been
extended to a regional context with the regional thermohaline
inverse method (Mackay et al., 2018). However, these meth-
ods have not been focused on inferring air–sea exchanges (in
those examples, air–sea fluxes are taken as known boundary
conditions) or investigating long-term changes.

Water-mass-based methods have been used in a number
of studies focused on understanding variability, for exam-
ple the seasonal cycle of water masses (Groeskamp et al.,
2014a; Evans et al., 2014), inter-annual variability in the
North Atlantic (Evans et al., 2017; Josey et al., 2009), long-
term changes in salinity (Zika et al., 2015a; Skliris et al.,
2016) and temperature (Sohail et al., 2021) and the ocean’s
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properties (Sohail et al., 2022; Zika et al., 2021). Here, we
will build on these studies and incorporate aspects of Green’s
function-based methods to develop a general yet relatively
simple and intuitive water-mass-based state estimation tool
for the changing ocean, termed the optimal transformation
method (OTM).

In Sect. 2 we build up the OTM state estimation framework
in the most general terms. In Sect. 3 we discuss a specific im-
plementation of OTM and test this implementation using nu-
merical model data. In Sect. 4 we present the state estimates
and sensitivity tests. In Sect. 5 we discuss the utility of the
framework and present our conclusions.

2 Optimal transformation method

2.1 Prelude

Consider a fluid with a set of conservative tracers C =

[A,B,. . .]T , where A(x, t) is a scalar describing the concen-
tration of the first tracer in space (x) and time (t), B(x, t)
is the concentration of the second, etc. By “conservative”,
we mean that, in the absence of explicit sources and sinks
of tracer substances, a parcel of fluid following fluid motion
will retain its concentration unless it is irreversibly mixed
with other fluid parcels. Furthermore, when a fluid parcel of
mass m1 with concentration C1 mixes with a fluid parcel of
massm2 with concentration C2, the resulting fluid parcel has
mass m=m1+m2 and tracer concentration

Cmix =
m1C1+m2C2

m1+m2
. (1)

For the case of only one tracer variable, any fluid parcel with
concentration Cmix can be formed from a linear combination
of two other fluid parcels with concentrations C1 and C2 so
long as C1 ≤ Cmix ≤ C2.

We now consider a description of many water masses and
many tracers. We describe an “early” set of water masses
for an early period of time being converted into a “late”
set of water masses some period of time 1t later. Let there
be sets of N early water masses with tracer concentrations
{C0,1, C0,2, . . .,C0,N } and N late water masses with {C1,1,

C1,2, . . .,C1,N }. In both cases the first subscript denotes the
point in time (early= 0; late= 1), and the second denotes the
index of the water mass corresponding to that state. To make
the mathematics as simple as possible in this section, each
water mass has the same mass,m, in the early and late states.
We will relax this constraint in the practical implementation
of the method (Sect. 3.3).

If the system is closed, the late water masses are consti-
tuted from the early water masses. That is, there is some
transport matrix whose entries gij represent the mass frac-
tion from the ith early water mass used to create the j th late

water mass. Applying mass conservation, we have

1=
N∑
i=1

gij and 1=
N∑
j=1

gij . (2)

In Zika et al. (2021), we solved for gij by minimizing the
amounts of warming and cooling water masses had to un-
dergo, in a root mean square sense, to achieve the observed
change in water mass distribution in temperature and salin-
ity coordinates (see also Evans et al., 2014). Using that ap-
proach, we were not able to make use of observational es-
timates of air–sea heat and freshwater fluxes, nor were we
able to impose physics-based constraints on mixing-driven
transformations.

Here we present a method where the influences of sources
and sinks of tracers, circulations and mixing are considered
separately, i.e. OTM. We now discuss how mixing and tracer
sources and sinks can drive transformation and modify the
water mass distribution in tracer space.

2.2 Mixing-driven transformation

Equation (1) describes a situation where two water masses
are mixed to form another water mass. More generally, late
water masses can be formed from a range of fractional contri-
butions from early water masses. If changes in tracer proper-
ties were solely due to fluid mixing, the tracer concentrations
of the late water masses would be the mass-weighted mean
of the early water masses. That is,

C1,j =

N∑
i=1

gijC0,i . (3)

The idea that the properties of the interior ocean water
masses are linear combinations of the properties of surface
or boundary water masses was used by Tomczak (1981) and
subsequent authors such as Gebbie and Huybers (2010) to
describe the origins of oceanographic water masses. Unlike
traditional water mass analysis, which considers the forma-
tion of interior water masses from boundary water masses
in steady states, we consider the formation of new water
masses from old water masses over time and the influence
that sources and sinks of tracers at the sea surface have on
that transformation.

2.3 Sources and sinks of tracers

The ocean is not a closed system. Heat and tracer substances
are exchanged at the sea surface, and interior sources and
sinks of tracers exist due to a range of biological, chem-
ical and physical processes. We will now incorporate such
sources and sinks.

The fraction of our ith early water mass which is trans-
ported to the j th late water mass can be subjected to a source
or sink of a tracer on its route from one to the other. We repre-
sent this source as an implied change in tracer concentrations
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Qij along the Lagrangian path taken by the fraction of water
gij . That is, the fraction of water (gij ) that leaves the early
water mass i with tracer concentration C0,j can be thought
of as having been changed to concentration C0,j +Qij by
the time it arrives at the late water mass j .

The late water mass j is formed from the mixture of all
the fractions of gij modified along their respective paths such
that its tracer concentration is

C1,j =

N∑
i=1

gij
(
C0,i +Qij

)
. (4)

This provides a complete description of water mass change:
the late water masses (C1,j ) are formed as the linear com-
bination of fractions (gij ) of the early water masses (C0,i),
each modified en route by sources and sinks (Qij ).

If we knew the transport and sources and sinks, we could
use Eq. (4) to predict the late state given the early state as a
forward problem. In our case, however, we will frame an in-
verse problem where we have imperfect knowledge of some
of the terms in Eq. (4).

2.4 Solving for the transport matrix and source or sink
adjustments

In practice, we do not know any of the four terms in Eq. (4)
with certainty for any tracers in the ocean. We can, however,
frame Eq. (4) as an inverse problem and adjust the terms
within it to find solutions under certain constraints. Many
different strategies could be employed depending on the con-
fidence of the user in the different terms and constraints. We
will develop and implement one approach we consider rele-
vant to understanding recent multi-decadal changes in ocean
temperature and salinity.

For heat and salt, we consider there to be relatively good
confidence in observational estimates of C1,j and C0,i ,
poorer confidence in estimates of Qij and poor to no con-
fidence in estimates of gij . The concentrations C1,j and C0,i
can be derived from ocean temperature and salinity analyses
(e.g. Good et al., 2013). These come with substantial uncer-
tainties (Cheng et al., 2022; Stammer et al., 2021) but have
the benefit of essentially being mappings of directly observed
quantities. The source or sink term Qij can be inferred from
air–sea flux products, but these come with larger uncertain-
ties. For example, heat content changes derived from tem-
perature analyses vary by order 0.1 W m−2 (e.g. 0.05 W m−2

for 1958–2019, Cheng et al., 2022), while those derived from
accumulated air–sea heat fluxes typically have biases of or-
der 1 W m−2 (e.g. 4 W m−2 for 1993–2009, Valdivieso et al.,
2017). Finally, we know of no direct way of deriving gij
from observations. Indeed, gij could be derived from a data-
constrained numerical model, but that would imply that it is
indirectly derived from the same data used for C1,j , C0,i and
Qij . We thus consider it reasonable to frame an inverse prob-
lem where C1,j and C0,i are considered “known”, priors for

Qij are provided, and gij is merely constrained to obey the
laws of physics.

We separate the sources and sinks of tracers into a “prior”
estimate and an “adjustment” such that Qij =Q

prior
ij +

Q
adjust
ij and Eq. (4) becomes

C1,j =

N∑
i=1

gij

(
C0,i +Q

prior
ij

)
+

N∑
i=1

gijQ
adjust
ij . (5)

We aim to derive a solution for gij such that Qij is as “close”

as possible to Q
prior
ij (i.e. the air–sea flux adjustment Q

adjust
ij

is as small as possible). We therefore use the following cost
function:

[cost]=
N∑
j=1

∣∣∣∣∣
∣∣∣∣∣wj

(
N∑
i=1

gij

(
C0,i +Q

prior
ij

)
−C1,j

)∣∣∣∣∣
∣∣∣∣∣
2

, (6)

where wj is a relevant weighting (see Sect. 2.5). The min-
imisation of the cost Eq. (6) combined with the constraint
Eqs. (2) and (4) is an inverse problem (hereafter “the in-
verse problem”) or, more specifically, a linear programme for
which gij can be solved using constrained linear optimisation
tools.

Physically, solving for gij using Eq. (6) implies that we
modify the early water masses with the prior source or sink
estimates and then find the geographical rearrangement and
mixing of those modified water masses that get us as close as
possible to the late water masses.

Solving for gij then leads to an estimate of the total source
or sink of the tracer experienced in transit to the late water
mass j via

N∑
i=1

gijQ
adjust
ij = C1,j −

N∑
i=1

gij

(
C0,i +Q

adjust
ij

)
. (7)

The accumulated tracer source following the fluid motion
from early water mass i to late water mass j is then Q

prior
ij +

Q
adjust
ij .
To recapitulate, we have described a method where we find

the optimal transport matrix gij using Eq. (6), and then, from
this, we find the adjustment required for tracer sources and
sinks using Eq. (7). We call this the optimal transformation
method since we are looking for the optimal way in which
the waters can be transformed to describe the evolving ocean
state given our physical constraints.

OTM is similar to a range of previous water-mass-based
inverse analyses such as Evans et al. (2014), Groeskamp et al.
(2014b) and Mackay et al. (2018) in that they attempt to solve
for a transformation rate, given existing data for the late and
early water masses and tracer sources and sinks.

In Sect. 3 we discuss the specific practical considerations
of our data inputs, the definitions of the weights (wj ) and
the numerical solution. First though we discuss some gen-
eral considerations of the choice of weights and additional
constraints.
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2.5 Consideration of weights

Solving Eq. (6) without the weight function (wj = 1) would
yield a cost function whereby sources and sinks within all
water masses are penalised equally, regardless of their geo-
graphical locations.

The purpose of wj is to favour solutions where the source
and sink adjustments are more likely. One case where this
is apparent is tracers with little or no interior source or
sink, such as conservative temperature (essentially a tracer of
heat), salinity (a tracer of freshwater) and anthropogenic trac-
ers such as chlorofluorocarbons. For such tracers, it makes
sense to not allow (or at least heavily penalise) fluxes into
tracer sources in water masses that do not outcrop. More-
over, if the flux of a tracer per unit area at the sea surface has
a known uncertainty, this could be used to derive the weights
as the product of the uncertainty per unit area and the area.
In this way, adjustments to the tracer sources would incur
a higher cost in Eq. (6) for water masses that have a small
outcrop and/or have low uncertainties in the fluxes over that
outcrop. In our toy examples and our application to data from
a climate model, we will only consider the case where the un-
certainties in the fluxes are the same in a per unit area sense,
so that the weights are proportional to the inverse of the area.

Furthermore, the weight wj can be different for different
properties. It is sensible for wj to take into account the rela-
tive effect of Q

adjust
ij on different properties in the cost func-

tion. For instance, the user may want to penalise a source of
salt, which leads to a 1 g kg−1 change in salinity more than a
source of heat, leading to a 1 K change in temperature.

2.6 Additional constraints

So far we have discussed the general case where N early
water masses are transformed intoN late water masses. Since
gij can be non-zero for all i and j , water can be transported
from any water mass on the globe to any other. Since some
of these transports will be implausible, it is appropriate to
place constraints and/or costs on certain parts of the transport
matrix gij .

Here, a range of options are possible. For example, a
“speed limit” could be defined by permitting water to only
travel a certain maximum distance over the time period 1t .
More sophisticated connectivity constraints could be im-
posed based on vertical and horizontal and/or isopycnal and
diapycnal excursions, and integrated constraints could be im-
posed based on energetic considerations. The inverse method
described is flexible and allows for such additional con-
straints to be readily added.

2.7 Toy examples

To help explain and develop an intuition for how the optimal
transformation method works and is solved, here we discuss
a number of toy examples. To make the examples as simple

Figure 1. Illustration of the method using toy examples with three
early (C0,i ) and three late (C1,j ) water masses in T –S coordinates.
The water masses occupy geographical regions given by �0,i . The
fraction of the ith early water mass that arrives in the j th late wa-
ter masses (gij ) is represented by the coloured circles, each repre-
senting one-fourth of the water mass it came from and 1/12 of the
total mass in the system. For example, in the pure mixing example,
two blue circles from early water mass 1 (i.e. half of water mass 1)
arrive in late water mass 1, so that g11 = 0.5, while one blue cir-
cle from early water mass 1 arrives at late water mass 2, so that
g12 = 0.25. Movements in the T –S space induced by sources and
sinks are shown as arrows (black: priors, Q

prior
ij

; grey: adjustments,

Q
adjust
ij

).

as possible while still allowing for a range of behaviour, only
three water masses with two conservative tracers, salinity S
(in grams per kilogram) and temperature T (in degrees Cel-
sius), are considered.

The toy examples below are illustrated in Figs. 1 (for ex-
amples 1 and 2) and 2 (for examples 3, 4 and 5).

2.7.1 Example 1: pure mixing

When there is no prior information given regarding the
sources and sinks of tracers (Qprior

ij = 0), optimisation of the
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Figure 2. As in Fig. 1 but for the remaining toy examples.

inverse problem is achieved first by mixing water masses to-
gether, and then an adjustment is applied to complete the pic-
ture.

Three water masses form a triangle in the T –S space,
initially with C0,1 = [0,34.6], C0,2 = [4,35] and C0,3 =

[0,35.4] and, at a later time, with C1,1 = [1,34.9], C1,2 =

[2,35] and C1,3 = [1,35.1]. In this case the triangle con-
tracts over time to form a smaller triangle. Equations (4) and
(2) are satisfied for Qij = 0, with gij = 0.5 when i = j and
gij = 0.25 otherwise. Here the triangle is contracted by mix-
ing the water masses together.

2.7.2 Example 2: pure sources and sinks

Now consider the case where C0,1 = [1,34.9], C0,2 =

[2,35], C0,3 = [1,35.1], C1,1 = [0,34.6], C1,2 = [4,35] and
C1,3 = [0,35.4]. Here, the triangle expands. Intuitively this
cannot be achieved by mixing, which is a convergent pro-
cess in the T –S space. Indeed, Eq. (4) could be satisfied with
Qij = 0 but only by violating Eq. (2) (effectively, the wa-

ter masses would need to be “unmixed”). With Q
prior
ij = 0, a

minimum cost (Eq. 6) is found with gij = 1 when i = j and
gij = 0 otherwise. So, the change in water masses is achieved

Geosci. Model Dev., 17, 8049–8068, 2024 https://doi.org/10.5194/gmd-17-8049-2024
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not by mixing the water masses, but instead by translating the
corners of the triangle outward via adjustment to the sources
and sinks (

∑N
i=1gijQ

adjust
ij ).

2.7.3 Example 3: sources and mixing

Now consider an example where the three initial water
masses do not change between the early and late peri-
ods with C0,1 = [1,34.9] = C1,1, C0,2 = [2,35] = C1,2 and
C0,3 = [1,35.1] = C1,3. In this case the triangle appears not
to move. Now consider prior sources or sinks such that
C0,1+Q

prior
1j = [0,34.6], C0,2+Q

prior
2j = [4,35] and C0,3+

Q
prior
3j = [0,35.4] for all j . A solution then exists with no

cost, according to Eq. (6). That is, a valid solution can be
found with mixing alone. This occurs when gij = 0.5 for
i = j and gij = 0.25 otherwise (as in the pure mixing case).
In this solution, the sources and sinks expand the triangle
and, according to the transport matrix, the water masses are
then mixed together, contracting the triangle to achieve an
unchanged water mass distribution.

2.7.4 Example 4: sources, mixing and thermohaline
circulation

Consider once again a situation where the three ini-
tial water masses are the same for the early and late
periods with C0,1 = [1,34.9], C0,2 = [2,35] and C0,3 =

[1,35.1] as well as C1,1 = [1,34.9], C1,2 = [2,35] and
C1,3 = [1,35.1]. Now consider a prior source or sink such
that C0,1+Q

prior
1j = [0,35.4], C0,2+Q

prior
2j = [0,34.6] and

C0,3+Q
prior
3j = [4,35] for all j . Again, a solution exists with

no cost (Eq. 6). However, rather than a symmetric matrix, we
have g12 = 0.5, g23 = 0.5, g31 = 0.5 and gij = 0.25. Here,
the transport matrix describes both mixing and clockwise cir-
culation of the water masses in the T –S space. The latter
circulation aspect is represented by the anti-symmetric part
of the transport matrix. If the water masses are associated
with fixed geographical regions, the anti-symmetric part of
the transport matrix represents the thermohaline component
of the geographical circulation (Zika et al., 2012).

2.7.5 Example 5: all effects

Finally, consider the case where the water masses change
in time with C0,1 = [1,34.9], C0,2 = [2,35] and C0,3 =

[1,35.1] as well as C1,1 = [2,34.9], C1,2 = [3,35] and
C1,3 = [2,35.1]. Let us assume prior sources or sinks
that describe a steady source–mixing cycle as in the pre-
vious example but do not capture the overall warming,
i.e. C0,1+Q

prior
1j = [0,35.4], C0,2+Q

prior
2j = [0,34.6] and

C0,3+Q
prior
3j = [4,35] for all j . In this case no solution exists

without a cost (Eq. 6). With the weights constant, the lowest
cost is achieved by the same transport matrix as in the source,
mixing and circulation example, with g12 = 0.5, g23 = 0.5,

g31 = 0.5 and gij = 0.25. The remaining adjustment to each
water mass (Qadjust

ij ) is then simply [0,1] for all i and j . That
is, the sources and sinks will satisfy Eq. (4) if 1 °C of warm-
ing is added to each water mass. In this example, different
weights could lead to differing distributions of the warming
across the water masses and consequent changes in the trans-
port matrix.

2.8 Summary of the optimal transformation method

In this section we have outlined a water-mass-based state
estimation framework, the optimal transformation method.
OTM relates knowledge of changing ocean tracer distribu-
tions to transient ocean transport and mixing. We propose an
inverse method based on this framework to infer minimal ad-
justments to prior estimates of tracer sources and sinks.

In the following sections we will discuss one practical im-
plementation of OTM and assess it using data from a histor-
ical climate model simulation.

3 Data and implementation

3.1 Synthetic data from a historical climate simulation

In Sect. 2, a general implementation of OTM was presented
for any set of tracers. In this work, we demonstrate an imple-
mentation of this framework by analysing changes in temper-
ature and salinity (and their associated surface fluxes of heat
and freshwater) in a climate model.

We analyse ocean conservative temperature (hereafter
temperature or T ) and ocean practical salinity (hereafter
salinity or S) from a historical simulation of the Australian
Community Climate and Earth System Simulator - Climate
Model version 2 (ACCESS-CM2) climate model, which
forms part of the Australian submission to the Climate Model
Intercomparison Project Phase 6 (CMIP6). The Modular
Ocean Model (MOM, version 5.1) is used as the ocean com-
ponent of the coupled ACCESS-CM2 model. We analyse the
three-dimensional, monthly averaged conservative tempera-
ture and practical salinity field from January 1979 to Decem-
ber 2014 (inclusive) in ACCESS-CM2. Surface fluxes Qi are
obtained from the surface heat and freshwater flux variables
(hfds and wfo), except in Sect. 4.3, where a reanalysis prod-
uct is used instead (see below). Surface flux tendencies are
obtained by time-integrating the relevant flux variables over
the period of interest and then taking a time derivative over
this period, following Sohail et al. (2021, 2022). The early
period covers the time from January 1979 to December 1987,
and the late period covers the time from January 2006 to De-
cember 2014.

Temperature and salinity exhibit a long-term climate drift
in ACCESS-CM2 (further explored by Irving et al., 2020).
Despite this long-term drift, the heat and freshwater budgets
close in the model (that is, the globally integrated cumulative
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surface flux is equal to the ocean heat and freshwater content
change). Provided the heat and freshwater budgets close, the
long-term drift in the ACCESS-CM2 model is immaterial for
the purposes of validating the OTM state estimation frame-
work laid out in Sect. 2. Thus, we analyse the drifting his-
torical simulation in this work. Further details on the model
spin-up, forcing and drift are provided by Bi et al. (2020),
Mackallah et al. (2022) and Irving et al. (2020).

To test the performance of the OTM algorithm in a spa-
tially heterogeneous bias, in Sect. 4.3 we apply known air–
sea fluxes, Q

prior
ij , from an air–sea reanalysis product, ERA5

(Hersbach et al., 2020). Produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF), ERA5 com-
bines a wide range of atmospheric and oceanic observational
products with an operational weather forecasting model (the
Integrated Forecasting System (IFS), Cy41r2) using 4D-Var
data assimilation. The result is a well-constrained, long-term
representation of our best estimate of known air–sea fluxes.
We assess the two-dimensional, gridded monthly averaged
net surface heat and freshwater fluxes in ERA5 from Jan-
uary 1979 to December 2014. The ERA5 surface flux fields
are re-binned onto the ACCESS-CM2 native grid prior to as-
sessment with OTM to ensure that the ERA5 global net sur-
face fluxes are captured accurately in the analysis.

3.2 Definition of discrete water masses using binary
space partitioning

The global ocean’s temperature–salinity (T –S) distribution
is an integrated measure of its hydrographic properties, dis-
playing the volume or mass of the ocean with a characteristic
temperature and salinity range (Fig. 3).

Our OTM state estimation framework considers the trans-
formation from a set of early water masses to a set of late
water masses in tracer and geographical space. We split the
ocean into nine basins (following Zika et al., 2021): the po-
lar North Atlantic, sub-tropical North Atlantic, equatorial At-
lantic, South Atlantic, Indian, South Pacific, equatorial Pa-
cific, North Pacific and Southern. Only transport between
adjacent ocean basins is permitted in the optimisation prob-
lem, such that gij = 0 between water masses in non-adjacent
basins. Ideally, the discrete representation should be as fine
as possible so as to best describe our T –S distribution (i.e. as
many discrete water masses as possible) while also consider-
ing the distributions that are representative of different geo-
graphical regions. However, computational constraints limit
the resolution and number of regions that are possible. Here,
we define the discrete water masses using binary space parti-
tioning (BSP), following Sohail et al. (2023).

The BSP algorithm recursively sub-divides the mass-
weighted T –S distributions along the T and S axes n times,
resulting in 2n bins which all contain exactly the same mass.
BSP represents an improvement over the quadtree coars-
ening algorithm (as used by Zika et al., 2021) as it re-
sults in a pre-determined number of bins which hold ex-

actly the same volume. Note that the BSP coarsening pre-
sented here is a two-dimensional equivalent of the one-
dimensional tracer–percentile framework introduced by So-
hail et al. (2021, 2022). Further information on binary space
partitioning and its applications in oceanography is provided
in Sohail et al. (2023).

3.3 Implementation of the inverse model

We recursively sub-divide the T –S distribution of the top
2000 m of the global ocean in ACCESS-CM2 four times to
yield 24

= 16 classifications of equal volume or mass glob-
ally (since ACCESS-CM2’s ocean component is Boussinesq,
volume and mass are proportional to one another). We fur-
ther partition these 16 T –S classifications into each of the
nine basins defined above over the full ocean depth. This
produces what we define as our 144 early and 144 late wa-
ter masses. Each water mass has different tracer concentra-
tions (C0,i = [T0,i,S0,i] and C1,j = [T1,j ,S1,j ]) and, due to
the splitting by region, different masses (m1,i and m0,i). Fig-
ure 4 shows the mean temperature and salinity of each of
these water masses (white dots), together with the volume
(colour) and T –S ranges (rectangles) in each basin.

Each water mass has a corresponding “mask”, with
�i(x,y,z, t) defining its geographical location with time
(�i = 1 within the water mass and�i = 0 outside; x, y and z
are latitude, longitude and depth, respectively). The outcrop
area of water mass i at time t is then

∫∫
�i(x,y,0, t)dA, and

Ai is the time average of that area (defined below).
The following hard constraints are placed on the entries

of the transport matrix gij (note that the variable early and
late masses m0,i and m1,i have been incorporated into the
constraints below):

0≤ gij ≤ 1; (8)

m1,j =

N∑
i=1

m0,igij ; (9)

m0,i =

N∑
j=1

m1,jgij ; (10)

C1,jm1,j =

N∑
i=1

C0,im0,igij , where Aj = 0; (11)

gij = 0 if �i and �j are not in the same or adjacent regions. (12)

The above enforce mass conservation (Eqs. 8–10), tracer
conservation away from the surface boundary (Eq. 11) and
the inability of water to move further than the adjacent basin
(Eq. 12).

A transport matrix gij is then sought which minimises the
following cost function:

[cost]=
N∑
j=1

∣∣∣∣∣
∣∣∣∣∣wj

(
N∑
i=1

m0,igij

(
C0,i +Q

prior
ij

)
−m1,jC1,j

)∣∣∣∣∣
∣∣∣∣∣
2

, (13)
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Figure 3. (a) The global distribution of ocean volume in the T –S space, averaged between January 1979 and December 2014, in the
historical simulation of the ACCESS-CM2 climate model. (b) Volume distribution change between the time-averaged “early” and “late”
periods, defined as January 1979–December 1987 and January 2006–December 2014, respectively. Black boxes show the 16 bins defined
using binary space partitioning, each of which contains 1/16 of the volume of the upper 2000 m of the ocean (since these data come from a
Boussinesq ocean model, mass and volume are proportional).

with

wj =
1
Aj

[
1

SD(T )
,

1
SD(S)

]
. (14)

Effectively, wj leads Eq. (13) to search for the smallest resid-
ual source or sink per unit outcrop area and normalises the
impact of temperature and salinity on the residuals relative
to their global standard deviations. The additional constraint
on gij (Eq. 11) ensures that changes to water masses that do
not outcrop are achieved purely by redistribution and mixing.
In one of the cases we will discuss below (where Q

prior
i = 0),

our optimiser does not find a feasible solution with this con-
straint when Ai = 0 for some i values. In that case, we set a
floor on those areas as the minimum non-zero Aj found for
all j . This was, in that specific case, the most permissive area
constraint we could justify for the problem.

We set the prior change in the tracer concentration driven
by tracer sources and sinks to the same value for all early wa-
ter masses i regardless of their path to the late water masses
j (so Q

prior
ij becomes Q

prior
i ). We calculate this by integrat-

ing the known model air–sea fluxes over the outcrop region
of the early water mass and over the time interval between
the early and late periods such that

Q
prior
i =

1
m0,i(t1− t0)

t1∫
t0

∫∫
�i(x,y,0, t)q(x,y, t)dxdydt, (15)

where t0 and t1 are the midpoints of the early and late pe-
riods. Above, q(x,y, t)= [hfds(x,y, t),−S0wfo(x,y, t)] +
bias, where “bias” is a bias we will introduce in some cases
to see what effect incorrect air–sea flux data have on the in-
verse solution. The above time integral is from the midpoint

of the early period to the midpoint of the late period since it
is related to the change in average water mass properties be-
tween the two periods. (Integrating from the start of the early
period to the end of the late period would overestimate the
sources and sinks.)

In our implementation of the optimisation (Eq. 13), we aim
to minimise the average adjustment to the tracer sources and
sinks in a per unit area sense. For this reason we calculate
the average outcrop area using the same integral limits as the
sources and sinks such that

Ai =
1

t1− t0

t1∫
t0

∫∫
�i(x,y,0, t)dxdydt. (16)

Equations (8) to (13) define a conic linear optimisation prob-
lem. We solve this numerically with the Python-based cvxpy
package, specifying the “MOSEK” optimisation solver with
default settings to obtain a transport matrix gij which satis-
fies the constraints described over the time period of interest.

4 Results

When a solution for gij is found by minimising Eq. (13), an
adjustment to the tracer sources and sinks is implied in order
to close the tracer budgets. We diagnose this adjustment via

Q
adjust
j = C1,j −

1
m1,j

N∑
i=1

m0,igij

(
C0,i +Q

prior
i

)
. (17)

Once the early water masses have been redistributed and
mixed by gij , Q

adjust
j is the remaining change in tracer con-

centrations required for these mixtures to match the late wa-
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Figure 4. Volume (colours) and mean T and S of each of the 16 bins in each of the nine basins analysed in the early period. Each rectangle
represents the range of T –S values covered by one of the water masses. The colour of the rectangle represents the volume of water in that
bin in that basin. Each white point contained within a rectangle is located at the average T –S value of the water in that bin in that basin.

ter mass concentrations, C1,j . We do not attribute differ-
ent adjustments to the different fractions of the early water
masses that make up the late water masses, so that Q

adjust
j is

the same for all i.
The inverse solution describing the evolution of ocean wa-

ter masses is then the transport matrix gij and the implied to-
tal sources and sinks of the tracer given by Qprior

+Qadjust.
Since, in the case of heat and salt, we attribute the sources
and sinks to fluxes at the sea surface, the adjustment term is
converted into a flux per unit area and is mapped onto geo-
graphical coordinates via

qadjust(x,y, t)=

N∑
j=1

mj

Aj (t1− t0)
Q

adjust
j �j (x,y,0, t). (18)

Above, the tracer source required to change water mass j by
Q

adjust
j is applied as a flux of tracer per unit area. Because

we only infer one adjustment flux per water mass, we are
not able to infer more detailed variations in the flux over the
spatial extent of the water mass outcrop.

The known surface fluxes, Q
prior
i , are mapped onto the fi-

nite water masses obtained from the BSP coarsening (see
Fig. 5). As the outcrop area of the water masses is much
larger than the original model grid, the resulting remapped
surface fluxes are smoother than the raw fields, as shown in
Fig. 5.

In the remainder of this section we will discuss three ap-
plications of the inverse method with the same tracer data
but different priors for the tracer sources and sinks. Case 1
shows the “true” tracer sources and sinks from the numerical
model, Case 2 shows the true numerical model sources and
sinks with a bias added globally, and Case 3 shows the prior
sources and sinks set to zero globally.

4.1 Case 1: true source and sink priors

When the true model fluxes are used for Qprior (bias= 0),
the inverse method is able to find a solution for gij which
matches these priors with little Qadjust necessary (Fig. 6).
Quantitatively, the standard deviation of the true fluxes
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Figure 5. Time-averaged surface fluxes between the early and late periods in ACCESS-CM2, in the original model grid (q(x,y, t); a and c)
and remapped onto the 2n× 9 water masses as defined by BSP in the T –S space (Qprior

i
; b and d). Note that the surface outcrop location of

these water masses, averaged over the entire early period, is used for the remapping.

(SD(qprior); the signal) is [17.6 W m−2, 1.57 mm d−1], while
the standard deviation of the adjustment (SD(qadjust); the er-
ror) is [9.6× 10−3 W m−2, 7.4× 10−5 mm d−1], yielding a
signal-to-error ratio of, at minimum, order 2000.

From the inferred transport matrix gij , the region-to-
region heat and freshwater transport is determined using

[heat transport]= Cpρ0

N∑
i=1

m0,i(T0,i +Q
prior
i )gij δij , (19)

[freshwater transport]=−ρ0/S0

N∑
i=1

m0,i

· (S0,i +Q
prior
i )gij δij , (20)

where Cp is the heat capacity of seawater
(3992.1 J kg−1 K−1), ρ0 is a reference density
(1035 kg m−3), and S0 is a reference salinity (35 g kg−1).
Above, δij = 1 if the flow from i to j implies “positive”
transport across a region-to-region boundary (e.g. northward
across a zonal section), δij =−1 if the flow from i to j
implies “negative” transport (e.g. southward), and δij = 0 if
water masses i and j are not in adjacent regions. We only
consider region-to-region boundaries where the total mass
transport is zero.

We compare the heat transport in ACCESS-CM2, inferred
directly from the model output, to our inverse estimate (based
on Eq. 19), and the two match to within standard deviations
across the region-to-region boundaries of 17 TW in the Indo-
Pacific region and 16 TW in the Atlantic. Comparing the ex-
plicitly calculated freshwater transport in ACCESS-CM2 to
our inverse estimate, we find that the two match to within
standard deviations of 0.14 Sv in the Indo-Pacific region and
0.014 Sv in the Atlantic (Fig. 7).

It is reassuring that, when applied to consistent tracer
source and tracer change data, an accurate solution is con-
firmed. We now consider what happens when the prior source
estimates contain biases.

4.2 Case 2: spatially uniform biased source and sink
priors

We add a constant offset to the air–sea fluxes of 5 W m−2

for heat and 5 mm d−1 for freshwater over the entire dataset
(Fig. 8). We then use the biased air–sea fluxes to determine
Qprior and feed this into our inverse model. The inverse model
finds a solution for gij and Qadjust via Eq. (17), opposing the
bias to within a standard deviation of 2.9×10−3 mm d−1 and
5.1× 10−2 W m−2. The implied region-to-region heat trans-
ports of the inverse model with biased sources and sinks are
virtually indistinguishable from the case without a bias, with
a standard deviation that is within 1× 10−2 of the values re-
ported for Case 1 (Fig. 7).

This suggests that the inverse model could be a useful tool
for finding a consistent, and potentially more realistic, solu-
tion in the presence of biased estimates of air–sea fluxes.

We now consider how the inverse method adjusts the prior
fluxes when a reanalysis flux field (ERA5) is imposed as a
prior instead of the native model fluxes.

4.3 Case 3: air–sea reanalysis-based source and sink
priors

Case 3 offers a more practical test than Cases 1 and 2 in
that an incorrect yet plausible air–sea flux field is used as
the prior. We use observational estimates of heat and fresh-
water fluxes (from ERA5; see Sect. 3) to determine Qprior.
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Figure 6. Case 1: time-averaged surface fluxes between the early and late periods in ACCESS-CM2, remapped onto the 16×9 water masses
as defined by BSP in the T –S space (Qprior

i
; a and c), and the inferred surface flux adjustment based on changes to the underlying ocean

T –S distribution (Qadjust
j

; b and d). Note that the surface outcrop location of the water masses, averaged over the entire early period, is used
for the remapping. Note the differences in the colour bar ranges between panels (a) and (c) and panels (b) and (d).

Figure 7. Case 1: meridional (a) heat transport and (b) freshwater transport inferred from the transport matrix gij (dots, located at the
boundaries between adjacent regions) and from the surface fluxes and ocean heat or freshwater content change in the ACCESS-CM2 model
(lines). We have omitted the same figure for Case 2 since the solution is indistinguishable.

We expect differences between these fluxes and the known
model fluxes since the model is not a perfect representation
of the real climate. This mimics a scenario where we have
good knowledge of T and S changes, but air–sea fluxes have
large biases which are heterogeneous. In this case, given that
we know the true fluxes, we can see how well the inverse
model does.

Figure 9 shows that ERA5 suggests warming across all
ocean basins except for the Arctic relative to ACCESS and a
heterogeneous pattern of freshwater flux change, particularly
at middle to low latitudes, where rainfall is more intense on
average.

The adjustment OTM findings in Case 3 are far more spa-
tially homogeneous than the actual bias (Fig. 9b and e). This
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Figure 8. Case 2: constant offset added uniformly to ocean surface fluxes (bias; a and d), the inferred adjustment based on changes to the
underlying ocean T –S distribution (Qadjust

j
; b and e) and the sum of the two (c, f). Note that the surface outcrop location of the water masses,

averaged over the entire early period, is used for the remapping.

Figure 9. Case 3: the bias (a, d) is the difference between air–sea heat (a–c) and freshwater (d–f) fluxes in ERA5 and ACCESS. Panels (b)
and (e) show the inferred adjustment using OTM, and panels (c) and (f) show the sum of the two. With the cost function in OTM minimising
adjustments in a per unit area sense, this does not accurately correct the heterogeneous pattern of bias and favours a more spatially uniform
adjustment.

is likely due to our cost function weights, which penalise
adjustments in a per unit area sense. That being said, some
basin-scale patterns are captured well, with less (more) heat
(freshwater) adjustment in the Arctic, for example, leading
to accurate estimates of meridional transport between basins
(Fig. 10).

Finally, we consider what the inverse method yields when
we ask it to estimate the sources and sinks with priors set to
zero.

4.4 Case 4: zero source and sink priors

Cases 1 and 2 mirror toy examples 3 and 4 in Sect. 2. There,
Qprior effectively moved the water masses from their initial
state to some intermediate state in tracer coordinates, and
then gij moved them as close as possible to their final state,
with Qadjust providing the final adjustment. In our final case,
we see how the inverse model responds to zero source or sink
information, as in toy examples 1 and 2.

We run the inverse model, as in Cases 1 and 2, but for
Qprior

= 0. The Qadjust patterns represent the smallest neces-
sary heat and freshwater fluxes that can explain the model’s
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Figure 10. As in Fig. 8 but for Case 3.

water mass changes in conjunction with the redistribution
and mixing achieved by gij . Since the model is describing
historical climate change, increases in ocean heat content and
any increase in the variance of ocean salinity cannot be de-
scribed by gij and are captured in Qadjust.

The resulting patterns of adjustments to the heat flux are
approximately uniform across all the oceans, except for the
polar regions (Fig. 11). In the inverse model solution, basin-
scale anomalous warming–cooling patterns can be explained
by redistribution via gij . Only a small, near-uniform warm-
ing is required to complete the picture. The patterns of adjust-
ment to freshwater flux show net precipitation in relatively
fresh regions of the globe, such as the tropical Pacific and
sub-polar oceans, and net evaporation over relatively saline
regions such as the sub-tropical oceans and the majority of
the Atlantic basin. This is likely because greenhouse forc-
ing in ACCESS-CM2 is consistent with the “wet gets wetter,
dry gets drier” paradigm (Durack et al., 2012; Skliris et al.,
2016), and the consequent changes in salinity cannot be af-
fected by mixing, which can only make freshwater salty and
salty water fresh (Zika et al., 2015b).

The true air–sea fluxes warm the low latitudes and cool
the high latitudes far more, and this is largely balanced by
the heat transport and mixing represented by gij . Practi-
cally, a solution can always be added in which sources and
sinks are balanced by the transport matrix while still satisfy-
ing our hard constraints (a “homogeneous solution” in the
language of differential equations), but in the case where
Qprior

= 0, such additions are penalised since the inverse
method searches for the solution with the smallest root mean
squared error Qadjust. These results suggest that, without ad-

equate priors, the inverse method cannot by itself accurately
determine the correct total tracer sources and sinks.

Figure 12 summarises the results of the four cases at the
basin scale. It shows the net Qprior (if any), Qadjust, the di-
vergence of tracer transport described by gij and the change
in the amount of tracer with time in each region.

Case 1 describes the true budget for the time period con-
sidered with the change with time and a small residual of the
larger source, sink and divergence terms. Case 2 shows how
a small adjustment to the sources and sinks compensates for
an imposed error.

In Case 3 a spatially heterogeneous bias pattern is im-
posed. Despite the fact that the adjustment does not capture
many of the finer geographical details, OTM does offer skill
in balancing biases at the basin scale. Figure 13 shows a com-
parison of the magnitudes of the added bias and adjustment
in response to Case 3.

In Case 4, the implied net Q and tracer transport diver-
gence are 1 order of magnitude smaller than in Case 1 at
the basin scale, since they are only required to describe the
change rather than the large mean balances of sources or
sinks and transport or mixing.

5 Discussion

Our assessment of the optimal transformation method state
estimation framework has not been exhaustive. Our aim has
been to describe the framework generally. In any future im-
plementation, a number of choices can be made by the user,
including the following:
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Figure 11. Case 4: surface flux adjustment given no prior source or sink information (Qprior
i
= 0; a and c) and the inferred surface flux

adjustment based on changes to the underlying ocean T –S distribution (Qadjust
j

; b and d). Note that the surface outcrop location of the water
masses, averaged over the entire early period, is used for the remapping.

1. the way in which water masses are defined in both space
and time

2. the way in which constraints are placed on the transport
matrix gij and priors are introduced

3. how adjustments of tracer sources or sinks and other
variables impact the cost function.

For choice 1, we used binary space partitioning to objectively
divide the tracer space into discrete water masses. However,
we used conventional definitions of ocean basins to distin-
guish the water masses. OTM is not tied to either choice or
alternative objective (e.g. machine-learning-based classifica-
tion), and user-driven approaches (e.g. traditional water mass
definitions) can be used. All that is required is that a set of
water masses with tracer concentrations for two time periods
(or a sequence of time periods) be defined and constraints
placed on their connectivity (gij ).

For choice 2, we chose to give no prior information about
the transport matrix (gij ). Priors for this matrix or stricter
constraints on it could be given based on numerical mod-
els or observations at key regional boundaries (such as the
Rapid Climate Change-Meridional Overturning Circulation
and Heatflux Array: RAPID–MOCHA transect in the North
Atlantic) and in key ocean gateways. Note, however, that
gij does not necessarily represent the conventional trans-
port measured at a section. To illustrate this, consider a wa-
ter mass in the sub-tropical North Atlantic with temperature
T0,i = 20 °C that is heated due to some air–sea flux with an
implied warming over a 40-year period of Qi = 80 °C. Let
us assume that the state estimate tells us that 1 % of this wa-
ter mass travels northward into the sub-polar North Atlantic

and mixes with 99 % of the water contained in water mass
j (i.e. gij = 0.01 and gjj = 0.99). Mathematically, the water
can be viewed as crossing the regional boundary at a tem-
perature of T0,i+Qi = 100 °C, as used in the calculation for
the heat transport (Eq. 19). A more plausible physical inter-
pretation is that water from water mass j is continually mix-
ing with water mass i. The state estimate does not describe
where or when this mixing occurs, only that it occurred at
some point between the early and late periods. Hence, fur-
ther work is required to determine how information about the
ocean overturning circulation can be used to constrain state
estimates and likewise how the state estimate can inform us
of the circulation.

For choice 3, in applications to observation-based data,
choices should be guided by the uncertainty in the under-
lying data. For example, we minimised the sources and sinks
in a per unit area sense. OTM broadly did a better job of
assuming a completely homogeneous pattern of change (see
for example the comparison between the unfilled and purple
bars in Fig. 13) but did not accurately correct the biased pat-
tern below the basin scale (Fig. 9). It could be that particular
regions and/or components of the sources and sinks (e.g. pre-
cipitation) are more uncertain than others. These distinct un-
certainties can be accounted for through the weight vector
wj .

An additional consideration that we have not explored here
is the choice of spatial and temporal resolution. We chose to
compare mid-20th century and early 21st century time peri-
ods and force these with fluxes integrated between their mid-
point times. As the time period becomes longer, the fluxes
can take the early water masses further and further apart in
the phase space (e.g. extending the vectors in toy example 2).
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Figure 12. Terms in the heat and freshwater budgets for the four cases explored in this study. In this framework, heat or freshwater content
change=Qadj+Qprior + heat or freshwater transport. For Case 1, the terms are indistinguishable from their true values in the ACCESS-CM2
model. For Case 3, unfilled bars show what the adjustment fluxes would be if they were globally spatially uniform.
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Figure 13. Comparison of bias and adjustment heat (a) and freshwater (b) fluxes for Case 3. In Case 3, ERA5 fluxes are used instead of the
models’ true fluxes. Unfilled bars show what the adjustment fluxes would be if they were globally spatially uniform.

These more extreme water masses are easier for OTM to mix
together (via gij ) to form late water masses. In the most ex-
treme case, air–sea fluxes would only be needed to translate
the global centre of mass of the distribution into the tracer
space, and gij could account for all spatial variation in the
transformations. In that case, and in the absence of additional
constraints on gij , OTM would have no skill in correcting
spatial variations in tracer sources and sinks and would only
correct the global mean.

6 Conclusions

We have presented a state estimation framework based
on water mass theory, termed the optimal transformation
method. The framework enables framing of inverse problems
where ocean transport and tracer sources and sinks are opti-

mally adjusted to define a self-consistent description of ocean
change. We have used temperature and salinity data from a
numerical climate model responding to historical natural and
anthropogenic forcing over the past half-century to test one
application of the framework.

The optimal transformation method draws on concepts in
water mass transformation, water mass analysis and ocean
tracer transport theory. What results is a set of equations de-
scribing how the ocean’s multi-variate water mass distribu-
tion varies in time. These equations, combined with a trans-
parent set of physically based constraints, allow for the def-
inition of an inverse problem where a solution can be opti-
mised based on deviations from priors.

We implemented an inverse method where the change in
the ocean state was known, the ocean transport was un-
known, and deviations from prior estimates of tracer sources
and sinks were minimised. When given true heat and fresh-
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water fluxes, the inverse solution found a state with near-
zero deviation from those priors. Likewise, when given fluxes
with a constant bias added, the method reduced the errors
from 27.7 % to 1.0 % for heat flux and from 29.0 % to 1.1 %
for freshwater flux. When given fluxes with spatially hetero-
geneous errors, the method did a better job of correcting for
that error at the basin scale than a constant compensating off-
set.

The methods presented may be a useful complement to ex-
isting state estimation approaches, having the advantage of
being relatively simple (for example when compared to nu-
merical ocean models and ocean data assimilation platforms)
and computationally cost-efficient. In particular, the optimal
transformation method has shown promise for finding cor-
rections to air–sea fluxes of heat and freshwater so that they
plausibly describe the changing ocean state. This implies that
the method, leveraged with observations, can help to refine
observationally based estimates of the net heat and freshwa-
ter flux imbalance in the climate system.

Code and data availability. The coarsened data from the his-
torical ACCESS-CM2 simulation and the scripts which cre-
ate the optimisation calculation and flux budgets and plot the
surface flux maps are on Zenodo (Zika and Sohail, 2023;
https://doi.org/10.5281/zenodo.8008630). A working copy of the
code and data is also available on GitHub (https://github.com/
taimoorsohail/ACCESS_OTM.git, last access: 31 October 2024).
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