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Abstract. In this study, we describe the first prototype ver-
sion of global aerosol reanalysis at the National Oceanic and
Atmospheric Administration (NOAA), the prototype NOAA
Aerosol Reanalysis version 1.0 (pNARA v1.0) that was pro-
duced for the year 2016. In pNARA v1.0, the forecast model
is an early version of the operational Global Ensemble Fore-
cast System-Aerosols (GEFS-Aerosols) model. The three-
dimensional ensemble-variational (3D-EnVar) data assimi-
lation (DA) system configuration is built using elements of
the Joint Effort for Data Assimilation Integration (JEDI)
framework being developed at the Joint Center for Satellite
Data Assimilation (JCSDA). The Neural Network Retrievals
(NNR) of aerosol optical depth (AOD) at 550 nm from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
instruments are assimilated to provide reanalysis of aerosol
mass mixing ratios. We evaluate pNARA v1.0 against a wide
variety of Aerosol Robotic Network (AERONET) observa-
tions, against the National Aeronautics and Space Admin-
istration’s Modern-Era Retrospective Analysis for Research
and Applications 2 (MERRA-2; Gelaro et al., 2017; Ran-
dles et al., 2017; Buchard et al., 2017) and the European
Centre for Medium-Range Weather Forecasts’ Copernicus
Atmosphere Monitoring Service Reanalysis (CAMSRA; In-
ness et al., 2019), and against measurements of surface con-
centrations of particulate matter 2.5 (PM2.5) and aerosol
species. Overall, the 3D-EnVar DA system significantly im-
proves AOD simulations compared with observations, but
the assimilation has limited impact on chemical composition

and size distributions of aerosols. We also identify deficien-
cies in the model’s representations of aerosol chemistry and
their optical properties elucidated from evaluation of pNARA
v1.0 against AERONET observations. A comparison of sea-
sonal profiles of aerosol species from pNARA v1.0 with the
other two reanalyses exposes significant differences among
datasets. These differences reflect uncertainties in simulating
aerosols in general.

1 Introduction

Aerosols affect earth’s energy balance through the absorp-
tion and scattering of solar and terrestrial radiation (Mitchell,
1971). Aerosols also affect the weather and climate through
their indirect effects on cloud microphysics, reflectance, and
precipitation (Twomey, 1974, 1977; Albrecht, 1989; Jones et
al., 1994; Ackerman et al., 2000; Lohmann et al., 2000). In
recent decades, the impacts of aerosol direct and indirect ra-
diative effects on numerical weather prediction (NWP) have
been studied extensively (Tompkins et al., 2005; Pérez et al.,
2006; Mulcahy et al., 2014; Bozzo et al., 2017; Nowottnick
et al., 2018). Aerosol particles can also provide the surface
area for deposition of gas phase chemicals and subsequently
affect the sulfuric oxidation and production of new aerosols
(Andreae and Crutzen, 1997). The deposition of mineral dust
into the ocean affects marine productivity (Chen et al., 2007;
Shao et al., 2011). Aerosols also have fundamental impacts
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on human health by contributing to respiratory, cardiovascu-
lar, and allergic diseases (Pöschl, 2005).

In the past decade, several operational weather predic-
tion centers have produced global aerosol reanalyses follow-
ing data assimilation (DA) methodologies used for meteo-
rological reanalyses. The National Aeronautics and Space
Administration’s Global Modeling and Assimilation Office
(GMAO) developed an offline (i.e., where the transport
is driven using an already reanalyzed dataset) aerosol re-
analysis based on the meteorological reanalysis, Modern-
Era Retrospective Analysis for Research and Applications
(MERRA; Buchard et al., 2015). Subsequently, NASA’s
GMAO produced the version 2 of MERRA (MERRA-2),
which provides both aerosol and meteorological reanaly-
ses by assimilating aerosol and meteorological observations
concurrently (Gelaro et al., 2017; Randles et al., 2017;
Buchard et al., 2017). The European Centre for Medium-
Range Weather Forecasts (ECMWF) produced a global re-
analysis of atmospheric composition, including aerosols and
trace gases, known as the Copernicus Atmosphere Moni-
toring Service (CAMS) interim reanalysis (CAMSiRA) (In-
ness et al., 2013; Flemming et al., 2017), and updated the
chemistry and aerosol modules to CAMS reanalysis (CAM-
SRA) (Inness et al., 2019). The U.S. Navy Research Labo-
ratory (NRL) generated an aerosol reanalysis (Lynch et al.,
2016) using the NRL Aerosol Analysis and Prediction Sys-
tem (NAAPS) (Rubin et al., 2016). The Meteorological Re-
search Institute (MRI) of the Japan Meteorological Agency
(JMA) also produced a global aerosol reanalysis product
named the Japanese Reanalysis for Aerosol (JRAero; Yumi-
moto et al., 2017).

Aerosol reanalysis represents a uniform and continuous
best estimate of the true aerosol state in the atmosphere. It
is obtained by constraining model forecasts with observa-
tions in the process of data assimilation (Lahoz and Schnei-
der, 2014). Consequently, the reanalysis provides the best
available information on temporal and spatial variability of
aerosols and can serve as a basis for assessing their im-
pacts on the whole earth system. For instance, Bozzo et
al. (2017) incorporated the 11-year aerosol climatology from
CAMSiRA to improve the aerosol direct radiative effect in
the global forecast model. Benedetti and Vitart (2018) used
CAMSiRA data to initialize the aerosol fields in a prognos-
tic aerosol experiment to assess the impact of direct radia-
tive effect on subseasonal forecasts. Bender et al. (2019) in-
cluded MERRA-2 as a reference dataset to study the aerosol–
cloud–radiation interaction. Some other studies have investi-
gated the regional long-term variability of aerosol activities
with one or multiple reanalysis datasets (e.g., MERRA-2 and
CAMSRA) (Kalita et al., 2020; Cao et al., 2021; Xian et al.,
2022). Furthermore, aerosol reanalyses can be used as bench-
marks in evaluating a newly developed system (Huang et al.,
2023, and this study).

The model is a key component in production of aerosol re-
analysis. For the consideration of computational constraints,

complex chemistry involving aerosols needs to be reduced
by employing parameterizations which only capture the most
essential processes. For instance, the Goddard Chemistry
Aerosol Radiation and Transport (GOCART) utilized in
MERRA-2 assumes no interaction between aerosol species
(i.e., external mixing) and considers sulfur oxidation with
prescribed climatology for OH, NO3, and H2O2 (Chin et
al., 2000, 2002; Colarco et al., 2010). In contrast, CAM-
SRA (Inness et al., 2019) considers a more comprehensive
chemistry, such as the parameterization of the secondary or-
ganic aerosols (not considered in CAMSiRA). In NAAPS,
the primary and secondary organic aerosols are preprocessed
at the initialization stage. The Model of Aerosol Species in
the Global Atmosphere (MASINGAR mk-2), which is used
to produce JRAero, also simplifies the processes involving
production of secondary organic aerosols. Besides the sim-
plification of chemistry, the interaction between aerosols and
atmospheric physics is usually neglected. Both MERRA-2
and CAMSRA radiatively coupled the prognostic aerosols
but did not consider the cloud–aerosol interaction (Gelaro et
al., 2017; Inness et al., 2019). The climate model of JRAero
actively coupled the aerosol information from MASINGAR
mk-2 to the radiation and the two-moment bulk cloud micro-
physics schemes (Yukimoto et al., 2012).

Assimilated observations are a critical component of a re-
analysis product. For aerosols, these are typically retrievals
of aerosol optical depth (AOD) at 550 nm. Because AOD is
a measure of extinction of light over a whole atmospheric
column, it carries a limited amount of information on the
chemical composition and sizes of particles and also cannot
provide information on the vertical distribution in the atmo-
sphere. Consequently, the resulting analysis is largely deter-
mined by the prior information contained in the model state
at a given time. This provides very limited ability for AOD
DA to correct aerosol speciation, size, and vertical distribu-
tions in the atmosphere.

In 2011, the National Oceanic and Atmospheric Adminis-
tration (NOAA) National Centers for Environmental Predic-
tion (NCEP) implemented the NOAA Environmental Model-
ing System (NEMS) Global Forecast System (GFS) Aerosol
Component, version 1 (NGAC v1; Lu et al., 2016) with
GOCART parameterization for dust-only forecasts. Later,
NCEP upgraded the system to NGAC v2, which provided
forecasts for all aerosol species in GOCART parameteri-
zation (Wang et al., 2018; Bhattacharjee et al., 2018). In
September 2020, NGAC was replaced by the Global Ensem-
ble Forecast System (GEFS)-Aerosols model which relies on
the Finite-Volume Cubed-Sphere (FV3) dynamical core and
GOCART parameterization (Zhang et al., 2022). Currently,
the aerosol forecasting system at NCEP does not include
DA, despite previous studies showing significant impact of
AOD observations on aerosol initial conditions and the sub-
sequent forecasts (Benedetti et al., 2009; Pagowski et al.,
2010, 2014; Schwartz et al., 2014; Choi et al., 2020). A novel
three-dimensional ensemble-variational (3D-EnVar) DA sys-
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tem based on elements of the Joint Effort for Data Assimila-
tion Integration (JEDI) has been developed at NOAA to pro-
vide the best estimates of atmospheric aerosol distributions
by assimilating AOD at 550 nm from the Visible Infrared
Imaging Radiometer Suite (VIIRS) (Huang et al., 2023).

In this study, we used and designed a specific JEDI-based
3D-EnVar DA configuration to produce the prototype NOAA
Aerosol Reanalysis version 1.0 (pNARA v1.0). The reanal-
ysis for 2016 was produced as a pilot product and its evalu-
ation is presented here. We evaluated the year-long reanaly-
sis against independent observations and the gridded aerosol
products from MERRA-2 and CAMSRA. This paper is struc-
tured as follows: Section 2 describes the observations used in
this study. Sections 3 and 4 describe the forward model and
the DA system, respectively. Section 5 reports the results of
the evaluations. Section 6 concludes the study and provides
perspectives for future work.

2 Observations

pNARA v1.0 assimilates the Neural Network Retrieval
(NNR) AOD derived from observations of the Moderate Res-
olution Imaging Spectroradiometer (MODIS) onboard Terra
and Aqua satellites (Castellanos and da Silva, 2017; Randles
et al., 2017). Unlike the standard retrieval method that re-
lies on a physical model (e.g., a radiative transfer model),
the NNR approach retrieves the AOD based on a well-
trained model conducted by a neural network machine learn-
ing method. The training dataset contains MODIS level-2 re-
flectances, glint, solar and sensor angles, cloud fraction, and
albedo derived using GEOS-5 surface wind speeds or clima-
tology over ocean or land, respectively, targeting AOD ob-
servations from the Aerosol Robotic Network (AERONET).
The NNR AOD is available at wavelengths over ocean: 470,
500, 550, 660, and 870 nm; over dark land: 440, 470, 500,
550, 660, and 870 nm; and over bright land: 440, 470, 500,
550, and 660 nm. Only MODIS NNR AOD at 550 nm has
been assimilated in MERRA-2 (Randles et al., 2017) and
pNARA v1.0 (this study).

For evaluation of pNARA v1.0 and the free model run, we
used the version 3 level-2.0 AOD retrievals from AERONET
(Giles et al., 2019), particulate matter 2.5 (PM2.5) mea-
surements from the OpenAQ dataset (https://openaq.org;
last access: 3 May 2023), and speciated aerosol surface
concentration measurements from the Interagency Monitor-
ing of Protected Visual Environments (IMPROVE) network
(Hand et al., 2019; http://vista.cira.colostate.edu/Improve/
improve-program/; last access: 3 May 2023). AERONET is
a ground-based remote sensing aerosol network that uses a
sun photometer to measure direct solar irradiance and pro-
vides the AOD retrievals at 340, 380, 440, 500, 670, 870,
940, and 1020 nm. In the past more than 25 years, the net-
work has expanded to more than 600 stations. The manual
quality control used in version 2 leads to a significant delay in

the level-2.0 database. AERONET version 3 fully automated
the quality control algorithm to screen out cloud contami-
nated data, which eliminates the manual efforts and reduces
the processing time for quality-assured data (i.e., level 2.0).

OpenAQ is an open-source platform collecting air quality
measurements from various sources globally. In this study,
we only use government- and research-institute-maintained
(i.e., “reference grade”) stations, which are majorly over the
USA and Europe, to evaluate the performance of pNARA
v1.0. Besides PM2.5 measurements, the OpenAQ database
also ingests the measurements of gas phase pollutants, such
as O3, NO2, and SO2, which can be utilized as an indepen-
dent dataset for trace gas evaluation in future studies. The
IMPROVE network was established as the visibility network
over the USA in 1985. It derives visibility metrics through
the measurement of speciated aerosol mass concentrations,
including anions of sulfate, nitrate, nitrite, chloride, and or-
ganic and elemental carbonaceous species.

3 Model description

In pNARA v1.0, we use an early Common Commu-
nity Physics Package (CCPP) version of the opera-
tional Global Ensemble Forecast System-Aerosols (GEFS-
Aerosols) model. GEFS-Aerosols provides prognostic mass
mixing ratios of five bins dust, five bins sea salt, hydropho-
bic and hydrophilic black and organic carbon, and sulfate.
It relies on GOCART parameterization implemented with
the GFS physics package and Finite-Volume Cubed-Sphere
(FV3) dynamical core (Lin, 2004; Harris et al., 2021). It han-
dles sub-grid transport and wet scavenging of aerosols in the
atmospheric physics module. Other chemical processes, such
as emissions, chemical reactions, dry deposition, and set-
tling, are handled by the chemical module driven by meteoro-
logical fields from the atmospheric component of the model.
Note that the formation of secondary organic aerosols and ni-
trates are not considered in the GEFS-Aerosols. The model
has been recently updated for operations to reduce some bi-
ases (Zhang et al., 2022), but the most recent version was not
available at the time of the execution of this study.

In GEFS-Aerosols, the background fields of OH, H2O2,
and NO3 used in the parameterization of simplified sulfur
chemistry in GOCART are updated with a monthly mean cli-
matology from the 2015 version of NASA Global Modeling
Initiative’s (GMI) chemical model. The model also includes
the 1D plume rise module adapted from the High-Resolution
Rapid Refresh (HRRR) Smoke model to improve vertical
distribution of smoke emissions. The biomass burning emis-
sions use version 3 of Blended Global Biomass Burning
Emissions Product (GBBEPx v3; Zhang et al., 2019). This
parameterization blends the Quick Fire Emissions Dataset
(QFED) used in MERRA-2 (Darmenov and da Silva, 2015)
and daily emissions derived by the hotspots and the fire ra-
diative power observations from polar-orbiting and geosta-
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tionary satellites. The anthropogenic emissions are based on
the inventories from the Community Emissions Data System
(CEDS). The sea salt scheme has been updated to the re-
cent version of the GOCART scheme (Colarco et al., 2010).
The dust scheme has been updated to FENGSHA (Dong et
al., 2016; Zhang et al., 2022), which means the “wind-blown
dust” in Mandarin Chinese.

4 Data assimilation system

To produce pNARA v1.0, we used a three-dimensional
ensemble-variational (3D-EnVar) aerosol data assimilation
system using components from the Joint Effort for Data As-
similation Integration (Huang et al., 2023). JEDI is primarily
developed at the Joint Center for Satellite Data Assimilation
(JCSDA) but receives significant contributions from partner
and sponsor agencies (i.e., NOAA, NASA, U.S. Navy, U.S.
Air Force, and U.K. Met Office). It aims to provide an inte-
grated and unified DA framework for earth system prediction
applications and reduce redundant efforts across research
and operational communities. (More information about JEDI
can be found on the JCSDA website (https://www.jcsda.org/
jcsda-project-jedi; last access: 3 May 2023.)

The forward observation operator that converts model
variables (mass mixing ratios of aerosols and pressure layer
depths) to AOD observations relies on aerosol specific ex-
tinction coefficients interpolated from look-up tables (i.e.,
“AodLUTs” operator in JEDI). Tabulated values were ob-
tained at NASA GMAO from the Mie theory for spherical
particles (Wiscombe, 1980) and from the T-matrix approach
for non-spherical dust (Meng et al., 2010).

In this application, the 3D-EnVar aerosol DA system as-
similates MODIS NNR AOD retrievals at 550 nm to the
GEFS-Aerosol model every 6 h. For MODIS NNR AOD,
the cloud-affected data was screened and trained with
AERONET measurements during the neural network train-
ing (Randles et al., 2017). We also thinned the horizontal
resolution from 10 to 50 km to reduce the correlation be-
tween observations. The result is a reanalysis of mass mix-
ing ratios of five GOCART aerosol species, with sea salt and
dust distributed over five size bins. Figure 1 displays the 3D-
EnVar aerosol DA system. The 3D-EnVar system used for
pNARA v1.0 is a combination of a local ensemble trans-
form Kalman filter (LETKF; Bishop et al., 2001; Hunt et
al., 2007) using 40 members and a 3D-variational (3D-Var;
Lorenc, 1986) solver that produces the control analysis us-
ing the ensemble information to obtain the background error
covariance matrix. The LETKF analyses are re-centered on
the 3D-Var analysis to ensure consistency between the two
analyses (Hamill and Snyder, 2000; Lorenc, 2003; Buehner,
2005). The control analysis constitutes the reanalysis output.
The forecasts and analyses of control and ensemble mem-
bers are conducted at C96 (∼ 100 km) resolution. Given the
coarse resolution, this study focuses on the larger temporal

and spatial scale performance. Note that no other observa-
tions are assimilated since meteorological fields in the con-
trol and in the ensemble are driven by analyses from the
global data assimilation system (GDAS) at NCEP.

To address model biases and spread deficiency of the en-
semble, a scheme to scale and perturb source emissions was
devised. Scaling factors are derived for dominant aerosols
based on AOD deficits over regions. The scale factor of 2 is
selected for all aerosol species to increase the emission rate
for reducing the model biases. Perturbations to emissions of
ensemble members represent spatially and temporally cor-
related patterns following the approach in the stochastically
perturbed parametrization tendencies (SPPT; Palmer et al.,
2009) scheme. With applying SPPT to emissions, it can en-
hance the variance between ensemble members (i.e., larger
ensemble spread), and thus the influences of observations to
the analysis are increased. This approach and a method to ob-
tain scaling factors and amplitudes of emission perturbations
are detailed in Huang et al. (2023).

5 Evaluation

In this section, we divide the year 2016 into four seasons to
investigate the performance of pNARA v1.0. Winter includes
December, January, and February (denoted as DJF); spring
includes March, April, and May (denoted as MAM); sum-
mer includes June, July, and August (denoted as JJA); and
fall includes September, October, and November (denoted as
SON).

5.1 Comparison against AERONET

Figure 2 illustrates the global seasonal comparison of AOD
at 500 nm from pNARA v1.0 and the free model run with re-
spect to AERONET, and the statistics are also provided. This
figure lists absolute and relative biases, R2 correlations (also
known as coefficients of determination), and, for the reader’s
convenience, correlation coefficients (R) for each season and
the whole year for the free model run and pNARA v1.0. It is
followed by Fig. 3 where time series display the bias and the
R2 correlation scores. Because the standard AOD at 550 nm
is not directly observed in AERONET, we chose to perform
the evaluation of AOD at 500 nm to avoid interpolation and
log-linearization errors in AERONET observations. The free
model run considerably and systematically underestimates
the AOD throughout the year. Among the four seasons, the
largest bias between model and measurements occurs in win-
ter (i.e., DJF). Compared with the free model run, our reanal-
ysis, pNARA v1.0, has a substantially better agreement with
AERONET throughout the whole year in terms of bias and
correlation. We note that the statistical scores vary seasonally
as they are influenced by the density of AERONET observa-
tions that are used in the evaluation. (The highest and lowest
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Figure 1. Schematic of the 3D-EnVar data assimilation system for pNARA v1.0. Note that IODA stands for Interface for Observational Data
Access and UFO stands for Unified Forward Operator.

Figure 2. Probability density plots of modeled AOD at 500 nm with respect to AERONET retrievals for the free model run and pNARA v1.0
during four seasons. Axes are in logarithmic scale.

density of observations occurs in the summer and winter, re-
spectively, over North America and Europe.)

As can be seen in Fig. 3, the performance of the free model
run in terms of bias is the best during summer months and the
worst from January to March. For pNARA v1.0, the negative
absolute biases are much reduced (on average by about 0.05),
though not enough to remove the overall negative bias of

the reanalysis. pNARA v1.0 also has significantly improved
R2 correlation throughout the whole year (by about 0.2).
Statistics of the free model run and reanalysis vary through-
out the year nearly in parallel demonstrating the crucial role
of the forecast model in data assimilation. In other words,
data assimilation cannot drastically improve the quality of
simulations if the forecast model is seriously deficient.
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Figure 3. The time series of the monthly mean of (a) biases and (b) R2 correlation for the free model run (in blue) and pNARA v1.0 (in red)
with respect to AOD at 500 nm measurements from AERONET. Both are calculated based on all the paired points within each month.

Figure 4. Probability density plots of 440–870 nm Ångström exponent of the free model run (a) and pNARA v1.0 (b) vs. AERONET for
2016.

Figure 4 displays the probability density plots of 440–
870 nm Ångström exponent (AE) for the free model run and
the reanalysis against the AERONET observations through-
out 2016. The AE is calculated by Eq. (1). It provides a
measure of relative extinction of light by aerosols at differ-
ent wavelengths and primarily reflects the size distribution of
particles (Schuster et al., 2006):

AE(λ1,λ2)=−
log(AOD(λ1)/AOD(λ2))

log(λ1/λ2)
, (1)

where λ1 and λ2 are 440 and 870 nm, respectively.
In general, the differences between the free model run and

the reanalysis are insubstantial, and both correlate poorly
with observations. The lack of an improvement in the re-
analysis demonstrates that assimilating AOD at 550 nm alone
only minimally impacts size distribution and/or the com-
position of aerosols. Saide et al. (2013) and Tsikerdekis et
al. (2021) have shown that a more realistic representation of

aerosols can be produced by assimilating multi-wavelength
retrievals of AOD, fine-mode fraction AOD, and single scat-
tering albedo. We hope more aerosol retrieval products from
future missions, such as the Plankton, Aerosol, Cloud, Ocean
Ecosystem (PACE) mission (https://pace.gsfc.nasa.gov; last
access: 3 May 2023), can introduce more information into
the analysis system in the near future.

In Fig. 5, probability density plots of 440–675 nm absorp-
tion AE (AAE) versus Scattering AE (SAE) are matched for
AERONET Almucantar retrievals (Sinyuk et al., 2020) and
pNARA v1.0. For brevity, a similar scatter plot for the free
model run is omitted since it is only marginally different
from the latter. We obtained the model’s AAE and SAE with

Geosci. Model Dev., 17, 795–813, 2024 https://doi.org/10.5194/gmd-17-795-2024
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Figure 5. Probability density plots of 440–675 nm absorption Ångström exponent vs. scattering Ångström exponent for AERONET (a) and
pNARA v1.0 (b) for 2016. OC: organic carbon; EC: elemental carbon.

Eqs. (2a) and (2b):

AAE(λ1,λ2)=−
log(AAOD(λ1)/AAOD(λ2))

log(λ1/λ2)
, (2a)

SAE(λ1,λ2)=−
log(SAOD(λ1)/SAOD(λ2))

log(λ1/λ2)
, (2b)

where absorption AOD (AAOD) and scattering AOD
(SAOD) at wavelengths λ1 (equal to 440 nm) and λ2 (equal
to 675 nm) are calculated using the Eqs. (3a) and (3b). The
calculations use single scattering albedo (SSA) and extinc-
tion coefficient (Ext) at corresponding wavelengths (λ), mix-
ing ratios (q) for each aerosol species (s), dry air density (ρ),
and layer thickness (dz) for each pressure level (p):

AAOD(λ)=
∑

p

[∑
s
(1−SSAs,λ)×Exts,λ× qs,p

]
× ρ(p)× dz(p) (3a)

SAOD(λ)=
∑

p

[∑
s
SSAs,λ×Exts,λ× qs,p

]
× ρ(p)× dz(p). (3b)

Based on Cazorla et al. (2013), the whole plane in the left
panel of Fig. 5 was further divided into separate sections rep-
resenting different types of dominant aerosol species. These
authors associate AAE with the representation of chemi-
cal composition and SAE with the representation of particle
sizes. Figure 5 reveals important deficiencies in the repre-
sentation of optical properties of aerosols in the model. Be-
cause of the dependence of absorption on refractive indices
of aerosols, we believe that the strong lack of variability in
AAE (vertical axis in Fig. 5) in pNARA v1.0 compared with
AERONET is explained by assumptions and simplifications
in GOCART parameterization. These are, in the order of im-
portance, the external mixing of the aerosols in the model,

uniform mineralogy of dust sources across the globe, unac-
counted variety of organic aerosols, and prescribed size dis-
tributions of particles. A separate investigation would be re-
quired to ascertain the impacts of the above factors on the
realism of simulations. Given the importance of radiation ab-
sorption by atmospheric aerosols in stratification and clouds,
our exposure of the GOCART shortcomings identified above
highlight uncertainties in modeling meteorology–chemistry
interactions in weather and climate models that rely on this
or similar schemes.

5.2 Comparison against MERRA-2 and CAMSRA
reanalyses

In this section, the AOD and aerosol vertical distribution in
pNARA v1.0 are evaluated against MERRA-2 and CAM-
SRA. To do the direct comparison between these three
datasets, we post-processed the aerosol mass mixing ratio
in pNARA v1.0 and MERRA-2 from its model levels to the
same pressure levels as CAMSRA based on the level thick-
ness and surface pressure. For any levels below the terrain,
the surface value is assigned, which is the same approach as
in CAMSRA.

Figure 6 shows the seasonal mean biases of AOD at
550 nm of pNARA v1.0 with respect to CAMSRA and
MERRA-2. Overall, pNARA v1.0 is closer to MERRA-2.
This can be attributed to the similarity of aerosol modules
(i.e., GOCART) and the same FV3 dynamical cores (Lin,
2004; Harris et al., 2021) in the models used in NOAA and
NASA reanalyses. However, pNARA v1.0 generates sub-
stantially smaller dust plumes over the Sahara overall and es-
pecially during summer. Compared with CAMSRA, pNARA
v1.0 shows significant discrepancies over oceans throughout
2016. It also has lower aerosol concentrations over India,
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Figure 6. Comparison of seasonal mean biases of AOD at 550 nm of pNARA v1.0 vs. CAMSRA and MERRA-2.

Figure 7. The areas selected for comparison of vertical profiles of
aerosols.

especially during the winter. The AOD in pNARA v1.0 is
usually lower over eastern China with the largest differences
occurring in the spring. These instances of lower aerosol
concentrations could be attributed to the fundamental differ-
ences of aerosol modules between pNARA v1.0 and CAM-
SRA. Throughout 2016 pNARA v1.0 generated more dust
over the Gobi Desert compared with both CAMSRA and
MERRA-2. Occasionally, concentrations of dust over this
area in pNARA v1.0 seem unrealistically high. This suggests
the need for further improvements to the model parameteri-
zation of dust uplift, which is determined by meteorological
and land surface conditions.

While the size distributions of dust and sea salt are iden-
tical in MERRA-2 and pNARA v1.0, they are different from
those in CAMSRA. Approximate conversions between the
models would be possible, but not straightforward, since the
bin sizes and distribution parameters for these two aerosol
types differ quite significantly (e.g., dust bins in MERRA-
2: 0.1, 1.0, 1.8, 3.0, 6.0, and 10.0 µm, and in CAMSRA:
0.03, 0.55, 0.9, and 20.0 µm; sea salt bins in MERRA-2:
0.03, 0.1, 0.5, 1.5, 5.0, and 10.0 µm in dry conditions, and
in CAMSRA: 0.03, 0.5, 5.0, and 20.0 µm at relative humid-
ity 80 %). Therefore, in the following we chose to compare
the total mass mixing ratios of these aerosol species for all
the reanalyses. Comparison of vertical profiles of various
aerosols was performed over several geographic areas where
different aerosols are expected to dominate (Fig. 7). Here,
for illustration purposes only, we compare the dust aerosols
over North Africa and the Middle East (NAFRME) and the
North Atlantic Ocean (NATL; transported dust), the carbona-
ceous aerosols over equatorial Africa and South Africa and
the surrounding tropical Ocean (SAFRTROP) and Siberia
(RUSC2S), the anthropogenic aerosols over East Asia (EA-
SIA), and the sea salt aerosols over the Southern Ocean
(SOCEAN).

Figure 8 displays the vertical profiles of total dust mass
mixing ratios from the free model run, pNARA v1.0,
MERRA-2, and CAMSRA, over NAFRME and NATL dur-
ing the summer. In general, the four datasets show variable
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Figure 8. Total dust mass mixing ratio profiles averaged over the North Atlantic Ocean (NATL) (a) and North Africa and the Middle East
(NAFRME) (b) during JJA.

discrepancies in dust depending on the region of interest.
Over the NATL region the dust profiles are similar to each
other, while over the NAFRME region GOCART-based mod-
els generate higher dust mass mixing ratios near the surface
(in particular with the MERRA-2 dataset). Where the Saha-
ran dust profiles are uplifted over the NAFRME region the
free model run creates a more vertically mixed profile, while
pNARA v1.0 and MERRA-2 show higher values near the
surface. By assimilating the similar observation dataset (i.e.,
MODIS NNR), the 3D-EnVar system corrects the analysis
toward MERRA-2.

Figure 9 shows a comparison of profiles of carbonaceous
aerosols over SAFRTROP and RUSC2S during JJA. As il-
lustrated in Fig. 6, high values of AOD systematically oc-
cur over these areas in 2016. For CAMSRA, concentrations
of all carbonaceous aerosols are significantly higher near
the surface when compared with the other simulations. In-
terestingly, much higher concentrations of hydrophilic or-
ganic and black carbons (OC and BC) exist for CAMSRA
at mid-levels. A comparison between the free model run and
pNARA v1.0 shows that DA introduced more carbonaceous
aerosols over RUSC2S, while there are no considerable dif-
ferences over SAFRTROP. Comparison of all these simula-
tions indicates that there exist notable discrepancies between
vertical profiles of carbonaceous aerosols over areas where
extensive wildfires occurred. These discrepancies can be at-
tributed to different parameterizations of biomass burning
emissions in the models. For instance, GEFS-Aerosols uti-
lized the GBBEPx biomass burning emissions (Zhang et al.,
2019), which is conducted based on QFED (Darmenov and
da Silva, 2015) and the fire radiative power observations from
polar-orbiting and geostationary satellites. CAMSRA used
biomass burning emissions from the Global Fire Assimila-
tion System (GFAS; Kaiser et al., 2012), which shows lower

emission compared with QFED (Pan et al., 2020). Also, the
smoke plume rise is considered in GEFS-Aerosols but not
in MERRA-2 and CAMSRA. These aerosols attest to large
uncertainties that exist in parameterizing wildfires.

Figure 10 illustrates vertical profiles of sulfate and dust
aerosols over East Asia (EASIA) during DJF and MAM.
The results are consistent with the negative AOD biases of
pNARA v1.0 over EASIA shown in Fig. 6. The AOD deficit
over EASIA in pNARA v1.0 compared with the other reanal-
yses occurs as a consequence of considerably lower concen-
trations of both sulfate and dust aerosols.

In Fig. 6, pNARA v1.0 displays significant negative AOD
bias over oceans with respect to CAMSRA and smaller bias
over oceans with respect to MERRA-2. We chose the area
marked as SOCEAN in Fig. 7 to investigate reasons for the
differences between the reanalyses. In Fig. 11, we show ver-
tical profiles of mixing ratios of selected aerosol species over
this area during JJA and SON. Among the three reanalyses
sea salt aerosols were lifted to higher elevation in CAM-
SRA resulting in larger AOD values over the oceans. AOD
assimilation in pNARA v1.0 leads to a better agreement with
CAMSRA and MERRA-2 compared with the free model
run, but the sea salt loading is still lower during JJA. It is
worth mentioning that there exist divergences between re-
analyses in profiles of mass mixing ratios of other aerosol
species, though the values are small. MERRA-2 has the most
dust while CAMSRA has the most hydrophobic OC. Both
MERRA-2 and CAMSRA have more sulfate aerosols than
pNARA v1.0. Shapes of vertical profiles of mass mixing ra-
tios of dust and sulfate vary widely between the reanalyses.

In conclusion, we note that assimilation of AOD leads to
convergence of pNARA v1.0 towards both MERRA-2 and
CAMSRA. This statement holds for AOD and generally for
vertical profiles of aerosols. However, assimilation of an inte-
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Figure 9. Same as Fig. 8, but for hydrophilic organic and black carbon (OCPHILIC and BCPHILIC) and hydrophobic organic and black car-
bon (OCPHOBIC and BCPHOBIC) aerosols over South Africa and the surrounding tropical Ocean (SAFRTROP; top) and Siberia (RUSC2S;
bottom) during JJA.

grated quantity, such as AOD over a single wavelength (here
550 nm), has little impact on the “shape” of vertical profiles,
and values of mass mixing ratios usually appear to be scaled
proportionally throughout the depth of the atmosphere. Most
importantly, there exist marked differences in seasonal verti-
cal profiles of aerosol species between the three reanalyses.

5.3 Comparison against in situ measurements of
surface aerosol concentrations

In the following we present an evaluation of pNARA v1.0
against measurements of surface PM2.5 concentrations from
OpenAQ and concentrations of aerosol species from IM-
PROVE.

Hourly measurements of surface concentrations of PM2.5
collected in the global OpenAQ database are available from
late April 2016 onwards. First, we note that in situ measure-
ments display high spatial and temporal variability, which re-
flects the origin and subsequent evolution of this species. The
horizontal resolution of our model (about 100 km), which
also affects accuracy of the representation of terrain topog-
raphy, is far too coarse for the results to be compatible with
such measurements. Also, these measurements are obtained
close to the ground, which is significantly lower than the bot-
tom level of our model (on average about 20 m). This makes
the calculation of the concentration at the surface dependent
on the atmospheric stratification in the surface layer. Because

of uncertainties involved, here we simply multiply the mix-
ing ratio of model PM2.5 expressed in Eq. (4) by moist air
density obtained from the model diagnostic 2 m temperature,
humidity, and surface pressure:

PM2.5 = BC1+BC2+OC1+OC2+SULF+DUST1

+DUST2× 0.38+SEAS1+SEAS2+SEAS3
× 0.83. (4)

In this equation acronyms denote the following aerosol
species: BC – hydrophilic and hydrophobic black carbona-
ceous, OC – hydrophilic and hydrophobic organic carbona-
ceous, SULF – sulfate, DUST – dust in the two smallest
size bins, and SEAS – sea salt in the three smallest size
bins. Finally, we note that AOD, which represents a column-
integrated aerosol quantity, may poorly correlate with surface
values alone since aerosol-rich layers often occur at raised el-
evations. Nevertheless, in our opinion, such evaluation statis-
tics not only provide valuable information on the reliability
of global model results for PM2.5 forecasting and analysis
but also on the relevance of assimilating AOD for such pur-
poses. The statistics were calculated for 00:00, 06:00, 12:00,
and 18:00 UTC and are presented in probability density plots
in Fig. 12. Model bias with respect to in situ PM2.5 measure-
ments coincides with its bias against in situ AERONET AOD
retrievals. The correlation with PM2.5 measurements is much
poorer compared with the correlation with AERONET AOD
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.

Figure 10. Same as Fig. 8, but for sulfate (a, c) and total dust (b, d) aerosols over East Asia (EASIA) during DJF (a, b) and MAM (c, d)

retrievals. Overall and modest improvements in statistics can
be noted for the reanalysis compared with the model free run.
The spatial density of OpenAQ measurements varies consid-
erably over the globe and it is the highest over North Amer-
ica, Europe, and East Asia. To account for the geographical
variability, we performed tests with spatial thinning of data,
but sensitivity of the statistics to this procedure was minor.

Measurements of daily averaged (beginning at midnight
local standard time) concentrations of selected aerosol
species by the IMPROVE network occur once in 3 days and
are limited to North America and a single site in South Korea.
The sites are located remotely from industrial and popula-
tion centers. For comparison with the model following guid-
ance from Hand at al. (2019), measured concentrations of
organic carbonaceous species and sulfate were scaled by 1.8
and 1.375, respectively. Six-hourly model mixing ratios of
species were weighted appropriately to account for the local
time of the measurements and, as for comparison with PM2.5
from OpenAQ, multiplied by 2 m moist air density. Probabil-
ity density plots for the carbonaceous species, sea salt, and

sulfate for the reanalyses, which differ little from the free
model run, appear in Fig. 13. Poor performance of the model
and lack of improvement from the assimilation can be noted.
Because of the scarcity of systematic measurements of con-
centrations of individual aerosol species, or lack thereof, out-
side of North America, our statistics only reflect performance
of the model over this geographical area. It would be, how-
ever, overly optimistic to expect that the model skill signifi-
cantly improve elsewhere.

6 Conclusions

This study documents the development and the evaluation
of pNARA v1.0, which is the first global aerosol reanalysis
product at NOAA. pNARA v1.0 is made available for
distribution at https://esrl.noaa.gov/gsd/thredds/catalog/
retro/global_aerosol_reanalysis/catalog.html (last access:
3 May 2023). To produce pNARA v1.0, the GEFS-Aerosols
model was used to forecast aerosol mass mixing ratios.
The GEFS-Aerosols relies on GOCART parameterization
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Figure 11. Same as Fig. 8, but for sea salt, dust, sulfate, and hydrophobic OC over the Southern Ocean during JJA (top) and SON (bottom).

Figure 12. Probability density plots of modeled PM2.5 with respect to OpenAQ measurements for the free model run (a) and pNARA
v1.0 (b). Evaluation period: May–December 2016.

coupled with the FV3 dynamical core using GFS physics.
The reanalysis containing 3D aerosol mass mixing ratios
for 2016 was generated in a process of a 3D-EnVar data as-
similation using a specifically designed JEDI configuration.
The system assimilated neural network retrievals of AOD at
550 nm from MODIS instruments onboard Terra and Aqua

satellites. We evaluated the AOD against AERONET obser-
vations, the reanalyses from NASA GMAO’s MERRA-2,
and ECMWF’s CAMSRA, and measurements of surface
concentrations of PM2.5 and selected aerosol species.

The evaluation against AERONET observations shows
that the assimilation of AOD retrievals at 550 nm improves
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Figure 13. Probability density plots of speciated aerosol surface concentration of pNARA v1.0 with respect to IMPROVE measurements for
(a) elemental carbon (EC), (b) organic carbon (OC), (c) sea salt, and (d) sulfate.

the overall agreement with AOD at 500 nm, especially in
the spring and summer. However, the comparison of the
Ångström exponent indicates that the assimilation of the
single-wavelength AOD induces minimal improvements to
the speciation and the size distributions of aerosols. Further-
more, the significant underdispersion in the probability den-
sity plot of the absorption AE vs. the scattering AE along
the ordinate (Fig. 5) indicates what we believe is a shortcom-
ing of the GOCART parameterization. We suspect that this
shortcoming stems primarily from the assumption of the ex-
ternal mixing of aerosols (i.e., no interaction among aerosol
species) in this scheme.

In terms of AOD at 550 nm, pNARA v1.0 shows close
proximity to MERRA-2, while it has significant negative bi-
ases against CAMSRA. pNARA v1.0 shows lower amounts
of dust aerosol over the Sahara and Middle East. The GEFS-
Aerosols model and consequently our reanalysis display
higher dust concentrations over the Gobi Desert than both
reanalyses. These deficiencies over deserts call for improve-
ment to model parameterization of dust uplift. For biomass
burning areas, GOCART-based reanalyses, MERRA-2, and
pNARA v1.0 share similar characteristics, while CAMSRA
shows significantly different amounts and ratios of carbona-
ceous aerosol species. Over East Asia, pNARA v1.0 displays
significantly lower amounts of aerosols than CAMSRA and
MERRA-2. This is due to the lower concentrations of sul-
fate aerosols throughout the year and dust during winter and
spring. The discrepancies between the reanalyses indicate
that there exist significant differences in parameterizations of
anthropogenic, biomass burning, and wind-driven dust uplift
between the three models.

In this study, we demonstrated that the reanalyses of
AOD at 550 nm produced at NASA (Buchard et al., 2017),
ECMWF (Inness et al., 2019), and NOAA (this study) show
marked differences globally. (See Table A1 for further com-
parison among reanalyses.) Also, seasonally averaged ver-
tical profiles of aerosol species vary significantly between
the three reanalyses. This pertains both to the chemical com-
position of aerosol mixtures and the shapes of the vertical

profiles of species. The differences between the reanalyses
may arise from distinct model numerics, physical and chem-
ical parameterizations, boundary conditions as sources of
tracers, and approaches in data assimilation. These observa-
tions combined with the poor representation of the absorp-
tion spectrum (Fig. 5) by simple aerosol schemes, such as
GOCART, lead us to the conclusion that our assessment of
the state of atmospheric aerosols and their radiative impacts
is hardly adequate to allow detailed forecasts of stratification
and clouds with aerosol-sensitive physical parameterizations.
For instance, Bozzo et al. (2017) and Mulcahy et al. (2014)
have demonstrated the importance of including more realis-
tic aerosol states in the parameterization of aerosol–cloud–
radiation interactions. For reasons noted above, we believe
that at the current state of aerosol science, large uncertain-
ties in simulating aerosol–meteorology interactions in the
weather and climate models exist.

Comparisons with measurements of surface concentra-
tions of PM2.5 from OpenAQ show limited skill of the model
and reanalysis in this task. (See Table A2 for further com-
parison among reanalyses.) Performance of the model and
reanalysis were poor when the results were compared with
surface concentrations of carbonaceous, sulfate, and sea salt
aerosols. Given the limitations of the model that were listed
in the section dedicated to its evaluation against measured
concentrations of aerosols at the surface, such results may
not be unexpected but are nevertheless disappointing since
they suggest that our global reanalysis has a limited value for
those health and epidemiological studies in which chemical
composition of aerosols is considered. It is possible that ex-
tending chemical parameterizations to include the formation
of secondary organic aerosols would improve model fore-
casts (Fan et al., 2022).

Future space missions (e.g., PACE which we mentioned
above) and new algorithms (e.g., Zhou et al., 2021) promise
to provide novel retrievals of multi-wavelength solar and lu-
nar AOD, fine-fraction AOD, single scattering albedo, and
retrievals of aerosol layer height. These developments should
enhance scope of evaluations, pose additional constraints in
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data assimilation, and eventually lead to better aerosol fore-
casts and reanalyses.

The main goal of this paper is to present our initiative to
produce the first-ever global aerosol reanalysis at NOAA. As
discussed above, our reanalysis has deficiencies that will be
addressed in turn. Huang et al. (2023) outlined the potential
enhancements to our assimilation approach, estimates of ob-
servation and model errors, and systemic correction of model
biases. We will report our advances in the future.

Appendix A

Here we provide the spatial distribution of the tempo-
ral statistics from the experiments (Figs. A1 and A2) and
the comparison of the three reanalysis datasets (Tables A1
and A2).

Figures A1 and A2 display the temporal biases, R2, and
RMSE of AOD at 500 nm against the AERONET retrievals
(Fig. A1) and the PM2.5 measurements against OpenAQ
(Fig. A2) from both the free model run and pNARA v1.0
analyses. For AOD at 500 nm, pNARA v1.0 shows smaller
biases, better correlation, and reduced RMSE in most places.
However, over Asian regions (e.g., India and Southeast Asia),
the improved correlation and similar RMSE indicate that the
reanalyses from pNARA v1.0 provide better temporal vari-
ation but not magnitude. In terms of the PM2.5, Fig. A2
shows no discernible differences between two experiments.
This indicates that the DA system with AOD retrievals barely
helps the PM simulations in GEFS-Aerosols. Note that sta-
tions over India are substantially underestimated compared
with stations over the USA and Europe. This suggests that
the PM2.5 in this area involves more complicated chemical
processes, a situation which is not resolved by the simple
chemistry in the GOCART model.

Tables A1 and A2 show the station averaged temporal
statistics for biases, RMSE, and R2 from pNARA v1.0,
CAMSRA, and MERRA-2 with respect to AOD at 550 nm
(Table A1) from AERONET and PM2.5 from OpenAQ (Ta-
ble A2). For AOD at 550 nm, we horizontally interpolate the
products publicly available from each dataset to AERONET
stations. The resolution of pNARA v1.0 is 0.5 by 0.5◦,
MERRA-2 is 0.5 by 0.625◦, and CAMSRA is 0.5 by 0.5◦.
We also derived the AOD at 550 nm from the companion
AERONET AOD retrievals at other wavelengths for the com-
parison. Table A1 shows that the CAMSRA has smaller
biases among the three datasets, while pNARA v1.0 has
smaller RMSE and larger R2 values. (Note that the over-
all R2 values for the whole dataset of AOD at 550 nm
from pNARA v1.0, CAMSRA, and MERRA-2 are 0.768,
0.725, and 0.730, respectively.) For PM2.5, the derivation
provided by GMAO (https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/FAQ/; last access: 20 January 2024) is applied to
the MERRA-2 product. Similar to AOD at 550 nm, the hor-
izontal interpolation was applied to MERRA-2 and CAM-
SRA, whereas it was done on a native model grid for pNARA
v1.0. Table A2 shows that CAMSRA overestimates the sur-
face PM2.5, whereas MERRA-2 and pNARA v1.0 both un-
derestimate these observations. Like the comparison of AOD
at 550 nm, pNARA v1.0 compares favorably in RMSE and
R2 to the other reanalyses with respect to the temporal varia-
tion in PM2.5. These two tables illustrate differences between
the reanalyses. We note that a fairer comparison would result
if all the reanalyses were available on native grids. Also, the
overarching goal of this study was not to stratify various re-
analyses in terms of accuracy. Instead, it was to show how
significant are the differences that exist between them with
respect to the mixing ratios of various aerosol species and
the implications that this fact carries for modeling of the im-
pacts of aerosols on weather and climate.
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Figure A1. The horizontal distribution of temporal biases (a, d),R2 correlation (b, e), and RMSE (c, f) of AOD at 500 nm against AERONET
measurements of 2016.

Figure A2. The horizontal distribution of temporal biases (a, d), R2 correlation (b, e), and RMSE (c, f) of PM2.5 (µg m−3) against OpenAQ
measurements. Evaluation period: May–December 2016.

Table A1. Comparison of station averaged temporal statistics for bias, RMSE, andR2 correlation of pNARA v1.0, CAMSRA, and MERRA-2
against AERONET AOD at 550 nm over four seasons and the whole year of 2016.

DJF MAM JJA SON Total

Bias RMSE R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE R2 Bias RMSE R2

pNARA v1.0 −0.036 0.067 0.438 −0.034 0.090 0.552 −0.028 0.081 0.555 −0.030 0.068 0.546 −0.034 0.086 0.602
CAMSRA −0.006 0.071 0.372 0.012 0.098 0.480 0.029 0.101 0.479 −0.001 0.075 0.492 0.008 0.094 0.526
MERRA-2 −0.016 0.068 0.391 −0.015 0.094 0.477 −0.013 0.087 0.492 −0.015 0.073 0.474 −0.015 0.089 0.540
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Table A2. Comparison of station averaged temporal statistics for
bias, RMSE, and R2 correlation of pNARA v1.0, CAMSRA,
and MERRA-2 against OpenAQ PM2.5 measurements over May–
December 2016.

Bias (µg m−3) RMSE (µg m−3) R2

pNARA v1.0 −6.426 16.375 0.174
CAMSRA 3.167 19.583 0.134
MERRA-2 −4.126 17.705 0.111

Code and data availability. The GEFS-Aerosols and JEDI code
we used to conduct pNARA v1.0 are publicly available on Zen-
odo (https://doi.org/10.5281/zenodo.8226055; Wei et al., 2023a).
Because the size of reanalysis datasets is too large, we de-
posited the sample data of pNARA v1.0, MERRA-2 and
CAMSRA on Zenodo (https://doi.org/10.5281/zenodo.8222945;
Wei et al., 2023b). For pNARA v1.0, readers can browse
the catalog (https://esrl.noaa.gov/gsd/thredds/catalog/retro/global_
aerosol_reanalysis/catalog.html; last access: 22 January 2024)
for available files and retrieve the data via wget or curl com-
mands. For instance, the retrieval link of the aerosol mass
mixing ratio reanalysis at 12:00 UTC on 15 August 2016
will be https://esrl.noaa.gov/gsd/thredds/fileServer/retro/global_
aerosol_reanalysis/201608/NARA-1.0_aero_2016081512.nc4 (last
access: 22 January 2024). Note that adjustments of time (i.e.,
201608 and 2016081512) and the data type (i.e., use _aero_ or
_AOD_) are required.

For MERRA-2, we used AOD (M2I3NXGAS) and aerosol mass
mixing ratio (M2I3NVAER) datasets. It can be received by search-
ing the tag in the parentheses on NASA’s Goddard Earth Sci-
ences Data and Information Services Center (GES DISC) web-
site (https://disc.gsfc.nasa.gov/, last access: 22 January 2024). For
CAMSRA, the data can be founded by “EAC4” through At-
mosphere Data Store website (https://ads.atmosphere.copernicus.
eu/cdsapp#!/home, last access: 22 January 2024). The CDS
API is needed for users to fetch data (https://ads.atmosphere.
copernicus.eu/api-how-to, last access: 22 January 2024). The
API request can be generated by selecting the desired pa-
rameters on the website (https://ads.atmosphere.copernicus.eu/
cdsapp#!/dataset/cams-global-reanalysis-eac4?tab=form, last ac-
cess: 22 January 2024) and users can retrieve files through
Python script. The measurements from MODIS NNR, AERONET,
OpenAQ, and IMPROVE for 2016 are available on Zenodo
(https://doi.org/10.5281/zenodo.8226441; Wei et al., 2023c).
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