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Abstract. This paper documents the methodology and pre-
liminary results from a perturbed parameter ensemble (PPE)
technique, where multiple parameters are varied simultane-
ously and the parameter values are determined with Latin
hypercube sampling. This is done with the Community At-
mosphere Model version 6 (CAM6), the atmospheric com-
ponent of the Community Earth System Model version 2
(CESM2). We apply the PPE method to CESM2-CAMS6 to
understand climate sensitivity to atmospheric physics param-
eters. The initial simulations vary 45 parameters in the mi-
crophysics, convection, turbulence and aerosol schemes with
263 ensemble members. These atmospheric parameters are
typically the most uncertain in many climate models. Con-
trol simulations and targeted simulations to understand cli-
mate forcing due to aerosols and fast climate feedbacks are
analyzed. The use of various emulators is explored in the
multi-dimensional space mapping input parameters to output
metrics. Parameter impacts on various model outputs, such
as radiation, cloud and aerosol properties, are evaluated. Ma-
chine learning is also used to probe optimal parameter values
against observations. Our findings show that PPE is a valu-
able tool for climate uncertainty analysis. Furthermore, by
varying many parameters simultaneously, we find that many
different combinations of parameter values can produce re-
sults consistent with observations, and thus careful analysis

of tuning is important. The CESM2-CAMS6 PPE is publicly
available and extensible to other configurations to address
questions of other model processes in the atmosphere and
other model components (e.g., coupling to the land surface).

1 Introduction

General circulation models (GCMs) have numerous and
long-standing biases due in part to uncertain representa-
tions of the physical processes (e.g., Trenberth and Fasullo,
2010). This is especially true for processes that occur at sub-
grid scales, such as microphysics, turbulence, convection and
aerosol processes. Because these processes are not resolved,
their effects on the grid-scale model state variables are rep-
resented via parameterizations rather than the process equa-
tions being explicitly solved at the natural scale of the phe-
nomena being represented. For example, the evolution of a
single cloud drop in a turbulent flow over a small domain
can be simulated explicitly, but the evolution of a cloud drop
population cannot be directly simulated directly due to the
sheer number of drops within each grid volume of typical
atmospheric models (with grid spacing of tens of meters to
tens of kilometers). Moreover, for many processes, includ-
ing cloud and aerosol microphysics, even at the natural scale
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of the phenomenon (e.g., scale of an individual drop) there
are uncertainties in the underlying physical processes. That
is to say that for many processes there are no governing equa-
tions at any scale. For example, for cloud microphysics there
are fundamental uncertainties in how drops collide and ei-
ther bounce, coalesce or breakup. Most ice microphysical
processes, including nucleation, diffusional growth, riming
and aggregation, remain highly uncertain even at the scale of
individual particles (e.g., Morrison et al., 2020).

Parameterizations typically include parameters whose val-
ues are constrained by theory, high-resolution process mod-
els and observations. To varying degrees, these parameter
values are uncertain because of both uncertainty in how to
best represent the impact of subgrid-scale processes at the
grid scale and fundamental uncertainty at the process scale.
In climate models, parameter values are adjusted within the
bounds of uncertainty to produce realistic output relative to
observations. However, this process, usually referred to as
“tuning”, faces several challenges (Hourdin et al., 2016).
For example, since climate GCMs comprise several differ-
ent physics packages, finding the best parameter values in
one physics package could impact the others and produce
out-of-balance results. As a consequence, there may be a de-
pendence on the sequence in which the physics packages are
tuned. As part of this process, it is important to understand
how uncertainty in parameter values translates to uncertainty
in simulated climate. Some parameters are more uncertain
than others but may have a relatively small or large impact
on simulated climate across the range of this uncertainty.

Tuning, and the associated investigation of parameter un-
certainties, can be done in several different ways. Each
method has an associated computational cost, which is usu-
ally a consequence of how many simulations are performed.
Traditionally, sensitivity to parameters is analyzed using a
“one at a time” (OAT) method (Schmidt et al., 2017). When
performed as part of the model tuning process, this can rep-
resent an optimized random walk approaching the minimiza-
tion of an informal cost function (errors against a sum of ob-
servations). OAT methods do not account for nonlinear re-
lationships between different parameters and resulting out-
puts are generally inefficient. Furthermore, to perform sim-
ulations over the entire parameter space with many variable
parameters, a large number of simulations are required. For
example, in the current study we perturb 45 different param-
eters, which would require a minimum of 3.5 x 1013 (2%)
simulations using OAT methods if each parameter was tested
with only two values in all combinations. The number of
simulations needed increases exponentially if each param-
eter were perturbed with additional values; i.e., the number
of required simulations is M N for OAT methods, where N
is the number of parameters and M is the number of values
tested for each parameter.

Over the last several years, more objective and efficient
methods have been developed to perturb multiple moist
physics and aerosol parameters simultaneously (Lee et al.,
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2011; Qian et al., 2015). These methods have been used to
optimize models in an automated way (Jackson et al., 2008;
Wagman and Jackson, 2018; Regayre et al., 2018; Peatier
et al., 2022) and to understand model uncertainty (Posselt
and Vukicevic, 2010; van Lier-Walqui et al., 2012; Regayre
et al., 2014; Qian et al., 2015; Lee et al., 2016; Qian et al.,
2018; Watson-Parris et al., 2020; Duffy et al., 2024; Song
et al., 2024; Gettelman et al., 2024). They provide a more ro-
bust platform for uncertainty quantification and objective im-
provement of climate models, ranging from parameter tuning
to understanding structural deficiencies of models, for exam-
ple, when no combination of parameters converges to obser-
vations. Comprehensive sets of perturbed parameter values
can be used for the development of sophisticated fast model
emulators to help with model tuning or even to advance pro-
cess level understanding and guide selection of key addi-
tional data for constraining models (Regayre et al., 2018).

The goal of this paper is to document the methodology for
creating a large perturbed parameter ensemble (PPE) with
the Community Atmosphere Model version 6 (CAM6; Get-
telman et al., 2019), the atmospheric component of the Com-
munity Earth System Model version 2 (CESM2; Danaba-
soglu et al., 2020). We will also present early results on PPE
spread for certain outputs, key parameter sensitivities of the
model and preliminary results of model emulation. The data,
scripts and code for reproducing and extending the PPE are
now available to the community. Section 2 contains a de-
scription of the methodology used to create the PPE, includ-
ing parameters and methods. Section 3 describes the method
used for the modeling and the emulators. Section 4 describes
key initial results of the PPE, emulators and simple tuning,
and Sect. 5 provides a summary and conclusions.

2 PPE description

To generate the PPE, we created a set of variable parame-
ters using Latin hypercube sampling (McKay et al., 2000).
With this technique, random values are created within a de-
termined range. Ranges of the possible values are divided
into a number of bins equal to the number of samples. Each
parameter is assigned a value within a random bin, and no
parameters from subsequent samples can have a value from
previously sampled bins. In this way, the parameter sets for
all samples cover the entire parameter range for each param-
eter and have marginal distributions that are uniformly dis-
tributed. Figure 1a shows an example of how three different
parameters are sampled in relation to each other. The color
and size of the symbols represent the distance from the cen-
ter of origin in the plot to illustrate the depth of the plot. Note
that the points in Fig. 1a are generally uniformly distributed
in the 3-D space and have uniform marginal distributions in
each dimension (Fig. 1b), which is a key aspect of Latin hy-
percube sampling.
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Figure 1. (a) Example of Latin hypercube sampling with three normalized perturbed parameters (accretion enhancement factor, autoconver-
sion factor and ice fall speed factor). The color and size of the symbols in (a) represent the Euclidean distance from the origin (0,1,0) for
all 263 parameter sets in the full ensemble. Darker and larger symbols are located closer in the viewpoint. (b) Normalized histogram of the
marginals with the mean value over all parameter values shown in the upper right of each plot.

Using this sampling, we initially created 250 different
sets of parameter values in addition to the default CESM2—
CAMG6 setup (total of 251 sets). The ratio of number of en-
sembles to numbers of parameters is ~ 5.5, close to the ratio
of 6 used in Regayre et al. (2023). After preliminary analysis
of the initial simulations we decided to extend the range for
one of the parameters (micro_mg_max_nicons). The method
we employed is general for any parameters with Latin hy-
percube sampling. A relative Euclidean distance metric (d)
was created. For each individual ensemble m, we calculate
the average distance of each parameter i in ensemble m to
parameter i in the other ensembles j. Then d,, is the sum of
all Euclidean distances in ensemble m divided by number of
parameters (pa) and ensembles (en):

pa en

b1 G, jm (P ) = p (i, )
en - pa ’

dm = ey
The relative Euclidean distances for the original 251 ensem-
ble members are shown in Fig. 2 (250 perturbation cases plus
1 default case).

We then generated 7500 new parameter sets. Out of these
7500 sets, we picked 12 sets where the single parameter
value of micro_mg_max_nicons was within the new range
and had the largest relative Euclidean distance value (equal
to or greater than the average Euclidean distance between
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each of the original 251 parameter samples) to make a total
of 263 PPE sets. The reason for choosing the sets with the
largest relative Euclidean distance is to avoid the problem
of close-proximity points. The relative Euclidean distance of
all the 7500 sets that had a parameter value within the new
range and a relative Euclidean distance greater than the aver-
age distance (0.16) was met for only 32 of the 7500 sets.

Using this approach, we then archived the 262 parameter
sets plus the default case in a single file with metadata. Ev-
ery parameter was chosen to be run-time configurable (not
hard-wired in code). A script for running CESM2-CAM6
was developed which sets up a model simulation, then copies
(“clones”) the configuration to a new name and substitutes a
parameter set from the file. This method enables the repro-
duction and extension of the PPE from a single file and script.
CESM2 and CAMG6 can be run in many different configu-
rations (standard atmosphere—ocean for CAM6, fully cou-
pled CESM2, aquaplanet, single column, nudged mode, etc.).
Archiving the parameter sets and the automated run script al-
lows any CESM configuration to be run with the same pa-
rameter sets for different types of analysis or different diag-
nostic output.

Geosci. Model Dev., 17, 7835-7853, 2024
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Figure 2. The relative Euclidean distance (d) for each of the original
251 parameter sets.

3 Methodology

Here we first describe the CESM2-CAMG6 model and then
the simulations conducted, parameters varied and finally the
emulators used on the model output.

3.1 Model description

In this study, we use CESM2 (Danabasoglu et al., 2020),
which contains the atmosphere model CAM6. CAM6 uses
a four-mode version of the Liu et al. (2012) Modal Aerosol
Model (MAM4) with modifications to include stratospheric
sulfur (Mills et al., 2016). This version has an extra mode
for primary carbon and has a better representation of black
carbon and sulfate evolution. Cloud microphysics in CAM6
uses version 2 of the Morrison and Gettelman (2008) scheme,
described by Gettelman and Morrison (2015) and Gettelman
et al. (2015). CAMG6 replaces the CAMS5 shallow convection,
planetary boundary layer and cloud macrophysics schemes
with a new unified turbulence scheme, the Cloud Layers Uni-
fied by Binormals (CLUBB), originally developed by Golaz
et al. (2002) and integrated in CAM by Bogenschutz et al.
(2013). CAM6 also features a new mixed-phase ice nucle-
ation scheme developed by Hoose et al. (2010). Deep con-
vection is represented by the Zhang and McFarlane (1995)
scheme. These CAM6 parameterizations have been imple-
mented in CESM2 as described in Bogenschutz et al. (2018).

3.2 Simulations

We conducted three sets of simulation ensembles using the
parameter samples. The first set uses near-present-day cyclic
boundary conditions for the year 2000. The greenhouse gases
and atmospheric oxidants are average values for the 1995—
2005 period. The average monthly sea surface temperatures
(S8STs) for 1995-2010 are used. The emission of aerosols and
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precursors is also set to 1995-2005 in the present day (PD)
simulation. The second set of simulations is the preindustrial
(PI) configuration. This uses the same setup as PD, but the
aerosol emission is estimated for the year 1850. In the third
set of simulations the PD configuration is used again, but the
SST is uniformly increased by 4 K (SST4K). All simulations
use a resolution of 0.9° latitude x 1.1° longitude with 32 lev-
els in the vertical up to 10hPa. By performing these three
sets of simulations with the same parameter sets, not only
can we evaluate the output spread by perturbing parameters,
but we can also evaluate the cloud feedback (difference be-
tween PD and SST4K) and aerosol forcing (difference be-
tween PD and PI). Here the aerosol forcing is the aerosol
effective forcing after adjustments of atmospheric tempera-
ture and humidity. We tested two different run lengths (3 and
5 years) and found that we could reproduce (emulate) a given
two-dimensional (2-D) field with similar root mean square
error (RMSE) using 3 or 5 years of simulation. All simula-
tions presented herein are 3 years long.

Model output is archived monthly and daily for se-
lect fields. Output is available at https://doi.org/10.26024/
bzne-yf09 (Eidhammer et al., 2022). Also available is a
Python script to create the parameter file and scripts to sub-
mit the PPE simulations.

3.3 Parameters

All three simulation sets are run with 263 different ensemble
members corresponding to the sets of 45 perturbed parame-
ters plus the default parameter set as described in Sect. 2. En-
semble member 0 is the standard (default) CESM2-CAM6
setup. The remaining 262 ensemble members are run with
parameters determined with the Latin hypercube sampling,
for which the minimum and maximum values are given in Ta-
ble 1. The values in Table 1 are the physical values, while the
Latin hypercube sampling uses the normalized ranges to de-
termine the parameter values. The range of values in Table 1
is chosen by “expert elicitation” among the parameterization
developers for cloud microphysics, convection, unified tur-
bulence and aerosol activation.

Some of the chosen ranges are large. However, regardless
of whether the ranges of a given parameter are realistic, the
specification of some a priori range is usually done from the
perspective of univariate parameter variation. Because it is
typically unknown how parameter perturbations will inter-
act, when performing simultaneous perturbations, it is ad-
vantageous to consider wider ranges of parameters. These
will more fully elucidate the model’s ability to produce com-
pensating errors. Compensating errors, in turn, help to indi-
cate where independent information on individual parame-
ters (observations, a priori theoretical or laboratory informa-
tion) may be needed to independently constrain parameters
and break the compensation of errors.

The parameters encompass most of the moist physical pa-
rameterizations and aerosols. This includes the unified turbu-
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lence closure (CLUBB; Golaz et al., 2002), the cloud micro-
physics (MG2; Gettelman and Morrison, 2015), the Modal
Aerosol Model (MAM; Liu et al., 2012) and the Zhang—
McFarlane deep convection scheme (ZM; Zhang and McFar-
lane, 1995).

A brief description of the CLUBB parameters is found
in Guo et al. (2014). clubb_C2rt is the damping of scalar
variances for liquid water; increasing this makes CLUBB
behave closer to complete or no cloudiness (no vari-
ance) and brightens clouds. The parameters clubb_Co6rt
(clubb_C6thl) and clubb_C6rtb (clubb_C6htlb) are the low
and high skewness of Newtonian damping of the total wa-
ter flux (potential temperature flux). Decreasing these pa-
rameters tends to boost fluxes, producing a more well-
mixed layer, with minor effects on cloud brightness. The low
skewness especially impacts stratocumulus, while the high
skewness especially impacts cumulus. Similar parameters
were perturbed simultaneously, so clubb_C6rt=clubb_C6thl
and clubb_C6rtb=clubb_C6htlb. clubb_C8 describes the dis-
sipation of skewness of the vertical velocity; increasing
this parameter reduces skewness, which brightens clouds.
clubb_beta sets the plume widths for liquid water potential
temperature and total water. An increase in clubb_beta leads
to an increase in the scalar skewness. This affects liquid wa-
ter and cloud fraction. clubb_c1 is the skewness of the lower
side of the C1 skewness function (standard deviation of ver-
tical velocity); increasing clubb_cl dims clouds. clubb_cl1
is the low skewness for buoyancy damping of vertical ve-
locity. Increasing clubb_c11 brightens clouds. clubb_cli4 is
a constant for the dissipation of u'? and v"? (variances of the
horizontal velocity components), and lower values brighten
clouds. clubb_c_K10 is a coefficient in the momentum equa-
tion. An increase in clubb_c_KI0 increases the eddy diffu-
sivity of momentum, which, in turn, increases near-surface
wind magnitude. clubb_gamma_coef controls the skewness
of the vertical velocity distributions (different moments), and
lowering it brightens low clouds. clubb_wpxp_L_thresh is
a threshold for turbulent mixing length, below which extra
damping is applied to scalar fluxes. A higher value means
that the extra damping is applied to a greater range of mixing
lengths.

The MG2 microphysics scheme (Gettelman and Morri-
son, 2015; Gettelman et al., 2015) takes bulk water and di-
vides it into four hydrometeor categories (cloud liquid, ice,
rain and snow), predicting mass and number mixing ratios
for each. Several parameters are used to control the rain
formation processes of autoconversion and accretion. Au-
toconversion is the coalescence of cloud droplets that be-
come rain, and it is dependent on the cloud water mass
mixing ratio (¢qq4) and inversely dependent on drop num-
ber (Nq). micro_mg_autocon_lwp_exp alters the exponent
on g4, and micro_mg_autocon_nd_exp alters the exponent
on Ny. micro_mg_autocon_fact linearly scales autoconver-
sion. Accretion is the process of rain drops collecting cloud
water. micro_mg_accre_enhan_fact linearly scales it. mi-
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cro_mg_berg_eff factor scales the rate of vapor deposi-
tion onto ice (which also impacts supercooled liquid). mi-
cro_mg_max_nicons is the maximum allowed ice number
concentration. micro_mg_dcs is the threshold diameter for
cloud ice to autoconvert to snow. micro_mg_iaccr_factor
similarly scales the accretion of cloud ice by snow. mi-
cro_mg_effi_factor scales the size used for the optics calcu-
lation for cloud ice. micro_mg_homog_size alters the initial
size generated when a liquid homogeneously freezes to ice.
Finally micro_mg_vtrmi_factor linearly scales the ice and
snowfall speed.

Several parameters are related to aerosols, mostly aerosol
emissions, cloud particle nucleation and scavenging. mi-
crop_aero_npccn_scale scales the activated cloud condensa-
tion nuclei (CCN) concentration, affecting drop number con-
centration. Subgrid-scale vertical velocities are used for both
cloud droplet activation (wsub) and ice nucleation (wsubi)
and are derived from the turbulent kinetic energy calculation
in CLUBB. This calculation applies maximum and minimum
limits to the subgrid vertical velocities. Here, we perturb the
minimum values which are set with microp_aero_wsub_min
and microp_aero_wsubi_min. The subgrid vertical veloci-
ties are linearly scaled with microp_aero_wsub_scale and
microp_aero_wsubi_scale. Higher subgrid vertical veloc-
ities will generally activate more aerosol, leading to
higher drop and crystal numbers. Dust emissions are
linearly scaled with dust_emis_fact and sea-salt emis-
sions with seasalt_emis_scale. Finally, the scavenging
of aerosols in clear air below cloud by precipitation
is scaled by sol_factb_interstitial and within cloud by
sol_factic_interstitial.

Deep moist convection is parameterized by the ZM
scheme. cldfrc_dpl and cldfrc_dp2 define the shape of the
relationship between convective mass flux and convective
cloud fraction (dpl =linear term, dp2 =1log term). An in-
crease in either of these parameters increases convective
cloud fraction. The autoconversion of a convective conden-
sate to precipitation increases by increasing zmconv_c0_Ind
(over land) and zmconv_c0O_ocn (over ocean), increasing the
efficiency of convective precipitation. zmconv_capelmt is
the convective available potential energy (CAPE) triggering
threshold for deep convection, where a higher value triggers
less often and allows more CAPE to build up. zmconv_dmpdz
changes the entrainment rate for the initial parcel buoyancy
test, and a larger value means more mixing and damped
convection. zmconv_ke is the convective evaporation effi-
ciency over ocean and zmconv_ke_Ind over land. Larger val-
ues mean more evaporation. There are two parameters for the
pressure term in the convective momentum transport equa-
tion: zmconv_momcd is for downdrafts and zmconv_momcu
for updrafts. Increasing them reduces the impact of resolved
vertical wind shear. zmconv_num_cin is the allowed number
of negative buoyancy crossings before the convective top is
reached. Larger values mean deeper convection. Finally, zm-
conv_tiedke_add is a convective parcel temperature perturba-
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Table 1. A description of the parameters that are perturbed and their ranges.
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Physics Parameter name Description Default Min Max  Units

scheme

CLUBB clubb_C2rt Damping on scalar variances 1.0 0.2 2 -
clubb_Cé6rt Low skewness in C6rt skewness function 4.0 2.0 6 -
clubb_Cortb High skewness in Cért skewness function 6.0 2.0 8 -
clubb_C6thl Low skewness in C6thl skewness function 4.0 2.0 6 -
clubb_C6thlb High skewness in C6thl skewness function 6.0 2.0 8 -
clubb_C8 Coef. no. 1 in C8 skewness equation 42 1.0 5 -
clubb_beta Set plume widths for theta_l and rt 2.4 1.6 25 -
clubb_cl Low Skewness in C1 skewness 1.0 0.4 3 -
clubb_cl11 Low Skewness in C11 skewness 0.7 0.2 0.8 -
clubb_c14 Constant for % and v’ terms 22 0.4 3 -
clubb_c_K10 Momentum coefficient of Kh_zm 0.5 0.2 1.2 -
clubb_gamma_coef Low skewness: gamma coef. skewness 0.308 0.25 035 -
clubb_wpxp_L_thresh Length-scale threshold below which extra damping 60 20 200 m

is applied to C6 and C7

MG2 micro_mg_accre_enhan_fact ~ Accretion enhancing factor 1.0 0.1 100 -
micro_mg_autocon_fact Autoconversion factor 0.01 0.005 02 -
micro_mg_autocon_lwp_exp  LWP exponent 247 2.10 330 -
micro_mg_autocon_nd_exp Autoconversion exponent —1.1 —-0.8 -2 -
micro_mg_berg_eff_factor Bergeron efficiency factor 1.0 0.1 1.0 -
micro_mg_dcs Autoconversion size threshold ice—snow 500 x 10~° 50x 107% 1000 x 107® m
micro_mg_effi_factor Scale effective radius for optics calculation 1.0 0.1 20 -
micro_mg_homog_size Homogeneous freezing ice particle size 25 % 107° 10 x 107° 200107 m
micro_mg_iaccr_factor Scaling ice and snow accretion 1.0 0.2 1.0 -
micro_mg_max_nicons Maximum allowed ice number concentration 100 x 100 1x10° 10000 x 10  no. kg*l
micro_mg_vtrmi_factor Ice fall speed scaling 1.0 0.2 50 ms!

Aerosol microp_aero_npccn_scale Scale activated liquid number 1 0.33 3 -
microp_aero_wsub_min Min subgrid velocity for liquid activation 0.2 0 05 ms!
microp_aero_wsub_scale Subgrid velocity for liquid activation scaling 1 0.1 5 -
microp_aero_wsubi_min Min subgrid velocity for ice activation 0.001 0 02 ms!
microp_aero_wsubi_scale Subgrid velocity for ice activation scaling 1 0.1 5 -
dust_emis_fact Dust emission scaling factor 0.7 0.1 1.0 -
seasalt_emis_scale Sea salt emission scaling factor 1.0 0.5 25 -
sol_factb_interstitial Below-cloud scavenging of interstitial modal aerosols 0.1 0.1 1 -
sol_factic_interstitial In-cloud scavenging of interstitial modal aerosols 0.4 0.1 1 -

M cldfrc_dpl Parameter for deep convection cloud fraction 0.1 0.05 025 -
cldfrc_dp2 Parameter for deep convection cloud fraction 500 100 1000 -
zmconv_c0_Ind Convective autoconversion over land 0.0075 0.002 0.1 m!
zmconv_c0_ocn Convective autoconversion over ocean 0.03 0.02 0.1 m!
zmconv_capelmt Triggering threshold for ZM convection 70 35 350 J kg_'
zmconv_dmpdz Entrainment parameter —1.0x1073 —20x1073 —2.0x10"% m~!
zmconv_ke Convective evaporation efficiency 5.0x107° 1.0x 1076 1.0x 1073 (kg m=25= 105 =1
zmconv_ke_Ind Convective evaporation efficiency over land 1.0x 1073 1.0x 1070 1.0x 1073 (kg m—2s= 105 =1
zmconv_momcd Efficiency of pressure term in ZM downdraft CMT 0.7 0 I -
mconv_momcu Efficiency of pressure term in ZM updraft CMT 0.7 0 1
zZmconv_num_cin Allowed number of negative buoyancy crossings 1 1 5 -
zmconv_tiedke_add Convective parcel temperature perturbation 0.5 0 2 K

tion, where a higher value means more buoyant parcels and
deeper convection.

3.4 Emulator description

We perform analysis of the raw model output across the PPE
and also use several different emulation tools to analyze the
ensemble. This is done to show the potential use of machine
learning on the PPE. Here we focus on how well fast emu-
lators can reproduce specific model features and then show
a simple demonstration of how they can be used to tune the
model. We utilize two separate emulator toolkits. The first is
the Earth System Emulator (ESEm), which is an open-source
tool providing a general workflow for emulating and vali-
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dating a wide variety of models and outputs (Watson-Parris
et al., 2021). This tool uses well-established libraries for the
emulation of general circulation models with different re-
gression techniques (neural network, Gaussian process and
random forest) and provides hardware-optimized functions
for efficiently sampling them. The tool also features the abil-
ity to train on 2-D fields of data. The second is a neural net-
work emulator (hereafter referred to as the Columbia NN or
Columbia emulator) developed for tuning the NASA GISS
GCM (ModelE), with the final model being a combination of
up to 12 different neural network models (or setups).

In our emulations, we used 210 simulations for training
data (80 %) and 52 simulations for test data (20 %) with no
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Figure 3. The ensemble zonal annual mean and %1 standard deviation across the ensemble for (a) aerosol optical depth (AOD), (b) column
ice water path (IWP), (c) vertically integrated accumulation mode sulfate mass (BURDEN SO4), (d) vertically integrated cloud condensation
nuclei at 0.1 % supersaturation (CCN 0.1 %), (e) column liquid water path (LWP), (f) longwave cloud radiative effect (LWRE), (g) cloud-top
number concentration for liquid (ACTNL) and (h) a histogram of the global annual mean net top-of-atmosphere (TOA) flux balance across
the 263 ensemble members. In (a)—(g), solid lines show the ensemble means, and £1 standard deviation is indicated by the shading. Colored
dotted lines (vertical in the TOA histograms) are the default cases. Orange: present day (PD); blue: SST4K; green: preindustrial (PI).

separate samples withheld for testing. Below are longer de-
scriptions of the emulator techniques used here.

3.4.1 Neural network
Inspired by the human brain, neural networks (NNs) form a

class of flexible and expressive nonlinear functions param-
eterized by a large number of weights. They generally con-
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sist of multiple layers of nodes connected by edges. Each
node consists of a simple (differentiable) activation function
which transforms weighed input into outputs for the follow-
ing nodes. The weights are optimized using gradient descent
against the provided training data. The structure (or architec-
ture) of the NN, including the number and connectivity of
the layers, provides a strong inductive bias on the skill of the
trained network.
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The Columbia approach uses an ensemble of several NNs
whose outputs are averaged. Tests showed that this method-
ology reduced emulator predictive noise and bias, relative
to GCM output. The ensemble members are selected on the
basis of minimum validation (mean square and mean abso-
lute) error. Each NN uses a fully connected design whereby
each node in each layer is connected to every node in the
next layer, sometimes referred to as a multi-layer perceptron
(MLP). The activation function is either a rectified linear unit
(ReLU) or aleaky ReLU, depending on the NN used. The hy-
perparameters of each NN were chosen by manual iteration
through various values of nodes-per-layer and choice of ac-
tivation function (see below). The Adam optimizer was used
with mean square error during training with a learning rate
of 0.001. Early stopping with a patience of 100 epochs was
used to prevent overfitting, using validation loss — typically,
training required between 200 and 500 epochs. Most of these
design choices were determined ad hoc. The Columbia em-
ulator was originally designed to emulate the effect of GCM
parameter perturbations (45 for ModelE) on the values of cli-
matological GCM output performance scores (36 scalar diag-
nostics for ModelE), with skill quantified using the equiva-
lent satellite climatologies. This emulator was not designed
to output spatially resolved fields.

The ESEm NN tries to capture the spatial covariance of
the full model output fields using a fully convolutional neu-
ral network (CNN). Rather than being fully connected, which
would lead to a prohibitive number of parameters, CNNs
convolve small kernels over the image to learn relevant fea-
tures. While still requiring more parameters than assum-
ing grid-point independence, and hence more training data,
we have found that with suitable normalization such emula-
tors can skillfully reproduce CAM6 model fields for unseen
parameter combinations (see Sect. 4.3). Note also that the
ESEm CNN was designed for 2-D fields and does not work
as well for global averages.

3.4.2 Gaussian process emulator

A Gaussian process (GP) regression is a non-parametric ap-
proach that finds a distribution over the possible functions
f(x) that are consistent with the observed data. It begins
with a prior distribution and updates the prior distribution
as new data points are observed, producing the posterior dis-
tribution over functions. The priors are called kernels or co-
variance functions. There are several different kernels that
can be used, for example constant, linear and radial basis
function (RBF), expressing different prior beliefs over the
functional form of the model response. The kernel length
scale and the smoothness parameters (sometimes referred to
as hyper-parameters) can then be fit using standard optimiza-
tion tools.

A key benefit of Gaussian process emulators over other ap-
proaches is that they can provide well-calibrated uncertainty
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quantification on their predictions. This is particularly impor-
tant if the emulator is to be used for model calibration.

3.4.3 Random forest emulator

Random forest (RF) emulators generate a multitude of deci-
sion trees at the training time. The RF emulator creates sev-
eral decision trees by randomly picking samples to make de-
cisions over, reducing the risk of overfitting. A feature of this
approach is that any predictions made must fall within the
distribution of the training data by construction. That is to
say that an RF regression model cannot extrapolate beyond
the training data.

4 Results
4.1 Spread across the PPE

First, we will illustrate the basic spread across the PPE for
several key features of the simulated climate system. The en-
sembles are spread over all parameter values based upon the
uniform sampling of the parameter values within the expert-
chosen ranges. The magnitude of the spread in output values
is dependent on the sensitivity of the parameter, the range
of the parameter and the combinations together with other
parameters. We first show results for a few different out-
puts from the three scenarios. Figure 3 shows the ensemble
zonal annual mean and +1 standard deviation (o, shaded re-
gion) across the ensemble for aerosol optical depth (AOD;
Fig. 3a), column ice water path IWP; Fig. 3b), vertically in-
tegrated accumulation mode sulfate mass (BURDEN SO4;
Fig. 3c), vertically integrated cloud condensation nuclei at
0.1 % supersaturation (CCN 0.1 %; Fig. 3d), column liquid
water path (LWP; Fig. 3e), longwave cloud radiative effect
(LWRE; Fig. 3f), cloud-top number concentration for liquid
(ACTNL; Fig. 3g) and a histogram of the global annual mean
net top-of-atmosphere (TOA) flux balance (Fig. 3h).

The zonal mean plots and histogram include all 263 mem-
bers across each of the 3 run types (PD, SST4K and PI). Note
that the default case (dotted line) need not be near the en-
semble mean (solid line), though it is generally within 1o
of the mean. This is not unexpected as the default parameter
settings are not necessarily near the center of the range (see
Table 1). Several features stand out. First, the spread of IWP
(Fig. 3b) and LWP (Fig. 3e) is large — roughly a factor of
2—4. Second, the reduced BURDEN SO4, CCN and cloud-
top number (Fig. 3c, d and g, respectively) in the Northern
Hemisphere in the PI ensemble is clear. Also note that there
is quite a spread in net TOA flux (Fig. 3h). This means a
large heat gain (positive) or loss (negative) from the system.
For PI and PD, most values are positive, while they are less
positive for the SST4K ensemble. A stable climate is possible
in these configurations with large net TOA flux because there
is an unbounded source/sink of heat associated with the fixed
ocean temperature, which constitutes ~ 70 % of the surface.
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Figure 4. PDFs of global mean quantities from the simulations. (a) Aerosol optical depth (AOD), (b) liquid water path (LWP), (c) total cloud
cover (CLDTOT), (d) clear-sky top-of-atmosphere net shortwave flux (FSNTC), (e) shortwave cloud radiative effect (SWRE), (f) longwave
cloud radiative effect (LWRE), (g) average cloud-top number concentration (ACTNL) and (h) top-of-atmosphere (TOA) flux residual. The
PD — PI difference for aerosol forcing is in blue, and the SST4K — PD difference for feedbacks is in orange. Vertical dashed lines are the

values using the default parameter set.

4.2 Forcing and feedback

One of the unique aspects of the PPE is that in addition to
the control (PD) climate, since we run the same parameter
sets with perturbed climate, we can look at the variability
in modeled climate responses. The differences from the PD
to PI simulations are only due to aerosol emissions (green-
house gases and SSTs remain the same). This enables us
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to look at the effects of anthropogenic aerosols on climate.
Aerosol effects comprise both direct scattering and absorp-
tion of radiation, as well as indirect changes due to changes in
cloud drop number from increased nucleation sites (Twomey,
1977) and further cloud adjustments (Albrecht, 1989; Bel-
louin et al., 2020). Simulations with +4 K uniformly warmer
SSTs (SST4K) are commonly used to look at fast feedbacks
in the atmosphere in response to surface warming (Cess et al.,
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1989) and have been shown to be generally similar to feed-
backs with a more complete model treatment such as with
a mixed-layer ocean model (e.g., Gettelman et al., 2012). To
evaluate the forcing and feedback we use the weighted global
mean of each ensemble member and subtract the different run
types (PD — PI and SST4K — PD; Fig. 4).

Focusing on the aerosol forcing (PD —PI, blue), the differ-
ence in clear-sky TOA shortwave radiation (FSNTC; Fig. 4d)
is a measure of the direct effect of aerosols and is about
—0.4Wm~2. There is an increase in AOD (Fig. 4a), with-
out much spread among the different parameter samples, and
an increase in LWP (Fig. 4b), with some parameter sets pro-
ducing very small increases but with a longer tail of the dis-
tribution. The ensemble average TOA flux change (Fig. 4h)
is similar to the default parameter set at about —1.5 Wm~2,
but some sets have an aerosol forcing of lower magnitude
than —1 W m~2 and some more than —2 W m~2. Given the
large diversity in model state (e.g., factor of 2—4 difference
in LWP and IWP, and TOA differences of up to 40 Wm~2;
Figs. 3b, 3e and 3g, respectively), it is remarkable that the
histogram of TOA net forcing is nearly Gaussian around the
default value and with a range of only —2.5 to OWm™2.
This is close to the assessed range of aerosol forcing by
Bellouin et al. (2020), although we do not explore uncer-
tainty in absorbing aerosol (such as black carbon), which
would be expected to increase the tail of uncertainty to en-
compass positive forcing values. Other fields are similarly
distributed for PD — PI with the exception of the change in
cloud drop number (Fig. 4g), which drives cloud brighten-
ing and results in cloud adjustments. Also note that changes
(both large and small) in cloud radiative effects in the short-
wave radiative effect (SWRE) and LWRE are nearly oppo-
site to each other. This may be due to high-cloud changes:
high clouds have large shortwave (SW) and longwave (LW)
effects which are opposite, so larger LW changes would be
offset by SW changes. It is still noteworthy that there is not
more spread. Also, it is interesting that the cloud-top number
change PD — PI has a significant spread (Fig. 4g).

For feedback (SST4K —PD) results (orange in Fig. 4),
most of the distributions are slightly broader compared to the
aerosol forcing. The larger magnitude of TOA difference in
SST4K —PD (Fig. 4d) is likely due to the large extra heat
source of emission from the warmer ocean. This is consis-
tent with the absolute magnitude of changes in LWRE being
larger in SST4K — PD than PD — PI (Fig. 4f), while the abso-
lute magnitude for the change in SWRE is similar (Fig. 4e).
There is generally a decrease in cloud fraction and an in-
crease in outgoing clear-sky LW radiation. There is a positive
change in SWRE (which has a negative magnitude; Fig. 4¢)
and a negative change in LWRE (which has a positive mag-
nitude; Fig. 4f), representing a weakening of cloud radiative
effect consistent with loss of clouds. In the CESM2-CAM6
PPE, every simulation loses clouds with the 4 K increase in
SSTs (Fig. 4c), and almost all have the same sign of cloud
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changes. This is a representation of positive cloud feedbacks
seen in CESM2 and other models (e.g., Zelinka et al., 2020).

4.3 Emulator results

Running climate models for large numbers of simulations
can be computationally expensive. With the wealth of infor-
mation from our PPE experiment, we can instead use emula-
tors trained on the PPE data to obtain more insight into how
the model behaves, how to optimize it and how scientific cli-
mate questions can be addressed. In Sect. 3.4, we described
the different emulators used here. We focus on four differ-
ent outputs when evaluating the emulator results: LWRE,
SWRE, LWP and the residual top-of-model energy balance
(RESTOM). Note that RESTOM is similar to TOA energy
balance but at the top of the model as opposed to the top
of the atmosphere. We emulate the response of model out-
put to perturbations of all parameters in Table 1. Three of
the emulators are from the ESEm package: CNN, GP and
RF. The fourth emulator is the Columbia NN. The NN em-
ulator was trained on 16 outputs simultaneously, while the
CNN, GP and RF emulators were trained on each individ-
ual output separately. Figure 5 shows the global mean of the
emulated results against the 52 PPE test ensembles, while Ta-
ble 2 shows the error statistics (coefficient of determination,
R?) and RMSE. Note that for this example, the Columbia NN
and GP are emulated with global mean values, while the RF
and CNN are emulated over the 2-D field, where the global
mean is calculated after emulation. Recall that the CNN em-
ulator is built for emulating 2-D fields and cannot be used
to emulate over global means. For most of the outputs, the
ESEm GP and Columbia NN emulators provide the best re-
sults. They have the highest R* values and the lowest RMSE
values (Table 1). The CNN emulator also has high R? values;
however, the RMSE values are slightly higher compared to
the Columbia NN and GP emulators. The RF emulator gives
the lowest score.

As stated, the ESEm tool is also able to emulate 2-D fields.
Figure 6 shows an example of the 2-D results with the ESEm
emulators for LWRE. Figure 6a shows the mean of the 52 test
simulations, while Fig. 6b—d show the difference between the
emulated results and the test simulations. Figure 6e—f show
the RMSE. The total average RMSEs of LWRE along with
SWRE, RESTOM and LWP are also shown in Table 3. In
these cases, like when considering the global average, the GP
emulator has the lowest RMSE. In this case (as opposed to
GP emulation of global means in Fig. 5), the GP is emulated
over the 2-D fields. However, again, we find that the GP has
the best performance compared to the RF and CNN.

4.4 Sensitivity of present day (PD) climate to
parameters

With the large PPE, we can evaluate which parameters have
the most impact on various outputs. In the following dis-
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Figure 5. Comparison of global average emulator results against the global average test data. Lines are linear regression lines, except for the
black line, which is the one-to-one line. Blue is the Columbia NN, orange is GP, green is RF and red is CNN. The root mean square error and
coefficient of determination related to these results are shown in Table 2.

Table 2. Global average emulator statistics compared to the test data. Statistics shown are coefficient of determination (RZ) and root mean

square error (RMSE).
Emulator LWRE LWRERMSE SWRE SWRERMSE RESTOM RESTOMRMSE LWP LWPRMSE
R? (Wm™2) R? (Wm™2) R? (Wm™2) R? (kgm~2)
NN 0.72 3.08 0.74 5.52 0.79 414  0.73 0.019
GP 0.82 2.59 0.76 5.21 0.82 3.82  0.90 0.019
RF 0.57 3.71 0.54 731 0.57 585 0.78 0.027
CNN 0.70 3.46 0.73 5.62 0.80 417 0.69 0.033

cussions we will show results from the full PPE and the
Columbia NN emulator. Along with the ESEm GP emu-
lator, the Columbia NN emulator typically had the low-
est RMSE for the global average outputs when compared
with the test data as shown in Table 2. Figure 7 shows
how LWRE, SWRE and RESTOM depend on values of
the cloud-to-rain autoconversion exponent parameter (imi-
cro_mg_autocon_lwp_exp) and the scaling parameter for fall
speed of cloud ice and snow (micro_mg_vtrmi_factor). The
parameter values (x axis) are normalized (scaled by the min-
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imum and maximum parameter values), while the output val-
ues (y axis) are standardized (scaled by the mean and stan-
dard deviation of the output values). The blue colors repre-
sent the entire PPE (263 samples), while the black and gray
colors represent Columbia NN emulated results using 5000
parameter sets. By evaluating the linear regression slope
of the standardized outputs, the parameters with the largest
slopes (in absolute terms) are determined to have the largest
impact on the outputs. Since the outputs are standardized and
parameters are normalized, the slopes for different outputs

Geosci. Model Dev., 17, 7835-7853, 2024
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Figure 6. Emulated 2-D LWRE outputs using ESEm. Panel (a) shows the mean of the test data (52 simulations), and (b), (¢) and (d) are
the difference between the test data and the emulated results for GP, CNN and RF, respectively. Panels (e), (f) and (g) are the RMSE of the
emulators using the same parameter sets as the test data for GP, CNN and RF, respectively.

Table 3. The 2-D ESEm emulator statistical results compared to test data. The statistic shown is the RMSE.

Emulator LWRE 2-DRMSE SWRE 2-D RMSE RESTOM 2-D RMSE LWP 2-D RMSE

(Wm™2) (Wm™2) (Wm—2) (kgm~?)
GP 4.35 8.12 6.14 0.007
RF 5.54 9.34 8.21 0.008
CNN 5.39 11.23 6.91 0.009

and parameters are directly comparable. Slopes can be cal-
culated for all outputs and parameters. For the example in
Fig. 7, it is clear that the cloud ice particle fall speed param-
eter has a large impact on LWRE, while the autoconversion
parameter value is important for RESTOM and SWRE. In the
cases shown here, the regression slope from the PPE ensem-
ble and the regression slope from the emulated results are al-
most identical. This indicates that the emulator can reproduce
the spread of the PPE well. We note that for most parameter
and output sets we produced, the emulator reproduced well
the PPE regression slope (not shown). Note that with this
simple evaluation we can obtain the regression slope directly
from the PPE. Thus, a full emulation to obtain the regression
slope is not necessary, and the emulation results are included
here primarily to illustrate the performance of the emulator.
We also acknowledge that the assumption that the outputs
change linearly with the parameters is not necessarily true
in all instances; however, this assumption is reasonable for
an initial evaluation. Furthermore, when looking at the coef-
ficient of determination, it is evident that higher values are
correlated with steeper slopes (not shown).

Figure 8 shows a grid plot of the linear regression slopes
(lines in Fig. 7) for 16 outputs (vertical axis) against the 43
parameter values (horizontal axis). Blue values mean that the
output decreases with increasing parameter value, and red
means that the output increases with parameter value. The
darker the colors are, the steeper the slope is and the more the
output is dependent on the parameter value. Since weather
and climate systems can be different in different regions, we
show global results as well as results from the Arctic, mid-
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latitudes, tropics and the Southern Ocean. The vertical black
lines divide the parameters into their respective physics pack-
age: deep convection, aerosol, microphysics and turbulence.
The parameters are listed in the same order as in Table 1. The
outputs (vertical axis going down) are listed in the order of
radiation, cloud properties and aerosol properties.

Some parameters stand out in almost all regions
for many of the outputs, especially the microphysi-
cal parameters. The accretion enhancement factor (mi-
cro_mg_accre_enhan_fact), the autoconversion scaling fac-
tor (micro_mg_autocon_fact) and the autoconversion expo-
nent (micro_mg_autocon_Ilwp_exp) all directly affect rain
formation and the amount of liquid water in the atmo-
sphere. The autoconversion size threshold of cloud ice to
snow (micro_mg_dcs) and the ice sedimentation factor (mi-
cro_mg_vtrmi_factor) strongly influence the ice water path.
However, in the tropics, where the deep convection scheme
has a dominant influence, only the micro_mg_vtrmi_factor
remains as an important microphysical parameter for most
of the outputs. Nonetheless, the parameter micro_mg_dcs is
still important for the LWRE in the tropics. This is not sur-
prising since it has a large impact on cirrus clouds.

The deep convection parameter that impacts radiation out-
puts the most is the convective parcel temperature pertur-
bation (zmconv_tiedke_add), and this is especially true in
the tropics. The triggering threshold for convection (zm-
conv_capelmt) affects the ice water path and the sulfate bur-
den. These may be related through sulfate effects on the ho-
mogeneous nucleation of ice. Aerosol parameters have less
impact on radiation outputs, but several of them are im-
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Figure 7. Example of output dependence on parameter values. (a—c¢) Autoconversion of cloud droplets to rain. (d—f) Fall speed for ice. Blue
lines and dots represent the full PPE ensemble, and black lines and gray dots are the emulated results using the Columbia NN emulator.

Outputs are standardized, and parameter values are normalized.
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Figure 8. Normalized linear regression slope for 16 outputs (y axis) against all parameter values (x axis).
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The global mean results as well

as four different regions are shown: Arctic, midlatitudes, tropics and the Southern Ocean. The parameters are grouped into deep convection,
aerosol, microphysics and turbulence parameters.
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Figure 9. Histograms of outputs emulated using the Columbia NN. Solid red lines are the global means from the Clouds and the Earth’s
Radiant Energy System (CERES) Multisensor Advanced Climatology of Liquid Water Path (MAC-LWP). Dashed lines are the target range

for tuning, and the black lines are the values in the default simulation.

portant for cloud properties and precipitation. The turbu-
lence parameters have a relatively lesser impact on the out-
puts presented here compared to the microphysics, aerosol
and convection parameters. This might be because the se-
lected range for some of the key CLUBB parameters (like
clubb_gamma_coef) is narrower compared to those used by
others. For example, other PPE approaches with different
versions of CAM have found the shallow cloud turbulence
to be important (Guo et al., 2015) with a broader range of
some CLUBB parameters.

4.5 Tuning example

One of the goals of PPE studies is to assist with constrain-
ing (“tuning”) parameters in models. Though this is not the
main goal of this paper, we experimented with tuning the
CESM2-CAM6 model against the Clouds and the Earth’s
Radiant Energy System (CERES) and Multisensor Advanced
Climatology of Liquid Water Path (MAC-LWP; Elsaesser
et al., 2017) products using the Columbia NN emulator. To
obtain enough samples we used 20000 000 parameter sam-
ples with the emulator, creating the parameter samples us-
ing the Latin hypercube sampling technique with all param-
eters normally distributed. For tuning, we focus on LWRE,
SWRE, RESTOM and LWP, and Fig. 9 shows distributions
of the emulated outputs. The targets are the observed global
means (RESTOM: 0 W m~—2; SWRE: —45.2 W m~2; LWRE:
25.7W m~2; LWP: 0.065 kg m2), indicated by the solid red
lines in Fig. 9. CAMS6 output only includes the “cloud” por-
tion of LWP, and since observations cannot easily distinguish
cloud from rainwater LWP, we followed the recommenda-
tion of Elsaesser et al. (2017) and used only grid boxes for
which the ratio of observed cloud to total LWP exceeded 0.8
in the global mean LWP calculation for both MAC-LWP and
CAMBG6. We look for all emulated outputs that are within the
CERES mean £2 W m~2 for LWRE, £3 W m~2 for SWRE
and RESTOM, and 4+0.01 kgm~2 for LWP. The ranges are
chosen to allow for enough samples to fall within the ranges
in order to produce meaningful probability density functions
(PDFs) in Fig. 10, while these values could be set to corre-
spond to observational or emulator uncertainties. All param-
eter sets that are within the range for all four outputs are ac-
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cepted; this effectively defines a bounded uniform likelihood
over the 4-D observational space. Figure 10 shows the his-
tograms of the parameter values that result in outputs within
the selected ranges. The solid red lines in Fig. 10 indicate the
default parameter value in CESM2-CAM6.

For parameter histograms that are non-uniform and
strongly peaked, relatively more samples near the peak
are within the acceptable tuning range. For example, the
clubb_C8 parameter peaks at relatively large values, while
the clubb_cl4 parameter peaks at small values. But again,
this result might be due to the relatively narrower chosen
range for CLUBB parameters compared to the other types
of parameters. Also interesting is the fact that a relatively
low dust emission factor but high sea salt emission factor
most often produce outputs consistent with the observations
within the acceptable range. We emphasize that parameters
with a peaked histogram in Fig. 10 are not necessarily the
parameters for which the outputs are most sensitive as deter-
mined by the regression slope magnitudes (outputs regressed
on parameter values) in Fig. 8. For instance, the dust and sea
salt emission factors have strongly peaked histograms giving
outputs in the acceptable tuning range but relatively small
regression slopes (Fig. 8). This apparent discrepancy can be
explained by the linear nature of regression versus the non-
linear emulator. There is evidence that there is a complicated
relationship between different parameters.

Ice fall speed (micro_mg_vtrmi_factor) and the number of
levels of convective inhibition in the deep convection scheme
(zmconv_num_cin) are the only parameters with a strong
peak in the middle of their range. As previously stated, the
ranges were chosen by expert elicitation with the default val-
ues within the minimum and maximum range. However, the
values giving realistic outputs here are most often near the
edge of the physically plausible parameter ranges as deter-
mined by expert guidance. Some of the parameters, such as
clubb_C8 and clubb_C11, have default settings near the up-
per end of the ranges which are close to the histogram peaks.
Other parameters, such as clubb_cl4 and dust_emis_fact,
have default settings near the middle of the range but strongly
peaked histograms at the edge. Thus, these parameters most
often have values at the edge of their range, different from
the default values, to produce outputs consistent with ob-
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Figure 10. Histograms of parameter values producing outputs that fall within the desired targeted range surrounding the observations (as
shown in Fig. 9). The solid red lines are the default parameter values. Note that the values for zconv_num_cin are integers and have five

values; therefore the histogram is not continuous.

servations. One possible explanation for this behavior could
be that there are structural errors in the model, and thus we
must push some parameter values to the edge of their plau-
sible range to obtain results consistent with observations. On
the other hand, several parameters are fairly uniform over
the entire parameter range, such as for example clubb_cl
and zmconv_tiedke_add. These results indicate that any value
of these parameters within their range can produce outputs
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close to observations. It is possible that by considering more
observational targets, these parameters could be further con-
strained and unreasonable parameter combinations could be
eliminated.
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5 Summary and conclusion

Here we have presented a CESM2-CAMBS6 perturbed param-
eter ensemble PPE. We perturbed 45 parameters in the mi-
crophysics, turbulence, deep convection and aerosol physics
packages and generated an ensemble with 263 members.
Simulations were generated for current climate, preindustrial
aerosol loading and future climate with 4 K added to the sea
surface temperature. The main objective of this paper is to
provide a description of the CESM2-CAMG6 PPE dataset and
present some initial results. The main results can be summa-
rized as follows:

— The PPE has many different usages, for example, under-
standing uncertainties in model parameterizations, cli-
mate sensitivities to parameter values and optimal pa-
rameter tuning. The CESM2-CAM®6 PPE data are pub-
licly available for the community to use. The CESM2—
CAMBG6 PPE is extensible, and new PPE datasets can be
created in a straightforward way using other parameter
combinations or different model setups.

— Of the outputs evaluated here, there is a large spread in
IWP, LWP and TOA among the individual ensembles
(Fig. 3). Large TOA fluxes in many ensemble members
are possible only because with fixed SSTs there is an un-
bounded heat source/sink at the ocean surface that sta-
bilizes the climate. Large ranges in LWP and IWP indi-
cate that some parameters can significantly increase or
decrease cloud cover, although there is more constraint
on the radiative fluxes since the radiative forcing is non-
linear with respect to cloud mass.

— Both aerosol forcing (PD —PI) and cloud feedback
(SST4K — PD) show a spread in the output values con-
sidered here (Fig. 4). However, the aerosol forcing range
is relatively narrow compared to the cloud feedback (ex-
cept for the cloud-top number concentration). There is
more spread in the total cloud cover and LWP in the
cloud feedback case. This drives the TOA differences
as the cloud environment varies more with SST4K.

— We tested various emulators that were applied to the
PPE ensemble. The Columbia NN, ESEm GP emula-
tor and ESEm CNN all produce reasonable results for
selected outputs, while the ESEm RF emulator had the
lowest scores when considering global means. Both the
CNN and RF outputs were emulated on 2-D fields,
while the error statistics were calculated on the global
mean values. When calculating the error statistics on
the 2-D fields, the RF performed at times better than
the CNN emulator, while the GP emulator still had the
best score overall.

— With the large number of parameters, we evaluated the
sensitivity of global outputs when changing the param-
eter values. There were a select number of parameters
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that have strong sensitivity, especially several micro-
physics parameters. The pattern changes slightly when
considering specific zonal regions, such as the Arctic,
midlatitudes, tropics and the Southern Ocean. For ex-
ample, the microphysics parameters create higher sen-
sitivity in the Arctic and midlatitudes than in the tropics
and Southern Ocean, while some deep convection pa-
rameters have more impact in the tropics and Southern
Ocean.

— We provided a simple tuning experiment using the
Columbia NN emulator. We identified the parameter
combinations that gave results within a small range of
observed global values and evaluated distributions of
parameter values from these combinations. A few pa-
rameter distributions peak within the range of physi-
cally plausible parameter values (as determined by ex-
pert guidance), while several parameters peak at the
edge of the parameter ranges. Only four observational
targets were used to constrain parameter values. By
including more observations, parameters may be bet-
ter constrained. Furthermore, more elaborate techniques
for sampling constrained parameter values, such as
Markov chain Monte Carlo and other Bayesian ap-
proaches, could improve the efficiency and accuracy of
tuning and allow for a more comprehensive account of
observational uncertainties.

Code and data availability. The PPE dataset and the CESM2-
CAMG6 code version cam6_3_026 are available at the Climate
Data Gateway at NCAR (https://doi.org/10.26024/bzne-yf09, Ei-
dhammer et al., 2022). The current version of CESM is avail-
able from https://github.com/ESCOMP/CESM (last access: 30 Oc-
tober 2024) under the license found here: https://www.cesm.ucar.
edu/models/cesm2/copyright (last access: 30 October 2024). The
specific CERES data used in this paper are available on Zenodo
(https://doi.org/10.5281/zenodo.10426438, Eidhammer and Gettel-
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