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Abstract. The Voellmy rheology has been widely used for
simulating snow avalanches and also for rock avalanches.
Recently, a modified version of this rheology was proposed.
While the conventional version of Voellmy’s rheology uses
the sum of Coulomb friction and a velocity-dependent fric-
tion term, the modified version assigns the two terms to dif-
ferent regimes of velocity. The software MinVoellmy pre-
sented here provides the first numerical implementation of
the modified rheology in a two-dimensional, depth-averaged
model. It consists of MATLAB and Python classes, where
simplicity and parsimony were the design goals. In con-
trast to the majority of the models in this field, MinVoellmy
uses a Cartesian coordinate system with the thickness of
the fluid measured vertically and the velocity averaged ver-
tically instead of perpendicularly to the bed. Furthermore,
MinVoellmy implements a simple upstream scheme, which
turns out to be sufficient for rheologies of the Voellmy type.
Numerical tests reveal that the modified Voellmy rheology
reproduces the empirical relation between runout length,
height drop, and volume of large rock avalanches fairly well.
Furthermore, there seems to be a large potential for further
research on hummocky deposit morphologies and longitudi-
nal striations.

1 Introduction

Modeling of rapid mass movements was pushed strongly
by the ideas of Savage and Hutter (1989), who extended
the shallow-water equations towards granular media. The
shallow-water equations provide a two-dimensional, depth-
averaged description of flow processes with a free surface.

In their original form, the shallow-water equations assume
that the bed and the free fluid surface are almost horizontal.
However, this is not the case for typical scenarios of granular
flow. In order to overcome this limitation, the Savage—Hutter
model provides an extension towards thin layers on gently
curved surfaces. Beyond the general formalism, the Savage—
Hutter model also includes an approximation for the stresses
arising from internal deformation of a medium with a given
angle of internal friction.

The idea behind the Savage—Hutter model is adopted by al-
most all two-dimensional continuum models of granular flow
over a given topography. Existing models differ mainly con-
cerning rheology, coordinate system, and approach to reduce
numerical diffusion. An overview of some of the available
models is given by McDougall (2017).

In the context of snow and rock avalanches, the rheology
proposed by Voellmy (1955) is widely used. It assumes a
shear stress of

r = po + L842 1)
3
at the bed. The first term describes Coulomb friction with a
coefficient i, where o is the normal stress. The second term
was adopted from the respective relation for turbulent flow of
water in open channels with a rough bed, where p, g, and v
are density, gravity, and vertically averaged velocity, respec-
tively. The parameter £ refers to the roughness of the bed.
As detailed by Salm (1993), Eq. (1) does not imply turbu-
lent flow in the sense of a complete mixing of the granular
medium, which would be incompatible with the preservation
of stratigraphy often found in deposits of rock avalanches
(Dufresne et al., 2016). The second term in Eq. (1) can be
interpreted as the result of converting a part of the kinetic
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energy of translation parallel to the bed into random particle
motion (see also Hergarten, 2024).

As discussed by Hergarten (2024), Voellmy’s rheology
cannot predict the long runout typically observed for large
rock avalanches without further assumptions. In a nutshell,
long runout requires an effective coefficient of friction, (lr,
that is much lower than typical Coulomb friction coefficients
w. However, = > u for Voellmy’s rheology (Eq. 1), which
makes it incompatible with long runout unless artificially low
friction coefficients u are assumed for large rock avalanches.

Hergarten (2024) proposed a modification of Voellmy’s
rheology to overcome this limitation. Instead of adding the
two contributions in Eq. (1), a transition between two dis-
tinct regimes of movement in the form

| &
T = 08 .2
%.U

was assumed. While a given constant crossover velocity v, is
the simplest idea, Hergarten (2024) also developed a model
for the dependence of v. on the thickness 4 of the layer.
This model was obtained by reinterpreting the random ki-
netic energy (RKE) model (Buser and Bartelt, 2009; Bartelt
and Buser, 2010), which describes the supply of kinetic en-
ergy of random particle motion and its consumption. Intro-
ducing some simplifying assumptions, the relation

ve o JER (3)

was obtained. This approach turned out to predict the scal-
ing relation between volume and runout length of rock
avalanches better than the version with constant v, and is
therefore used in the following.

Concerning the implementation in numerical models, nu-
merical diffusion is typically the most serious problem. Nu-
merical diffusion causes a progressive smoothing of sharp
fronts and an artificial damping of waves. In the context of
granular media, smoothing of fronts is the major problem.

Lagrangian methods are the straightforward approach to
avoid numerical diffusion. In contrast to Eulerian meth-
ods, they use a coordinate system moving with the parti-
cles. In general, however, Lagrangian methods are compli-
cated. There seem to be only two Lagrangian models in
this field. While the model DAN3D (McDougall, 2006) im-
plements the concept of smoothed-particle hydrodynamics,
which is much simpler than a classical Lagrangian approach,
the model AvaFrame com1DFA (Tonnel et al., 2023) addi-
tionally uses a grid in order to avoid problems at low particle
densities. In turn, the vast majority of the available models
uses the Eulerian approach with a fixed coordinate system.

The total variation diminishing non-oscillatory central dif-
ferencing (TVD-NOC) scheme introduced by Nessyahu and
Tadmor (1990) turned out to be powerful in reducing nu-
merical diffusion without introducing strong artificial oscil-
lations. It is implemented in several models, e.g., the com-
prehensive model r.avaflow (Mergili et al., 2017). In turn,

V< Ug
for v>u.
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however, it will be shown in Sect. 5.2 that numerical diffu-
sion is not a huge problem in combination with rheologies
of the Voellmy type. Practically, even the simple upstream
scheme works reasonably well here, which allows for simple
and lightweight implementations.

The simplest form of the Savage—Hutter model refers to
a channel and uses a coordinate system aligned to the bed
with the x coordinate in the principal flow direction. Using
a curvilinear coordinate system in this spirit on an arbitrary
topography is, however, not feasible. Therefore, simpler ap-
proaches are typically preferred. The model RAMMS (Chris-
ten et al., 2010) widely used in practical applications uses a
coordinate system with the x and y coordinates aligned to the
Cartesian axes but locally inclined to become parallel to the
topography. However, this coordinate system does not only
involve a profile curvature along the axes but is also non-
orthogonal. The limitations arising from these properties can
be overcome by introducing more or less complicated cor-
rection terms in the equations (Fischer et al., 2012).

As an alternative, some models use a Cartesian coordi-
nate system (Bouchut and Westdickenberg, 2004; Denlinger
and Iverson, 2004; Hergarten and Robl, 2015; Rauter and
Tukovi¢, 2018). Here the challenge is that the velocity at
the bed must be parallel to the bed. The approach of Her-
garten and Robl (2015) was even simplified in such a way
that a solver for the original shallow-water equations could
be used. In turn, however, only the balance of the horizontal
components of the momentum was considered, which intro-
duces a serious limitation for scenarios with a strong profile
curvature.

In the following, some kind of minimum implementation
of the modified Voellmy rheology (Egs. 2 and 3) will be de-
veloped. The model uses a Cartesian coordinate system in
combination with an approximation to the driving accelera-
tion by gravity. It is designed for simple applications in re-
search but may also be useful in teaching since the code can
be fully understood with limited knowledge about numerics
and is short enough to be transferred to different program-
ming languages easily.

In turn, it is not intended to compete with comprehensive
models such as r.avaflow (Mergili et al., 2017), which even
includes direct coupling to a geographic information sys-
tem and options for multi-phase flow (Pudasaini and Mergili,
2019). Even more important, it should not be used for oper-
ational hazard assessment. The model RAMMS widely used
in this context not only has a much longer history of con-
tinuous development but also includes estimates of its model
parameters based on a large number of studies, which are es-
sential for real-world applications.

2 Coordinates and governing equations

The model MinVoellmy presented in this paper uses Carte-
sian coordinates with the topography of the bed b(x, y), as
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(a) Cartesian

(b) Aligned to bed

Figure 1. Definition of the model variables in two dimensions (only
in the x—z plane) for (a) the Cartesian approach used here and (b)
a coordinate system aligned to the bed as proposed by Savage and
Hutter (1989).

illustrated in Fig. la. The time-dependent model variables
are the thickness of the mobile layer A (x,y,t) and the ve-
locity vector v(x, y, ). As in all models based on the theory
developed by Savage and Hutter (1989), v is the component
of the depth-averaged velocity parallel to the bed.

Using Cartesian coordinates circumvents several problems
arising from non-orthogonal or curvilinear coordinate sys-
tems aligned to the topography. In turn, the treatment of the
velocity is more complicated. The condition that v(x, y,?)
must be parallel to the bed requires

v-n=0 @

with the normal vector
n:cosﬁ<_1Vb>, 5)

where Vb is the two-dimensional gradient of the bed and 8
the slope angle (tan 8 = |Vb|). While this relation would al-
low for reducing the velocity vector to two components in
the equations, it is kept as a three-component vector here, as
already proposed by Rauter and Tukovié¢ (2018). As a major
difference, however, the thickness is not measured normal to
the bed but vertically (Fig. 1).

As illustrated in Fig. 2, considering the vertical thickness
also avoids geometrical problems with the thickness normal
to the bed. Since the orange lines are not parallel if the bed
is curved, an exact balance of mass and momentum must
take the curvature into account. Bouchut and Westdickenberg
(2004) developed such an approach for general topographies
and general coordinate systems (including Cartesian coordi-
nates) without introducing additional approximations to the
Savage—Hutter model. The red lines, however, illustrate that
each approach with the thickness normal to the bed is geo-
metrically limited. Here, the thickness normal to the bed is
greater than the radius of curvature of the bed, which causes
an intersection of the lines. In this case, it is not possible to
define the thickness normal to the bed consistently.

Since the Savage—Hutter model is an approximation for
thin layers and the problem does not occur if the fluid layer is
sufficiently thin, it may be considered irrelevant. However, as
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Figure 2. Different ways to define the thickness. Blue lines describe
the definition of 4 as the vertical thickness proposed in this study.
Orange and red lines describe the thickness normal to the bed. The
normal thickness becomes inconsistent if the lines intersect (red
lines).

pointed out by Hutter et al. (2005), the Savage—Hutter model
is often applied to situations that are formally outside the
range of validity of the assumptions but still yields reason-
able results. In this sense, circumventing geometrical prob-
lems for thick layers by considering the vertical thickness
may be useful.

In sum, however, considering the vertical thickness is a
tradeoff. It simplifies the balance of mass and momentum
(Sect. 2.1) and avoids geometrical problems. In turn, we will
see in Sect. 2.2 that it requires an approximation for the ac-
celeration by gravity, so it is not fully consistent with the
original Savage—Hutter approximation unless the fluid sur-
face is either parallel to the bed or horizontal.

2.1 The balance of mass and momentum

As in all depth-averaged models, the mass balance is taken
into account by balancing the fluxes into and out of volumes
aligned in the same direction as % is measured (gray areas in
Fig. 1). Assuming an incompressible fluid, the mass balance
can be replaced by a volumetric balance in which the (con-
stant) density p does not appear. The balance equation can
be written as an advection equation for the thickness A:

oh  d(uh)  dwyh)

— 0. 6
at + ax ay ©

Since the volumes are vertical in the approach proposed here,
the second and third terms in Eq. (6) refer to horizontal ad-
vection with the velocities v, and vy. The balance equation
is the same as for the original shallow-water equations for an
incompressible fluid (e.g., Vreugdenhil, 1994).

The momentum balance can also be written as an advec-
tion equation in the form

d(hv) | d(vx(hv))  B(vy(hv)) zh(a_fl+cn>. (7)
ot 0x dy [v]

The advection term at the left-hand side is basically the same
as Eq. (6) but for the depth-integrated momentum per unit
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Figure 3. Directions of velocities and accelerations for different sit-
uations. Only situations with the fluid surface parallel to the bed are
considered for a two-dimensional geometry (x—z plane). The sym-
bols refer to the terms v, a, — f\%l’ and cn at the right-hand side of
Eq. (7).

mass hv instead of the thickness A. It is identical to the re-
spective terms in the original shallow-water equations (e.g.,
Vreugdenhil, 1994). However, v is not approximately hori-
zontal (as required for the original shallow-water equations),
and the coordinate system is not aligned to the bed (as in
the original Savage—Hutter model). Therefore, hv must be
treated as a three-component vector, and Eq. (7) consists of
three scalar equations instead of two equations in the original
shallow-water equations and in the Savage—Hutter model.

In contrast to Eq. (6), Eq. (7) has a nonzero source
term at the right-hand side, which describes the total depth-
integrated acceleration. While the left-hand side of Eq. (7)
is practically the same in all depth-averaged models, the
right-hand side is model-specific. In the approach proposed
here, the total acceleration is separated into three parts. The
first term, a, is the gravitational acceleration parallel to the
bed. Its computation is basically the same as in the original
Savage—Hutter model and will be explained in Sect. 2.2. As
illustrated in Fig. 3, a always points downslope with respect
to the fluid surface.

The second term is the frictional deceleration. Its direction
is always opposite to the velocity. Since |—z‘ is a unit vector,
f is the absolute value of the deceleration, which depends on
the assumed rheology.

In contrast to the first two terms, which are parallel to the
bed, the third term (cn) is normal to the bed. It describes the
centripetal acceleration required to keep the velocity parallel
to the bed. This term is not immediately needed in models
with a coordinate system aligned to the bed, in which the
two-component velocity vector is parallel to the bed by def-
inition. In such models, the centripetal acceleration is only
used for computing the dynamic contribution to Coulomb
friction via the normal stress at the bed. In some models,
such as the original version of RAMMS, this contribution is
even neglected. Other approaches (e.g., Fischer et al., 2012)
compute ¢ from the local curvature. However, the concept
proposed in this paper uses a simpler approach, which will
be presented in Sect. 3.2.

Geosci. Model Dev., 17, 781-794, 2024

2.2 The gravitational acceleration

Since the expression for a is typically derived in a bed-
parallel coordinate system, its computation in Cartesian co-
ordinates is briefly recapitulated in the following. The main
idea stems from the Navier—Stokes equations for an inviscid
fluid, where

0
pa=-Vp+p| O ®)
—8
with the fluid pressure p.

The central approximation of the original shallow-water
equations is that a is horizontal and constant along vertical
columns, which results in hydrostatic vertical pressure pro-
files. Similarly, the Savage—Hutter model assumes that a is
parallel to the bed and constant along columns normal to the
bed. The same is assumed for the Cartesian version proposed
here except that the columns are vertical instead of normal to
the bed (Fig. 1). So the first condition to be metis a-n =0
with the normal vector n defined in Eq. (5), which implies

Vp-n=—pgcosp. )

As a second condition, p = 0 at the free surface s = b+ h.
Then, V p must be normal to the surface, and thus

vpz)\(_lvs) (10)

with an unknown factor A. Inserting this relation into Eq. (9)

yields

A= P8 (11)
14+Vs-Vb

Since a and thus also V p are vertically constant, p increases

linearly downward from the surface (p = 0). Then the pres-

sure at the bed is

0
p=Vp-| O
—h

pgh

=——— 12
1+Vs-Vb (12)

and the bed-parallel acceleration

0
et (V) 6
1+Vs-Vb —g

:_L Vs :_& Vs (13)
1+Vs-Vb\ Vs:-Vb ph \ Vs-Vb J°

As a central property, the absolute value of the acceleration
is

VD] .
——==gsinf
V1+|Vb|?

if the free surface is parallel to the bed (Vs = Vb) and zero
if the free surface is horizontal (Vs = 0).

lal =g (14)
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Figure 4. Acceleration by gravity with the original pressure at the
bed (Eq. 13) and with the modified pressure (Eq. 17). The angle ¢
describes the slope of the free surface s (Fig. 1). Negative values of
¢ correspond to an inclination opposite to the bed. The bed-parallel
acceleration a is £ |a| with a positive sign downslope and a negative
sign upslope. The dashed lines illustrate the unrealistic range for
the pressure derived from Eq. (13) and the dash-dotted lines the

respective parts of the curves in a coordinate system aligned to the
bed.

Figure 4 shows the one-dimensional version of Eq. (13)
for slope angles 8 = 15° and B =45°, where the angle ¢
describes the slope of the free surface (Fig. 1). As a strik-
ing property, a singularity occurs at ¢ = —75° for g = 15°
and at ¢ = —45° for § = 45°. It occurs if the denominator in
Eq. (12) approaches zero, which is the case if the free surface
is normal to the bed (¢ = 8—90°). The pressure py, grows to-
wards infinity then and even becomes negative after passing
the singularity, which is unrealistic. The respective range cor-
responds to the dashed lines in Fig. 4, which show a positive
(downslope) acceleration for an uphill-facing front (¢ < 0°).

One might argue that this situation is far outside the scope
of the theory proposed by Savage and Hutter (1989) and that
the occurrence of the singularity is irrelevant. Concerning
numerical simulations, however, it is a big advantage if the
solution is still well-defined beyond the range of the approx-
imations made. At this point, the widely used formulation in
alocal coordinate system is better than the Cartesian version.
If the thickness 4 is measured perpendicular to the bed, there
is no singularity but just |a| — oo for |VA| — oo. The al-
lowed range for ¢ in Fig. 4 would be ¢ € (8 —90°, 8+ 90°)
instead of (—90, 90°), which means that the dashed line seg-
ments to the left of the singularity exist no longer. In turn, the
allowed range of ¢ includes the dash-dotted line segments.

In turn, passing the singularity in the Cartesian version
causes an unrealistic behavior. If an uphill-facing front (¢ <
0°) becomes steeper, there is an increasing outward accel-
eration (a < 0) at first. At a certain steepness, however, the

https://doi.org/10.5194/gmd-17-781-2024

acceleration changes its direction (a > 0), causing the mate-
rial to pile up rapidly. So passing the singularity needs to be
inhibited technically, e.g., by imposing a positive lower limit
dmin to the denominator in Eq. (12):

_ pgh
max(1+ Vs - Vb, duin)

Po (15)
However, the maximum acceleration at a downhill-facing
front would be limited even for ¢ — 90°. So there is
an asymmetry in the acceleration in the form that uphill-
facing fronts will typically cause a higher acceleration than
downhill-facing fronts. As a consequence, a small-scale
roughness of the free surface will cause an uphill accelera-
tion in total. This issue will be investigated numerically in
Sect. 5.1.

In order to overcome this strong limitation, the model Min-
Voellmy uses a simplified expression for the pressure at the
bed, which assumes that the free surface is parallel to the bed.
So Vs is replaced by Vb in Eq. (12), and thus

pgh

= Trver = pghcos?B. (16)

Db
This approximation can be interpreted as the hydrostatic
pressure caused by the normal component of gravity, g cos 83,
for a layer of a thickness of /1 cos B (perpendicular to the bed).
The acceleration (Eq. 13) then simplifies to

a= —gcos2/3 ( VsV~SVb ) . a7

This modification transfers the good properties of the
original approach in a slope-aligned coordinate system to a
Cartesian coordinate system. In particular, a is linear in Vs at
constant Vb. This linearity ensures that a small-scale rough-
ness of the free surface causes no acceleration in total and
that a horizontal surface (Vs = 0) is stable.

In turn, however, the curves of the two expressions for the
acceleration (Eqs. 13 and 17) are not tangential to each other
at ¢ = B but cross each other with different slopes. Thus,
Eq. (17) is not a first-order approximation to Eq. (13) con-
cerning the difference ¢ — B for ¢ ~ . The acceleration is
predicted correctly if the free surface is parallel to the bed,
but the effect of an inclination of the free surface relative to
the bed is overestimated. It will be shown that this overesti-
mation has a minor effect on avalanche fronts even on steep
slopes. It may, however, have a stronger effect on the tails
of avalanches and on the propagation of waves at the free
surface. There might be options to achieve a better approxi-
mation for ¢ & § preserving the good properties of the equa-
tion. For the sake of simplicity and parsimony, however, the
simple approximation is used in the following.

2.3 Friction

The friction term in Eq. (7) refers to the acceleration of a
vertical column. Here it has to be taken into account that the

Geosci. Model Dev., 17, 781-794, 2024
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shear stress 7 at the bed acts on the inclined bed area, which
is locally by a factgr of Coi 5 greater than the horizontal area.
Then the deceleration is

T

- phcos B (18)

with the shear stress T from Eq. (2). For v > v, we obtain

g 2

f_ghcosﬁw' 19)
without further assumptions. In the range of Coulomb fric-
tion (v < v¢), however, the normal stress at the bed must be
specified. For simplicity, effects of internal deformation of
the granular medium (typically expressed in terms of the so-
called earth pressure coefficients) are neglected in the follow-
ing. If the friction arising from the centripetal acceleration is
also neglected, the normal stress o is given by the pressure
at the bed pyp, which leads to

Pb
phcosB’

f=u 20)

The increase in friction due to the centripetal acceleration ¢
(Eq. 7) can easily be included in the form

_ 14
! _M(phcos,B

+C> =n(gcosp+c) (2D

in combination with the modified pressure at the bed
(Eq. 16). On concave profiles, however, f may even become
negative. In this situation, the mobile material would detach
from the bed, which is not captured by models of this type.
Since an acceleration by friction is unrealistic, negative val-
ues of f should be replaced by 0, and thus

Fe pumax (gcosf +c,0) V< U 22)
- ﬁhﬂz for v >,

3 Numerical implementation

The numerical implementation uses a regular grid with a con-
stant spacing éx in the x direction and 8y in the y direction.
The variables are the thickness 4 and the depth-integrated
momentum per unit mass hv as a three-component vector.
Both variables are considered at the nodes (x, y).

3.1 Mass balance

The mass balance (Eq. 6) is an advection equation without
source terms. An explicit Euler scheme is used in combina-
tion with an upstream discretization. The question of why
this simple scheme is sufficient for the Voellmy rheology
considered here will be addressed in Sect. 5.2. Applying the
explicit Euler scheme to Eq. (6) yields

d(vch (1)) n 3(Uyh(f))>
dx ay '

h(t +8t) = h(t) —at( (23)

Geosci. Model Dev., 17, 781-794, 2024

First, the values v, and v, are computed at the nodes from
hv and h. Then the values of vy are interpolated linearly to
the points (x & %x, y). Depending on the sign of this velocity,
h at either of the nodes (the upstream point) is adopted to
(x & 57)‘, ¥), and a central difference quotient is used for the
x derivative at (x, y). The same procedure is applied to the
y derivative.

3.2 Momentum balance

The momentum balance (Eq. 7) is separated into several
steps.

Step 1: advection

The first step is basically the same as for &, except that the
result is not (hv)(t + 8t) but an intermediate value

o)1) 8<vy<h”>(”)). (24)
0x 3

(hv) = (hv)(t) — 8t (
Step 2: centripetal acceleration

The second step addresses the last term at the right-hand side
of Eq. (7) and computes a second intermediate value

(hv)” = (hv) + 8t hen. (25)

The centripetal acceleration c is obtained from the condition
that v must be parallel to the bed ((hv)”-n = 0), which yields

Sthe = —(hv) - n. (26)

Since the centripetal acceleration should not change the ab-
solute value of the velocity, (hv)” is then rescaled in such a
way that |(hv)”| = |(hv)'|.

Step 3: gravitational acceleration

This step generates the next intermediate values
(hv)"” = (hv)" + 8t ha. 27

The gravitational acceleration a parallel to the bed (Eq. 13
or 17) requires the gradient of the free surface s =b+ h.
In order to avoid checkerboard problems, one-sided differ-
ence quotients are used, although central difference quotients
would yield a better accuracy theoretically. If central differ-
ence quotients were used, a checkerboard pattern with one
value of s at the black fields of a checkerboard and another
value at the red fields would yield no acceleration and thus
be stable. One-sided difference quotients in the direction of
steepest increase (or least steep descent) in s turned out to be
most robust.

Step 4: friction

The final step has the form

(hv)(t + 81) = (hv)" — 8t hf — (28)

lv|”
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Since friction is opposite to the velocity, (hv)(t + §t) is ob-
tained by rescaling (hv)”’.

For v < v., the amount in hv consumed by friction
is 8t humax (gcos B +¢,0) according to Eq. (22). If this
amount exceeds the actual amount |(hv)””’|, it is assumed that
the movement stops. Accordingly, the length of the vector

(hv)(t + 1) is
[(hv)(t + 81)| = max (| (hv)"’| — 8t hmax (gcos B +¢,0),0),  (29)

where the outer maximum function takes the stopping crite-
rion into account.

For v > v, we have to take into account that friction de-
pends on velocity. Since f — oo for & — 0 according to
Eq. (22), an implicit scheme is used here in order to avoid
an additional limitation to é¢. This means that v in Eq. (22)
is expressed in terms of (hv) (¢ + 8t), which yields

8| oy +602. (30)

[(hv)(t 4 6t)| = |(hv)™| — Ehlcosh

This is a quadratic equation in [(hv) (¢ + §¢)|. It is solved by

[(ho)(t +80)| = /¥ + 27 |(hv)"| =y 3D

with

_ ghcosp

32
2g6t (32)

4 Software description

At present, MATLAB and Python implementations of Min-
Voellmy are available under the GNU General Public Li-
cense. None of them requires specific packages, except for
NumPy for the Python version. Each version contains sepa-
rate classes for the one- and two-dimensional versions. The
implementation is minimalistic. The classes contain a con-
structor and a method step for performing a forward time
step but neither methods for input/output nor graphics com-
ponents.

The constructor requires six (one-dimensional) or seven
(two-dimensional) mandatory arguments:

— Two arrays are b and h for the bedrock elevation b and
the initial thickness 4.

— The grid spacing is dx and dy (only for the two-
dimensional version).

— The physical parameters are p (mu), £ (xi), and v,
(vc). The latter describes the crossover velocity at a
thickness 4 = 1 m, and the actual value of v. is com-
puted from Eq. (3). Values v, < 0 switch to the conven-

tional Voellmy rheology. These three parameters may
be either scalar values or arrays.

Further optional arguments are as follows:
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— A minimum thickness is defined as hpi, (hmin). It
is assumed that material can move only if & > hpiy
(default is 0). In order to increase efficiency, the two-
dimensional version restricts the computation to a rect-
angle around the active region in each time step.

— The minimum value is dpi, (dmin) for the denominator
in Eq. (15) in case the original expression for the pres-
sure is used. The simplified expression (Eq. 16) is used
for dmin = 0, which is strongly recommended (default is
0).

— A logical value cent is used to define whether the ef-
fect of the centripetal acceleration on Coulomb friction
is taken into account (default is true).

— The gravitational acceleration is g (g) (default is 9.81).

The method step for the forward time step updates the
thickness h and the Cartesian components uh, vh (only in
the two-dimensional version) and wh of the momentum vec-
tor hv. The time increment &z (dt) is the only mandatory
parameter. Optionally, an upper limit c£1 for the Courant
number,

[ve|8t  |vy|dt

c . (33)

Sx Sy

can be defined. In this case, 8¢ is reduced automatically if
C > cfl, and the reduced value of 6z is returned. This op-
tion can be used for adjusting §¢ dynamically to the velocity.
According to the Courant—Friedrichs—Lewy (CFL) criterion,
C > 1 makes the explicit scheme unstable. Setting cf1 to
a sufficiently small value, e.g., 0.5, avoids instability of the
advection terms. However, the CFL criterion does not cap-
ture the acceleration and friction terms, so 5z must not be too
large even when using the optional argument cf1. In partic-
ular, the transition in friction at v, may require quite small
time increments 4¢.

5 Numerical tests

In this section, several tests addressing the fundamental prop-
erties of the modified rheology and the numerical approach
are presented. Unless stated explicitly, the parameter values
w=0.75, & =250ms~2, and v. = 5ms~! (at a thickness of
h = 1 m) are used.

5.1 The modified pressure

The first numerical test refers to the modification applied to
the pressure at the bed in Sect. 2.2. The scenario is a pile of
100 m width and 50 m height placed on a slope with g = 30°.
In order to point out the differences between the approxi-
mations for the pressure (Eqs. 15 and 16) more clearly, it
is assumed that the material is fluidized from the beginning
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(u =0, v. =0). The simulations are performed on a rather
fine grid with x = I m and a time increment 87 = 1073 s.

A simulation with a coordinate system aligned to the bed
is used as a reference. Technically, g in the acceleration term
has to be multiplied by cos 8 here, and Vb has to be set to
zero. In turn, an additional downslope acceleration g sin 8 has
to be taken into account.

As shown in Fig. 5, the different simulations start similarly
with some wave-like structures downslope of the crest, ow-
ing to the opposite directions of the acceleration at the crest.
For the scenarios with the original pressure and small lower
limits dpyjy of the denominator in Eq. (15), these waves prop-
agate uphill rapidly. The pile even moves uphill in total for
dmin < 0.1, which is completely unrealistic. This artifact was
already discussed in Sect. 2.2.

In turn, the modified pressure (Eq. 16) overestimates the
acceleration at the steep downslope front. As a consequence,
spreading of the downslope front is stronger than in the ref-
erence scenario. The overall shape is, however, similar for
t > 4s. Due to the faster spreading, the layer is slightly thin-
ner with the modified pressure, resulting in a lower veloc-
ity. So the lead over the reference scenario decreases through
time.

The scenario with a strong limitation of the denomina-
tor (dmin = 1) also stays close to the reference scenario for
some time. However, the tail persists, while the front is too
slow. These results confirm the theoretical arguments given
in Sect. 2.2 that the asymmetry in the acceleration term
causes artifacts. The version with the original pressure ap-
pears to be unsuitable even with the strong limitation of the
denominator. In turn, the version with the modified pressure
works well, except for the spreading of the downslope front
being too fast in the beginning.

5.2 Numerical diffusion

Numerical diffusion is typically the most challenging prob-
lem in computational fluid dynamics. In order to investigate
the effect of numerical diffusion, the movement of a body of
granular material moving down a straight slope with a given
slope angle B is considered. Let us focus on steady-state so-
lutions in the sense that the entire body moves at a constant
velocity vy > v, without changing its shape. Then the driving
acceleration |a| must be balanced by friction at each point, so

8 2
lal =1 = Shcosﬂvo
according to Eq. (19). The simplest solution is an infinite
layer with a constant thickness . Then the surface is par-
allel to the bed, and the acceleration is |a| = gsinf (Eq. 14)
for both pressure models, so Eq. (34) yields

%
ho=—20___ (35)
&cosBsinf

Although this solution does not describe a front moving
downslope, it helps to write Eq. (34) in a more convenient

(34)
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Figure 5. Collapse of a granular pile on a slope with 8 = 30°. The
colored curves refer to the original pressure with different lower
limits (Eq. 15) and the black line to the modified pressure (Eq. 16).
The gray shaded area shows the result of a simulation with a coor-
dinate system aligned to the slope as a reference. Curves are shifted
vertically, and labels at the z axis refer to the first and last plot.
form:
. ho

|a|=gsmﬁ%. 36)
In combination with the modified pressure (Eq. 17), the ac-

celeration is
ds ab\?
— 20 22 -
la| = gcos ,8< 8x> +<8x>

as oh
=gcosf (—a)zgcosﬂ<tan,8—a), (37)
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Figure 6. Front of a layer with a vertical thickness &g = 10 m after
traveling a horizontal distance of 10 km. Curves without markers
refer to the analytical solutions. Markers refer to the nodes of the
numerical solutions with §x = 1 m and éx = 10m. All curves are
centered horizontally in such a way that the mean thickness over an

interval from —250 to 250 m is %0.

which leads to the differential equation

g—hztanﬂ (1—'2). (38)

X

This equation can be solved analytically in the form x (k)
instead of & (x). It is recognized by computing the derivative
that the solution is

h
X = + const. 39)
tan

This analytical solution is the reference for the numerical
test. It describes a front that becomes vertical (% — o0) for
h — 0, while i — hq for x — —o0. It is plotted as a blue
line without markers in Fig. 6 for hp = 10 m.

For the numerical representation, it is assumed that 7 = hg
and |hv| = hovo at the left-hand boundary. This leads to a
front propagating with the velocity vy (parallel to the bed).
Propagation is simulated over a horizontal distance of 10 km
in order to approach the steady-state shape for 6x = 1 m and
éx = 10m. In order to minimize the effect of §¢, the small
value 8t = 1073 s is still used here.

As expected, the deviation from the analytical solution in-
creases with increasing grid spacing. The artificial widening
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of the front is, however, limited to a few times dx. More im-
portant, this widening is limited in time. An initially sharp
front is widened rapidly, but width and shape stabilize soon.

This behavior arises from a specific property of Voellmy-
type rheologies. The frictional acceleration (Eq. 19) in-
creases with decreasing thickness. So material running ahead
of the front is decelerated and thus overrun by the front. As
a consequence, the shape of the front predicted by Eq. (39)
is stable. The simple upstream scheme introduces numeri-
cal diffusion and widens the front, but the stability of the
front counteracts this process. This is the reason why numer-
ical diffusion is not a serious problem in combination with
Voellmy-type rheologies, in contrast to many other applica-
tions of the shallow-water equations.

For completeness, Fig. 6 also shows the results obtained
for the original pressure (Eq. 13) and for the model with a co-
ordinate system parallel to the bed. For the latter, the results
are also transferred to the Cartesian coordinate system with
h measured vertically. The analytical solution is the same for
both versions. Using Eq. (13) instead of Eq. (17) for the ac-
celeration yields the differential equation

oh tan 8 (1 - }%)

=, (40)
- 2,k
dx 1 —sin“g 32
which can be solved in the form
h + hocos?BIn <1 — Z’—O)
X = + const. 41

tan 8

While the solution is similar to Eq. (39), the respective front
is steeper than with the modified pressure and is even over-
hanging in the Cartesian coordinate system used here. The
numerical solution with the coordinate system aligned to the
bed approximates the front better than in Cartesian coordi-
nates, in particular if the slope is steep. This result is not sur-
prising since the front is normal to the bed at the bottom,
while the Cartesian version is limited by a vertical front.

Overall, however, the differences between all versions are
rather small. In combination with the findings of the previous
section, this finding justifies the major approximations intro-
duced in the model MinVoellmy. First, the modified pressure
provides a reasonable approximation and makes a treatment
in Cartesian coordinates with the thickness measured verti-
cally feasible. Second, the simple upstream scheme for the
advection terms works reasonably well in combination with
the Voellmy rheology.

5.3 Comparison to the conventional Voellmy rheology

Figure 7 shows the results for a slope with § = 45° combined
with a horizontal plane. The source area is a segment of an
ellipse with an aspect ratio of 4 : 1 and a vertical wall at the
upper edge at a height of 1900 m above the runout plane.
Grid spacing is 6x = 10 m and time increment 6 = 0.01 s. In
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combination with the modified pressure, which is also used
in the following examples, the Cartesian approach remains
stable, although the applicability of the Savage—Hutter theory
to the thick detached body is not given here, regardless of the
rheology and the numerical scheme.

For the scenario with the conventional Voellmy rheology,
the Coulomb friction term has to be reduced by a factor of 10
(so u =0.075) in order to achieve a similar runout length.
The two versions differ strongly already during the phase
of mobilization. Owing to the artificially reduced coefficient
of friction w, the body is mobilized much faster in the con-
ventional scenario than with the modified rheology. In order
to avoid the fast mobilization, Aaron and Hungr (2016) ex-
tended the model DAN3D by considering a more or less rigid
block during the first phase of movement. This might not be
necessary for the modified rheology. However, it should be
kept in mind that we are outside the range of applicability of
the Savage—Hutter theory here. So the mobilization seems to
be more realistic with the modified rheology but is not nec-
essarily physically correct.

The thickness overshoots at the lower edge of the detach-
ment area. This overshooting is inevitable at a sharp kink in
topography. Due to the finite acceleration, the absolute value
of the velocity changes only gradually across the kink. Thus,
the abrupt change in flow direction at the kink causes an
abrupt drop in the horizontal component of the velocity. Con-
servation of mass requires an increase in vertical thickness 7,
which causes the overshooting. This effect is, however, nei-
ther unique to the approach used here nor a serious problem.

Further differences between the two versions occur during
the runout in the horizontal plane. For the modified rheology,
friction increases instantaneously when the velocity drops
below v., and movement stops soon. As a consequence, a
large part of the mass comes to rest within a narrow time
span between t = 80s and ¢ = 100 s. This region expands to-
wards both sides and is bounded by two narrow ranges with
Coulomb friction. The material upstream of this region piles
up, which results in a hill in the deposits.

In turn, there is a rather thin layer propagating with little
friction, which finally dominates the runout length. Despite
the difference in p, the maximum runout length is even big-
ger than for the scenario with the conventional Voellmy rhe-
ology, while the distance traveled by the center of mass is
similar. This result confirms the findings of Hergarten (2024)
that the modified Voellmy rheology allows for a long runout
without assuming an artificially low coefficient of friction u.

5.4 Two-dimensional simulations

This section mainly addresses the effect of the orientation
of the grid in two dimensions. The starting point is the sit-
uation considered in the previous section but extended into
the y direction by an ellipsoidal volume with an aspect ra-
tio of 4 : 1 : 1. For this scenario, the total detached volume is
V =0.1km3. In addition, a smaller volume of V = 0.02 km?3
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and a larger volume of V = 0.5 km?> are considered, all with
the same aspect ratio and the same height of 1900 m above
the horizontal plane. Grid spacing is §x =38y = 10m. The
time increment is ¢ = 0.1 s with an additional upper limit
C < 0.25 for the Courant number (Eq. 33). All simulations
were run over a total time span of 500s.

Figure 8 shows the final deposits of the three volumes for
a slope aligned to the coordinate axes and for a slope aligned
to the diagonal line in the x—y plane. The small-scale topog-
raphy of the deposits depends on the orientation of the slope.
In particular, striations occur if the velocity is parallel to one
of the coordinate axes. Since the principal flow direction is
parallel to the x axis for the axis-parallel scenario, this effect
is stronger here than for the diagonal setup.

As already recognized in Sect. 5.3, the formation of hum-
mocky deposit morphologies arises from the discontinuity in
friction at v.. This discontinuity also allows for the forma-
tion of striations since the governing equations do not in-
clude transverse diffusion of momentum. Owing to the ad-
vective characteristics of Eq. (7), different flow lines are in
principle decoupled. So the velocity may differ among paral-
lel flow lines without any effect. However, transverse numer-
ical diffusion results in an exchange of momentum between
different flow lines if the velocity is not parallel to any of the
coordinate axes. This effect is apparently strong enough to
suppress the formation of striations.

The occurrence of longitudinal striations is not unrealistic
(e.g., Shreve, 1966; Pietrek et al., 2020), and the modified
Voellmy rheology may open a door towards understanding
their origin. However, proceeding in this direction requires
an extension of the model by transverse diffusion of momen-
tum due to particle collisions in order to find out whether
the tendency towards forming striations is strong enough to
overcome the diffusion of momentum.

The overall shape of the deposits is, however, not affected
strongly by the orientation of the grid. This visual impres-
sion from Fig. 8 is confirmed by the profiles plotted in Fig. 9.
Overall, these results suggest that there is no need to align
the coordinate system to the principal orientation of the slope
when simulating real-world scenarios since the local topog-
raphy will override effects of the orientation.

5.5 Fahrboeschung ratios

Explaining the long runout of large rock avalanches was the
main goal of developing the modified Voellmy rheology. The
relation between runout and volume is often expressed in
terms of the Fahrboeschung ratio %, also called Heim’s ra-
tio, where H is the total height drop and L the maximum
horizontal runout length. Both properties are measured from
the upper edge of the detached volume. Scheidegger (1973)
found a power-law relation

H —a
oV (42)
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Figure 7. Snapshots of a one-dimensional simulation for (a) the modified rheology with © = 0.75 and (b) the conventional Voellmy rheology
with Coulomb friction reduced by a factor of 10 (u = 0.075). Orange areas indicate v < vc for the modified rheology (a) and that the
Coulomb friction term is greater than the v2 friction term for the conventional rheology (b). Blue areas correspond to the opposite situation,
and black areas are at rest. The triangles depict the center of mass and the front. Curves are shifted vertically, and labels at the z axis refer to

the first and last plot.

h (m)

Figure 8. Deposits obtained from volumes of V =0.5 km3, V =0.1km?, and V = 0.02km? with axis-parallel and diagonal orientations.
Only deposits with a thickness # > 0.1 m are shown. The red lines are the outlines of the detachment area at the slope, which is almost
circular in the x—y plane. The close-ups illustrate the partly hummocky topography and striations.

with o = 0.16, which was confirmed later by Legros (2002).

The dashed lines in Fig. 10 show the relation obtained
numerically with the volumes from the previous section ex-
tended to V = 0.001, 0.002, 0.005, 0.01, ..., 0.5km>. While
the power-law relation between volume and Heim’s ratio is
reproduced qualitatively well for V > 0.01 km?>, the effect of
volume on Heim’s ratio is overestimated. Fitting power laws
yields o« = 0.25 for the two-dimensional version and even
a = 0.31 for the one-dimensional version.

This finding is in line with the results of Hergarten (2024),
who considered the same rheology in a lumped-mass model
and found a strong influence of the absolute height drop H.
While larger volumes tend to have a larger height drop in na-
ture, the resulting increase in L is weaker than the increase
in H. So Heim’s ratio increases with increasing H. In order
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to take this effect into account, the solid lines in Fig. 10 de-
scribe the same scenarios as before but with H oc V909 as
found empirically by Legros (2002). The factor of propor-
tionality was chosen to keep H = 1900 m from the previous
simulations for V = 0.1 km>, which yields a range from H =
1255 mfor V = 0.001 km® to H = 2338 mfor V = 1 km®. In
contrast to the previous simulations, V = 1km?> is now pos-
sible without the detachment area reaching the foot of the
slope.

Including the correlation of H and V reduces the exponent
« considerably. For the two-dimensional version, o« = 0.20 is
obtained, which is still higher than observed in nature. The
residual deviation can at least partly be attributed to the spa-
tial scaling assumed here. For simplicity, the detached vol-

. . . 1.
ume was assumed to scale isotropically (so with V'3 in each
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Figure 9. Profiles across the deposits shown in Fig. 8. The pro-
files were obtained by integrating the height above the bed along
the direction perpendicular to the respective profile, which can also
be interpreted as volume per profile length. Solid lines refer to the
axis-parallel alignment of the slope and dashed lines to the diagonal
alignment.
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Figure 10. Heim’s ratio as a function of the volume. Dashed lines
refer to a total height of H = 1900 m as considered in Sect. 5.3 and
5.4. Solid lines were obtained taking into account the correlation
between H and V observed by Legros (2002). Black lines represent
power laws fitted for V > 0.01 km3.
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direction). As explained by Hergarten (2024), however, the
thickness should be the primary control on runout rather than
V itself. Larsen et al. (2010) found the relation V o« A140
between volume and area, which means that the increase in
thickness is weaker than V'3 in reality. Since there are sev-
eral dependencies beyond this scaling relation, the value o =
0.20 seems to be good enough for a first test. Overall, these
findings confirm the results obtained by Hergarten (2024) for
alumped mass and suggest that the two-dimensional scenario
without lateral confinement yields similar scaling properties
as the simple one-dimensional lumped-mass model.

6 Conclusions

In this study, a simple and lightweight numerical implemen-
tation of the modified Voellmy rheology proposed by Her-
garten (2024) was presented. The simplicity of the imple-
mentation arises from two features. First, a fully Cartesian
description is used, where the thickness of the mobile layer
is measured vertically instead of perpendicularly to the bed.
This concept harmonizes well with a simplified expression
for the pressure at the bed. As a second feature, a simple
upstream scheme is used for the advection terms. While up-
stream schemes typically suffer from numerical diffusion, it
was shown that numerical diffusion is not a serious problem
in combination with Voellmy-type rheologies.

The results obtained from the numerical tests confirm the
findings of Hergarten (2024) for the simple lumped-mass
model. Furthermore, the modified Voellmy rheology may
open doors towards understanding hummocky deposit mor-
phologies and longitudinal striations. In view of the simplic-
ity of the numerical implementation, these preliminary re-
sults are promising.

In turn, however, the purpose of the recent implemen-
tation must be kept in mind. The MinVoellmy software is
lightweight but minimalistic. It does not offer any user inter-
face or methods for importing and exporting data, so it cannot
be operated without programming some parts in MATLAB
or Python, which limits its field to research and teaching. It
is also not designed to compete with comprehensive mod-
els such as r.avaflow, which offer additional options such as
multi-phase flow.

In particular, the recent implementation is not designed for
operational hazard assessment. This restriction is owing not
only to the short time span of development and limited test-
ing but mainly to the parameter values. The parameters p
and £ of the modified Voellmy rheology are similar to those
of the conventional Voellmy rheology in their meaning, but
their numerical values are not the same. So calibrations of
other models, such as the extensively tested parameter values
from the widely used model RAMMS, cannot be transferred
to the modified rheology directly. Furthermore, knowledge
about the additional parameter v, is still limited.
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repository at https://doi.org/10.5281/zenodo.10304665 (Hergarten,
2023b) and can be redistributed under the GNU General Public Li-
cense. This repository also contains data obtained from the numer-
ical simulations. Interested users are advised to download the most
recent version of the MinVoellmy software from http://hergarten.
at/minvoellmy (Hergarten, 2023a). No data sets were used in this
article.

Competing interests. The author has declared that there are no
competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The author would like to thank Fabian Walter
for his very constructive comments and Thomas Poulet for the edi-
torial handling.

Financial support. This open-access publication was funded by the
University of Freiburg.

Review statement. This paper was edited by Thomas Poulet and re-
viewed by Fabian Walter and one anonymous referee.

References

Aaron, J. and Hungr, O.: Dynamic simulation of the mo-
tion of partially-coherent landslides, Engin. Geol., 205, 1-11,
https://doi.org/10.1016/j.enggeo.2016.02.006, 2016.

Bartelt, P. and Buser, O.: Frictional
in avalanches, Ann. Glaciol., 51,
https://doi.org/10.3189/172756410791386607, 2010.

Bouchut, F. and Westdickenberg, M.: Gravity driven shallow water
models for arbitrary topography, Commun. Math. Sci., 2, 359—
389, https://doi.org/10.4310/CMS.2004.v2.n3.a2, 2004.

Buser, O. and Bartelt, P.: Production and decay of random ki-
netic energy in granular snow avalanches, J. Glaciol., 55, 3-12,
https://doi.org/10.3189/002214309788608859, 2009.

Christen, M., Kowalski, J., and Bartelt, P.. RAMMS: Nu-
merical simulation of dense snow avalanches in three-
dimensional terrain, Cold Reg. Sci. Technol.,, 63, 1-14,
https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.

Denlinger, R. P. and Iverson, R. M.: Granular avalanches
across irregular three-dimensional terrain: 1. Theory
and computation, J. Geophys. Res.-Earth, 109, F01014,
https://doi.org/10.1029/2003JF000085, 2004.

relaxation
98-104,

https://doi.org/10.5194/gmd-17-781-2024

Dufresne, A., Bosmeier, A., and Prager, C.: Sedimentology of rock
avalanche deposits — Case study and review, Earth Sci. Rev., 163,
234-259, https://doi.org/10.1016/j.earscirev.2016.10.002, 2016.

Fischer, J.-T., Kowalski, J., and Pudasaini, S. P.. To-
pographic  curvature effects in applied avalanche
modeling, Cold Reg. Sci. Technol., 74-75, 21-30,

https://doi.org/10.1016/j.coldregions.2012.01.005, 2012.

Hergarten, S.: MinVoellmy [software], http://hergarten.at/
minvoellmy, last access: 8 December 2023a.

Hergarten, S.: MinVoellmy v1: a lightweight model for simu-
lating rapid mass movements, Zenodo [code and data set],
https://doi.org/10.5281/zenodo.10304665, 2023b.

Hergarten, S.: Scaling between volume and runout of rock
avalanches explained by a modified Voellmy rheology, Earth
Surf. Dynam., 12, 219-229, https://doi.org/10.5194/esurf-12-
219-2024, 2024.

Hergarten, S. and Robl, J.: Modelling rapid mass movements using
the shallow water equations in Cartesian coordinates, Nat. Haz-
ards Earth Syst. Sci., 15, 671-685, https://doi.org/10.5194/nhess-
15-671-2015, 2015.

Hutter, K., Wang, Y., and Pudasaini, S. P.: The Savage—Hutter
avalanche model: how far can it be pushed?, Philos. T. Roy.
Soc. A, 363, 1507-1528, https://doi.org/10.1098/rsta.2005.1594,
2005.

Larsen, L. J., Montgomery, D. R., and Korup, O.: Landslide ero-
sion controlled by hillslope material, Nat. Geosci., 3, 247-251,
https://doi.org/10.1038/ngeo0776, 2010.

Legros, F.: The mobility of long-runout landslides, Engin. Geol.,
63, 301-331, https://doi.org/10.1016/S0013-7952(01)00090-4,
2002.

McDougall, S.: A new continuum dynamic model for the
analysis of extremely rapid landslide motion across com-
plex 3D terrain, PhD thesis, University of British Columbia,
https://doi.org/10.14288/1.0052928, 2006.

McDougall, S.: 2014 Canadian Geotechnical Colloquium: landslide
runout analysis — current practice and challenges, Can. Geotech.
J., 54, 605-620, https://doi.org/10.1139/cgj-2016-0104, 2017.

Mergili, M., Fischer, J.-T., Krenn, J., and Pudasaini, S. P.: r.avaflow
v1, an advanced open-source computational framework for the
propagation and interaction of two-phase mass flows, Geosci.
Model Dev., 10, 553569, https://doi.org/10.5194/gmd-10-553-
2017, 2017.

Nessyahu, H. and Tadmor, E.: Non-oscillatory central differencing
for hyperbolic conservation laws, J. Comput. Phys., 87, 408-463,
https://doi.org/10.1016/0021-9991(90)90260-8, 1990.

Pietrek, A., Hergarten, S., and Kenkmann, T.: Morphometric
characterization of longitudinal striae on Martian landslides
and impact ejecta blankets and implications for the forma-
tion mechanism, J. Geophys. Res.-Planet., 125, e2019JE006255,
https://doi.org/10.1029/2019JE006255, 2020.

Pudasaini, S. P. and Mergili, M.: A multi-phase mass
flow model, J. Geophys. Res.-Earth, 124, 2920-2942,
https://doi.org/10.1029/2019JF005204, 2019.

Rauter, M. and Tukovié, 7.: A finite area scheme for shallow
granular flows on three-dimensional surfaces, Comput. Fluids,
166, 184-199, https://doi.org/10.1016/j.compfluid.2018.02.017,
2018.

Geosci. Model Dev., 17, 781-794, 2024


https://doi.org/10.5281/zenodo.10304665
http://hergarten.at/minvoellmy
http://hergarten.at/minvoellmy
https://doi.org/10.1016/j.enggeo.2016.02.006
https://doi.org/10.3189/172756410791386607
https://doi.org/10.4310/CMS.2004.v2.n3.a2
https://doi.org/10.3189/002214309788608859
https://doi.org/10.1016/j.coldregions.2010.04.005
https://doi.org/10.1029/2003JF000085
https://doi.org/10.1016/j.earscirev.2016.10.002
https://doi.org/10.1016/j.coldregions.2012.01.005
http://hergarten.at/minvoellmy
http://hergarten.at/minvoellmy
https://doi.org/10.5281/zenodo.10304665
https://doi.org/10.5194/esurf-12-219-2024
https://doi.org/10.5194/esurf-12-219-2024
https://doi.org/10.5194/nhess-15-671-2015
https://doi.org/10.5194/nhess-15-671-2015
https://doi.org/10.1098/rsta.2005.1594
https://doi.org/10.1038/ngeo776
https://doi.org/10.1016/S0013-7952(01)00090-4
https://doi.org/10.14288/1.0052928
https://doi.org/10.1139/cgj-2016-0104
https://doi.org/10.5194/gmd-10-553-2017
https://doi.org/10.5194/gmd-10-553-2017
https://doi.org/10.1016/0021-9991(90)90260-8
https://doi.org/10.1029/2019JE006255
https://doi.org/10.1029/2019JF005204
https://doi.org/10.1016/j.compfluid.2018.02.017

794 S. Hergarten: MinVoellmy v1: a lightweight model for simulating rapid mass movements

distances
221-226,

Salm, B.: Flow, flow transition and runout
of flowing avalanches, Ann. Glaciol.,, 18,
https://doi.org/10.3189/S0260305500011551, 1993.

Savage, S. B. and Hutter, K.: The motion of a finite mass of granular
material down a rough incline, J. Fluid Mech., 199, 177-215,
https://doi.org/10.1017/S0022112089000340, 1989.

Scheidegger, A. E.: On the prediction of the reach and ve-
locity of catastrophic landslides, Rock Mech., 5, 231-236,
https://doi.org/10.1007/BF01301796, 1973.

Shreve, R. L.: Sherman Landslide, Alaska, Science, 154, 1639—
1642, https://doi.org/10.1126/science.154.3757.1639, 1966.

Geosci. Model Dev., 17, 781-794, 2024

Tonnel, M., Wirbel, A., Oesterle, F., and Fischer, J.-T.
AvaFrame comIDFA (v1.3): a thickness-integrated computa-
tional avalanche module — theory, numerics, and testing, Geosci.
Model Dev., 16, 7013-7035, https://doi.org/10.5194/gmd-16-
7013-2023, 2023.

Voellmy, A.: Uber die Zerstorungskraft von Lawinen, Schweiz.
Bauzeitung, 73, 212-217, https://doi.org/10.5169/seals-61891,
1955.

Vreugdenhil, C. B.: Numerical Methods for Shallow-
Water Flow, Springer, Berlin, Heidelberg, New York,
https://doi.org/10.1007/978-94-015-8354-1, 1994.

https://doi.org/10.5194/gmd-17-781-2024


https://doi.org/10.3189/S0260305500011551
https://doi.org/10.1017/S0022112089000340
https://doi.org/10.1007/BF01301796
https://doi.org/10.1126/science.154.3757.1639
https://doi.org/10.5194/gmd-16-7013-2023
https://doi.org/10.5194/gmd-16-7013-2023
https://doi.org/10.5169/seals-61891
https://doi.org/10.1007/978-94-015-8354-1

	Abstract
	Introduction
	Coordinates and governing equations
	The balance of mass and momentum
	The gravitational acceleration
	Friction

	Numerical implementation
	Mass balance
	Momentum balance

	Software description
	Numerical tests
	The modified pressure
	Numerical diffusion
	Comparison to the conventional Voellmy rheology
	Two-dimensional simulations
	Fahrboeschung ratios

	Conclusions
	Code and data availability
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

