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Abstract. A real-time forecast model of surface hydrody-
namics in Lake Ontario (Coastlines-LO) was developed to
automatically predict storm surges and surface waves. The
system uses a dynamically coupled Delft3D–SWAN model
with a structured grid to generate 48 h predictions for the
lake that are updated every 6 h. The lake surface is forced
with meteorological data from the High Resolution Deter-
ministic Prediction System (HRDPS). The forecast model
has been running since May 2021, capturing a wide variety of
storm conditions. Good agreement between observations and
modelled results is achieved, with root mean squared errors
(RMSEs) for water levels and waves under 0.02 and 0.26 m,
respectively. During storm events, the magnitude and tim-
ing of storm surges are accurately predicted at nine monitor-
ing stations (RMSE < 0.05 m), with model accuracy either
improving or remaining consistent with decreasing forecast
length. Forecast significant wave heights agree with observed
data (1 %–12 % relative error for peak wave heights) at four
wave buoys in the lake. Coastlines-LO forecasts for storm
surge prediction for two consecutive storm events were com-
pared to those from the Great Lakes Coastal Forecasting Sys-
tem (GLCFS) to further evaluate model performance. Both
systems achieved comparable results with average RMSEs
of 0.02 m. Coastlines-LO is an open-source wrapper code
driven by open data and has relatively low computational re-
quirements compared to GLCFS, making this approach suit-
able for forecasting marine conditions in other coastal re-
gions.

Key points.

– A real-time forecast model of wind-driven hydrodynamics in
Lake Ontario is developed.

– Model performance compares well with observed data and
other forecast models.

– Forecast lead time impacts the accuracy of wave height and
storm surge predictions.

1 Introduction

Coastal regions of large lakes can face hazardous conditions
with costly consequences due to strong storm events, where
powerful winds generate large waves and a storm surge (Da-
nard, 2003; FEMA, 2014; Gallagher et al., 2020). Waves dur-
ing these events can cause erosion, overtopping, and run-up,
with the hazards being greater when the water level is ele-
vated due to a storm surge. The intensity and frequency of
strong storm events are increasing in the Great Lakes region
as a result of climate change, as tropical storms are predicted
to reach higher latitudes more often (Bender et al., 2010;
Studholme et al., 2022). In addition, the mean water levels
in the Great Lakes are being impacted by climate change,
with large seasonal fluctuations in lake levels and record-low
and record-high water levels consistently occurring in recent
years (Gronewold and Rood, 2019). The combined impacts
of these projections present a greater risk for hazardous con-
ditions in Great Lakes coastal regions, and developing better
methods to understand and model the physical processes oc-
curring during storms is important to help mitigate the risk
(Chisholm et al., 2021; Gronewold et al., 2013).

Real-time forecasting of lakes and coastal oceans can be
achieved by applying numerical models to run predictive
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simulations of future hydrodynamic conditions in real time.
Water level, circulation, and temperature simulations, using
forecast models of large lakes and reservoirs, aid in water
quality management (Baracchini et al., 2020; Carey et al.,
2022; Lin et al., 2022). Coastal hazard forecasting is also be-
ing applied in numerous ocean regions, including the north-
ern Gulf of Mexico, where forecast systems of water lev-
els and waves predict hurricane impacts on various scales
(Bilskie et al., 2022; Dietrich et al., 2018; Paramygin et
al., 2017). Similarly, Rey and Mulligan (2021) use a cou-
pled Deflt3D–SWAN model to forecast storm conditions in
coastal North Carolina, investigating the influence of vari-
ous atmospheric forecast models on the results during hur-
ricanes. Specific to lakes, the National Oceanic and Atmo-
spheric Administration (NOAA) has implemented forecast
models for North American coastal regions, including the
Great Lakes, with the Great Lakes Coastal Forecasting Sys-
tem (GLCFS). The GLCFS uses a high-resolution (30 m–
2 km) hydrodynamic model (FVCOM) to simulate physical
processes including currents, temperatures, and water levels
(Kelley et al., 2018; Peng et al., 2019). Waves in the Great
Lakes are predicted by Environment and Climate Change
Canada’s (ECCC) Regional Ensemble Wave Prediction Sys-
tem (REWPS), which uses a probabilistic approach to fore-
cast wave characteristic 3 d into the future.

Developing deterministic forecast models that run in real
time requires dealing with the challenge of minimizing the
computational runtime of the model while still achieving ac-
curate results (model resolution and performance), as the
forecasts must be available in advance of the actual event.
This need to effectively balance efficiency and accuracy in
real-time models is an active research area (Elko et al., 2019).
In addition, clear and efficient dissemination of forecasts
must be provided to users and stakeholders. Typical real-
time coastal models require large computing resources to run
high-resolution and accurate forecast simulations (Bilskie et
al., 2022; Kelley et al., 2018), while fewer model applica-
tions focus on developing flexible systems that can achieve
accurate results while running on local computers, often for
smaller domains, using open data and with a smaller com-
putational allowance (Lin et al., 2022; Rey and Mulligan,
2021).

The accuracy of numerical models for simulating the hy-
drodynamic response of coastal regions to storm events has
increased with advances in computing power, data availabil-
ity, and the development of models that can better repre-
sent more physical processes and their interactions; however,
model performance is still limited by the quality of input
and forcing data available for a simulation. Model ability
also depends on the grid resolution, with higher-resolution
models being more capable of resolving bathymetric fea-
tures (Bilskie et al., 2022), and the inclusion of relevant pro-
cesses, such as wave–current interactions and baroclinic ef-
fects (Asher et al., 2019; Swatridge et al., 2022). A main
consideration is the accuracy of the atmospheric forcing, as

winds are the primary driver of surface behaviour, and errors
in the winds translate through as errors in the modelled re-
sults (Dietrich et al., 2018; Farhadzadeh and Gangai, 2017;
Rey and Mulligan, 2021).

A probabilistic approach can be used to account for uncer-
tainty in atmospheric forcing by running multiple variations
of the same event; however, this requires large computational
resources (Baracchini et al., 2020; Fleming et al., 2008). In
deterministic forecasts of water levels in Lake Erie, the error
in the atmospheric forcing was significantly larger for 240 h
forecasts compared to the 120 h forecasts, which translated
to increased error in predicted water levels (Lin et al., 2022).
The longer forecast predicted excessive seiching and an un-
derestimation in peak water level, which improved as fore-
cast length decreased. Forecasts of hurricane storm surges
and waves in the Gulf of Mexico by Forbes et al. (2010), Di-
etrich et al. (2018), and Bilskie et al. (2022) found trends of
decreasing error in storm surge prediction with shorter fore-
cast length. Longer forecasts (∼ 5 d) resulted in storm surge
variations of up to 4 m from the best track predictions, at-
tributed to variability in atmospheric forcing, and for fore-
casts shorter than 2.5 d, simulations converged on a solution,
and the error was almost constant (Dietrich et al., 2018).

The hydrodynamics of Lake Ontario have been simulated
on various scales in previous studies (e.g., Huang et al., 2010;
Paturi et al., 2012; Prakash et al., 2007; Shore, 2009). Numer-
ical models have also been used to simulate waves and circu-
lation during extreme events in the Kingston Basin (Cooper
and Mulligan, 2016; McCombs et al., 2014a, b). Sogut et
al. (2019) used a combination of analyzing historical water
level and wave data as well as numerical modelling of ex-
treme storm events to gain insight into lake seiching, storm
surges, and wave patterns. Historical data have also been
studied to determine the risk of flooding due to a storm surge
along the Lake Ontario shoreline with a statistical model
(Steinschneider, 2021). Surface waves and storm surges were
simulated over the entire lake by Swatridge et al. (2022) dur-
ing recent storm events. Their study investigated the influ-
ence of different wind fields on the accuracy of storm surge
simulation, finding that variations in meteorological forcing
were the primary source of uncertainty in model results.

In the present study, an existing depth-averaged numer-
ical model of Lake Ontario (Swatridge et al., 2022) was
applied to the lake to forecast water levels and waves in
real time, driven by spatially varied wind fields from a
high-resolution wind forecast model. The workflow devel-
ops an open-source Python- and MATLAB-based wrapper
code that has been successfully applied to other systems
using different hydrodynamic models as part of the Cana-
dian Coastal and Lake Forecasting Model System (Coast-
lines; https://coastlines.engineering.queensu.ca, last access:
18 July 2024; Lin et al., 2022; Rey and Mulligan, 2021). This
flexible methodology uses open-access forcing and valida-
tion data and has relatively low computational requirements
compared to other existing Great Lakes storm surge mod-

Geosci. Model Dev., 17, 7751–7766, 2024 https://doi.org/10.5194/gmd-17-7751-2024

https://coastlines.engineering.queensu.ca


L. L. Swatridge et al.: Development and performance of a high-resolution surface wave 7753

els, allowing for application to other locations. Model perfor-
mance is evaluated by comparing results to near-real-time-
observed data. Forecast results for storm surges and waves
are statistically investigated over forecast lead times ranging
from 6 to 48 h.

2 Methods

2.1 Modelling approach

A two-dimensional (depth-averaged) coupled
hydrodynamic–wave model is applied to Lake Ontario
to simulate wind-driven hydrodynamics and waves using
Delft3D–SWAN. The Delft3D flow model calculates non-
steady flow on a structured grid by solving the Reynolds-
averaged Navier–Stokes equations (Lesser et al., 2004).
Wave conditions are simulated with the phase-averaged
wave model, Simulating WAves Nearshore (SWAN), which
uses the spectral action balance equation to compute random
wind-generated waves. SWAN accounts for non-linear
wave interactions, wave propagation, refraction, dissipation
due to whitecapping, bottom friction, and depth-induced
breaking (Booij et al., 1999). The models are dynamically
coupled to account for wave–current interactions. Radiation
stress gradients from SWAN simulations are input into the
horizontal momentum equations in Delft3D to account for
the impacts of waves on circulation, such as wave-induced
mass fluxes driving currents, and enhanced bed shear stress.
Results from the hydrodynamic simulation are then used to
update water levels and circulation in the wave model.

Model setup choices were made based on simulations by
Swatridge et al. (2022), which were adapted for the present
study to minimize computational requirements, allowing the
system to run in real time. The Delft3D simulation uses a
curvilinear grid with a horizontal resolution gradually rang-
ing from 250–450 m. The wave grid has a coarser resolu-
tion, ranging from 350–600 m, thus reducing the computa-
tional time required to complete a wave simulation while still
achieving higher resolution in nearshore areas (Table S2 in
the Supplement). Flow simulations are depth-averaged and
barotropic, and they are shown by Swatridge et al. (2022) to
accurately represent surface storm surges in Lake Ontario,
with root mean squared errors (RMSEs) between observa-
tions and model results ranging between 0.01–0.07 m dur-
ing several major events. Bathymetry data were interpolated
to the grid from the US National Centers for Environmental
Information’s (NCEI) 3 arcsec (∼ 90 m) resolution dataset,
with supplementary data from the ETOPO1 global relief
model with a resolution of approximately 1.3 km (Fig. 1).
Detailed sensitivity testing for this model was completed in
Swatridge et al. (2022) to calibrate model parameters. Hydro-
dynamic simulations use a time step of 120 s to satisfy the
Courant–Friedrichs–Lewy stability criterion, and coupling
with the stationary wave model occurs every 60 min.

Spatially varied atmospheric input from the Meteorologi-
cal Service of Canada (MSC) High Resolution Deterministic
Prediction System (HRDPS) is used to drive the model (Mil-
brandt et al., 2016). HRDPS is an hourly assimilated fore-
cast system downscaled from the larger-scale regional deter-
ministic prediction system (RDPS) that provides hourly pre-
dictions of surface pressure and wind velocity components
with a horizontal resolution of 2.5 km for the pan-Canada
domain. The system runs every 6 h, predicting atmospheric
conditions 48 h into the future. This wind forcing was suc-
cessfully used by Swatridge et al. (2022) to simulate the lake
surface response to a range of storm conditions. Their mod-
elled results for water levels and surface waves agreed with
observations at up to 16 locations in Lake Ontario, resulting
in a maximum difference between predicted and observed
peak wave heights and water levels of 0.4 and 0.08 m, re-
spectively. No lateral boundary conditions are applied to ac-
count for the influence of the riverine flows (Niagara and St.
Lawrence rivers), as results from previous modelling stud-
ies have concluded that the hydrodynamic influence of river
inflows and outflows is limited to within 10 km of the river
mouth and therefore can be neglected for simulations of lake-
wide water level over event-based timescales (Prakash et al.,
2007; McCombs et al., 2014a). The closed-system approach
leads to uncertainties in the simulated results in the river re-
gion; however, the impacts on the lake-wide hydraulics are
expected to be minimal.

2.2 Development of an automated prediction system

The forecast system uses a combination of code writ-
ten in MATLAB and Python to automatically run every
6 h and has been operational since May 2021 (https://
coastlines.engineering.queensu.ca/lake-ontario/, last access:
18 July 2024). The workflow (Fig. 2) consists of pre-
processing, model simulation, and post-processing stages.
For pre-processing, initiation of the modelling system is
scheduled to occur when a new HRDPS forecast becomes
available. Python is used to download the latest forecast,
and MATLAB is used to automatically process the atmo-
spheric forcing and write input files for Delft3D–SWAN. The
Delft3D model definition files are then updated with the cor-
rect time information.

Model simulations cover a period of 48 h and are “hot-
started” with a restart file from a previous model run if avail-
able. If a restart file is not available, simulations begin from
rest with initial water levels of 0 m and current speeds (u)
of 0 m s−1 throughout the lake. When the simulation fin-
ishes, all available real-time-observed data, outlined in Ta-
ble S1, are downloaded using Python and are then processed
in MATLAB. Observed water levels at each station are av-
eraged over the previous 12 h and used to locally adjust the
datum of the model outputs. We acknowledge that assimi-
lating observed water levels into the initial conditions may
be a preferred approach, but this is beyond the scope of the
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Figure 1. Map of Lake Ontario showing NCEI bathymetry and the location of real-time water level, wind, and wave observation stations
(Tables 1 and 2).

Figure 2. Diagram of the automated workflow for processes performed for each model cycle (every 6 h initiated by Windows Task Scheduler)
on the local Coastlines-LO server.

present study and may be incorporated into future versions
of Coastlines-LO (a real-time forecast model of surface hy-
drodynamics in Lake Ontario). The model simulates high-
frequency variability in water levels generated by winds. Sea-
sonal changes in water levels due to inflows, outflows, and
evaporation are not included but are accounted for in post-
processing.

Time series plots of observed water levels and wave
heights are automatically compared to the forecast model re-
sults from the previous 2.5 d at the observation locations, and
additional plots are created to provide predictions at other
locations of interest with no observed data (Fig. 1). Spatial
snapshots of model results across the lake are generated at
select times, as well as animations showing key output pa-
rameters during the forecast simulation. All outputs are ex-

ported to Google Sheets and displayed on the project web
page, https://coastlines.engineering.queensu.ca/ (last access:
18 July 2024). The system runs in a Windows environment
using 16 cores of a 32-core Xeon workstation, with each
workflow cycle taking approximately 5 h to complete a 48 h
forecast simulation.

2.3 Real-time comparison between model results and
observations

Near-real-time observations of water surface elevation (η)
data are available at nine water level gauges around the
perimeter of Lake Ontario from the National Oceanic and At-
mospheric Administration (NOAA) and the Department of
Fisheries and Oceans Canada (DFO), retrieved from https:
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Table 1. List of real-time water level gauge station locations.

Name Longitude Latitude Source

Oswego −76.52 43.46 NOAA
Rochester −77.63 43.27 NOAA
Olcott Harbour −78.72 43.34 NOAA
Cape Vincent −76.33 44.12 NOAA
Port Weller −79.22 43.24 DFO
Cobourg −78.16 43.96 DFO
Burlington −79.79 43.29 DFO
Kingston −76.52 44.22 DFO
Toronto −79.38 43.64 DFO

//tidesandcurrents.noaa.gov/water_level_info.html (last ac-
cess: 27 October 2024) and https://www.tides.gc.ca/en/
stations (last access: 27 October 2024), with temporal reso-
lutions of 3 and 6 min, respectively (Fig. 1; Table 1). Hourly
surface waves and winds are measured in Lake Ontario
at one US National Data Buoy Center (NDBC) buoy and
ECCC buoys from spring to early winter, retrieved from
https://www.ndbc.noaa.gov/ (last access: 27 October 2024;
Table 2). The buoys report the significant wave height (Hs),
peak wave period (Tp), and surface wind speed and direction
averaged over an 8 min period (U ).

For long-term analysis of results, the residual component
of the water level data, representing a storm surge, is iso-
lated at the gauge locations by finding the difference be-
tween the total water level and the average water level, cal-
culated using a Gaussian window of 7 d (Steinschneider et
al., 2021). Model performance is quantified using statistical
measures including the RMSE (Eq. 1), the normalized RMSE
(NRMSE; Eq. 2), and the correlation coefficient (r; Eq. 3):

RMSE=

√∑n

i=1

(xi − yi)
2

n
, (1)

NRMSE=
RMSE
y

, (2)

r =

∑
(y− y) (x− x)√∑
(y− y)2

∑
(x− x)2

, (3)

where xi and yi (i = 1, 2, 3, . . . N ) are time series of mod-
elled and observed data, respectively, andN is the number of
samples in the series. Storm surge events are identified from
the water level data using the peaks-over-threshold method
(Steinschneider et al., 2021). The forecast error during select
events was evaluated by computing error metrics for con-
secutive forecasts leading up to the peak of the event. For
each forecast, the relative error (RE; Eq. 4) between an ob-
served and a simulated maximum storm surge relative to the
mean water level calculated at water level gauge locations
and between observed and modelled maximum wave heights
at buoy locations was computed. The RMSE for each loca-
tion was computed over a 6 h period that included the peak

of the event.

RE=
|(y− y)− (x− x)|

(y− y)
(4)

3 Results

3.1 Long-term model performance

Simulation results for water levels and waves at the obser-
vation locations were compiled over the 20-month opera-
tional period. The first 6 h of each 48 h forecast was stitched
into a single time series, and these results were compared
to the observed data (Fig. S1 in the Supplement). During
this time, seasonal changes in the observed mean lake level
fluctuated by over 1 m, with the highest water levels occur-
ring in May 2022. The ability of the model to reproduce a
storm surge was investigated over a 4-month period when
multiple storm events occurred (106 d from 15 September to
30 December 2022; Fig. 3). Stations with larger ranges of ob-
served water levels (i.e., Burlington, Cape Vincent), located
at the east and west ends of the lake (i.e., Fig. 3c, g), show
a slight bias, where the model tended to slightly overpredict
the maximum and minimum values, corresponding to larger
RMSE values (Table 3). These stations also tended to show
a stronger correlation (r = 0.83–0.86), whereas observation
points with typically smaller ranges in water levels (Fig. 3a,
e) resulted in weaker correlations (r = 0.76–0.79). Normal-
ized results show comparable error statistics at all stations,
with larger errors occurring at locations with smaller storm
surges (i.e., Rochester, Oswego).

Results for simulatedHs at buoy locations show the largest
waves occurred during winter, between December and March
(Fig. 4). Results showing the forecasted wave period com-
pared to observations are shown in Fig. S2. Over the 600 d
operational period, no monitoring data were available for
comparison, and Lake Ontario could potentially experience
partial ice cover in nearshore areas, impacting the wave envi-
ronment (Anderson et al., 2018). Stations in the eastern end
of the lake (Prince Edward Point, East Lake Ontario) are
expected to experience the largest waves due to the promi-
nent northeasterly direction of storms over the lake, which
results in winds blowing along the long axis of the lake cre-
ating a large fetch at these locations (Lacke et al., 2007; Mc-
Combs et al., 2014a). Error statistics show similar values for
the RMSE at these points; however, Prince Edward Point had
the lowest correlation coefficient (Fig. 4a, b; r = 0.71), while
East Lake Ontario showed the highest correlation (Fig. 4c, d;
r = 0.88). The lower RMSEs were at stations with smaller
waves (Fig. 4e, g), and normalized results (Table 3) show
comparable results at all buoys (NRMSE = 0.42–0.53 m).
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Table 2. List of real-time wave buoy locations.

Name Longitude Latitude Depth Source

Prince Edward Point −76.87 43.78 68 m ECCC
West Lake Ontario −79.53 43.25 35 m ECCC
Northwest Lake Ontario −78.98 43.77 54 m ECCC
East Lake Ontario −77.40 43.62 140 m NDBC

Table 3. Error statistics for residual water level results over 106 d (15 September–30 December 2022).

Minimum η (m) Mean η (m) Maximum η (m) RMSE (m) NRMSE (m) r

Oswego −0.10 0.07 0.12 0.01 0.15 0.80
Rochester −0.03 0.03 0.04 0.00 0.16 0.76
Olcott −0.16 0.04 0.11 0.01 0.19 0.80
Cape Vincent −0.22 0.10 0.34 0.02 0.16 0.83
Port Weller −0.19 0.06 0.16 0.01 0.14 0.86
Cobourg −0.08 0.04 0.07 0.01 0.14 0.79
Toronto −0.16 0.07 0.14 0.01 0.14 0.83
Burlington −0.22 0.10 0.20 0.02 0.14 0.83
Kingston −0.21 0.09 0.25 0.01 0.14 0.86

3.2 Storm event forecasts

The performance of the model was evaluated over an event
on 11–12 November 2021, consisting of wind speeds that
approached 15 m s−1, with the direction rotating clockwise
from blowing towards the northeast to the winds dominantly
blowing towards the east over a 24 h period. This event was
selected due to the large storm surge generated (η = 0.17 m),
and it resulted in the largest significant wave height that
occurred over the 20-month operational period, with wave
measurements available at all buoy locations for compari-
son. Overlapping 48 h HRDPS forecasts (i.e., generated ev-
ery 6 h) were validated against buoy observations, with good
agreement found between modelled and predicted total wind
speeds and directions and with peak wind speeds underrepre-
sented by at most 4.21 m s−1 at Northwest Lake Ontario and
overpredicted by up to 2.61 m s−1 at Prince Edward Point
(Fig. S3).

This event resulted in an observed storm surge of up to
0.16 m in the northeast region of the lake, at Cape Vincent
and Kingston. The forecast simulations captured the timing
and magnitude of the event peak, with predicted surge val-
ues ranging between 0.12–0.17 m (Fig. 5d, i). A setdown of
about 0.10 m was recorded at the Burlington station, which
was underpredicted by the model by up to 0.05 m for the ini-
tial forecast results, and improves as the forecast lead time
decreases, to a prediction of 0.08 m. The simulated results at
this location predicted water levels up to 0.05 m higher than
the observations for the 24 h preceding the storm (Fig. 5h).
A notable error can also be identified at Cobourg (Fig. 5f),
with the model predicting negligible fluctuations in the water
surface, but observations show some oscillations (0.05 m).

Forecast performance was quantified by computing error
statistics over the duration of the event for each forecast
leading up to the time of peak water level. The largest er-
rors occurred at the location of the setdown, Burlington and
Toronto, with a nearly constant RMSE of 0.03 m and RE of
14 % and 10 %, respectively (Fig. 6c, d). The errors at all
stations remained fairly constant with RMSE and RE un-
der 0.03 m and 10 %, respectively, for each new forecast.
However, map results showing the spatial variability in wa-
ter level predictions from forecasts 12 and 36 h before the
storm peak show large differences (Fig. 6a, b). The earlier
results (Fig. 6a) simulated a far less extensive storm surge in
the northeast region of the lake than what was subsequently
predicted 24 h later (Fig. 6b), when the storm surge was sim-
ulated to impact most of the northeast shoreline. The later
forecast also predicted a spatially larger setdown – about
0.10 m more than the earlier forecast in the western region
of the lake.

Measured waves during this event reached up to 2.10 m,
with the buoys in the western region of the lake (Fig. 7c,
d) experiencing peak wave heights about 12 h earlier
(11 November 2021, 18:00 UTC) than the buoys in the east-
ern region of the lake (Fig. 7a, b; 12 November 2021,
06:00 UTC). This is explained by the shift in wind direc-
tion over the storm duration, with winds originally from the
southeast rotating clockwise and then blowing dominantly
from the west along the axis of the lake (Fig. S3). Overall,
forecast simulations captured the magnitude of the waves at
all stations, with some error and an approximately 5 h delay
in the timing of the peakHs at Prince Edward Point (Fig. 7a).
The error for waves during this event, at all stations, was con-
stant for consecutive forecasts at all stations, with RMSE
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Table 4. Error statistics for significant wave heights at the buoy locations over 600 d (21 April 2021–12 December 2022).

Location Mean Hs (m) Maximum Hs (m) RMSE (m) r NRMSE (m)

Prince Edward Point 0.44 3.82 0.24 0.71 0.53
East Lake Ontario 0.62 4.42 0.26 0.88 0.42
West Lake Ontario 0.34 2.60 0.16 0.76 0.48
Northwest Lake Ontario 0.35 2.29 0.19 0.74 0.53

Figure 3. Observed (black) and modelled (red) residual water levels at select observation points over a 3-month period (September–
December 2022) with corresponding scatter plots and error statistics over this period at select locations.

between 0.03–0.25 m and RE between 1 %–12 %. Despite
the generally consistent results at the buoy locations, maps
from different forecasts show distinct changes between the
36 h forecast (Fig. 8a) and the 6 h forecast (Fig. 8b). Simu-
lated wave fields in the northeast region of the lake showed
similar results between forecasts, but in the northwest, pre-
dicted wave magnitudes and directions were distinctly differ-
ent. The earlier forecast predicted waves under 0.70 m com-
ing from the southeast, whereas the later forecast showed
larger waves (Hs = 0.50–1.00 m) from the southwest, which
can be attributed to changes in forecasted wind fields.

For further investigation into model performance during
storm events, wave forecasts during the event that resulted in
the largest observed wave heights (1 December 2022, Fig. 3c)
were examined. During this storm, the lake experienced sus-
tained easterly winds for almost 24 h, reaching speeds >
20 m s−1 on 1 December, 14:00 UTC, and generating waves
> 4 m (Fig. 9). Data were only available from the one buoy
at East Lake Ontario during this event, which recorded a
maximum Hs = 4.46 m. The forecasts initially underesti-
mated this value, with a maximum predicted wave height
of Hs = 4.19 m from the forecast starting on 29 Novem-
ber at 18:00 UTC, and the next forecast then overestimated
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Figure 4. Time series of observed (black) and modelled (red) significant wave height over the duration that the buoys were in the lake
(September–December 2022), with corresponding error scatter plots at the location of the four buoys. Note that the model was offline and
unavailable between 9–27 February 2022 due to a change of service for the meteorological inputs.

this value (Hs = 4.54 m). Subsequent forecasts slightly un-
derestimated the peak value, with the lowest predicted peak
Hs = 4.26 m and the maximum values occurring ∼ 1 h after
the observed peak. All forecast results tended to overestimate
the peak wave period, with predicted values ranging between
7.8–8.1 s, compared to an observed maximum value of 7.2 s.

4 Discussion

4.1 Forecast lead times

Water level forecasts during a storm event on 8 Decem-
ber 2021 were examined in relation to forecast lead time.
During this event, 21 m s−1 winds (Fig. S4) generated a
storm surge of approximately 0.20 m along the northeast
coast, as well as a resulting setdown of 0.10 m on the op-
posite end of the lake. Error statistics throughout the peak of
the event, as a function of forecast lead time, were plotted
at selected stations (Fig. 10). The timing and magnitude of
the storm surge were well represented by the forecast model,

with a RMSE < 0.05 m for all forecasts and a maximum
RE = 14%.

Trends in the error can be identified for this event at
all stations, with notable patterns corresponding to loca-
tions with larger fluctuations in water level (i.e., Cape Vin-
cent, Kingston, Burlington). At these sites, the forecast er-
ror tended to decrease as the forecast length shortened. At
Cape Vincent, the initial 48 h forecast had a RMSE of 0.05 m,
and by the 18 h forecast, the RMSE had decreased to 0.01 m.
However, after the 18 h forecast there was a slight increase in
RE from less than 1 % to about 5 % (Fig. 10b). Trends in de-
creasing error were also observed at Kingston, where a sim-
ilar decrease in RMSE was observed, and the RE was main-
tained between 1 %–5 %, corresponding to a maximum un-
derprediction of about 0.05 m (Fig. 10i, j). The locations with
smaller ranges in surface fluctuations (Toronto, Port Weller)
generally showed a constant error (0.02 m and ∼ 1% at Port
Weller; 0.01 m and 7 % at Toronto) for consecutive forecast
results over the duration of this event (Fig. 10d, f).
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Figure 5. Time series of measured water levels at various observation points compared to forecasted data from progressive model simulations.
The highlighted area indicates the 12 h period over which error statistics are computed.

Hydrodynamics in the model are only driven by atmo-
spheric forcing, which is a primary source of uncertainty
in simulations of surface dynamics in large lakes. The ac-
curacy of meteorological forecasts typically decreases with
increasing length due to assimilation schemes using obser-
vations and satellite imagery to yield more accurate results
(Buehner et al., 2015). Therefore, it is expected that hydro-
dynamic forecast simulations will increase in accuracy as the
lead time to a storm event decreases. For forecasts of storm
surges in other Great Lakes (e.g., Lake Erie; Lin et al., 2022)
and coastal seas (e.g., Gulf of Mexico; Dietrich et al., 2018),
improvements in storm surge predictions are directly linked
to increased accuracy in meteorological forcing leading up
to an event. However, our Lake Ontario model results do
not follow a consistent trend between different events, ei-
ther improving accuracy (Fig. 10) or maintaining accuracy
(Figs. 6, 8). Cases where the error increases (i.e., Fig. 10b)
or remains constant (i.e., Fig. 8) can be explained due to
sources of uncertainty in the model calibration and neglect-
ing additional hydrodynamic processes in the model setup
(i.e., three-dimensional circulation). Despite model accuracy
being constant at the observation locations, changes in the
spatial variability of predicted water levels and wave con-
ditions for different forecasts are not clearly communicated

through time series analysis but are qualitatively shown in
maps of results (Figs. 6, 10).

4.2 Comparison with other models

The current work (Coastlines-LO) makes use of a relatively
simple, low-computational-requirement modelling approach.
The performance of this model can be compared to the
GLCFS, which delivers a higher-resolution and more com-
plex forecast system throughout the Great Lakes. Differences
between predictions from these models can be explained ac-
cording to the setup of each system, including different hy-
drodynamic models, grid resolutions, and atmospheric forc-
ing inputs, which are summarized in Table S3. The GLCFS
uses the 2 km horizontal resolution High Resolution Rapid
Refresh (HRRR) meteorological forcing, which is compa-
rable to HRDPS (2.5 km); however, previous studies have
found that wind and direction predictions can vary between
these models (Rey and Mulligan, 2021; Swatridge et al.,
2022). The inclusion of waves in the two systems is also ac-
counted for differently, with a separate model (WaveWatch
III) used to simulate waves in the GLCFS, while Coastlines-
LO uses a dynamically coupled wave and flow model that ac-
counts for wave–current interactions. The inclusion of wave
coupling in simulations of the Great Lakes can impact water
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Figure 6. Contour plots showing maps of modelled water levels at the peak of the storm event from two different forecasts, with a (a) 35 h
lead time starting on 11 November, 00:00 UTC, and a (b) 11 h lead time starting on 12 November, 00:00 UTC, and with observed data plotted
at the observation locations in black circles. Panels (c) to (h) show metrics including the RE and RMSE for peak storm surge magnitude at
the locations of six selected water level gauges from the eight forecasts preceding the storm event.

Figure 7. Time series of measured Hs at the location of the four buoys compared to modelled data from progressive model forecasts for
event 1 (12 November 2021).
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Figure 8. Contour maps of modelled waves with vectors indicating wave direction at a select time during the storm event from two forecasts,
with a (a) 32 h lead time starting on 11 November, 00:00 UTC, and a (b) 8 h lead time starting on 12 November, 00:00 UTC, and with
observed data plotted at the observation locations in black circles. Every 10th vector is plotted for clarity. Panels (c) to (f) show metrics
including the RE and RMSE for significant wave height at the locations of four buoys from the eight forecasts preceding the storm event on
12 November 2021, 12:00 UTC, and RMSE values are computed over a 12 h period centred at the time of the peak Hs for each station.

level predictions (Mao and Xia, 2017). The GLCFS runs on
NOAA’s high-performance computing system, and the larger
computational power allows it to include 3D baroclinic pro-
cesses while still running in the required time frame, whereas
the Coastlines-LO system in the present study uses a 2D,
depth-averaged approach and therefore does not resolve ver-
tical gradients in lake temperature or 3D circulation. The in-
clusion of river inflows and outflows in the GLCFS also al-
lows the model to simulate seasonal changes in the mean lake
water level instead of accounting for these changes based on
observed data in post-processing.

Forecast results from both models were compared to ob-
served data over a 6 d period in December 2022, during
which two storm events occurred (Fig. 11; Table S4). Re-
sults from the first 6 h of subsequent forecasts are combined
to construct a water level time series at observation points
for both models for the entire duration. Both models repre-
sent trends in water levels over this, resulting in comparable
metrics, with an average RMSE 0.02 m for both models and
r = 0.73 and 0.74 for Coastlines-LO and GLCFS, respec-
tively. GLCFS achieved better predictions of peak water lev-
els at Oswego for the event on 1 December (RE = 30% for
GLCFS, RE = 51% for Coastlines-LO; Fig. 11a) and more
accurately represented the surface fluctuations observed over

the entire 6 d period at Toronto (Fig. 11f). While GLCFS was
able to represent water levels at some locations, Coastlines-
LO had higher-accuracy predictions at others (Fig. 11c, d).
At Port Weller and Cape Vincent, Coastlines-LO better pre-
dicted the peak setdown and setup on December 1 by 0.01
and 0.03 m, respectively, while GLCFS underpredicted at
these locations by 0.05 and 0.09 m. Both models had dif-
ficulty simulating the second storm surge (3 December) at
Oswego and Cape Vincent (Fig. 11a, c), where the observed
surge occurs approximately 3 h before the predicted peak. At
the Kingston station (Fig. 11h), storm surges of 0.25 and
0.30 m are observed. Coastlines-LO yielded better predic-
tions for the first event, simulating a peak value of 0.24 m,
compared to 0.28 m predicted by GLCFS, while GLCFS per-
formed better for the second event, with predicted storm
surges of 0.28 and 0.22 m for GLCFS and Coastlines-LO,
respectively. Therefore, while the GLCFS offers several ad-
vantages, Coastlines-LO provides comparable results for wa-
ter level prediction with lower computational requirements.
This demonstrates that a relatively simple modelling sys-
tem can be applied to coastal environments to achieve ac-
curate and efficient hydrodynamic predictions. The open-
source and flexible wrapper code could therefore be theoret-
ically adapted to include different hydrodynamic models and
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Figure 9. Variability in significant wave height during a storm event: measured Hs compared to progressive forecast results at the Prince
Edward Point buoy for event 3 (1 December 2022; top) and maps of Hs and wave direction shown at an interval of 2 h (every 10th vector is
shown for clarity).

investigate different field sites as previous works have suc-
cessfully applied similar approaches for forecast modelling
(e.g., Lin et al., 2022; Rey and Mulligan, 2021).

4.3 Limitations and uncertainties

Sensitivity testing and calibration of the numerical model
this system is based on come from the work of Swatridge
et al. (2022), who found that 3D simulations of Lake Ontario
improved predictions of surface behaviour compared to 2D
depth-averaged simulations. The 3D simulation allowed the
model to account for the transfer of surface momentum into
baroclinic motions, giving a better representation of current
velocities and surface seiching following a storm event, re-
sulting in a reduced RMSE during storm events by up to 12 %
and an improvement in modelled peak storm surge magni-
tude by up to 0.03 m. While 3D simulations improved accu-
racy, they also increased the computational runtime of a 24 h
simulation from about 2.5 to 4 h. The 10 d forecasts of 3D
hydrodynamic processes in Lake Erie have been achieved by
Lin et al. (2022) using the AEM3D model with a coastline
computational workflow similar to the current work. How-

ever, the Lake Erie model uses a coarser 2 km horizontal res-
olution grid and does not couple with SWAN to predict sur-
face waves, which is computationally expensive compared to
hydrodynamic simulations. Therefore, to apply this model in
real time with a new simulation every 6 h, 2D simulations
are used, potentially resulting in up to 12 % greater uncer-
tainty in the forecast results. Additional investigation of real-
time model performance during more storm events, including
when the lake is stratified, is recommended for further model
validation.

There is additional uncertainty in model results during
the winter season, when ice forms in the Great Lakes. Lake
Ontario typically experiences some ice cover between De-
cember and April (Anderson et al., 2018), which impacts
lake processes, including water levels, circulation, and waves
through limited air–water momentum transfer (Anderson et
al., 2018; Farhadzadeh and Gangai, 2017). While ice cover
has been simulated in Lake Ontario using other models (e.g.,
Oveisy et al., 2012), it is presently not available in Delft3D–
SWAN. Therefore, simulations of surface behaviour during
the ice-covered months would have limited accuracy in ice-
covered areas. Future work could incorporate ice cover into
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Figure 10. Time series of measured water levels at select observation points compared to forecasted data from progressive model simulations
for event 3: 8 December 2021, with corresponding plots showing the computed RMSE calculated over the shaded area and the percent error
in the peak storm surge from the eight forecasts preceding the storm event.

the model by applying dynamic masking of ice-covered sur-
faces using satellite data to improve results during these
months.

While this system requires low computational resources,
making it flexible for adaptation to other coastal regions,
its capability for forecasting in additional locations is an
area that requires future investigation. The applicability of
the model is limited by the availability of online data for
model forcing and validation. In order to account for seasonal
changes in mean lake levels, near-real-time measurements of
water levels are needed in the simulation to adjust the da-
tum in post-processing. However, if no data were available,
the simulation could include the wind-generated short-term
fluctuations in surface levels and real-time operations could
continue. The workflow of the model is also limited by the
availability of atmospheric forcing data, with any interrup-
tions of service in the HRDPS forecasts causing the hydro-
dynamic simulations to fail for that run cycle. Improvements
in the system could account for this by providing a secondary
source of atmospheric forcing in that case. In future studies,
we recommend applying this system to a region in the coastal

ocean, therefore requiring the development of real-time fore-
cast inputs of open boundary conditions.

5 Conclusions

A forecast model for wind-driven hydrodynamics was de-
veloped and applied to Lake Ontario using an approach
with relatively low computational requirements. Wind waves
and water levels were simulated using a dynamically cou-
pled Delft3D–SWAN model driven by high-resolution at-
mospheric forcing. Simulations were able to forecast the
wind-driven variability in the lake surface, with seasonal
changes in the total water levels accounted for by adjust-
ing the datum for each forecast cycle based on observations
of the mean water level. The system provides rapid (∼ 5 h
runtime) predictions that are publicly available through the
project web page, with the automated system forecasting a
48 h period every 6 h. The model has been running continu-
ously since April 2021, capturing a variety of storm events
with storm surges up to 0.30 m and significant wave heights
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Figure 11. Compiled Coastlines-LO forecast results compared to forecasts from the GLCFS and observed data at select water level gauge
locations interpolated to a 30 min time resolution for two subsequent events between 30 November–5 December 2022.

over 4.00 m. Reliable prediction for wave conditions during
winter months is provided by the forecast model when no
wave observations are available; however, accuracy is lim-
ited where ice is present as this process is not included in the
modelling system.

Results show that the model is effective in simulating
short-term fluctuations in the water levels and wave condi-
tions during strong storm events, with relative errors between
observed and forecasted storm surge magnitudes and signif-
icant wave heights of less than 15 %. Larger errors typically
corresponded to locations in the lake with larger ranges in
observed water levels. For storm events, as the forecast lead
time decreases for progressing forecasts, the simulated re-
sults changed as a result of updates to the meteorological
forcing. No constant trends in the forecast error due to de-
creasing forecast length were apparent, with forecast accu-
racy increasing with shorter forecasts in some cases and stay-
ing constant at others, but overall results agreed well with ob-
served data for all forecasts leading up to an event, with the
RMSE for the storm surge and waves below 0.05 and 0.30 m,
respectively. The model compared well with other existing
forecast models in the Great Lakes (GLCFS), yielding com-
parable results for water level predictions during multiple
storm events. Due to the low computational requirements
and pan-Canadian coverage from the High Resolution De-
terministic Prediction System forecasts, this model could be
adapted to other Canadian lakes and coastal seas with avail-
able bathymetry data for storm surge prediction and monitor-
ing.

Code and data availability. Real-time model results can be viewed
at https://coastlines.engineering.queensu.ca/lake-ontario/ (Coast-
lines, 2024), and they are archived on the local server and can be
made available by contacting the corresponding author. HRDPS in-
put data are available from the Meteorological Service of Canada
Datamart, and observed data are openly accessible online, as cited
in the text. The source code and documentation of the open-source
numerical model (Delft3D 4.01.01) can be accessed on their online
repositories (https://svn.oss.deltares.nl/repos/delft3d/tags/delft3d4/
142586/, Deltares, 2024). The Python and MATLAB scripts, sup-
porting files used in the automated workflow, and data and scripts
used to generate the plots presented in this paper are archived
on Zenodo (https://doi.org/10.5281/zenodo.10407863, Swatridge,
2023).
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