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Abstract. Accurate representation of fire emissions is criti-
cal for modeling the in-plume, near-source, and remote ef-
fects of biomass burning (BB) on atmospheric composition,
air quality, and climate. In recent years application of ad-
vanced instrumentation has significantly improved knowl-
edge of the compounds emitted from fires, which, coupled
with a large number of recent laboratory and field campaigns,
has facilitated the emergence of new emission factor (EF)
compilations. The Next-generation Emissions InVentory ex-
pansion of Akagi (NEIVA) version 1.0 is one such compila-
tion in which the EFs for 14 globally relevant fuel and fire
types have been updated to include data from recent studies,
with a focus on gaseous non-methane organic compounds
(NMOC_g). The data are stored in a series of connected ta-
bles that facilitate flexible querying from the individual study
level to recommended averages of all laboratory and field
data by fire type. The querying features are enabled by as-
signment of unique identifiers to all compounds and con-
stituents, including thousands of NMOC_g. NEIVA also in-
cludes chemical and physical property data and model sur-
rogate assignments for three widely used chemical mech-
anisms for each NMOC_g. NEIVA EF datasets are com-
pared with recent publications and other EF compilations at
the individual compound level and in the context of overall
volatility distributions and hydroxyl (OH) reactivity (OHR)

estimates. The NMOC_g in NEIVA include ∼ 4–8 times
more compounds with improved representation of interme-
diate volatility organic compounds, resulting in much lower
overall volatility (lowest-volatility bin shifted by as much as
3 orders of magnitude) and significantly higher OHR (up to
90 %) than other compilations. These updates can strongly
impact model predictions of the effects of BB on atmospheric
composition and chemistry.

1 Introduction

The identification, quantification, and model representation
of gaseous and particulate compounds emitted from fires are
critical for modeling the effects of biomass burning (BB)
on air quality and climate. BB occurs under a variety of
conditions and involves a range of plant-based fuels, which
vary greatly across the world’s ecosystems. In the dry forests
of the western United States, long-term policies of wildfire
suppression and management practices have led to the ac-
cumulation of understory fuels in many forests (Collins et
al., 2011). This decades-long shift in forest structure, cou-
pled with a warming climate, greatly increases the potential
for destructive wildfires (Stephens et al., 2014; North et al.,
2015). Land use and climate trends have driven significant
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changes in BB in other parts of the world as well, with some-
times uncertain effects on air quality and climate (Doerr and
Santín, 2016). Some examples include a lengthening of the
fire season and increased area burned in boreal forests (de
Groot et al., 2013; Jolly et al., 2015), an increase in fire sever-
ity and area burned in tropical peatlands (Page and Hooijer,
2016), and a decrease in area burned in Sub-Saharan Africa
with conversion of savanna to croplands (Andela and van der
Werf, 2014; Hickman et al., 2021).

On a global scale, fires emit large amounts of trace gases,
including nitrogen oxides (NOx), carbon monoxide (CO),
and carbon dioxide (CO2); non-methane organic compounds
(NMOCs); and primary (directly emitted) particulate matter
(PM). Emission rates and properties of gaseous and particu-
late compounds are highly variable and largely dependent on
fuel characteristics and burn conditions (Guyon et al., 2005;
Yokelson et al., 2007; McMeeking et al., 2009; Jolleys et al.,
2012; Urbanski, 2014; Liu et al., 2017). During plume di-
lution directly emitted PM, a large fraction of which is or-
ganic (Zhao et al., 2013; Liu et al., 2017), can evaporate,
reducing the amount of primary organic aerosol (POA) but
also adding reactive gases, e.g., semi-volatile NMOCs (Bian
et al., 2017; Hodshire et al., 2019). During plume evolution
gaseous NMOCs (NMOC_g) may react to form ozone (O3);
secondary PM, more commonly referred to as secondary
organic aerosol (SOA); and other secondary products that
can degrade air quality and endanger human health (Crutzen
and Andreae, 1990; Poschl, 2005; McClure and Jaffe, 2018;
Buysse et al., 2019; Wei et al., 2023). Model representation
of the NMOC_g and the ambient conditions (e.g., light, oxi-
dant, and NOx levels) is important for accurate predictions of
O3, SOA, and other pollutants (Alvarado et al., 2009; Tkacik
et al., 2017; Ahern et al., 2019; Hatch et al., 2019; Decker et
al., 2019, 2021; Ninneman and Jaffe, 2021; Xu et al., 2021;
Fredrickson et al., 2022).

Application of advanced instrumentation has significantly
improved estimates of gaseous and particulate compounds
emitted from fires in recent years. For example, high-
resolution chemical ionization mass spectrometry, CIMS
(Stockwell et al., 2015; Koss et al., 2018; Palm et al.,
2020), and one- and two-dimensional gas chromatography
with time-of-flight mass spectrometry, GC-TOF-MS and
GC×GC-TOF-MS (Hatch et al., 2015; Gilman et al., 2015;
Hatch et al., 2019; Jen et al., 2019; Liang et al., 2021), have
expanded the capacity to measure organic compounds with
diverse chemical and physical properties, making it possi-
ble to identify and quantify many of the previously ubiqui-
tous unknown emissions (Christian et al., 2003; Warneke et
al., 2011). Laboratory studies that carefully simulated glob-
ally relevant fuels and fire types enabled initial measure-
ments with these new techniques (Stockwell et al., 2014;
Hatch et al., 2015; Selimovic et al., 2018) and the devel-
opment of comprehensive NMOC_g datasets (Koss et al.,
2018; Hatch et al., 2017). Incandescence (Schwarz et al.,
2006) and photoacoustic (Lewis et al., 2008; Nakayama et

al., 2015) techniques for measuring black carbon, BC, have
overcome some of the limitations with older thermal and
thermal–optical approaches for measuring elemental carbon,
EC (Li et al., 2019). Online aerosol measurements with the
Aerodyne aerosol mass spectrometer (AMS), along with of-
fline filter-based measurements, have greatly expanded par-
ticulate emissions datasets (Jayarathne et al., 2018; Jen et al.,
2019). Application of these and other techniques during field
campaigns has led to improved characterization of emissions
from specific fuel and fire types, including peat fires in Bor-
neo (Stockwell et al., 2016b; Yokelson et al., 2022); cooking
fires, agricultural fires, and garbage burning in Nepal (Stock-
well et al., 2016a); and most notably, wildfires and agricul-
tural burns in the United States (Liu et al., 2016, 2017; Per-
mar et al., 2021; Gkatzelis et al., 2024; Travis et al., 2023).

The large number of laboratory and field campaigns, and
rapid expansion of published BB emissions datasets, has fa-
cilitated the emergence of new emission factor (EF) compila-
tions, including Andreae (2019), an update to the 2001 com-
pilation of Andreae and Merlet (2001), and the Smoke Emis-
sions Repository Application, SERA (Prichard et al., 2020),
an update to the 2014 Wildland Fire Emissions Database
(Lincoln et al., 2014). The Andreae (2019) inventory in-
cludes EFs for 121 gas- and particle-phase species or con-
stituents (i.e., total PM); the data are almost entirely from
field measurements and include a range of globally rel-
evant fuel and fire types. The SERA database (Prichard
et al., 2020) includes EFs for 276 gas- and particle-phase
species or constituents; the focus of the database is North
American wildland fuels, and both laboratory and field
data are included. Similarly to Andreae (2019) the NEIVA
(Next-generation Emissions Inventory expansion of Akagi)
database described herein includes EFs for globally rele-
vant fuel and fire types, but in contrast to Andreae (2019),
thousands of compounds and representative laboratory data
were selectively included. Similarly to SERA (Prichard et
al., 2020), NEIVA is an online, searchable database that in-
cludes source data and recommended average EFs across
fuel and/or fire types. Additional features unique to NEIVA
are summarized below and detailed in Sects. 2–5 of the pa-
per, in the Supplement, and on GitHub (https://github.com/
NEIVA-BB-Emissions-Inventory, last access: June 2024).

In v1.0, NEIVA exists as a collection of datasets and
Python script files (summarized in Table S1). The datasets
include a primary database (multiple data tables) with col-
lected and reformatted data from existing emission inven-
tories and recent laboratory and field campaigns and a rec-
ommended EF dataset (single data table) with EFs averaged
across studies and summarized for 14 globally relevant fuel
and fire types. NEIVA also includes a property dataset that
links each NMOC_g with a suite of chemical and physi-
cal properties using unique identifiers. Because one func-
tion of emission inventories in models is to distribute the
total gaseous NMOCs emitted from fires among the suite
of compounds or lumped model species represented in the
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model, each of the NMOC_g in the NEIVA database has been
mapped to SAPRC (Carter, 2010, 2020, 2023a), MOZART-
T1 (Emmons et al., 2020), and GEOS-Chem (Bey et al.,
2001; Carter et al., 2022) model surrogates. Using the Python
script files, NEIVA can produce detailed NMOC_g speci-
ation profiles for different fuel and/or fire types, as well
as lumped NMOC_g speciation profiles in which individ-
ual compounds are mapped to model surrogates. The inclu-
sion of recent laboratory and field data within NEIVA re-
sults in significant differences in the molar, mass, and prop-
erty distributions of NMOC_g as individual compounds and
as mapped to model surrogates when compared with exist-
ing inventories. The data underlying NEIVA are described
in Sect. 2. The structure and contents of NEIVA are de-
scribed in Sect. 3. Evaluation of the data processing steps
to generate the datasets within NEIVA and differences be-
tween NEIVA and existing EF compilations are presented
in Sect. 4, including implications of these differences for
atmospheric composition and air quality predictions. Ex-
amples of querying commands and data products are pre-
sented in Sect. 5. Further details on the processes and pro-
cedures used to create the datasets, and additional verifica-
tion and validation, are presented in the Supplement. NEIVA
can be accessed through the GitHub page, https://github.
com/NEIVA-BB-Emissions-Inventory/NEIVAv1.0 (last ac-
cess: June 2024), which includes detailed instructions and
Jupyter Notebooks for querying EF data and adding EF data
using the associated script files.

2 Data

2.1 Legacy data and structure (“NEIVA legacy
database”)

In 2011, Akagi et al. (2011) published a compilation and as-
sessment of EFs for domestic and open BB and garbage burn-
ing (GB), which included recommended EFs based on litera-
ture averages. The overarching aim of the 2011 paper was to
compile EF data from numerous field studies of fresh plumes,
especially for NMOC_g, that had been published in the 10
years since the 2001 Andreae and Merlet (2001) compila-
tion. Some additional useful features in the 2011 paper in-
clude (1) discussions of BB terminology, combustion chem-
istry, photochemistry in young plumes, tracers, and other rel-
evant topics; (2) a table of published measurements of fuel
consumption per unit area for major types of open burning;
(3) examples of scaling to global estimates; (4) methods to
estimate unmeasured species; and (5) updated EFs for some
species (notably formic acid and glycolaldehyde) based on
new infrared reference data. In addition, as relevant to this
work, Akagi et al. (2011) expanded the number of represen-
tative fuel types from 7 to 14, included more species, and
provided estimated EFs for the sum of unknown species.

In Akagi et al. (2011) the selected EFs for each species in
each study were explicitly shown in 14 supplemental tables
organized by fuel or fire type. Also shown in the supplemen-
tal tables was a reasonably simple and transparent averaging
scheme (detailed and justified in the Akagi et al., 2011, pa-
per) designed to make the literature averages representative.
Between 2014 and 2015, some of the tables in the Supple-
ment were updated online (Wiedinmyer et al., 2014), specif-
ically temperate forest and chaparral in 2014 and savanna in
2015. In these updates, compounds were listed in mass order
while still providing common names to solve the problem of
multiple common names and to enhance the ability to quickly
locate specific compounds. NEIVA builds on the Akagi et
al. (2011) EF data and their updates through 2015. These data
are referred to as the “legacy database” in NEIVA and are in-
cluded as a series of 14 tables (listed in Table S2). Each table
includes the data as presented by Akagi et al. (2011) (see Ta-
ble S3), as well as unique identifiers assigned in this work
to link datasets within NEIVA. From 2015, lists of new pa-
pers with useful EFs were posted online and organized by the
original 14 fuel and fire types in Akagi et al. (2011), and they
included brief comments on paper content, while it was con-
templated how best to progress given the frequent appearance
of new data and the expanding number of compounds mea-
sured. The next section gives brief updates on the progress, or
lack thereof, for each of these original 14 fuel and fire types.

2.2 New data and structure (“NEIVA raw database”)

Based largely on the lists posted online since 2015, data from
a total of 30 publications associated with 12 of the 14 fuel
and fire types have been compiled and are referred to here
as the “raw database”. Data from these publications were in-
cluded in NEIVA as a series of 30 tables (listed in Table S5).
The publications and data are introduced under the relevant
fuel or fire categories below. One category, peatland, has
been removed from the legacy fuel categories (see Sect. S2),
and one category under domestic BB has been added (see
Sect. S2, Table S7). These revisions and any other major
changes to the categories are described in further detail be-
low. The new data include field and laboratory data from
single-institution studies to multi-institution campaigns, in-
cluding the fourth Fire Laboratory at Missoula Experiment,
FLAME-4 (Stockwell et al., 2014); Nepal Ambient Monitor-
ing and Source testing Experiment, NAMaSTE (Jayarathne
et al., 2018); Western Wildfire Experiment for Cloud chem-
istry, Aerosol Absorption, and Nitrogen, WE-CAN (Juncosa
Calahorrano et al., 2021); and Fire Influence on Regional to
Global Environments and Air Quality, FIREX laboratory and
FIREX-AQ field (Warneke et al., 2023).

2.2.1 Savanna fires

The Akagi et al. (2011) savanna fire table was updated
in February 2015 with extensive PTR-ToF-MS data from
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FLAME-4. There have been no large-scale field campaigns
measuring fire EFs in tropical savannas since SAFARI 2000.
However, Desservettaz et al. (2017) reported new BB EFs
for several gaseous compounds and particulate constituents
measured during a field study in Australian savannas, and
the data were included here. In addition, Travis et al. (2023)
reported EFs for gaseous compounds and particulate con-
stituents from prescribed burns of grasslands in the midwest-
ern United States that were included here.

2.2.2 Boreal forest

EFs were included here for over 190 gas- and particle-phase
compounds or constituents reported by Hayden et al. (2022)
based on airborne sampling of a smoldering boreal forest
fire. In addition, black spruce from Alaska was burned dur-
ing the FLAME-4 laboratory studies, and the associated EFs
reported by Stockwell et al. (2015) and Hatch et al. (2015)
were included here (see Table S6 for mapping of individual
fuels to the 14 representative fuel and fire types).

2.2.3 Tropical forest

Several new EFs were included for particulate compounds
or constituents reported by Hodgson et al. (2018) for ev-
ergreen tropical forest and cerrado (seasonally dry tropical
forest, a.k.a. “monsoon forest”) measured during the 2018
SAMMBA campaign.

2.2.4 Temperate forest

The Akagi et al. (2011) temperate forest table was updated
in May 2014. Since that update, several relevant papers have
been published, and the EF data were included here. Data
were included for wildfires and prescribed burns (tagged ac-
cordingly in the datasets). Liu et al. (2017) reported EFs
for many gas- and particle-phase species and constituents
for western US wildfires from the 2013 SEAC4RS and
BBOP field campaigns. Permar et al. (2021) reported EFs
for 161 NMOC_g and particle-phase constituents, largely
from wildfires sampled in the 2018 WE-CAN field cam-
paign. Gkatzelis et al. (2024) reported EFs for 98 NMOC_g
and four particulate constituents (nitrate; ammonium; black
carbon, BC; organic aerosol, OA), also largely from wild-
fires sampled during the 2019 FIREX-AQ campaign. Travis
et al. (2023) reported EFs for 148 NMOC_g and 10 par-
ticulate constituents (PM ≤ 1 µm, PM1; BC; organic car-
bon, OC; OA; ammonium chloride; potassium; nitrate; sul-
fate) for prescribed burns (slash, pile, and Blackwater River
State Forest understory) of temperate forest fuels measured
in the midwestern United States during FIREX-AQ. Müller
et al. (2016) published NMOC_g EFs for a small prescribed
fire in the SE United States. The fire PM2.5 (PM ≤ 2.5 µm)
EFs prescribed by old-nephelometer-based temperate for-
est data from Burling et al. (2011) were replaced with new
PM1 EFs for the same fires based on AMS data from May

et al. (2014). Laboratory-based wildfire simulations were
conducted during FLAME-4 (Stockwell et al., 2014) and
FIREX (Selimovic et al., 2018), resulting in new EFs for gas-
and particle-phase species and constituents (Stockwell et al.,
2015; Hatch et al., 2015, 2017; Koss et al., 2018; Selimovic
et al., 2018). EF data for relevant fuels from FLAME-4 (pon-
derosa pine and juniper) and most of the FIREX laboratory
burns were included here, as listed in Table S6.

2.2.5 Peat

Peat is often thought of as a single fuel that burns by smol-
dering in the field and therefore, in theory, should be easy
to burn representatively in a laboratory (neglecting the chal-
lenge of obtaining international samples). However, in real-
ity, the type of peat varies with depth for undisturbed sites
and in more complex ways for disturbed sites (Stockwell et
al., 2016b), which translates into additional uncertainties for
laboratory-based emissions measurements. Artificially low
values of the percentage of carbon (% C) reported in the
literature for some peat samples suggest that such samples
contained significant amounts of mineral soil and thus re-
sulted in low bias for associated EFs. Further, peat ignition
can be difficult, and aggressive ignition with a propane torch
can lead to unrepresentative flaming. Such cases have been
identified by high modified combustion efficiency (MCE)
values, NOx , and/or high acetylene (C2H2) emissions (e.g.,
C2H2/C2H4 > 1) and have been omitted here. In field stud-
ies, random sampling of real peat fires should return repre-
sentative values, but interference from the emissions from
other fuels can be difficult to avoid, and potential storage arti-
facts for offline analyses also may be unavoidable if shipping
delays are encountered. After carefully screening for all these
effects, some excellent new data emerged.

Four papers presented new field measurements of “pure”
tropical peat fires. Jayarathne et al. (2018) reported compre-
hensive filter-based EFs (PM2.5, EC, OC, numerous organic
compounds, metals, etc.) from measurements obtained dur-
ing the 2015 El Niño in Borneo. Stockwell et al. (2016b)
reported EFs for ∼ 100 gases, BC, brown carbon (BrC),
and aerosol optical properties from the same study. Smith et
al. (2018) measured trace gas EFs from authentic peat fires
in Malaysia, and Roulston et al. (2018) measured PM2.5 EFs
from peat fires, also in Malaysia. Data from all four publica-
tions were included here.

Laboratory studies of peat have provided much more de-
tail than has been possible in field studies to date. Peat fire
EFs from both the FLAME-4 and FIREX laboratory stud-
ies were included here. As part of FLAME-4, Stockwell et
al. (2015) reported EFs for an extensive list of gas-phase
species from two samples each of temperate, boreal, and
tropical peat based on PTR-TOF-MS and FTIR measure-
ments. Also as part of FLAME-4, Hatch et al. (2015) used
GC×GC-TOF-MS to add EF data for alkanes and other
species not detected by PTR-MS or FTIR. They also spe-
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ciated numerous isomers at exact masses where MS sees a
single peak. This groundbreaking application of GC×GC
led to EFs for > 600 NMOC_g for an Indonesian peat sam-
ple. Aerosol optical properties and PM2.5 EFs for peat from
FLAME-4 reported by Jayarathne et al. (2014) and Pokhrel
et al. (2016) were included here. More recently, the FIREX
laboratory experiments resulted in EFs for an extensive list
of gas-phase species for an Indonesian peat sample based
on measurements described in Selimovic et al. (2018) and
Koss et al. (2018). The EFs in the latter study were recalcu-
lated here using the actual % C value for the peat provided
in Selimovic et al. (2018). Watson et al. (2019) reported
laboratory-based EFs for several trace gases for peat samples
from the boreal through tropical zones, which were included
here, with the exception of EFs for nitrous oxide (N2O) due
to the difficulty of decoupling N2O from high levels of CO
and CO2 by infrared spectroscopy.

2.2.6 Chaparral

The Akagi et al. (2011) chaparral table was updated in
May 2014. Since then, FIREX has provided comprehensive
EFs for gases reported by Koss et al. (2018) and Selimovic
et al. (2018). In these laboratory studies, chaparral was rep-
resented by burning two dominant shrub species: manzanita
and chamise. The EFs for NMOC_g and particulate con-
stituents reported by Travis et al. (2023) for prescribed burns
of shrublands in the midwestern United States were also in-
cluded here, making this category representative of shrub
types beyond chaparral.

2.2.7 Domestic biomass burning

Domestic (household) biofuel use includes many fuels and
burning options that are primarily for cooking but also heat-
ing. Akagi et al. (2011) presented study-level results (in their
Supplement) and “global averages” for five domestic biofuel
activities: (1) open cooking (e.g., three stone fires with wood
fuel only, believed to be the most common type of domes-
tic biofuel use), (2) wood cooking with improved stoves (in-
cluding “rocket type” stoves only, which were believed to
be the most common improved stove), (3) charcoal mak-
ing, (4) charcoal burning (open or in improved stoves), and
(5) dung burning (open or in improved stoves). Since 2011,
many new improved stove designs have been developed and
characterized, many new EFs have been measured, and re-
sults for mixed fuel cooking fires (e.g., wood and dung)
have been published. To capture the new results, slightly re-
vised categories were established as follows (see Table S7):
(1) open cooking (three stone and wood fires), (2) cookstove
(traditional and modern), and (3) dung burning (with and
without wood, traditional and modern). Since there is no sys-
tematic approach for grouping fuels and stoves in the litera-
ture, the above approach has been adopted here while tagging
data appropriately in the raw database to facilitate custom se-

lection of relevant data by users. The charcoal making and
charcoal burning categories were retained.

Open cooking. The open cooking fire type includes all
open wood cooking (i.e., three stone fires). Data from three
new publications on various types of open cooking were in-
cluded here. EFs for gases and aerosol optical properties for
open cooking with wood were measured in situ in Nepal as
part of the NAMaSTE campaign and reported by Stockwell
et al. (2016a). Gravimetric PM2.5 data and chemical specia-
tion of PM from the same study were reported by Jayarathne
et al. (2018). EFs for CO2, CO, and PM2.5 were measured
for a variety of traditional and improved stoves in Ghana by
Coffey et al. (2017), and the data for three stone wood burn-
ing fires were included here. Laboratory-based EFs were in-
cluded here from the carefully simulated open cooking dur-
ing FLAME-4, with several wood species commonly used in
Mexico, reported by Stockwell et al. (2015).

Cookstoves. Akagi et al. (2011) limited improved stove
data to rocket stove burning wood, but in NEIVA, additional
advanced stove types and fuels were included in the cook-
stove category. Stockwell et al. (2015, 2016a), Jayarathne et
al. (2018), and Fleming et al. (2018) reported data for many
types of advanced stoves that were included here. For a sub-
set of the same sources in Stockwell et al. (2015, 2016a)
and Jayarathne et al. (2018), Goetz et al. (2018) reported
EFs for OA, BC, sulfate, nitrate, chloride, ammonium, and
polycyclic aromatic hydrocarbons (PAHs) that were included
here. EFs for CO2, CO, and PM2.5 for improved stoves re-
ported by Coffey et al. (2017) were included here.

Dung burning. Data from several new studies with EFs for
open dung burning, dung burning in stoves, and mixed dung/-
wood burning have been reported and were included here.
Stockwell et al. (2016a), Jayarathne et al. (2018), Goetz et
al. (2018), and Fleming et al. (2018) reported data from stud-
ies in Nepal and India. In addition, data were included from
the open dung burning sampled in detail during the FIREX
laboratory experiments, as reported by Koss et al. (2018) and
Selimovic et al. (2018).

Charcoal making. Literature searches suggest there have
been no new laboratory- or field-based EFs for charcoal mak-
ing since Akagi et al. (2011) and thus this remains the least-
characterized globally relevant major fuel type.

Charcoal burning. Stockwell et al. (2016a) and Jayarathne
et al. (2018) reported data for charcoal burning in the Nepal
study, and the reported EFs were included here. EFs for CO2,
CO, and PM2.5 for charcoal burning reported by Coffey et
al. (2017) were also included.

2.2.8 Pasture maintenance

Literature searches suggest there have been no new
laboratory- or field-based EFs for pasture maintenance fires
since Akagi et al. (2011).
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2.2.9 Crop residue

Akagi et al. (2011) highlighted that the NMOC_g EFs from
pile burning of crop residue, which is associated with manual
harvest and promotes smoldering, are much higher than those
for burning residue loose in the field, which is associated
with mechanized agriculture and promotes flaming. More re-
cently, Lasko and Vadrevu (2018) estimated the relative fre-
quency of these two burning practices in Vietnam. In addi-
tion to the inclusion of new data, the Akagi et al. (2011) EFs
were updated here to represent the evolving literature aver-
age % C. Following Stockwell et al. (2016a, b), the Mexican
“loose in field” crop residue EFs from Yokelson et al. (2011)
used in Akagi et al. (2011) and Andreae (2019) were nor-
malized to lower fuel % C values (40 %) by multiplying the
original Yokelson et al. (2011) values by 0.8.

Regarding new data, field measurements of fires consist-
ing of loose and piled crop residue were carried out in Nepal
with EFs for gases and aerosol optical properties reported by
Stockwell et al. (2016a). EFs for PM constituents reported
by Goetz et al. (2018) and EFs from filter-based PM2.5 anal-
yses reported by Jayarathne et al. (2018) were included here.
Holder et al. (2017) used several platforms to measure emis-
sions from burning residue in wheat and bluegrass fields in
the NW United States; the reported EFs from the individual
observations and averaged across platforms were included
here. Also included were the EFs from field measurements
of crop residue fires in the SE United States made on the
NASA-DC-8, from burning rice straw loose in the field as
part of SEAC4RS and reported by Liu et al. (2016), and the
EFs from field measurements of crop residue fires also in the
midwestern United States, made as part of FIREX-AQ and
reported by Travis et al. (2023). During FLAME-4, numer-
ous types of crop residue were burned in the laboratory, both
in piles and loose. The EFs for an extensive selection of gases
and residue types reported by Stockwell et al. (2015) and the
rice straw emissions reported by Hatch et al. (2015, 2017)
were included here (see Table S6). Rice straw EFs measured
during a FIREX laboratory pile-burning simulation were also
included (Koss et al., 2018; Selimovic et al., 2018).

2.2.10 Garbage burning

The EFs recommended by Akagi et al. (2011) for garbage
burning (GB) were based almost entirely on one field cam-
paign in Mexico (Christian et al., 2010). These data were
incorporated into a global GB inventory by Wiedinmyer et
al. (2014). New EFs for mixed garbage fires in Nepal for
gases and aerosol optical properties reported by Stockwell et
al. (2016a); gravimetric PM2.5, EC, OC, and chemical spe-
ciation reported by Jayarathne et al. (2018); and size dis-
tributions and a full suite of AMS species (OA, OC, am-
monium, sulfate, chloride, and nitrate) reported by Goetz et
al. (2018) were included here. In addition, laboratory-based

GB EF data from Yokelson et al. (2013) and FLAME-4 re-
ported by Stockwell et al. (2015) were included.

3 NEIVA structure and contents

3.1 Overview

A schematic of NEIVA is shown in Fig. 1. NEIVAv1.0 is
a collection of linked data tables. Groups of related tables
are organized as a single database and include the legacy
database and raw database described above in Sect. 2.1 and
2.2, respectively, and the primary database described below
in Sect. 3.2. Collections of related data tables are referred
to as databases, while single data tables are referred to as
datasets. Datasets in NEIVA include the integrated EF, pro-
cessed EF, recommended EF, and chemical property and sur-
rogate (“property_surrogate”) datasets, which comprise the
output database and are described below in Sect. 3.3. Each of
the databases and datasets is listed in Table 1. In this section,
the structure and contents of the primary database and of the
integrated EF, processed EF, recommended EF, and chemical
property and surrogate datasets are further described, as well
as the formatting and data processing steps that were per-
formed to create each of the data tables. All of the datasets
can be accessed through GitHub, and the recommended EF
dataset is also provided here as a supplemental table.

All of the compounds or constituents in the NEIVA
database were assigned one of the following pollutant cat-
egories: inorganic gas, methane, gaseous non-methane or-
ganic compound (NMOC_g), particulate non-methane or-
ganic compound (NMOC_p), or particulate matter (PM). The
PM was further differentiated in terms of “size” (e.g., PM1,
PM2.5, PM∗2.5 (PM1−5), PM10), “organic” (e.g., OA, OC),
“elemental” (e.g., EC, BC), “ion” (e.g., Na), “metal” (e.g.,
lead), and “optical” (e.g., absorption/backscattering coeffi-
cients at specific wavelengths). The PM∗2.5 subcategory ac-
counts for the fact that fine- or accumulation-mode PM may
be reported at multiple size cuts (e.g., PM1, PM3.5) based
on instrument specifications and operating conditions. All ta-
bles in the legacy, raw, and primary databases include the
following columns: molar mass (M; please note that while
molar mass us designated as M by journal convention, it
is mm in the database), chemical formula (formula), com-
pound (compound name), pollutant category, EF, and unique
ID for each compound or constituent. Additional information
from the source publications was retained in the databases as
described in Sect. S1. In the EF datasets, each row in a ta-
ble represents a chemical compound or constituent, and the
columns represent attributes of that compound or constituent,
primarily EFs. The algorithm and approach for assigning the
unique IDs are described in Sect. S1. The unique IDs are one
of the critical features for creating and linking the datasets.
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Figure 1. Schematic of NEIVA. The use of “contextual” here (data processing phase 1) refers to information that provides additional context
for EF data, including measurement location (lab/field), fuel type, modified combustion efficiency (MCE), and publication identifiers (e.g.,
DOI, year).

3.2 Primary database

Prior to combining the legacy and raw databases to form
the primary database, several formatting and data process-
ing steps were performed. The data processing steps on the

legacy database included removing peatland and the esti-
mated temperate forest EFs that were included in Akagi et
al. (2011) (and were retained in the legacy database), remov-
ing EFs for unknown proton ion transfer (PIT) masses for
temperate forest and chaparral, combining isomers, and cal-
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Table 1. Description of the databases (multiple related data tables) and datasets (single data tables) that comprise NEIVA.

Data storage name Description

Legacy database (ldb) The Akagi et al. (2011) supplemental data, including 2014 and 2015 updates, are stored as
tables in this repository. There are 14 tables, one for each fuel or fire type. All compounds and
constituents were assigned a unique ID. No data processing was performed.

Raw database (rdb) Data from selected publications (2015 or later) are stored as tables in this repository. There are
30 tables in this database: one for each of the publications added since Akagi et al. (2011). All
compounds and constituents were assigned a unique ID. No data processing was performed.

Primary database (pdb) Data from the legacy and raw database tables were reformatted to achieve a consistent structure
and combined with some data processing as described in the paper and Sect. S2, namely updates
to the % C for some reported fuels. The resultant 44 tables are stored in this repository.

NEIVA output database (odb) Four datasets are stored in the NEIVA output database:
Integrated EFs. EF data aggregated in the primary database were merged and stored in this sin-
gle dataset for all fuel and fire types. The process for merging EFs is described in the paper and
Sect. S3.
Processed EFs. Additional data processing steps were performed on the integrated EF dataset
prior to calculating recommended EFs, as described in Sect. S4. Laboratory data were adjusted
to represent known differences in combustion conditions between laboratory and field studies.
Groups of isomeric compounds were resolved and assigned fractional contributions when pos-
sible.
Recommended EFs. The arithmetic means of the processed EFs for each compound or con-
stituent in each of the 14 representative fuel or fire types are stored in this single dataset. Prior
to averaging, NOx EFs were converted to “NOx as NO” EFs if NO and NO2 data were available
(see S5).
Property_Surrogate. For each of the gaseous organic compounds in these datasets, chemical
and physical property data, as well as model surrogate assignments for specific chemical mech-
anisms, are stored in this single dataset (see Sect. S6).

Backend database (bdb) Tables that are used in the Python scripts for data processing, listed and described in Sect. S8,
are stored in this database. The tables in the backend database were used to create the output
datasets but are not necessary for users to access the EF data.

culating a study average for any studies that reported multi-
ple EFs for a given fuel or fire type. From the raw database,
the EFs reported by Koss et al. (2018) were recalculated to
reflect measured % C as reported by Selimovic et al. (2018).
Further detail on these and additional data processing steps is
provided in Sect. S2. The resultant primary database is com-
prised of 44 tables (listed in Table S8). The tables represent
the Akagi et al. (2011) EF data separated by fuel or fire type
(14 tables) and the EF data from publications since 2015 (30
tables). For publications that include data for a single fuel or
fire type, a fuel designation abbreviation precedes the table
name, and otherwise for publications that include data for
multiple fuel or fire types, the table name only reflects the
source publication (see Sect. S2, Table S8 for examples).

3.3 Output database

Four datasets are stored in the output database, each of which
is described in further detail below. These include the in-
tegrated EF dataset, the processed EF dataset, the recom-
mended EF dataset, and the property and chemical mecha-
nism assignment (model surrogate) dataset.

3.3.1 Integrated EF dataset

The aggregated EF data from the tables in the primary
database were merged across all studies into a single EF
dataset. An algorithm was developed to merge data from in-
dividual studies across tables in the primary database. The al-
gorithm uses a multistep process to group compounds across
datasets, determine whether the compounds are the same
or different, and then append each compound to the inte-
grated dataset as a new row (indicating a new compound)
and each EF as a new column (indicating a new EF). In this
dataset, EFs are available for a total of 1311 compounds or
constituents with up to 263 measurements (i.e., EFs) study-
averaged for individual fuel types from the primary database.
Details on the integration algorithm are provided in Sect. S3
and illustrated in Tables S11–S13.

3.3.2 Processed EF dataset

Following integration, the EF data from laboratory studies
were corrected to account for known differences between
laboratory and field combustion conditions. The results of
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this correction are presented and discussed in Sect. 4.1,
with further detail on the correction methods presented in
Sect. S4. In addition, to minimize over- or under-counting
of individual NMOC_g and to increase the number of mea-
sured EFs per individual gaseous NMOC (and thus the sta-
tistical robustness), where applicable speciated EF data were
used to assign fractional contributions to EFs representing
groups of compounds that could not be differentiated us-
ing the published method of detection. For example, be-
cause methyl vinyl ketone (MVK) and methacrolein have the
same molar mass, they are not differentiable by PTR-MS and
thus are often reported as a sum (MVK+methacrolein). For
fuel and fire types in which EFs were reported for MVK
and methacrolein as a sum and as individual compounds
(e.g., using GC×GC-TOF-MS, GC-PTR-MS), the relative
EFs of the individual compounds were used to assign frac-
tional contributions to the summed EF, resulting in two (or
more) EFs for MVK and for methacrolein and no EF for
MVK+methacrolein in the processed dataset. The results
of assigning fractional contributions are presented and dis-
cussed in Sect. 4.2, with further detail on the fractional as-
signment presented in Sect. S4.

3.3.3 Recommended EF dataset

The arithmetic means of the EFs in the processed dataset
were calculated to obtain a single recommended EF for each
compound or constituent in each of the 14 fuel or fire types,
with equal weighting of the laboratory-adjusted and field EF
data. These recommended EFs, along with standard devia-
tion (1σ ), data count (number of studies), and emission ratios
(ERs) to CO, were stored in the recommended EF dataset and
are available in the supplemental table. A subset of the sup-
plemental table is represented in Table 2 (EFs) and Table 3
(ERs); ERs may be particularly useful in modeling studies
where emissions are not explicitly defined. Prior to calculat-
ing the recommended EF for each compound or constituent,
one additional data processing step was performed: for stud-
ies in which EFs for NO, NO2, and NOx were reported, NOx
EFs were converted to “NOx as NO” EFs (see Sect. S5). In
the recommended EF dataset, for savanna fires, the EF for
OA is greater than the EF for PM2.5. The OA represents a
single value reported by Travis et al. (2023). In their paper,
the EFs for PM1, OA, and OC are self-consistent and rea-
sonable. When averaged here with the other data, because
there is only one EF for OA and many EFs for PM2.5, the
Travis et al. (2023) data disproportionately affect the EFOA.
The Travis et al. (2023) data were not considered outliers but
representative of the natural variability of fuel and fire con-
ditions, and thus the data were not removed.

3.3.4 Chemical property and model surrogate dataset

In many model applications, it is impractical to represent
hundreds of individual organic compounds, and thus the

lumping of compounds is often required. In gas-phase chem-
ical mechanisms, it is typical to lump organic compounds
based on their reaction rate constant with OH (kOH) and
the oxidation products that they form. Groups of com-
pounds may be represented by individual compounds or
by model surrogates. To facilitate the use of the compre-
hensive EF data for NMOC_g included in NEIVA, indi-
vidual NMOC_g were mapped to model surrogates for the
common gas-phase chemical mechanisms SAPRC-07/-07T/-
18/-22 (Carter, 2010, 2020, 2023a), MOZART-T1 (Emmons
et al., 2020), and GEOS-Chem (Bey et al., 2001; Carter
et al., 2022). The methods for assigning the model surro-
gates and sources for the property data are described in
detail in Sect. S6. Briefly, compounds were first assigned
to the SAPRC and MOZART-T1 mechanisms using the
SAPRC mechanism generation system (MechGen) web in-
terface (Carter, 2019) and the SAPRC model species assign-
ment database “SpecDB” (Carter, 2023b). The SAPRC and
MOZART-T1 assignments were then used to determine the
GEOS-Chem assignments (see Tables S18–S21), with ad-
ditional reference to Hutzell et al. (2012), Li et al. (2014),
and Carter et al. (2022). The model surrogate assignments
are provided in a property dataset (see Table S22) that also
includes oxidation rate constants with OH, O3, and NO3
(cm3 per molecule s−1); vapor pressures (mm Hg); saturation
vapor concentration (C*, µgm−3); Henry’s law constants
(atm m3 mol−1); O : C ratio; and average carbon oxidation
state (Pence and Williams, 2010; NIST Chemistry WebBook,
2022; US EPA, 2023; Kim et al., 2023; ChemSpider, 2024)
linked to individual NMOCs by the unique ID.

4 Evaluation

4.1 Adjustment of laboratory-based emission factors
and integration of laboratory and field data

Representative laboratory-based EFs were selectively in-
cluded in NEIVA, largely to capture the extensive speciation
of gas- and particle-phase organic carbon (i.e., NMOC_g and
NMOC_p) that has been achieved in laboratory studies. Lab-
oratory studies also provide additional measurements for fuel
and fire types that have a limited number of field-based EF
measurements and thus, if representative, decrease the un-
certainty associated with those EFs. While the designation
of representative is subjective, studies were prioritized here
that emphasized careful handling of relevant fuels (e.g., us-
ing fresh fuels from specific locations) and combustion in
configurations that mimic natural conditions to the extent
possible. Nonetheless, even in these representative laboratory
studies, MCE values were typically higher than observed in
the field. Therefore, the laboratory-based EFs for all fuels
(with the exception of peat) were adjusted to account for the
generally lower combustion efficiencies under field condi-
tions. Briefly, to calculate the adjusted laboratory-based EFs,
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Table 2. Recommended EFs (g kg−1) for selected compounds and constituents.

Savanna Boreal Tropical Temperate Peat Chaparral Crop Garbage
forest forest forest residue burning

Carbon dioxide (CO2) 1.640× 103 1.610× 103 1.625× 103 1.581× 103 1.572× 103 1.649× 103 1.441× 103 1.502× 103

Carbon monoxide (CO) 8.10× 101 1.00× 102 1.11× 102 9.60× 101 2.25× 102 6.66× 101 5.75× 101 5.20× 101

Methane (CH4) 2.83× 100 4.78× 10 4.68× 100 4.74× 100 1.11× 101 2.57× 100 2.14× 100 3.06× 100

Nitric oxide (NO) 1.76× 100 9.16× 10−1 9.00× 10−1 7.85× 10−1 3.21× 10−1 1.15× 100 9.62× 10−1 8.10× 10−1

Nitrogen oxides
(NOx as NO)

3.40× 100 1.21× 100 2.55× 100 1.65× 100 9.27× 10−1 2.42× 100 2.05× 100 2.31× 100

Nitrogen dioxide (NO2) 2.60× 100 9.22× 10−1 3.55× 100 1.40× 100 5.43× 10−1 1.02× 100 1.96× 100 2.34× 100

Nitrous oxide (N2O) 1.40× 10−1 2.05× 10−1 1.55× 10−1 2.50× 10−1

Nitrous acid
(HONO)

4.99× 10−1 2.55× 10−1 1.18× 100 3.78× 10−1 2.22× 10−1 5.52× 10−1 3.53× 10−1 2.51× 10−1

Sulfur dioxide (SO2) 9.44× 10−1 5.64× 10−1 4.03× 10−1 9.50× 10−1 2.06× 100 5.53× 10−1 1.25× 100 7.05× 10−1

Isocyanic acid (CHNO) 1.05× 100 8.30× 10−2 4.05× 10−1 5.74× 10−1 3.02× 10−1 4.69× 10−1 1.29× 10−1

Ammonia (NH3) 6.59× 10−1 1.47× 100 1.33× 100 1.06× 100 6.15× 100 9.09× 10−1 9.68× 10−1 6.88× 10−1

Gaseous non-methane organic
compounds (NMOC_g)

3.73× 101 4.05× 101 2.53× 101 4.25× 101 7.37× 101 2.17× 101 3.81× 101 3.36× 101

PM∗2.5
a 1.6× 101 1.28× 101 9.11× 100 1.79× 101 2.48× 101 1.51× 101 1.27× 101 9.68× 100

OA 2.73× 101 b 6.60× 100 1.71× 101 1.08× 101 1.12× 101 7.36× 100

OC 6.49× 100 3.99× 100 1.04× 101 1.32× 101 1.08× 101 9.47× 100 5.47× 100

BC 3.50× 10−1 1.30× 10−1 3.44× 10−1 4.35× 10−1 1.60× 10−2 6.24× 10−1 4.46× 10−1 1.98× 100

EC 4.32× 10−1 4.99× 10−1 1.92× 10−1

a PM∗2.5 includes PM1–PM5. b OA is a single value from Travis et al. (2023) that is less than PM1 from the same study.

Table 3. Recommended ERs (ppb ppm−1 CO) to CO for selected compounds and constituents.

Savanna Boreal Tropical Temperate Peat Chaparral Crop Garbage
forest forest forest residue burning

Carbon dioxide (CO2) 1.289× 104 1.020× 104 9.335× 104 1.049× 104 4.447× 103 1.576× 104 1.594× 104 1.837× 104

Methane (CH4) 6.10× 101 8.31× 101 7.38× 101 8.63× 101 8.61× 101 6.74× 101 6.50× 101 1.03× 102

Nitric oxide (NO) 2.02× 101 8.50× 100 7.58× 100 7.63× 100 1.33× 100 1.61× 101 1.56× 101 1.45× 101

Nitrogen oxides (NOx as NO) 3.92× 101 1.12× 101 2.15× 101 1.61× 101 3.85× 100 3.39× 101 3.33× 101 4.14× 101

Nitrogen dioxide (NO2) 1.95× 101 5.59× 100 1.95× 101 8.91× 100 1.47× 100 9.35× 100 2.07× 101 2.74× 101

Nitrous oxide (N2O) 1.10× 100 1.30× 100 1.03× 100 2.39× 100

Nitrous acid (HONO) 3.67× 100 1.51× 100 6.35× 100 2.35× 100 5.88× 10−1 4.94× 100 3.65× 100 2.87× 100

Sulfur dioxide (SO2) 5.10× 100 2.45× 100 1.59× 100 4.33× 100 4.01× 100 3.63× 100 9.47× 100 5.92× 100

Isocyanic acid (CHNO) 8.45× 100 5.38× 10−1 2.75× 100 1.66× 100 2.96× 100 5.31× 100 1.61× 100

Ammonia (NH3) 1.34× 101 2.41× 101 1.97× 101 1.82× 101 4.51× 101 2.25× 101 2.77× 101 2.18× 101

Gaseous non-methane organic
compounds (NMOC_g)

2.31× 102 1.99× 102 1.35× 102 2.04× 102 1.67× 102 1.66× 102 3.10× 102 3.45× 102

ERs (g g−1 CO)

PM∗2.5 a 2.17× 10−1 1.27× 10−1 8.22× 10−2 1.85× 10−1 1.10× 10−1 2.25× 10−1 2.21× 10−1 1.86× 10−1

OA 3.38× 10−1 6.57× 10−2 1.78× 10−1 1.62× 10−1 1.95× 10−1 1.41× 10−1

OC 8.01× 10−2 3.60× 10−2 1.09× 10−1 5.86× 10−2 1.63× 10−1 1.65× 10−1 1.05× 10−1

BC 4.32× 10−3 1.29× 10−3 3.10× 10−3 4.54× 10−3 7.13× 10−5 9.36× 10−3 7.75× 10−3 3.80× 10−2

EC 1.92× 10−3 8.67× 10−3 3.68× 10−3

a PM∗2.5 includes PM1–PM5.

the laboratory-based ERs to CO were multiplied by the field-
average EFCO for smoldering compounds; an analogous cal-
culation was done for flaming compounds using EFCO2 . The
adjustments are described in further detail in Sect. S4. Re-
sults of the adjustment are shown here and in Sect. S4.

Figure 2 illustrates the magnitude of the adjustment to
laboratory-based EFs for smoldering dominant compounds.
For each fuel or fire type, the average field-based EF for

CO is shown in dark grey and the laboratory-based EF for
CO in light grey. The laboratory-based CO values are lower
for most fuel or fire types, with the exception of boreal for-
est, charcoal burning, and crop residue. For boreal forest, the
laboratory-based EF CO value is about 20 % higher than the
field average, which is based exclusively on airborne stud-
ies. More detailed discussion of averaging studies for this
fire type can be found elsewhere (e.g., Akagi et al., 2011;
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Figure 2. Averaged EF values for CO (field, dark grey; lab, light grey) and the sum of smoldering dominant compounds (excluding CO and
CH4) pre-adjustment (blue) and post-adjustment (green) to account for differences in combustion conditions between laboratory and field
studies. Integrated_EF indicates data from the integrated EF dataset, and Processed_EF indicates data from the processed EF dataset.

Wiggins et al., 2021). For crop residue, the relatively high
value is driven by laboratory-based pile burns of rice straw
reported by Christian et al. (2003). For charcoal burning,
there are a greater number of field studies (n= 5) than lab-
oratory studies (n= 2), and the variability is larger for the
field studies, with lower-end CO values of 122 g kg−1. The
sum of the adjusted EFs for the smoldering dominant com-
pounds thus increases for most fuel or fire types, consistent
with the lower EFCO values measured under more flaming
conditions in laboratory studies. For two fire types, boreal
and temperate forest, the sum of the adjusted EFs does not
decrease and increase (respectively) as expected. The rea-
son for this is twofold: the number of compounds measured
in laboratory studies is significantly larger than the number
measured in the field, and, in the case of temperate forest,
the natural variability (driven by fuel and fire characteristics)
is larger than the small difference between the average field
and laboratory EFCO. Figure S2 is the analogous figure for
the flaming dominant compounds (NO, NO2, NOx as NO,
N2O, HONO, SO2, HCl, gaseous Hg).

In the processed EF dataset, the adjusted laboratory-based
EFs replace the unadjusted laboratory-based EFs from the
integrated dataset and are used in the calculation of the rec-
ommended EFs. To more closely evaluate this adjustment on
an individual compound level, Fig. 3 shows the distribution
of field and adjusted laboratory EFs (box and whiskers) for
the 25 most abundant NMOC_g in the temperate forest fire
type. The mean value is equivalent to the recommended EF

and is shown by the red line. Also shown are the average EF
based on the unadjusted laboratory data only (“Average EF
(lab)”) and the field data only (“Average EF (field)”), as well
as the EFs reported by Permar et al. (2021) for WE-CAN
and Gkatzelis et al. (2024) for FIREX-AQ. A correspond-
ing figure for the 25 compounds with the highest number
of observations (“n”) in the NEIVA integrated EF database,
that are not shown in Fig. 3, is included in the Supplement
(Fig. S3), and equivalent figures for crop residue are also in-
cluded in the Supplement (Figs. S4, S5). While the unad-
justed laboratory EF averages are outside the upper (75 %)
and lower (25 %) quartiles for 5 of the 25 compounds shown
in Fig. 3 (and 11 of the 25 in Fig. S5), the mean EF val-
ues (which include adjusted laboratory EFs) do not deviate
significantly from the field-based averages. Agreement with
the values reported by Permar et al. (2021) and Gkatzelis et
al. (2024) is compound dependent, but generally those values
are within the upper and lower quartiles of the NEIVA pro-
cessed dataset. This analysis suggests that the inclusion of the
adjusted laboratory data does not introduce unrepresentative
values that are outside of the expected variability and/or un-
certainty observed in the field data and serves to increase the
number of observations and compounds represented in the
database.

4.2 Assignment of isomer contributions to exact masses

In some cases, isomers that are not resolved using one an-
alytical technique can be resolved using another analytical
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Figure 3. The 25 most abundant NMOC_g EFs for temperate forest. The box and whiskers represent the values in the processed EF dataset
and thus include the field EFs and the adjusted laboratory EFs. The outliers (> 1.5× above/below the interquartile range) in the processed
EF dataset are indicated by the plus symbols. The red line indicates the mean value and is equivalent to the recommended EF. The number of
observations is listed in parenthesis (“n”). Compounds marked with an asterisk before the name have had an additional correction; application
of isomeric distributions is described in Sect. 4.2 and S4.

technique. Because the individual compounds in these unre-
solved mixtures may have very different chemical and phys-
ical properties, it is preferable to resolve the mixtures when
possible. In addition, resolving mixtures leads to an increase
in the number of observations for associated individual com-
pounds. Therefore, prior to their inclusion in the recom-
mended EF database, fractional distributions were assigned
to mixtures as described in Sect. S4.

The summed EFs for groups of NMOC_g in the NEIVA
integrated dataset that were assigned fractional distributions
are listed before and after processing in Table 4 for each fuel
or fire type. Also included are the number of unique chem-
ical formulas for which isomer contributions were assigned.
The summed EFs for these NMOC_g decrease with the ap-
plication of the fractional distribution, largely due to double
counting prior to assigning isomer contributions to groups of
NMOC_g. There were no group assignments in open cook-
ing or charcoal making, so no isomer contribution assign-
ments were made.

The laboratory-based EFs in the processed EF dataset were
adjusted for MCE and, where applicable, assigned isomeric
contributions. Figures 4 and 5 compare the NEIVA tem-
perate forest EFs from the recommended EF database (in-
cluding laboratory-adjusted EFs) with EFs reported by Per-
mar et al. (2021) for WE-CAN and Gkatzelis et al. (2024)
for FIREX-AQ, respectively. For 115 of 145 overlapping

Figure 4. NEIVA temperate forest EFs (gaseous non-methane or-
ganic compounds, inorganic gases, methane) vs. EF data reported
by Permar et al. (2021) from the WE-CAN field study. The equa-
tion is for the linear fit (not shown).

gaseous compounds, agreement is within a factor of 2 with
Permar et al. (2021) and for 84 of 95 with Gkatzelis et
al. (2024). Focusing on the compounds for which NEIVA is
higher than Permar et al. (2021) and/or Gkatzelis et al. (2024)
by a factor of 2 or more, there were no systematic biases or
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Table 4. The summed EFs for the subset of NMOC_g to which isomeric contributions have been assigned and the pre- and post-assignment
of fractional contributions, shown for each fuel or fire type. Also shown is the number of unique chemical formulas for which fractional
distributions were assigned.

Fuel or fire type Summed isomeric NMOC_g Summed isomeric NMOC_g Number of unique
EFs pre-fractional EFs post-fractional chemical formulas

contribution contribution

Savanna 12.23 7.02 11
Boreal forest 8.33 4.16 38
Tropical forest 1.47 0.74 2
Temperate forest 28.27 14.71 80
Peat 37.44 19.67 76
Chaparral 11.74 5.93 36

Domestic biomass burning

Open cooking 0 0 0
Cookstove 0.47 0.20 4
Dung burning 22.56 12.22 15
Charcoal making 0 0 0
Charcoal burning 0.90 0.42 1
Pasture maintenance 0.17 0.09 1
Crop residue 28.05 13.93 85
Garbage burning 2.33 1.21 6

Figure 5. NEIVA temperate forest EFs (gaseous non-methane or-
ganic compounds, inorganic gases, methane) vs. EF reported by
Gkatzelis et al. (2024) from the FIREX-AQ field study. The equa-
tion is for the linear fit (not shown).

unexplained discrepancies in the laboratory data relative to
the field data, supporting the inclusion of laboratory data in
this EF compilation. For some compounds, higher EFs mea-
sured in laboratory studies, and in Gkatzelis et al. (2024) rel-
ative to Permar et al. (2021), can be explained by photochem-
ical losses as a function of aging. In Figs. 4 and 5, marker col-
ors are representative of kOH values for the NMOC_g, with
red values indicating higher OH reactivity and blue values
indicating lower OH reactivity. The loss of the more reactive

compounds measured during WE-CAN relative to laboratory
studies likely partially explains the higher EFs in NEIVA
and, to a lesser extent, the compounds measured during
FIREX-AQ. Similar observations were made by Gkatzelis et
al. (2024) that ERs for some highly reactive compounds in
WE-CAN were lower than laboratory measurements and in
FIREX-AQ higher than laboratory measurements, highlight-
ing variability in oxidation and emissions in both laboratory
and field studies. When multiple data points were available
for comparison, high EF values were also reported for field
studies (and low EF values for laboratory studies), represent-
ing diversity in fuels burned and fires sampled. For some field
studies, the higher EFs reflect greater sampling of smolder-
ing fires (e.g., as reported by Yokelson et al., 2013) and pile
burns (e.g., as reported by Travis et al., 2023). No laboratory
data were omitted as a result of these comparisons.

4.3 Comparisons of recommended EFs with EF
compilations of Akagi et al. (2011) and Andreae
(2019)

In 2019, Andreae (2019) published an update of the 2001
Andreae and Merlet (2001) EF compilation. Field data from
over 370 publications were evaluated, and the number of
species included was increased from 93 to 121. Andreae
(2019) compared EFs for a subset of compounds and con-
stituents with Akagi et al. (2011). That comparison is ex-
panded here, with an added emphasis on NMOC_g. Fig-
ure 6 is similar to Fig. 2 of Andreae (2019) and shows a
comparison of NEIVA-based recommended EFs for selected
inorganic gases and particulate constituents with Akagi et
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Figure 6. Ratio of recommended EFs based on NEIVA to EFs based on Akagi et al. (2011) (orange) and Andreae (2019) (green) for selected
gases and particulate constituents in temperate forest, crop residue, and peat fire types. Agreement within a factor of 2 is shown by the dashed
lines; PM∗2.5 includes PM1−5.

Figure 7. Number of compounds represented in NMOC_g (a) and total NMOC_g EF (b) in Akagi et al. (2011), Andreae (2019), and NEIVA.
Andreae (2019) reported the total NMOC_g EF from Akagi et al. (2011); here, the total NMOC_g EF based on Andreae (2019) is the sum
of individually reported NMOCs plus reported non-specified VOCs (the latter shown by hashes).
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Figure 8. Number of compounds needed to represent 90 % of the total boreal forest NMOC_g EF.

Figure 9. Number of compounds needed to represent 90 % of the total crop residue NMOC_g EF.

al. (2011) (green markers) and with Andreae (2019) (orange
markers) for three fire types (represented by the different
marker symbols). There appear to be no systematic biases
with regard to specific EFs and specific fuel types. For many
of the comparisons shown, the agreement is within a factor
of 2 (indicated by the dashed lines). The methane EF for crop
residue in the NEIVA-recommended EF dataset is lower than
both Andreae (2019) and Akagi et al. (2011), likely due to
the inclusion of more data from loose burning in the field.
In addition, the OC EFs are higher than Andreae (2019) for
crop residue, which is likely due to inclusion of the Travis
et al. (2023) data, in which the burns occurred under rela-
tively wet conditions, promoting more smoldering combus-
tion. The BC EFs in the NEIVA-recommended EF dataset are
lower than Andreae (2019) for temperate forest and signifi-
cantly so for peat. The significantly lower BC EFs for peat in

the NEIVA-recommended EF dataset are largely due to ex-
clusion of thermal EC data, which can result in artificially
high EC/BC EFs due to charring of OC. Figures S6–S13
show additional comparisons between NEIVA and Andreae
EF datasets for the most abundant compounds in temperate
forest, peat, and crop residue fire types.

The inclusion of laboratory data in NEIVA leads to an un-
precedented increase in the number of individual NMOC_g
represented for globally relevant fuels and fire types. In
Fig. 7, the number of NMOC_g (top panel) and the total
NMOC_g EF (bottom panel) are compared with Akagi et
al. (2011) and with Andreae (2019) across the 12 fuel and fire
types updated in NEIVA (pasture maintenance and charcoal-
making were not updated). Andreae (2019) does not include
data for two of these fire types, chaparral (shrubland) and
cookstoves. While the previously published compilations in-
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Figure 10. Number of compounds needed to represent 90 % of the total dung burning NMOC_g EF.

clude approximately 100–200 NMOC_g for most fire types
(excluding cookstoves), NEIVA includes more compounds
in 9 of the 14 fire types, with > 400 NMOC_g for 6 of the
fire types. Further, except for tropical forest, the increase in
the number of NMOC_g represented nearly eliminates the
unknown NMOC_g EF approximated by Akagi et al. (2011)
(the total of which was also reported by Andreae, 2019). The
differences between the total NMOC_g EF based on Akagi et
al. (2011) and based on NEIVA largely arise from the extent
to which this unknown fraction was under- or over-estimated
(which has not been investigated for tropical forest since Ak-
agi et al., 2011). For a few less-sampled fire types, Andreae
(2019) has a slightly higher total EF NMOC_g than NEIVA
due to inclusion of summed non-specified volatile organic
compounds (VOCs). In NEIVA there is still some fraction of
NMOC_g, ≤ 5 % for most fire types, for which the molecu-
lar formula is known but compound class cannot be assigned
(“unidentified”).

In Fig. 7, it can be seen that for some fire types (e.g., bo-
real forest, crop residue, dung burning), although the number
of NMOC_g EF represented in NEIVA increases by a fac-
tor of 4 or more, the NMOC_g EF is less than the Akagi et
al. (2011) total including estimated unknowns. In Figs. 8–10,
the total number of compounds that are required to represent
90 % of the NMOC_g EF in NEIVA is shown for boreal for-
est, crop residue, and dung burning, respectively. Analogous
figures for other fuel and fire types are in the Supplement
(Sects. S14–S17). The threshold of 90 % was chosen arbitrar-
ily. The figures illustrate that inclusion of ∼ 100 compounds
represents the majority of the total NMOC_g EF, and thus the
NMOC_g EFs in Fig. 7b vary less than the number of com-
pounds in Fig. 7a. Although a large number of compounds
have small EFs, collectively they represent a non-negligible
fraction of the total NMOC_g. Further, some representation
of their chemical and physical properties will be required for

accurate predictions of smoke composition and concentration
and of the effects of smoke on atmospheric composition, air
quality, and climate.

A more detailed comparison between Akagi et al. (2011)
and NEIVA is shown in Fig. 11. The EF is summed by indi-
vidual compounds that are matched between the two datasets
and individual compounds that are unmatched between the
two datasets (i.e., appear in the NEIVA database but not
in Akagi et al., 2011). Also shown is a total EF represent-
ing unknown compounds in Akagi et al. (2011) and uniden-
tified compounds in NEIVA (formula known but no func-
tional group or structural assignment). For boreal forest, the
summed NMOC_g EF for matched compounds is lower in
NEIVA than in Akagi due to the increased weighting of smol-
dering fires in Akagi et al. (2011). For temperate forest and
for chaparral, the unknown EF in Akagi is similar to the un-
matched EF in NEIVA, suggesting a reasonable approxima-
tion of unknowns for these fire types by Akagi et al. (2011).
For crop residue, the EF for matched compounds is lower in
NEIVA than in Akagi due to the reduced weighting of pile
burns in NEIVA. For peat, the EF for matched compounds
is lower in NEIVA than Akagi due to the inclusion of new
EF data from several studies which are lower than those re-
ported by Christian et al. (2010) and compiled in Akagi et
al. (2011). There are no differences between the matched and
unmatched compounds for tropical forest because no new
NMOC_g data were added.

4.4 Implications for atmospheric composition and
chemistry

Representation of a greater diversity of NMOC_g has a num-
ber of potential implications for predictions of atmospheric
composition and chemistry (e.g., Xu et al., 2021; Schwantes
et al., 2022). The magnitude of the effects will depend on
model complexity and resolution and will be further investi-
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Figure 11. Comparison of the summed NMOC_g for compounds that are matched and unmatched (i.e., in NEIVA but not in Akagi et al.,
2011) between NEIVA and Akagi et al. (2011) and the summed NMOC_g that were unknown (approximated) in Akagi et al. (2011) and are
unidentified (formula but no functional group, structural assignment) in NEIVA. The middle column and right-hand column of each chart
compare total unknown NMOC_g mass estimated by Akagi et al. (2011) to the mass of newly identified species included in this work.

gated in forthcoming papers. In lieu of a detailed modeling
analysis, features of the distributions of NMOC_g are pre-
sented here that can affect predictions of atmospheric compo-
sition and chemistry. The ability to generate property distri-
butions for individual compounds and representative model
surrogates is enabled by the chemical mechanism and prop-
erty dataset that are linked to the EF datasets using unique
IDs.

The volatility distribution of organic compounds, repre-
sented here by decadally spaced bins of saturation vapor con-
centration (C*), is important for predictions of SOA forma-
tion and deposition. Figures 12 and 13 show the volatility dis-
tribution of NMOC_g normalized to the total non-methane
organic gases (NMOGs) in each inventory for temperate for-
est and crop residue fires based on NEIVA, Andreae (2019),
and the EPA SPECIATE 5.2 database (Simon et al., 2010;
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Figure 12. Normalized volatility distribution of temperate forest
NMOC_g EFs using NEIVA compared with Andreae (2019) and
the EPA SPECIATE (Simon et al., 2010; Bray et al., 2019; SPECI-
ATE, 2023) profile for western wildfire (no. 95424).

Figure 13. Normalized volatility distribution of crop residue
NMOC_g EFs using NEIVA compared with Andreae (2019) and
the EPA SPECIATE (Simon et al., 2010; Bray et al., 2019; SPECI-
ATE, 2023) profile for crop/agriculture residue (no. 55644).

Bray et al., 2019; SPECIATE, 2023) for temperate forest
(profile 95424) and crop residue (profile 5564). The com-
pounds are grouped by their C* values in logarithmic bins.
As demonstrated by Hatch et al. (2017), improved specia-
tion of NMOC_g leads to inclusion of lower-volatility com-
pounds than are currently represented in emissions inven-
tories. Relative to the NEIVA database, the distributions of
compounds in Andreae (2019) and the EPA SPECIATE 5.2
database (Simon et al., 2010; Bray et al., 2019; SPECIATE,
2023) are skewed towards higher-volatility bins, and the
intermediate-volatility compounds (IVOCs; 3.5< logC∗ <
6.5) are underrepresented and in some cases entirely absent.

For many types of modeling, while some NMOC_g
are explicitly represented, most are mapped to model sur-
rogate species that are specific to the chemical mecha-
nism being used. In NEIVA v1.0, the NMOC_g com-
pounds were mapped to surrogate species for the following
chemical mechanisms: SAPRC-07/-07 toxics (Carter, 2010),
SAPRC-18 (Carter, 2020), and SAPRC-22 (Carter, 2023a);

MOZART-T1 (Emmons et al., 2020); and GEOS-Chem (Bey
et al., 2001; Carter et al., 2022). The number of model surro-
gates used to represent these compounds is mechanism de-
pendent and listed in Table S18. Figures 14 and 15 show
the relative distribution, based on mole fraction, of NMOC_g
mapped to SAPRC-07 model compounds for temperate for-
est and crop residue. The distributions shown here are inde-
pendent of the number of compounds represented in each EF
compilation and of the total NMOC_g EF but are dependent
on the identities of the individual compounds and their rela-
tive contributions to the total NMOC_g EF in each inventory.
For compounds that are listed as “unspeciated” or “uniden-
tified”, that mass was distributed equally among the model
lumped categories, as is typically done in model applications,
though more recently published data (e.g., Stockwell et al.,
2015; Koss et al., 2018) included here suggest the uniden-
tified species are primarily high-molecular-mass oxygenated
species, consistent with the shift in C* shown in Figs. 12 and
13.

The compounds represented in NEIVA, Andreae (2019),
and the EPA SPECIATE 5.2 database (Simon et al., 2010;
Bray et al., 2019; SPECIATE, 2023) have distinctly dif-
ferent profiles when mapped to the 37 SAPRC-07 model
species. Figures 16 and 17 show the calculated OH reac-
tivity (OHR) as influenced by the different model surrogate
distributions shown in Figs. 14 and 15 for temperate forest
and crop residue, respectively. The sizes of the charts are
scaled by the total OHR (s−1) calculated for a representa-
tive NMOC_g mixing ratio of ∼ 90 ppb. The OH reaction
rate constants were based on published literature for the re-
spective chemical mechanisms and were not recalculated to
represent the mixture of compounds mapped to each surro-
gate. The top-8 model species with the largest contributions
to OHR are explicitly shown, and the contributions of the re-
maining 29 model species are summed and represented as
“others”. The OHR calculated using the NEIVA-based dis-
tribution of model compounds is ∼ 50 %–60 % and ∼ 60 %–
90 % higher than the OHR calculated using the Andreae
(2019) and the EPA SPECIATE (Simon et al., 2010; Bray
et al., 2019; SPECIATE, 2023) distributions for temperate
forest and crop residue, respectively. This is largely driven
by the greater mole fractions of model species OLE2 (more
reactive alkenes, kOH > 4.8× 10−11 cm3 molec.−1 s−1) and
IPRD (unsaturated aldehydes) in both fire types and, addi-
tionally, CRES (oxygenated aromatic hydrocarbons includ-
ing phenols and cresols but not furan or furan derivatives) in
temperate forest.

5 Conclusions

NEIVA represents the most comprehensive EF compilation
to date for globally relevant fuel types and uniquely includes
selected laboratory data. NEIVA was created by integrating
EF data from Akagi et al. (2011) and 30 papers published
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Figure 14. NMOC_g mapped to SAPRC-07 model surrogate species based on NEIVA compared with Andreae (2019) and the EPA SPECI-
ATE (Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023) profile for western wildfire (95424).

since the 2014 and 2015 updates to Akagi. The most signif-
icant expansion of data occurred for temperate forest, peat,
and crop residue fires. EF data are stored in several datasets
that represent varying levels of data processing, merging, and
averaging. All datasets can be accessed through the NEIVA
GitHub site. NEIVA has been structured so that new EF data
can easily be added and recommended averages recalculated.
EF data can be flexibly queried with varying levels of detail
from the individual study level to data averaged across all
studies for a given fuel or fire type and from the individual
compound or constituent level to representative model surro-
gate species. In addition, NEIVA has been structured to en-
able efficient inclusion of EF data into chemical mechanisms,
allowing for better attribution of biomass burning emissions
and impacts in future model studies.

Inclusion of adjusted laboratory data increases the number
of data points and number of compounds represented with-
out introducing variability or uncertainty outside of what is
expected and what has been observed in field studies. The
number of NMOC_g represented in NEIVA is up to an or-
der of magnitude higher than in the most recent EF com-
pilations. Inclusion of this more diverse set of NMOC_g
changes property distributions that can affect predictions of
atmospheric composition and chemistry, illustrated here us-
ing volatility and OHR. Further, mapping this more diverse
set of NMOC_g to model surrogates leads to distinct dif-
ferences in the surrogate distributions when compared with
other existing compilations that are likely to affect multi-
scale model predictions. NEIVA has a better representation
of IVOCs, resulting in a shift in the volatility distribution to
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Figure 15. NMOC_g mapped to SAPRC-07 model surrogate species based on NEIVA compared with Andreae (2019) and the EPA SPECI-
ATE (Simon et al., 2010; Bray et al., 2019; SPECIATE, 2023) profile crop/agriculture residue (no. 55644).

Figure 16. OH reactivity calculated using the surrogate species distributions in Fig. 14; chart size is scaled to the OH reactivity value.
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Figure 17. OH reactivity calculated using the surrogate species distributions in Fig. 15; chart size is scaled to the OH reactivity value.

lower volatilities, with the lowest-volatility bin shifted by up
to 3 orders of magnitude. In addition, the NEIVA NMOC_g
speciation profiles when mapped to SAPRC-07 model surro-
gates resulted in higher OHR by 40 %–90 %, which likely
is conservative since the kOH values were not updated to
represent measured compound distributions and the greater
NMOC_g / CO ratio for some fuel types was not considered.

Appendix A: Database products

The NEIVA GitHub repository includes all of the database
files in “.sql” and “.csv” format and associated Python
scripts (executable using the Python package neivapy) that
were used to create the datasets, which also can be used
to create new datasets upon the addition of new data, and
to query the datasets. Jupyter Notebooks are additionally
shared in the NEIVA GitHub repository that demonstrate
the features of the database, including adding new data and
generating new datasets (add_new_data.ipynb) and example
functions for querying the data (NEIVA_query_mysql.ipynb,
NEIVA_py_functions.ipynb). These notebooks allow users
to set up the NEIVA database in a Google Colab environ-
ment, execute MySQL syntax, apply the neivapy functions,
and download data. A full list of functions is provided in
Sect. S9 (see Table S24). Some example functions are shown
below.

A1 Display information

The functions highlighted in this section are used to access
and display information and labels.
Table_info(database, fire_type). This func-

tion returns a list of table names along with associated infor-
mation such as measurement type, publication DOI, pollu-
tant category for a specified database name (legacy database
(ldb), raw database (rdb), and primary database (pdb), in
acronym format (ldb, rdb, pdb) and fire type.
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Table A1. The output of the table_info() function when using the parameters rdb and garbage burning. WSOC: water-soluble organic
compound.

Table_name measurement_type fire_type pollutant_category Study Source DOI

rdb_gb_yokelson13 lab garbage burning inorganic gas, methane,
NMOC_g, PM size

yokelson13 Table S1 https://doi.org/
10.5194/acp-13-89-
2013

rdb_goetz18 field dung burning, cook-
stove, crop residue,
garbage burning,
charcoal burning

PM size, PM organic,
PM elemental, PM ion

goetz18 Supplement
Sects. S3 and
S4

https://doi.org/
10.5194/acp-18-14653-
2018

rdb_jayarathne18 field garbage burning, cook-
stove, dung burning,
crop residue, open
cooking peat

PM size, PM organic,
PM elemental, PM ion,
PM metal, NMOC_p

jayarathne18 Tables 2 and
3, emission of
OC, EC, and
WSOC

https://doi.org/
10.5194/acp-18-2585-
2018

rdb_stockwell15 lab crop residue, boreal
forest, chaparral, cook-
stove, open cooking,
temperate forest, peat,
garbage burning

inorganic gas, methane,
NMOC_g

stockwell15 Table S2 https://doi.org/
10.5194/acp-15-845-
2015

rdb_stockwell16 lab, field dung burning, cook-
stove, open cooking,
charcoal burning,
crop residue, garbage
burning, peat

inorganic gas, methane,
NMOC_g, PM elemen-
tal, PM optical property

stockwell16 Tables S8, S7,
S9, 6

https://doi.org/
10.5194/acp-16-11043-
2016

summary_table(fire_type,
measurement_type). This function returns a list
of emission factor column names in the integrated EF table
along with information such as MCE, measurement type
(lab or field study), fuel type, and additional information for
specific fire types if available (e.g., cookstove name).

Table A2. The output of the summary_table() function when using the parameters peat and field.

Efcol measurement_type MCE fuel_type Study

EF_peat_jayarathne18 field 0.78 indonesian peat jayarathne18
EF_tropical_peat_roulston18 field 0.83 indonesian peat roulston18
EF_tropical_peat_smith17 field 0.80 indonesian peat smith17
EF_peat_stockwell16 field 0.77 indonesian peat stockwell16
EF_peat_north_carolina_pokhrel16 field 0.72 north carolina peat pokhrel16
EF_peat_canada_pokhrel16 field 0.80 canada peat pokhrel16
EF_peat_indonesia_pokhrel16 field 0.81 indonesian peat pokhrel16

A2 Query emission factor data

The functions highlighted here are used for querying EF data.
Select_pm_data(fire_type, table_name).

This function returns the EFs in all PM subcategories (e.g.,
PM size, PM organic, PM elemental, PM ion, PM metal,
NMOC_p, and PM optical property) for the specified fire
type. In the example below, tables are separated for easier
viewing, and PM metal and NMOC_p tables are in the
Supplement (Sect. S9) due to their length.
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Table A3. The output of select_pm_data() function when us-
ing the parameters peat and integrated EF. The pollutant category
PM size is presented.

EF columns PM2.5

EF_peat_jayarathne18 1.73E+01
EF_tropical_peat_roulston18 2.77E+01
EF_russia_watson19 4.26E+01
EF_siberia_watson19 3.39E+01
EF_northern_alaska_watson19 2.40E+01
EF_evergladesNP_florida_watson19 2.36E+01
EF_malaysia_watson19 2.24E+01

Table A4. The output of select_pm_data() function when using the parameters peat and integrated EF. The pollutant category PM
organic is presented.

EF columns OC Water-soluble OC fraction Water-insoluble OC fraction

EF_akagi11_indonesian_peat_christian03 6.02E+00
EF_peat_jayarathne18 1.24E+01 1.98E+00 1.04E+01
EF_peat_stockwell16
EF_russia_watson19 2.51E+01 1.55E+01
EF_siberia_watson19 2.60E+01 8.65E+00
EF_northern_alaska_watson19 1.74E+01 6.69E+00
EF_evergladesNP_florida_watson19 1.90E+01 7.76E+00
EF_malaysia_watson19 1.80E+01 3.60E+00

Table A5. The output of select_pm_data() function when using the parameters peat and integrated EF. The pollutant category PM
elemental is presented.

EF columns BC EC

EF_akagi11_indonesian_peat_christian03 4.00E−02
EF_peat_jayarathne18 2.40E−01
EF_peat_stockwell16 1.00E−02
EF_russia_watson19 7.70E−01
EF_siberia_watson19 6.90E−01
EF_northern_alaska_watson19 6.00E−01
EF_evergladesNP_florida_watson19 7.80E−01
EF_malaysia_watson19 2.80E−01
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Table A6. The output of select_pm_data() function when using the parameters peat and integrated EF. The pollutant category PM ion
is presented.

M Formula Compound EF_northern_alaska_watson19 EF_evergladesNP_florida_watson19 EF_malaysia_watson19

88.02 Cl- chloride 5.77E−02 5.64E−02 3.02E−02
35.45 NO3- nitrate 4.60E−02 4.38E−02 2.36E−02
62.01 O4P-3 phosphate
94.97 O4S-2 sulfate 8.24E−02 1.81E−01 3.36E−02
96.07 Na sodium
22.99 H4N+ ammonium 1.58E−02 6.00E−04 5.00E−04
18.04 K potassium 9.90E−03 6.20E−03 8.30E−03
39.10 Mg magnesium
24.31 Ca calcium 6.40E−03 6.00E−04
40.08 Na+ sodium ion 7.30E−03 7.90E−03 3.80E−03
22.99 K+ potassium ion 7.40E−03 1.61E−01 8.60E−03
39.10 Mg+2 magnesium ion
24.31 Ca+2 calcium ion
40.08 Cl2 chlorine 3.32E−02 5.56E−02 1.80E−02

M Formula Compound EF_peat_jayarathne18 EF_russia_watson19 EF_siberia_watson19

88.02 Cl- chloride 7.27E−02 8.72E−02 4.62E−02
35.45 NO3- nitrate 2.80E−03 7.58E−02 4.68E−02
62.01 O4P-3 phosphate
94.97 O4S-2 sulfate 2.44E−02 9.50E−02 9.52E−02
96.07 Na sodium
22.99 H4N+ ammonium 8.82E−02 5.02E−02 7.50E−03
18.04 K potassium 1.47E−02 4.58E−02
39.10 Mg magnesium
24.31 Ca calcium 1.07E−02
40.08 Na+ sodium ion 9.00E−04 7.10E−03 1.41E−02
22.99 K+ potassium ion 4.50E−03 2.98E−02 7.30E−03
39.10 Mg+2 magnesium ion
24.31 Ca+2 calcium ion
40.08 Cl2 chlorine 6.30E−02 3.26E−02
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Table A7. The output of select_pm_data() function when using the parameters peat and integrated EF. The pollutant category PM
optical property is presented. SSA: single-scattering albedo. AAE: absorption Ångström exponent.

Compound EF_peat_ EF_peat_north_ EF_peat_canada_ EF_peat_indonesia_ EF_peat_kalimantan_mixed_
stockwell16 carolina_pokhrel16 pokhrel16 pokhrel16 sites_selimovic18

EF Babs 870 (m2 kg−1) 2.61E−02 1.23E−02
EF Bscat 870 (m2 kg−1) 1.83E+01 3.14E+00
EF Babs 405 (m2 kg−1) 1.35E+00
EF Bscat 405 (m2 kg−1) 5.06E+01
EF Babs 405 just BrC (m2 kg−1) 1.30E+00
EF Babs 405 just BC (m2 kg−1) 5.40E−02
SSA 870 nm 9.98E−01 9.96E−01
SSA 405 nm 9.74E−01 9.43E−01 9.41E−01 9.34E−01
AAE 4.97E+00 6.85E+00 6.25E+00 7.24E+00
SSA 532 nm 9.90E−01 9.93E−01 9.91E−01
SSA 660 nm 9.93E−01 9.94E−01 9.91E−01

ef_sorted_by_property(chem,
model_surrogate, property_variable).
This function returns the individual NMOC_g EFs sorted
by the specified property variable in ascending order. The
NMOC_g is filtered by the specified fire type, chemical
mechanism, and model surrogate.

Table A8. The output of ef_sorted_by_property() function when using the parameters S22, XYNL, and hc.

M Formula Compound AVG_temperate_ N_temperate_ STD_temperate_ S22 hc
forest forest forest

122 C7H6O2 Salicylaldehyde 0.07 4 0.04 XYNL 6.00E−06
138 C8H10O2 Creosol 0.3 7 0.19 XYNL 1.00E−06
124 C7H8O2 2-methoxyphenol 0.48 8 0.31 XYNL 1.00E−06
122 C8H10O 2,5-dimethyl phenol 0.09 2 0.07 XYNL 1.00E−06
154 C8H10O3 Syringol 0.08 7 0.07 XYNL 2.00E−07
110 C6H6O2 Resorcinol 1.49 3 0.83 XYNL 1.00E−10

A3 Query NMOC_g speciation profiles

The functions highlighted here are used for querying at-
tributes of the NMOC_g speciation profiles.
voc_profile(chem, fire_type). This function

returns the EF, moles, and mole fraction by model surrogate
for the specified chemical mechanism and fire type.
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Table A9. The output of voc_profile() function when using the parameters GEOS-Chem and peat.

GEOS-Chem
∑

EF weighted_mm
∑

moles mole_fraction

PRPE 1.25E+01 100.96 1.20E−01 1.30E−01
MOH 3.70E+00 31.00 1.20E−01 1.20E−01
ACTA 5.51E+00 60.00 9.00E−02 1.00E−01
C2H6 2.53E+00 30.00 8.00E−02 9.00E−02
ALK4 7.24E+00 105.08 7.00E−02 7.00E−02
C3H8 4.42E+00 69.67 6.00E−02 7.00E−02
C2H4 1.54E+00 28.00 5.00E−02 6.00E−02
CH2O 1.37E+00 29.50 5.00E−02 5.00E−02
ALD2 1.82E+00 44.00 4.00E−02 4.00E−02
CSL 4.41E+00 130.55 3.00E−02 3.00E−02
XYLE 3.77E+00 121.06 3.00E−02 3.00E−02
TOLU 3.64E+00 120.76 3.00E−02 3.00E−02
GLYC 1.53E+00 60.00 3.00E−02 3.00E−02
MVK 1.99E+00 80.67 2.00E−02 3.00E−02
BENZ 1.33E+00 78.00 2.00E−02 2.00E−02
HAC 1.26E+00 74.00 2.00E−02 2.00E−02
ACET 9.40E−01 58.00 2.00E−02 2.00E−02
OCS 7.30E−01 60.00 1.00E−02 1.00E−02
MEK 1.16E+00 107.89 1.00E−02 1.00E−02
ISOP 6.60E−01 68.00 1.00E−02 1.00E−02
HCOOH 4.20E−01 46.00 9.00E−03 1.00E−02
EOH 3.50E−01 46.00 8.00E−03 8.00E−03
MGLY 4.80E−01 79.00 6.00E−03 6.00E−03
MACR 3.60E−01 63.00 6.00E−03 6.00E−03
RCHO 5.10E−01 101.40 5.00E−03 5.00E−03
BALD 4.60E−01 128.00 4.00E−03 4.00E−03
MTPA 2.50E−01 136.00 2.00E−03 2.00E−03
R4N2 1.20E−01 114.50 1.00E−03 1.00E−03
NAP 1.20E−01 128.00 9.00E−04 1.00E−03
MTPO 1.70E−01 192.67 9.00E−04 9.00E−04
PYAC 6.00E−02 88.00 7.00E−04 7.00E−04
DMS 4.00E−02 62.00 6.00E−04 7.00E−04
CH3Br 3.00E−02 94.00 3.00E−04 3.00E−04
CH3I 2.00E−02 141.00 2.00E−04 2.00E−04
MP 2.00E−02 118.00 2.00E−04 2.00E−04

weighted_property( fire_type, chem).
This function calculates the EF-weighted molar mass (M),
OH rate constant (kOH), logarithm of saturation concen-
tration (cstar), and vapor pressure (vp) for the specified
chemical mechanism and fire type.
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Table A10. The output of weighted_property() function
when using the parameters boreal forest and MOZART-T1.

MOZT1 M kOH cstar vp

BIGENE 75.64 6.00E−11 9.09 1067.17
CH3OH 31.00 9.00E−13 8.88 127.00
C2H4 28.21 8.00E−12 10.34 50 000.00
CH3COOH 60.00 7.00E−13 7.64 15.70
CH2O 30.00 8.00E−12 9.78 3890.00
NROG 57.06 2.00E−12 9.87 1231.96
TOLUENE 92.62 3.00E−11 7.56 100.42
CH3CHO 44.00 1.00E−11 9.55 902.00
C2H6 30.00 2.00E−13 10.61 30 000.00
C3H6 42.06 3.00E−11 10.06 8543.36
XYLENES 111.96 6.00E−11 7.24 33.77
MEK 95.92 2.00E−11 7.54 23.71
PHENOL 95.47 3.00E−11 6.81 0.34
C2H2 26.59 1.00E−12 10.27 40 000.00
CH3COCH3 58.01 2.00E−13 9.06 229.83
GLYALD 60.00 1.00E−11 7.40 0.91
BIGALK 99.90 3.00E−11 8.43 341.32
BENZENE 78.03 1.00E−12 8.35 92.82
HCOOH 46.00 5.00E−13 7.79 42.60
BPIN 136.00 6.00E−11 7.49 2.72
C3H8 44.53 3.00E−12 10.06 6953.16
CH3COCHO 72.00 1.00E−11 8.64 121.00
CRESOL 128.67 6.00E−11 5.83 0.09
ISOP 68.00 1.00E−10 8.99 550.00
APIN 136.00 7.00E−11 7.48 4.11
MTERP 131.49 2.00E−10 7.71 3.72
HYAC 74.00 3.00E−12 7.09 1.74
MVK 70.00 2.00E−11 8.47 91.30
BZALD 115.48 2.00E−11 6.04 0.83
LIMON 136.00 2.00E−10 8.47 1.30
MYRC 136.00 2.00E−10 7.17 2.18
MACR 70.00 3.00E−11 8.71 155.00
C2H5OH 46.00 3.00E−12 8.63 59.30
BCARY 203.83 2.00E−10 6.01 0.03
TERPROD1 196.00 1.00E−11 5.93 0.23
ALKNIT 109.04 7.00E−13 7.99 46.57
BIGENE 75.64 6.00E−11 9.09 1067.17

Code and data availability. The NEIVA datasets (SQL and CSV
formats), Python script files used to generate the datasets,
and Jupyter Notebooks with instructions for adding new data
and examples for querying the datasets are freely available
on GitHub (https://github.com/NEIVA-BB-Emissions-Inventory/
NEIVAv1.0, last access: February 2024). The datasets are also per-
manently archived on Zenodo via Binte Shahid et al. (2024) at
https://doi.org/10.5281/zenodo.12675193 under the GNU General
Public License version 2.0 or later.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-7679-2024-supplement.
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