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Abstract. This paper introduces the AtsMOS (At-scale
Model Output Statistics) workflow, designed to enhance
mountain meteorology predictions through the downscaling
of coarse numerical weather predictions using local observa-
tional data. AtsMOS provides a modular, open-source toolkit
for local and large-scale forecasting of various meteorologi-
cal variables through modified model output statistics – and
may be applied to data from a single station or an entire net-
work. We demonstrate its effectiveness through an example
application at the summit of Mt. Everest, where it improves
the prediction of both meteorological variables (e.g. wind
speed, temperature) and derivative variables (e.g. facial frost-
bite time) critical for mountaineering safety. As a bridge be-
tween numerical weather prediction models and ground ob-
servations, AtsMOS contributes to hazard mitigation, water
resource management, and other weather-dependent issues in
mountainous regions and beyond.

1 Introduction

Accurate mountain weather forecasts facilitate improved
hazard mitigation for the 300 million mountain inhabitants
worldwide and contribute to effective sustainable resource
management (e.g. Miner et al., 2020; Corbari et al., 2022).
Furthermore, they are relevant to the 1.6 billion who live
downstream of mountains and depend on their supply of

freshwater or are susceptible to their hazards (Immerzeel
et al., 2020). However, producing skilful forecasts in such
environments is challenging. Major topographic variations
cause large spatial variability in the weather, meaning that
reality can diverge substantially from numerical weather
prediction (NWP) grid-point forecasts within typical 102–
103 km2 grid cell areas (Zhang et al., 2022). Whilst consis-
tent biases can be adjusted for (e.g. mismatches in elevation
between forecast grid points and land surface locations of in-
terest with knowledge of the lapse rate; Minder et al., 2010),
the impact of unresolved processes – for instance, local val-
ley or glacier winds driven by surface heat fluxes (Khadka
et al., 2022) – is challenging to correct for a priori.

Although advances in NWP, such as finer grid resolu-
tions and refinement of physical parameterization schemes,
may enhance forecast performance in mountainous terrain,
progress can be costly and slow (Bauer et al., 2015). A
cheaper, faster, and more flexible option to improve forecasts
for target locations is to statistically post-process NWP out-
put through calibration to observations. Model output statis-
tics (MOS), which applies multiple linear regression to ad-
just forecast fields, has historically been the most popular
method in this regard (Glahn and Lowry, 1972; Glahn, 2014).
In particular, MOS can be used to create forecasts of vari-
ables (predictands) not available in NWP model output (Rasp
et al., 2020). Recent advancements in computational power
have enabled machine learning to improve the performance
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Table 1. Examples of weather variables (predictands) and sectors in which highly accurate, site-specific forecasts may be desirable.

Predictand Example sector(s)

Precipitation amount and phase Hazard forecasting (flood, avalanche); resource planning
Maximum wind gust Aviation; mountaineering∗; hazard (avalanche) forecasting
Ground temperature (Road) transport; mountaineering
Wind chill temperature Mountaineering
Cloud base and cloud top Aviation; mountaineering
Probability of rime ice accretion Communications
Facial frostbite time Mountaineering

∗ The term mountaineering is used to represent a wider set of similar activities – e.g. hiking, skiing, and climbing.

of weather forecasts (Lam et al., 2023), including through
post-processing (e.g. Lagerquist et al., 2017; Herman and
Schumacher, 2018; Han et al., 2021; Grönquist et al., 2021).

However, practical barriers may limit the uptake of such
developments at scale. For example, without reference work-
flows to facilitate the non-trivial task of accessing and pre-
processing large NWP datasets, forecasts improved by ma-
chine learning are unlikely to reach the diverse range of
potential end users in mountainous environments (Table 1).
The benefits of highly accurate local weather predictions for
use in other (e.g. hydrological) modelling chains may not be
achieved if such forecasts are not made available in an inter-
operable format that follows well-known conventions, such
as the “CF” – climate and forecast – convention (Eaton et al.,
2023).

Hence, our paper aims to introduce a user-friendly,
lightweight version of MOS to fill this gap. We describe
modular Python code that calibrates and applies MOS, in-
cluding state-of-the-art machine learning algorithms, to pro-
duce corrected forecasts in an interoperable format that can
feed into other automated workflows to enable at-scale MOS.
We anticipate that these features of AtsMOS (At-scale Model
Output Statistics) will, combined with efforts to improve the
availability of high-altitude weather observations worldwide
(GEO Mountains 2022), offer a step change in the ability to
forecast critical mountain weather variables.

In Sect. 2 we describe the main features of AtsMOS, be-
fore illustrating its use in forecasting the weather on the sum-
mit of Mt. Everest, where highly accurate predictions can be
the difference between life and death (Sect. 3). In Sect. 4 we
discuss opportunities and challenges in using AtsMOS more
broadly.

2 The AtsMOS workflow

2.1 Workflow overview

AtsMOS is designed to be a computationally light and flexi-
ble template. It has (i) a flexible loading and pre-processing
module, which draws in external data, deals with erroneous
or missing data, and prepares it for further analysis. Our code

Figure 1. Overview diagram of the AtsMOS workflow. The loading
of historical GFS data and loading and pre-processing of instrumen-
tal data are flexible components subject to user modification, while
the others are fixed in this workflow.

here is intended as a template such that users may set up their
own data loading and pre-processing as the need arises. We
therefore do not describe each operation in detail but instead
refer readers to the documented AtsMOS Jupyter notebook
associated with this paper. It also has (ii) a core process-
ing module, comprising a modular suite of statistical and
machine learning techniques to calibrate and perform data
corrections, with XGBoost being the default and most ad-
vanced option, and (iii) a post-processing module to calculate
derivative variables and export the data in the self-describing
and interoperable Measurement Data Format (MDF) (GEO
Mountains, 2022; Fig. 9).
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2.2 Data access and pre-processing

AtsMOS is currently designed to be used with data from
the Global Forecasting System (GFS) from the US National
Center for Atmospheric Research, which is freely available
on a global scale and real-time basis (https://rda.ucar.edu/
datasets/ds084.1/, last access: 28 October 2024). Alterna-
tive global or regional numerical prediction models, such
as those produced by the European Centre for Medium-
Range Weather Forecasts (ECMWF) or national meteorolog-
ical agencies, would also be suitable, particularly if real-time
data can be accessed through an Application Programming
Interface (API).

GFS forecasts are computed every 6 h, with a lead time
from 0 to 384 h (16 d). Pressure-level data are generally pre-
ferred for mountain forecasting applications because the real-
world surface in such regions is likely to be very different
(e.g. in elevation and surface type) from the model surface
(Mass et al., 2008), and hence we anticipate greater general
predictability using data from the free atmosphere. We eval-
uated different methods for accessing GFS data and found
that the web subsetting form is generally the most convenient
for accessing historical archive data (http://rda.ucar.edu/
datasets/ds084.1/dataaccess/, last access: 28 October 2024),
while the online THREDDS server is best for down-
loading real-time data (https://tds.scigw.unidata.ucar.edu/
thredds/catalog/idd/forecastModels.html, last access: 28 Oc-
tober 2024). As such we include a preset module in AtsMOS
for both automatically downloading and pre-processing real-
time data but only apply the pre-processing for the histori-
cal archive data. Historical archive data need only be down-
loaded once for pre-trained MOS models to be created (see
below), which may then be run on any real-time data, ensur-
ing the model remains computationally efficient.

We include example scripts in the AtsMOS Jupyter note-
book used to pre-process instrumental data (Fig. 2). For in-
stance, it is often necessary to synchronize measurement and
NWP output timings – in the Everest example presented be-
low instrumental data have a higher measurement frequency
than the GFS data (6 h). We also include scripts for error
checking and filtering of unreliable data, although we note
that these are heavily dependent on the type and location of
the sensor. We encourage users to carefully consider what,
if any, processing steps are necessary for field data treated
as “ground truth”, as any errors or biases remaining will be
learnt by the model. We discuss the limitations in further de-
tail in the “Discussion and broader applicability” section.

2.3 Core machine learning

For the core processing, AtsMOS applies model output
statistics (MOS) to the GFS data, with a range of possible
correction algorithms for the user to select from depend-
ing on predictand type (e.g. binary or continuous) and the
weighting of interpretability versus performance (Table 2).

In our case study below (Sect. 3), we compare the results
from applying simple linear regression and XGBoost (Chen
and Guestrin, 2016). Linear regression works well when the
relationship between the predictor and target variable is ap-
proximately linear. Its coefficients provide clear insights into
the impact of each feature, making it valuable for tasks where
interpretability is crucial. However, linear regression cannot
resolve nonlinear relationships in the data (without transfor-
mations to the input variables) and is sensitive to data qual-
ity and outliers limiting its predictive performance in many
real-world cases. We implement a standard ordinary-least-
squares-based linear regression algorithm in AtsMOS, which
does not require any parameter choices.

XGBoost is at the other end of the complexity spectrum,
combining decision trees with gradient boosting to improve
computational efficiency and predictive performance, partic-
ularly in high-dimensional, nonlinear data scenarios. It has
been shown to outperform most methods in terms of pre-
dictive accuracy (Chen and Guestrin, 2016) and is robust to
overfitting, but its complexity can make it less suitable in
cases where model transparency is essential and understand-
ing the reasons behind incorrect predictions is key. A range
of different parameters in XGBoost can be modified from
their default values, including the type of objective function
used (here, squared error), the learning rate (here, 0.1), the
number of estimators (here, 250), the maximum tree depth
(here, 4), and more (Chen and Guestrin, 2016). There is no
parameter set that is optimal for all datasets. We tune the de-
fault parameters for AtsMOS based on the Mt. Everest case
study described in Sect. 3, which we expect to be broadly ap-
plicable (if not optimal) for a wide range of cases. Users may
easily run custom hyperparameter tuning for other custom
datasets, but we do not include this in the default workflow
due to its high computational cost.

AtsMOS is designed to be modular such that users can eas-
ily define new core machine learning (ML) processing algo-
rithms where either methodological advances or specifics of
their dataset demand a different approach. We implement lin-
ear regression, random forest, and XGBoost algorithms and
note that most alternative ML techniques implemented in the
scikit-learn Python package can also be used by changing a
single line of code. An overview of the advantages and lim-
itations of the different models implemented is provided in
Table 2. Beyond the initial model evaluation (discussed in
Sect. 3.3), we do not split the instrumental data into testing
and training data. Instead, we train the ML model of choice
using the full instrumental record to maximize both the vol-
ume and diversity of training data. We train a separate ML
model for each forecast lead time as data error is expected
to vary with lead time. All pre-trained ML models are saved
once training is completed and can be directly loaded from
file for future AtsMOS runs. In cases where no new instru-
mental data are available, this enables highly efficient runs
in which model training can be bypassed entirely (Fig. 2).
Where novel instrumental data are regularly available, we
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Figure 2. AtsMOS process workflow, described further in the documented AtsMOS Jupyter notebook at https://doi.org/10.5281/zenodo.
10889509 (Van Wyk de Vries, 2024).

recommend periodic re-training of ML models to maximize
expected forecast skill.

2.4 Post-processing and validation metrics

Once the appropriate ML model has been trained using the
historical data, AtsMOS can process the real-time GFS fore-
cast to produce corrected forecasts. The calibrated forecast
may be a continuous variable (e.g. wind speed), a proba-
bility (e.g. probability of winds above a given threshold),
or a binary categorized field (e.g. winds above or below a
given threshold) depending on the processing choices made
and project requirements. We also highlight that the flexible
approach of AtsMOS enables prediction of any variable for
which observations exist and which are sensitive to the atmo-
spheric state. We showcase this in Sect. 3, making predictions
for facial frostbite time – an important variable for moun-
taineering, which is not available as a direct output from any
NWP model.

We use a range of possible metrics to evaluate model
performance, including three primary metrics: Kling–Gupta
efficiency (KGE; Gupta et al., 2009), mean absolute error
(MAE), and root mean square error (RMSE). These met-
rics provide a comprehensive assessment of the model’s
accuracy, precision, and overall performance. KGE offers
a balanced evaluation by combining correlation, bias, and
variability, making it particularly suitable for hydrological
and meteorological applications. MAE measures the aver-
age magnitude of errors, providing a straightforward inter-
pretation of forecast accuracy. RMSE, on the other hand, em-
phasizes larger errors, highlighting potential issues in model
predictions. Additionally, our implementation supports a va-
riety of other metrics which may be added if users require,
including R2, residual skewness, residual kurtosis, slope, in-
tercept, Nash–Sutcliffe efficiency (NSE), correlation, relative
variance, and bias, allowing for a thorough validation of the
model across different aspects of performance and different
expected error profiles.

Geosci. Model Dev., 17, 7629–7643, 2024 https://doi.org/10.5194/gmd-17-7629-2024

https://doi.org/10.5281/zenodo.10889509
https://doi.org/10.5281/zenodo.10889509


M. Van Wyk de Vries et al.: At-scale Model Output Statistics in mountain environments 7633

Table 2. Different machine learning algorithms currently implemented in AtsMOS, along with strengths and weaknesses. AtsMOS is mod-
ular, and users can easily define new core processing algorithms.

Algorithm Description Strengths Weaknesses

Linear regression Regression using ordinary least-
squares fit

Computationally efficient, explain-
able

Sensitive to outliers, liable to over-
fitting, many assumptions (linearity,
normality of errors), cannot resolve
nonlinear relationships in the data

Random forest Scikit-learn ensemble decision tree
regressor

Computationally efficient for large
parameter spaces, robust to multi-
ple non-dependent variables, allows
for easy inspection of feature im-
portance to enhance model inter-
pretability

Computationally expensive for
large datasets, lower reliability for
unbalanced datasets, more complex
than regression

XGBoost Optimized distributed gradient
boosting and parallel tree boosting
algorithm

Most advantages listed for random
forest, computationally efficient for
large parameter spaces, highest ac-
curacy method in several machine
learning competitions

Limited interpretability relative to
other algorithms, remains liable
to overfitting for small training
datasets, cannot reasonably extrap-
olate beyond the range captured in
the training data

2.5 Data export

As a final stage in AtsMOS, the corrected forecast variables
are saved along with their metadata in the self-describing
and interoperable MDF (GEO Mountains, 2022). This final
export stage has the benefit of (i) enabling easy usage of
the custom forecasts in other applications, or plotting dash-
boards; (ii) ensuring that the variables are saved with all nec-
essary context for long-term archiving; and (iii) through stan-
dardized nomenclature, enabling easy comparison with other
forecast datasets and external validation.

Overall, the AtsMOS workflow is designed to be
lightweight and flexible, while enhancing the predictive skill
of large-scale forecasts using local observations.

3 Example application: Mt. Everest summit
meteorology

3.1 Background

As the highest peak on Earth, Mt. Everest sees hundreds of
attempts to scale its 8850 ma.s.l. summit each year. Fatali-
ties are common, including 17 fatalities in spring 2023 (Ellis-
Petersen, 2023) and an overall mortality rate of around 1 %
over the past decade (Huey et al., 2020). Weather is a major
contributor to these, playing a role in 25 % of deaths (Firth
et al., 2008) due to the hazard from extremely low baro-
metric pressure (low oxygen availability) and severe cold
that climbers may be exposed to (Moore and Semple, 2006;
Matthews et al., 2020a, 2022). The latter is sensitive to wind
speed (Moore and Semple, 2011), which if high enough
may also directly blow climbers off the mountain. There-

fore, climbers limit their summit attempts to periods when
the subtropical jet’s retreat leaves lower wind speeds on the
mountain. Therefore, accurately forecasting these periods of
lighter winds is critical for minimizing the risk of climbing
Mt. Everest.

Whilst deciding the acceptable wind speed threshold for
summit attempts is dependent on individual climbers’ risk
tolerance, physical considerations suggest that a human with
an effective surface area (Ap) of 0.5 m2 is at risk of being
blown over if the wind force (F ) exceeds 72 N (Hugenholtz
and VanVeller, 2016; McIlveen, 2002). F is related to the
wind speed (v) according to

F =
1
2
ρv2ApCD, (1)

where ρ is the air density (kgm−3) and CD is the drag
coefficient (dimensionless). Using CD= 0.6 from McIlveen
(2002), the critical wind speed (vc) yielding 72 N can be eval-
uated:

vc =

√
144
(0.3ρ)

. (2)

At the altitude of the highest camp (the South Col:
7945 ma.s.l.; Fig. 3) on Mt. Everest’s main route from
Nepal – which marks the beginning of the “death zone” –
ρ (which depends on temperature and pressure) is, on av-
erage, 0.52 kgm−3, translating to vc= 30.3 ms−1 according
to data from May 2019 until June 2023 (see the following
section). To illustrate the use of AtsMOS for the delivery of
decision-critical forecasts we therefore use a new network of
Mt. Everest weather stations (see below) to develop predic-
tions of (1) absolute wind speed and (2) the probability of

https://doi.org/10.5194/gmd-17-7629-2024 Geosci. Model Dev., 17, 7629–7643, 2024



7634 M. Van Wyk de Vries et al.: At-scale Model Output Statistics in mountain environments

Figure 3. Location of the weather stations on Mt. Everest. Modified after Matthews et al. (2020b).

speeds exceeding both 30 and 20 ms−1. The upper threshold
is used to identify dangerous winds (high hazard), whilst the
lower we regard as potentially dangerous (medium hazard)
and hence a conservative threshold for identifying suitable
weather for a summit attempt. We also showcase the flexi-
bility of AtsMOS to directly forecast key variables such as
wind chill temperature and facial frostbite time.

3.2 Mount Everest weather data

In spring 2019, a network of five automated weather stations
was installed on the Nepali side of Everest, known locally as
Sagarmatha or Qomolangma, including three stations above
the base camp at Camp 2 (6464 m), the South Col (7945 m),
and the Balcony (8430 m; Matthews et al., 2020a). Of these,
the two highest stations, the South Col (7945 ma.s.l.) and the
Balcony (8430 ma.s.l.), were positioned to monitor the po-
tentially dangerous winds on the upper mountain. However,
the Balcony’s record is relatively short (due to wind damage)
and considered unrepresentative of the upper mountain due
to sheltering under common flow directions. A further sta-
tion was installed at 8810 m altitude on the highest-elevation

exposed bedrock near the summit (the “Bishop Rock”) in
spring 2022, which is currently the highest-altitude weather
station in the world with publicly available data (Matthews
et al., 2022). Note that another station was installed by a
Chinese team at a similar altitude on the north side of the
mountain in 2022, although its status and data availability
are unknown.

Three of the four weather stations (Bishop Rock or “Sum-
mit”, Balcony, and South Col) were installed with two sep-
arate wind speed sensors. The dual sensors were installed
for redundancy in the event of one failing but are also valu-
able for evaluating the reliability of wind speed observations.
Recovery of destroyed monitoring equipment showed that
the wind speed sensors can suffer from mechanical failure
(breakage of the anemometer cups) and growth of rime ice
that result in incorrect measurements, but that is not evident
from a single time series. Therefore, we apply a moving win-
dow cross-correlation between the two sensors’ time series
in the pre-processing stage of AtsMOS to identify periods of
decorrelation and unreliable data. We use a minimum cor-
relation threshold of 0.9 measured over a 14 d window for
both the mean and maximum hourly wind speed (measured
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Figure 4. Module for extracting key meteorological parameters from the global numerical weather prediction (NWP) model around a point
of interest (typically, the location of the ground observations). Both horizontal and vertical derivatives are calculated from the NWP data to
supplement the ML training dataset.

at 5 s intervals) to determine reliable data and mask out data
points falling below this threshold (Fig. 5, top two rows).

Only the South Col station has a data record covering a
period longer than a few months and across multiple years.
While this station is located almost 1000 m below the sum-
mit, its position at the head of the Khumbu Valley with an
open westerly aspect (the dominant wind direction) means
that its wind speeds are very similar to the summit (Pearson’s
r value= 0.85). We apply the dual-sensor correlation thresh-
old (0.9) and filter out winds with a direction outside the
range 270± 45° due to the risk of topographic shielding out-
side this window. The lower elevation leads to a slight neg-

ative bias in wind speed at the South Col, which is on aver-
age 18 % slower than summit winds. We linearly regress the
remaining South Col wind record against the filtered sum-
mit record and use this to create a synthetic summit record.
The resulting record contains just over 1 year of data, spread
across two 6-month periods from June 2019 to January 2020
and May 2022 to January 2023 (Fig. 5).

For the NWP component of the AtsMOS loading and pre-
processing stage, data were loaded and pre-processed from
the Global Forecasting System (GFS) (https://rda.ucar.edu/
datasets/ds084.1/, last access: 28 October 2024) We down-
loaded all 10 variables: precipitation, temperature, relative
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Figure 5. Validation of observational time series. Wind speed data shown in black (a–c) were considered reliable based on the dual-sensor
correlation (d–f), while wind speed data show in red were judged unreliable and removed.

humidity, N–S wind speed, E–W wind speed, vertical veloc-
ity, geopotential height, absolute vorticity, cloud mixing ra-
tio, and ozone mixing ratio. We choose to include all vari-
ables (irrespective of whether physical connections to the
predictand could be identified a priori) because (i) their vari-
ations could provide insight into relevant sub-grid-scale pro-
cess, and (ii) the default machine learning method we se-
lect (XGBoost) is robust to overfitting and collinearity. A
user-supplied list of variable names can also be supplied to
AtsMOS to limit the variables used in model fitting. The
data were downloaded for a 9× 9× 3 data cube centred
on the summit of Sagarmatha/Qomolangma, with nine data
points in each horizontal direction (from 27–29° latitude and
86–88° longitude at 0.25° spacing) and three vertical pres-
sure levels (350, 400, and 450 hPa). We use the geopotential
height from the three pressure levels to linearly interpolate or
extrapolate all variables to a fourth vertical level, correspond-
ing to the summit elevation at 8849 m. Finally, we calcu-
late the horizontal and vertical gradients in the nine variables
to further account for potential drivers of relevant sub-grid-
scale processes. A full list of all 172 variables and deriva-
tives used is in the Supplement. We separately download the
GFS historical archive (via the NCAR web portal) and real-
time GFS forecast (programmatically from the THREDDS
server – see notebook), with the former used to calibrate our
data corrections and the latter used to produce corrected fore-
casts.

For the core processing component of AtsMOS we use
(simple) linear regression and (complex) XGBoost algo-
rithms to improve the GFS forecast for the wind speed at the
summit of Sagarmatha/Qomolangma. To avoid issues with
temporal autocorrelation of training and validation data, we
split our time series in half in January 2021. This test–train
split provides us with 6 months of training data and 6 months

of validation data from June 2019 to January 2020 and May
2022 to January 2023. We run each MOS algorithm twice:
once training on data from 2019 and testing on data from
2022 and vice versa. Linear regression is applied using just
the GFS model wind speed interpolated to the 8849 m sum-
mit altitude as the only predictor variable; XGBoost, on the
other hand, is trained using all 172 GFS variables and spa-
tial derivatives. We reproduce the simple and complex MOS
workflows for several GFS lead times: analysis (0 nowcast),
24 h, 48 h, 120 h (5 d), and 240 h (10 d).

While predicting Sagarmatha/Qomolangma wind speed as
a continuous variable is scientifically interesting, a categor-
ical prediction of dangerous versus safe winds may be of
more use to the majority of potential end users (sherpas and
mountaineers). We therefore employ a wind speed thresh-
old of 30 ms−1 to classify our synthetic wind time series
into a time series of dangerous winds. We also use a second
lower threshold of 20 ms−1 to classify potentially dangerous
winds. A wind speed of 30 ms−1 approximately corresponds
to the wind speed required to blow a human off their feet at
Sagarmatha/Qomolangma summit conditions (Sect. 3.1). We
intentionally do not call winds below this threshold “safe”
as they can still be hazardous in a variety of ways (includ-
ing slowing ascents and increasing exposure), but they cor-
respond to conditions during which – at least in principle – a
typical climber should not be in danger of being blown from
the mountain. We use the same XGBoost MOS to run the cat-
egorical forecast using GFS lead times of 0 h (analysis), 48 h,
and 240 h (10 d). For the 0 and 48 h lead times we forecast
dangerous winds at the native GFS 6 h temporal resolution.
For the 240 h (10 d) lead time, however, we invert the prob-
lem and classify 48 h (2 d) periods during which all winds
are below the given threshold. The objective of classifying
low-wind periods with a 10 d lead time is to enable earlier
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identification of favourable summit weather conditions and a
better distribution of climbs throughout the season to prevent
potentially dangerous overcrowding.

3.3 Results and model evaluation

We test the AtsMOS dataset by training it on data from the
first period (2019–2020) and predicting data over the second
period (2021–2022) and vice versa. This enables a more ro-
bust validation than random test–train splitting of the dataset
by reducing inflation of model ability caused by meteorolog-
ical time series temporal autocorrelation. We evaluate three
different learning techniques: simple linear regression, ran-
dom forest, and XGBoost (Figs. 6–8).

Linear regression produces a reasonable overall fit to the
data (Fig. 6), with a model wind speed–field-measured wind
speed R2 of 0.87, a root mean squared error (RMSE) of
10.59 ms−1, and a mean absolute error (MAE) of 7.87 ms−1.
The Kling–Gupta efficiency of these datasets is 0.73, evalu-
ating a combination of their correlation, relative variation,
and mean bias and with higher values reflecting a better fit
(Gupta et al., 2009). In particular, linear regression success-
fully matches the magnitude of winds during the majority of
the low-wind (monsoon) season from July to October. How-
ever, it fails to match the magnitude of the highest-wind-
speed events, with a clear overestimate evident.

Random forest produces a good overall fit to the data, with
a model wind speed–field-measured wind speed R2 of 0.92
and a root mean squared error (RMSE) of 8.52 ms−1, and a
mean absolute error (MAE) of 6.33 ms−1. The Kling–Gupta
efficiency of these datasets is 0.77. There are three notable
improvements of the model trained with random forest re-
gression relative to standard linear regression: the estimates
are more closely clustered along the 1 : 1 model–data line,
the timings of high-wind episodes in the model better match
those observed in the data, and the magnitude of high-wind
peaks matches better across both datasets – although a small
bias towards higher winds than reality remains.

XGBoost produces a good fit to the data, with a model
wind speed–field-measured wind speed R2 of 0.93, a root
mean squared error (RMSE) of 7.95 ms−1, and a mean abso-
lute error (MAE) of 5.97 ms−1. The Kling–Gupta efficiency
of these datasets is 0.79. The overall performance of the
model trained with XGBoost is similar to that trained with
random forest, with a slightly improved fit across all metrics.
The timing of high-wind events is well predicted, and while
the model still tends to overestimate the magnitude of high-
wind events, the bias is lower (bias score: 0.86 for XGBoost
relative to 0.84 for random forest and 0.81 for linear regres-
sion).

We then apply the AtsMOS workflow to a real-time case
study for the approximately 2-week (384 h) period from
20 July 2023 to 5 September 2023 using GFS forecast data
as described in the methods. As well as calculating the wind
speed, temperature, and precipitation, we compute forecasts

of two derivative variables: wind chill temperature and facial
frostbite time (Moore and Semple, 2011). Both wind chill
temperature and facial frostbite time are calculated based on
wind speed and temperature forecasts according to the for-
mulas of Moore and Semple (2011). Wind chill temperature
reaches as low as −45 °C on 3 September 2023, also align-
ing with the shortest facial frostbite time of less than 7 min
(Fig. 9). Forecast wind speeds do not exceed 20 ms−1 but
reach more than 19 ms−1 on the night of 20–21 July 2023,
with the short forecast lead reducing the uncertainty for the
forecast. The facial frostbite time briefly falls below 10 min
on this night, also driven by the high wind speeds, and the
wind chill temperature fluctuates between−35 and−40 °C –
well below the air temperature (−20 °C), highlighting the im-
portance of the wind speed in modulating the cold hazard
and thereby the value of computing this derived variable with
AtsMOS.

4 Discussion and broader applicability

The AtsMOS workflow builds on advancements in machine
learning and data accessibility to improve mountain weather
forecasts by downscaling coarse numerical model outputs
to specific locations of high value. Through a case study
focusing on Mt. Everest summit meteorology, we demon-
strate the effectiveness of AtsMOS in refining wind speed
(and wind chill temperatures) critical for assessing risks for
mountaineering. This workflow is open-source, flexible, and
computationally cheap – enabling more accurate mountain
weather predictions across many different environments.

Our Mt. Everest case study showcases a local application
of the AtsMOS workflow for an environment in which moun-
taineers and sherpas knowingly expose themselves to poten-
tially deadly conditions (Moore and Semple, 2006, 2011;
Matthews et al., 2020b). Therefore, more precise meteoro-
logical forecasts are critical for expedition planning. First, by
more accurately predicting wind speeds, our system enables
expedition organizers to identify windows of potentially safe
(lower wind) conditions with approximately 2 weeks’ notice,
allowing the timing of trips to the upper mountain to be deter-
mined at an earlier date. This is invaluable for optimizing ex-
pedition scheduling, maximizing the likelihood of successful
summit attempts, and potentially improving safety by pre-
venting dangerous overcrowding from teams rushing to ex-
ploit weather windows at late notice. Second, the shorter lead
time and more precise AtsMOS forecasts assist in preventing
climbs during times of dangerous weather, thereby enhanc-
ing safety. By providing reliable forecasts for both danger-
ous and potentially dangerous wind thresholds, our workflow
empowers expedition leaders to make informed decisions,
avoiding ascent attempts during periods of heightened risk.

The flexible nature of our workflow enables outputs with
different levels of complexity (e.g. Fig. 9), ranging from bi-
nary classifications (“dangerous/potentially safe”) and raw

https://doi.org/10.5194/gmd-17-7629-2024 Geosci. Model Dev., 17, 7629–7643, 2024



7638 M. Van Wyk de Vries et al.: At-scale Model Output Statistics in mountain environments

Figure 6. (a) Observed (red) and modelled (black) wind speed for the first observational period at the summit, with model (here, linear
regression) training using only the second period (2019). (b–d) Difference between modelled and observed wind speed shown as a differ-
ence bar chart, scatterplot, and histogram, respectively. The statistics are as follows. R2

= 0.87, root mean squared error (RMSE): 10.59,
skew: 0.37, kurtosis: 1.25, mean absolute error (MAE): 7.87, Nash–Sutcliffe efficiency (NSE): 0.78, Kling–Gupta efficiency (KGE): 0.73,
correlation: 0.93, relative variance: 0.81, bias: 0.81.

meteorological variable forecasts (wind speed, temperature,
etc.) to derivative variables (e.g. facial frostbite time). This
flexibility offers a wide range of possibilities to enable expe-
dition planners, who, armed with more information, should
be able to plan safer climbs, thereby reducing the risk of
attempting to climb this iconic mountain. One example is
shown in Fig. 9c, with “medium” and “high” hazard times
delineating periods with high probabilities of strong winds.
The evaluation of hazard probability with AtsMOS is seen
as a particularly important feature for end users. If properly
calibrated, it more clearly aligns the forecast product with
decision-making. Without the MOS approach here, expedi-
tion planners would likely need to consult ensemble forecasts
(e.g. the Global Ensemble Forecasting System) to produce
comparable probabilities, associated with a non-trivial in-
crease in data processing for support teams and/or the burden
on the expedition planner to interpret the forecast. Of course,
we also note here that for AtsMOS to be used within such
ensemble forecasting systems, more steps may be required –
for example, propagating the ensemble members through the
ML algorithms calibrated on the deterministic forecast to ex-
plore uncertainty more fully. This can ultimately combine the

benefits of both the ensemble forecast and reduced bias from
local calibration.

While the AtsMOS workflow’s potential to improve local
mountain meteorology forecasts is promising, it is impor-
tant to acknowledge its limitations. The most significant con-
straint lies in the workflow’s dependence on the two underly-
ing data sources: numerical weather prediction data and in-
strumental and/or field data. AtsMOS outputs therefore rely
on the assumption that, while these datasets may contain un-
certainties or noise, they both contain real and useful infor-
mation about local meteorological conditions. There are a
number of scenarios in which this may not be the case for
either dataset: for instance, large-scale NWP models missing
key local processes (leading, for example, to a poor repre-
sentation of convection) or sensors becoming degraded and
recording false data (for instance, a wind sensor covered in
rime ice). This limitation is present at both the training and
prediction stages of the process. The effectiveness of the
workflow is, therefore, highly dependent upon the availabil-
ity and quality of ground observations, which are particu-
larly rare in remote and high-altitude regions like Mt. Ever-
est (Matthews et al., 2020a; Thornton et al., 2022). The ap-
plicability of AtsMOS may also be limited in regions with
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Figure 7. (a) Observed (red) and modelled (black) wind speed for the first observational period at the summit, with model (here, random
forest) training using only the second period (2019). (b–d) Difference between modelled and observed wind speed shown as a difference bar
chart, scatterplot, and histogram, respectively. The statistics are as follows. R2

= 0.92, RMSE: 8.52, skew: 0.39, kurtosis: 1.2, MAE: 6.33,
NSE: 0.84, KGE: 0.77, correlation: 0.96, relative variance: 0.84, bias: 0.84.

unique or extreme meteorological conditions not adequately
captured by existing NWP models, even with the aid of ma-
chine learning to extract additional information, which may
be of concern if these regions are of particular interest for
hazard mitigation. We note, however, that the latter may be
guarded against by using near-real-time (i.e. lagged) obser-
vations from the telemetry-enabled weather stations (Chkeir
et al., 2023).

We also highlight the need for caution in the application of
machine learning algorithms. Whilst techniques like random
forest and XGBoost can offer enhanced predictive capabili-
ties, they may also introduce complexities in model interpre-
tation and require careful validation to ensure robust perfor-
mance. These limitations underscore the need for ongoing re-
finement and validation of the workflow to optimize its utility
and effectiveness in diverse mountainous environments. One
specific concern in the usage of tree-based machine learning
algorithms such as random forest or XGBoost is that they
cannot reasonably extrapolate beyond the range captured in
the training data. This is a particular concern in areas with
strong seasonal variation, where training on one season alone
may lead to failure to produce meaningful predictions in the
other season. In the case of Everest, this limitation is miti-
gated by having data covering the transition from the low-

to high-wind season, but in areas where this is not possible
alternative methods may need to be considered.

Another type of “overfitting” may occur if machine learn-
ing inadvertently reproduces biases in the observations,
for example, due to instrumentation errors. This challenge
should be taken seriously, as the error could be systematic
and dangerous. For example, if icing of wind sensors oc-
curred preferentially in conditions of low temperature and
high winds (i.e. periods of greater cold stress), the machine
learning, trained on the errors, would underestimate the haz-
ard most when it was greatest. Such risks highlight the im-
portance of thoroughly quality-checking the observations in
the pre-processing stage of the AtsMOS workflow. We note
that, on Mt. Everest, the station design enables the detec-
tion of such icing through the use of redundant wind sensors
(Matthews et al., 2020a, 2022). We hope that ongoing ef-
forts to develop a universal high-altitude observing platform
(to enhance mountain weather monitoring worldwide) will
also be designed with such challenges in mind (Napoli et al.,
2023). More generally, we emphasize that the AtsMOS ap-
proach to forecast improvement differs from efforts to embed
ML in NWP (e.g. Frnda et al., 2022). In this case, ML algo-
rithms do not replace high-quality observational data; rather
they emphasize the need for it and amplify any limitations of
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Figure 8. (a) Observed (red) and modelled (black) wind speed for the first observational period at the summit, with model (here, XGBoost)
training using only the second period (2019). (b–f) Difference between modelled and observed wind speed shown as a difference bar chart,
scatterplot, and histogram, respectively. The statistics are as follows. R2

= 0.93, RMSE: 7.95, skew: 0.29, kurtosis: 1.69, MAE: 5.97, NSE:
0.86, KGE: 0.79, correlation: 0.96, relative variance: 0.85, bias: 0.86.

the data. By investing in data quality and instrumentation and
leveraging ML alongside this, we increase our potential for
accurate and actionable meteorological forecasts in moun-
tainous regions.

In addition to ensuring the accuracy and reliability of sen-
sor data, effective data management practices are crucial for
maximizing the utility and impact of field datasets, partic-
ularly in the context of mountain meteorology. Good meta-
data, which provide detailed information about the charac-
teristics and origins of the data, is essential for understand-
ing and interpreting observational datasets. Interoperability,
where data can be integrated and exchanged across differ-
ent platforms and systems with minimal barriers, becomes
increasingly important when considering the generalizability
of findings and methodologies to other mountainous envi-
ronments. While the specific challenges and characteristics
of each mountain region may vary, the fundamental prin-
ciples and approaches developed for mountain meteorology
research can often be applied more broadly and insights and
techniques developed in one region can inform and benefit
studies in others. Promoting robust data management prac-
tices is key for both the effectiveness of individual research
efforts and the broader advancement of mountain meteorol-
ogy as a field.

Whilst we have demonstrated the added value of improv-
ing weather forecasts for Mt. Everest with AtsMOS, we an-
ticipate much greater benefits from this approach than just
improving the safety of mountaineering expeditions. For in-
stance, the ability to forecast thresholds for rainfall-triggered
landslides, snow avalanches, or flooding relies heavily on
accurate meteorological data and predictive models. By
integrating high-resolution local meteorological data from
AtsMOS into early warning systems, communities can better
prepare for and respond to extreme weather events, reduc-
ing the risk of casualties and damage. Furthermore, on a re-
gional or national scale, the integration of detailed mountain
meteorology datasets into larger-scale networks enhances the
effectiveness of early warning systems by providing compre-
hensive coverage of weather patterns and potential hazards
across diverse landscapes. Improved prediction of meteoro-
logical conditions in mountainous regions has far-reaching
implications for promoting the resilience and safety of moun-
tain communities and ecosystems and is an important com-
ponent of effective early warning systems for many hazards.
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Figure 9. Example of a real-time forecast for wind (a), precipitation (d), temperature (e), and derivate variables of wind chill temperature (f,
WCT) and facial frostbite time (g, FFT; Moore and Semple, 2011). The raw GFS estimates of wind speed and precipitation are shown in
red alongside our predictions; note how the AtsMOS wind speed estimates are substantially higher and precipitation is substantially higher.
The probability of exceedance of different wind speed thresholds, 20 and 30 ms−1, is also shown in (b) with related hazard classification,
with medium hazard denoted as > 20 % probability of winds exceeding 20 ms−1 and high hazard as > 20 % probability of winds exceeding
30 ms−1.

5 Conclusion

In conclusion, the AtsMOS workflow represents a computa-
tionally efficient template for downscaling numerical model
outputs using one observation or a small number of field ob-
servations. The template outlines a flexible, modular work-
flow for custom pre-processing of field observations or nu-
merical weather model outputs depending on the need and

provides several possible core learning algorithms ranging
from simple linear regression to more complex random for-
est and XGBoost. We explore an example application at
Mt. Everest, which demonstrates its practical utility in im-
proving the prediction of critical weather parameters for
mountaineering safety. There are limitations to this approach,
including reliance on high-quality sensor data and potential
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biases inheritance in machine learning algorithms. Moving
forward, continued research and observation network devel-
opment hold promise for improving the accuracy and re-
liability of mountain meteorology forecasts, ultimately en-
hancing hazard mitigation efforts, and contributing to the re-
silience of communities living in these landscapes.

Code and data availability. The AtsMOS workflow is available
at https://github.com/MaxVWDV/AtsMOS (last access: 28 Octo-
ber 2024) or https://doi.org/10.5281/zenodo.10889509 (Van Wyk de
Vries, 2024). Everest weather station data are available at https:
//www.nationalgeographic.org/society/everest-weather-data/ (Na-
tional Geographic, 2024).
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