
Figure 4. (a) Empirical true danger level distribution of the training data. (b) Cumulative distribution (blue) and empirical distribution (gray)

of the expected danger level for the out-of-bag predictions of the training data, while the former is computed by Gaussian kernel-density

estimation. Points (black) fulfill Equation (13), and hence define the refined thresholds for discretization.

The three proposed aggregation strategies above (i.e., mean, top-↵, elevation-based), estimate the danger level as a a real290

number instead of a discrete value in the range of 0 to 4. Consequently, we perform a discretization as a last step in the

aggregation. More specifically, we consider a discretization function fdis(d) : R! {0, 1, 2, 3, 4} that defines the decision

boundaries as:

fdis(d) =

8
>>>>>>>>>><

>>>>>>>>>>:

0 for d < t0

1 for t0  d < t1

2 for t1  d < t2

3 for t2  d < t3

4 for d� t3

(12)

where the thresholds t= (t0, t1, t2, t3) 2 R4 specify the range of the intervals. A possible greedy discretization strategy is295

rounding, which ensures that values are clamped to integers from 0 to 4, and is expressed as t= (0.5, 1.5, 2.5, 3.5). However,

it is important to note that the target variable used for interpolation represents the expected danger level, which arises from

the class probabilities predicted by the RF classifier. Hence, the discretization strategy should ideally map the expected danger

level back to the most probable level. As stated by Niculescu-Mizil and Caruana (2005), RF classifiers suffer from one-sided

errors due to the variance of their base estimators. For instance, predicting a class probability of p= 1 requires that all base300
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