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Abstract. A multiscale modeling ensemble chain has been
assembled as a first step towards an air quality analysis and
forecasting (AQF) system for Latin America. Two global and
three regional models were tested and compared in retrospec-
tive mode over a shared domain (120–28° W, 60° S–30° N)
for the months of January and July 2015. The objective of
this experiment was to understand their performance and
characterize their errors. Observations from local air qual-
ity monitoring networks in Colombia, Chile, Brazil, Mexico,
Ecuador and Peru were used for model evaluation. The mod-
els generally agreed with observations in large cities such
as Mexico City and São Paulo, whereas representing smaller
urban areas, such as Bogotá and Santiago, was more chal-
lenging. For instance, in Santiago during wintertime, the sim-
ulations showed large discrepancies with observations. No
single model demonstrated superior performance over oth-
ers or among pollutants and sites available. In general, ozone
and NO2 exhibited the lowest bias and errors, especially in
São Paulo and Mexico City. For SO2, the bias and error

were close to 200 %, except for Bogotá. The ensemble, cre-
ated from the median value of all models, was evaluated as
well. In some cases, the ensemble outperformed the individ-
ual models and mitigated extreme over- or underestimation.
However, more research is needed before concluding that the
ensemble is the path for an AQF system in Latin America.
This study identified certain limitations in the models and
global emission inventories, which should be addressed with
the involvement and experience of local researchers.

1 Introduction

Latin America has some of the most populated urban areas
in the world. Notably, Mexico City and São Paulo have pop-
ulations exceeding 20 million, while Lima, Bogotá, Rio de
Janeiro and Buenos Aires have more than 10 million inhab-
itants each (United Nations, 2018). These densely populated
regions often experience air pollution events due to large
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emission sources and due to atmospheric conditions. Other
major cities, such as Santiago and Medellín, with a popula-
tion of ∼ 7 million and ∼ 3.5 million, respectively, are also
affected by poor air quality. This urban air pollution not only
has long-lasting effects on the health of the population but
also has a significant negative impact on the environment and
possibly the regional climate (Busch et al., 2023; Gouveia
et al., 2018; Molina et al., 2015; Rodríguez-Villamizar et al.,
2018; Romieu et al., 2012). Latin America could greatly ben-
efit from an air quality analysis and forecasting (AQF) sys-
tem that informs the public about air pollution episodes and
supports policy actions.

To better understand the causes of air pollution events in
Latin America, it is important to consider the local emis-
sion sources. In addition to the usual urban pollution sources
(e.g., industrial facilities, residential heating, energy produc-
tion and transportation sectors), plumes from biomass burn-
ing and long-range dust transport can occasionally reach ma-
jor cities. In northern South America, increased pollution
levels in the dry season have been associated with biomass
burning (Ballesteros-González et al., 2020; Casallas et al.,
2023; Mendez-Espinosa et al., 2019) and dust from the Sa-
hara (Mendez-Espinosa et al., 2020). The latter source also
affects the Caribbean and central Mexico in early spring
(Kramer and Kirtman, 2021; Ramírez-Romero et al., 2021).
Also, in the context of climate and land use change, wild-
fires are a recurrent phenomenon in southern South America
(Resquin et al., 2018; de la Barrera et al., 2018; Sarricolea
et al., 2020). The Amazon is the largest forest in the world
and a significant source of biogenic volatile organic com-
pounds (BVOCs), precursors of CO, ozone and secondary
aerosols (Nascimento et al., 2022; Zimmerman et al., 1988).

Air quality management in Latin America (LAC) has been
traditionally focused on surveillance and building emission
inventories (Franco et al., 2019). Modeling activities for LAC
are less frequent than North America, Europe or Asia, mainly
due to limited computing resources and scarce information
of emission sources. Of more than 30 regional AQF sys-
tems identified worldwide, only one exists in Latin America
(Zhang et al., 2012). In addition to the restrictions already
mentioned, LAC has other challenges: complex terrain where
cities are situated in the valleys and canyons of the Andes,
varying meteorological conditions due to their proximity to
mountains and coastlines, deep convection in the tropics, ex-
tensive biomass burning in the Orinoco and Amazon basins,
and the presence of densely populated megacities and urban
areas, among others. Despite limitations on applying air qual-
ity models in LAC, regional models have been successfully
implemented since 2000.

The Coupled Chemistry Aerosol and Tracer Transport
model to the Brazilian development of the Regional At-
mospheric Modeling System (CCATT–BRAMS) was devel-
oped in the region (Longo et al., 2013) to investigate the
impact of the Amazonian wildfires on air quality in major
Brazilian cities (Pereira et al., 2011; Freitas et al., 2011).

The North American Community Multiscale Air Quality
(CMAQ) model, coupled with the Weather Research and
Forecasting (WRF) meteorological model, has been used in
Colombia and Brazil to predict pollutant concentrations and
assess reduction strategies (Albuquerque et al., 2019; East
et al., 2021; Pérez-Peña et al., 2017; Nedbor-Gross et al.,
2018; Pachón et al., 2018). The WRF model coupled with
chemistry (WRF–Chem) online has been actively used to
study the impact of regional sources on air quality in ur-
ban centers across Colombia (Ballesteros-González et al.,
2020, 2022; Casallas et al., 2024; González et al., 2018;
Mendez-Espinosa et al., 2019), Chile (Saide et al., 2016)
and São Paulo (Gavidia-Calderón et al., 2024). CHIMERE
(Menut et al., 2013) and MATCH (Andersson et al., 2015)
models have been applied in Chile to assess pollutant chemi-
cal transformation and dispersion as well as emission reduc-
tion strategies (Gallardo et al., 2002; Lapere, 2018; Lapere
et al., 2021; Mailler et al., 2017). Additionally, CAMS re-
analysis data have been compared against air quality obser-
vations, observing well-captured temporal trends for PM10,
PM2.5 and SO2 but not for NOx (Casallas et al., 2024).

This work conducts the first model intercomparison ef-
fort and ensemble construction for Latin America, which
was assembled under the Prediction of Air Pollution in
Latin America and the Caribbean (PAPILA) project (https:
//papila-h2020.eu/papila, last access: 14 August 2024). The
aim of PAPILA was to develop an AQF system for the region
with increasing capabilities in major cities. This objective is
in line with the Global Air Quality Forecasting and Informa-
tion System (GAFIS) initiative that supports the implemen-
tation of AQF systems, especially in countries and regions
where they do not exist, such as Africa and South America
(WMO, 2022). This article presents a retrospective (hindcast)
analysis. Section 2 presents model descriptions, emission in-
ventories utilized in the models and observations employed
for model evaluation. In Sect. 3 we analyze the model per-
formance and conduct intercomparisons for each pollutant
(NO2, O3, CO, SO2, PM2.5). We also discuss the season vari-
ability of predictions and the analysis of large vs. small urban
areas. Finally, Sect. 4 summarizes our findings and outlines
directions for future development.

2 Methodology

The model intercomparison and construction of the ensem-
ble required relevant activities: the execution of global and
regional models in a common domain, harmonization of the
model output, ensemble construction, collection of air qual-
ity observations, analysis of temporal and spatial variability,
and model evaluation.
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2.1 Description of the models and modeling setup

For the model intercomparison, two global models (CAMS
and SILAM) and three regional models (CHIMERE, WRF–
Chem, EMEP MSC-W) were selected based on the exper-
tise of the research groups working on the PAPILA project
(Table 1). WRF–Chem was implemented by two different
groups, the Max Planck Institute for Meteorology (MPIM)
in Germany and the University of São Paulo (USP) in Brazil,
with different setups. It is worth noting that the early simula-
tions analyzed hereby do not represent the best performance
of each model in the LAC region or over individual urban
areas. The different models are briefly described in the fol-
lowing paragraphs.

The Copernicus Atmosphere Monitoring Service (CAMS)
provides state-of-the-art global atmospheric composition
data based on the IFS (Integrated Forecasting System) model
of the European Centre for Medium-Range Weather Fore-
casts (ECMWF) (Inness et al., 2019). The chemical mecha-
nism of the IFS is an extended version of the Carbon Bond
2005 (CB05) and complements the MACC aerosol mod-
ule (Flemming et al., 2017; Morcrette et al., 2009). The
CAMS reanalysis data used for this project are a com-
bination of satellite observations of atmospheric composi-
tion and the IFS modeling setup. Anthropogenic emissions
from the MACC/CityZen (MACCity) inventory (Granier
et al., 2011) and biomass-burning emissions from the Global
Fire Assimilation System (GFAS) v1.2 (Kaiser et al., 2012)
were used in the simulations (Table 1). The biogenic emis-
sions were simulated offline by the Model of Emissions
of Gases and Aerosols from Nature (MEGAN) version 2.1
(Guenther et al., 2006) using an offline emission inven-
tory (ECCAD, 2021). CAMS has been extensively evaluated
against ozonesondes, aircraft profiles, surface observations
and global satellite retrievals (Flemming et al., 2015).

The System for Integrated Modeling of Atmospheric
Composition (SILAM, http://silam.fmi.fi, last access: 14 Au-
gust 2024) is a chemical transport model for global-to-local
simulations of atmospheric composition and air quality that
was developed at the Finish Meteorological Institute (FMI)
(Sofiev, 2002; Kouznetsov and Sofiev, 2012; Sofiev et al.,
2010, 2006, 2015). Briefly, SILAM employs the Carbon
Bond Mechanism IV (CBM-IV) for gas-phase chemistry
(Gery et al., 1989). For further details on the model charac-
teristics, refer to METEO-FRANCE (2020). For this work,
the SILAM simulations were driven by the meteorological
IFS model of the ECMWF. Anthropogenic emissions were
adopted from the CAMS global emission inventory v2.1,
whereas biomass-burning emissions were generated by the
Integrated Monitoring and Modelling System for Wildland
Fires (IS4FIRES) (http://is4fires.fmi.fi, last access: 3 July
2024) (Sofiev et al., 2009; Soares and Sofiev, 2014). The
biogenic emissions were simulated offline by MEGAN v2.1
(Guenther et al., 2006), particularly isoprene and monoter-
pene emissions computed for the year 2010, as found on

the MEGAN website (Table 1). The model has been ex-
tensively evaluated in numerous international retrospective
studies (Marécal et al., 2015; Kukkonen et al., 2012; Blech-
schmidt et al., 2020; Petersen et al., 2019) and real-time op-
erational applications. SILAM is included in the regional Eu-
ropean forecasting system provided by CAMS together with
CHIMERE and EMEP MSC-W and eight other models (Co-
lette et al., 2020).

CHIMERE is a Eulerian chemical transport model (CTM).
It is able to perform simulations from urban to hemispheric
scale (Lapere, 2018; Lapere et al., 2021; Mailler et al., 2017;
Menut et al., 2021). The model can be used online (with
WRF only) or offline (with several meteorological models).
The model characteristics are published elsewhere (METEO-
FRANCE, 2020). For this study, the meteorological forcing
is the IFS global simulation provided by the ECMWF. The
biogenic emissions are calculated online using MEGAN v2.1
(Guenther et al., 2006) using the 30 s horizontal-resolution
database. Fire emissions are those of CAMS (Kaiser et al.,
2012) and reformatted for CHIMERE using the dedicated
preprocessor (Menut et al., 2021). The mineral dust is cal-
culated online using the Alfaro and Gomes (2001) scheme,
and the sea salt emissions are also calculated online using
the Monahan (1986) scheme. NOx values by lightning are
calculated using the scheme described in Menut et al. (2020).
CHIMERE is used for analysis and forecast in tens of coun-
tries around the world and at various spatial scales, includ-
ing the CAMS forecast. More specifically for Latin America,
it was used for several studies about anthropogenic emis-
sions, deposition of black carbon on snow, and indirect ef-
fects and impact of megafires on cloud formation (Lapere
et al., 2021; Mailler et al., 2017; Lapere, 2018). For this
exercise, CHIMERE was run for the 31 d of January and
July 2015. However due to problems in the output files, 15 d
of data were missing (5 d from 14 to 18 January and 10 d
from 11 to 19 July and 9 July).

The EMEP MSC-W model (“EMEP model” hereafter) is
an offline chemical transport model that was developed at
the Norwegian Meteorological Institute (MET Norway). It
is used to simulate photo-oxidants as well as organic and
inorganic aerosols in scales ranging from local to global
(Simpson et al., 2012). Details regarding the model char-
acteristics can be found in METEO-FRANCE (2020). For
this study the model was driven by meteorological data
from the IFS model of the ECMWF. Gas-phase chemistry
from the “EMEP scheme” comprises 70 species and 140
reactions (Andersson-Sköld and Simpson, 1999; Simpson
et al., 2012), inorganics from the MARS equilibrium mod-
ule (Binkowski and Shankar, 1995), and organics from the
CBM-Z mechanism (Zaveri and Peters, 1999). Emissions
from forest and vegetation fires are taken from the Fire IN-
ventory from NCAR (FINN v1.0) (Wiedinmyer et al., 2011).
Biogenic emissions of isoprene and (if required) monoter-
penes are calculated in the model for every grid cell (Simp-
son et al., 2012). The EMEP model has for several decades
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been the main tool for underpinning air quality policies under
the United Nations Economic Commission for Europe (UN-
ECE) convention on long-range transboundary air pollution.
However, it should be noted that the runs for this study were
the very first EMEP model simulations ever conducted on a
regional scale for LAC and should thus be considered only as
a first demonstration of model capabilities. For PAPILA, the
EMEP model was run by the modeling team at the University
of Chile in Santiago with some support by MET Norway.

WRF–Chem is the Weather Research and Forecasting
(WRF) model coupled with chemistry, developed at the Na-
tional Center for Atmospheric Research (NCAR) with the
purpose of simulating urban- to regional-scale fields of trace
gases and particulates. The air quality and meteorological
components share the same transport and physics scheme,
as well as the same horizontal and vertical grids (Fast et al.,
2006; Grell et al., 2005). The MPIM WRF–Chem uses ver-
sion 3.6.1 to simulate meteorology and chemistry simul-
taneously online in South America at ∼ 20 km horizontal
resolution and 36 vertical levels extending from the sur-
face to ∼ 21 km altitude. The gas-phase chemistry is rep-
resented by version 4 of the Model for Ozone and Re-
lated Chemical Tracers (MOZART-4) chemical scheme (Em-
mons et al., 2010). The Goddard Chemistry Aerosol Radia-
tion and Transport (GOCART) bulk aerosol module coupled
with MOZART is used in this study to consider the aerosol
processes (Chin et al., 2002; Ginoux et al., 2001). Bound-
ary and initial conditions for the meteorology were set up
from the Global Forecast System (GFS) and for the chemical
species concentrations from CAM-Chem. The anthropogenic
emissions were from CAMS-GLOB-ANT v4.2, which con-
sists of 0.1°× 0.1° grid maps of several species, includ-
ing CO, SO2, NO, non-methane volatile organic compounds
(NMVOCs), NH3, black carbon (BC) and organic carbon
(OC). Daily varying emissions of trace species from biomass
burning were taken from the FINN v1.5 dataset (Wiedinmyer
et al., 2011). Biogenic emissions of trace species from terres-
trial ecosystems are calculated online using MEGAN v2.04
(Guenther et al., 2006). Further details on the MPIM WRF–
Chem model settings can be found in Bouarar et al. (2019).

WRF–Chem run by the USP (version 3.9.1) uses similar
characteristics to those previously described with a horizon-
tal resolution ∼ 22 km and 35 vertical layers. Some differ-
ences from the MPIM configuration are the version of global
emissions of CAMS-GLOB-ANT v5.3 (ECCAD, 2020), the
speciation of the chemical boundary condition from the
CAM-Chem model (Buchholz et al., 2019; Emmons et al.,
2010) and the speciation of FINN v1.5 emissions, which
are suitable for simulation over São Paulo. For this exercise,
WRF–Chem did not include Mexico City in the modeling
domain.

CHIMERE, IFS, EMEP, WRF–Chem, LOTOS-EUROS
and SILAM models are used in an ensemble mode to
configure the MarcoPolo–Panda prediction system in Asia
(Brasseur et al., 2019; Petersen et al., 2019). It has been ob-

served that, under specific circumstances, a model ensem-
ble can outperform individual models, demonstrating the po-
tential benefits of this approach. With the desire to replicate
the experience in Latin America, the selected models were
applied in a common domain, defined by the southeastern
corner at 119°54′W, 59°54′ S and the northeastern corner at
28°6′W, 29°54′ N. The models were run at a spatial resolu-
tion of∼ 0.2°× 0.2° (∼ 20× 20 km). Input meteorology and
emissions were up to the modeling group (Table 1). The sim-
ulation period covers January (Southern Hemisphere sum-
mer) and July (Southern Hemisphere winter) of 2015. The
modeling data are available in a public repository (Pachón
et al., 2024).

2.2 Model evaluation

The performance of the models was assessed by comparing
the simulated concentrations with the average of the observa-
tions for each available city, pollutant and considered period.
The observation’s average was constructed by computing the
arithmetic mean of all air quality stations available in the net-
work within the city’s polygon. On the other hand, the simu-
lated concentrations for the models were estimated as the av-
erage of the models’ closest grid point to the location of each
station that is within the city’s polygon for every city and
pollutant considered in this study. This results in a weighted
average of the model where the weight is given by the num-
ber of stations that measure the pollutant closest to each grid
point, resulting in the same geographical sampling for the
observations and the models, thus reducing any potential sta-
tion’s sampling bias to the best of our abilities. This approach
was chosen with the objective of assessing the model perfor-
mance in cities rather than for each air quality station sep-
arately. It is outside the scope of this work to conduct an
intra-urban variability study of the model performance given
the chosen resolution of 0.2°× 0.2°. The model evaluation
was focused on nitrogen dioxide (NO2), ozone (O3), carbon
monoxide (CO), sulfur dioxide (SO2), and particulate matter
less than 2.5 µm (PM2.5) and less than 10 µm (PM10).

For each period, pollutant and city, the model evaluation
included the following metrics: model / observations ratio,
mean bias (BIAS), modified normalized bias (MNBIAS),
root mean square error (RMSE), fractional gross error (FGE)
and correlation coefficient (R). The formulas were replicated
from the MarcoPolo–Panda project (Petersen et al., 2019)
and are presented in Table A1 in Appendix A. These evalua-
tion metrics were computed for all models and the ensemble
using the Modelling and Observation System and Analysis
Tool, MOSPAT (Huneeus and Opazo, 2024).

2.3 Air quality monitoring networks in Latin America

Several air quality monitoring networks (AQMNs) are avail-
able throughout Latin America, especially in major cities.
However, worldwide access to the datasets can be difficult
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due to language barriers and the lack of a centralized plat-
form. A comprehensive list of AQMNs in Latin America
was assembled for the PAPILA project (https://papila-h2020.
eu/observations, last access: 14 August 2024). For the year
2015, we collected air quality data for 12 cities in Mexico,
Colombia, Ecuador, Peru, Chile, Brazil and Uruguay. Only
stations with a minimum of 75 % data completeness were
considered when calculating the city average of the observa-
tions, resulting in eight cities with enough data to use for this
study. This data completeness requirement considers a mini-
mum of 75 % of days available for each period, as well as a
minimum of 75 % of hourly data to construct their daily av-
erage. We focus in this study on the four major cities (from
north to south) Mexico City, Bogotá, São Paulo and Santiago
(Fig. 1). However, data of all available cities were used in the
model evaluation (Tables B1 through B8 in Appendix B).

3 Results

Simulated concentrations of all pollutants from all models
were compared against observations from every city and for
both periods (January and July) in 2015. In this section, we
present results from the model evaluation, the spatial and
temporal variability of simulated fields, and the impact of
large versus small urban areas in the model intercomparison.

3.1 Model evaluation

The following results are presented for every pollutant: anal-
ysis of observations from AQMNs, simulated concentrations
by the models, comparison of evaluation metrics and discus-
sion of model performance, including the ensemble and anal-
ysis of model variation.

3.1.1 Nitrogen dioxide – NO2

Observations

The number of stations per city recording NO2 during Jan-
uary and July 2015 varies between 7 in Bogotá and 24 in
Mexico City (Appendix B). The highest daily average con-
centration of NO2 is observed in Santiago during winter at
around 30 ppb (Fig. 2). This can be attributed to adverse
meteorological conditions and emissions from transportation
and residential combustion in the surrounding municipalities
(Mazzeo et al., 2018; Saide et al., 2016), whereas in the sum-
mer NO2 levels fall to 11 ppb. The second largest values are
shown in Mexico City and São Paulo with daily average NO2
levels of 27 and 20 ppb, respectively, due to the heavy use of
fossil fuels in transportation and power generation. The low-
est levels of NO2 are measured in Bogotá with 16.4 ppb on
average.

Model performance

In Bogotá and Santiago, NO2 is underestimated by the en-
semble members (Fig. 2). In Santiago, the mean of the mod-
els is 10.3 ppb in summer and 22.1 ppb in winter, lower than
the mean of the observations. Similarly, in Bogotá the mean
of the modeled values is 6.6 ppb, much lower than observa-
tions. In contrast, in São Paulo and Mexico City, the mod-
els both over- and underpredict the ambient concentrations,
and the averages of the modeled fields (23.6 and 30.3 ppb,
respectively) are on the same order of magnitude as the ob-
servations.

São Paulo and Mexico City exhibit the lowest MNBIAS
and FGE for NO2 (Table A2). The correlation between the
models and observations hovers around 0.7, which is larger
than the goal benchmark proposed for this pollutant (R ≥
0.6) (Zhai et al., 2024).

In Santiago, the MNBIAS is mostly negative during both
seasons except in the SILAM and EMEP models, which re-
sulted in a positive bias. The degree to which the models un-
derestimate the observations is notably higher in winter than
in summer and with a larger FGE (Table A2). The correla-
tion between models and observations in Santiago is larger
in summer than in winter, with some models achieving the
criteria benchmark (R > 0.5) (Zhai et al., 2024). In Bogotá,
the MNBIAS values are large and consistently negative, and
the FGE varies between 50 % and 156 % (Table A2). Despite
these lower scores, the correlation between observations and
models is moderate, around 0.6 in January, meeting criteria
benchmarks and demonstrating that certain models can suc-
cessfully replicate the temporal variations but not the magni-
tude of the pollutant.

The adequate performance in São Paulo and Mexico City
may be attributed to an accurate portrayal of the temporal and
spatial variability that is achieved in large urban areas like
these (> 3500 km2), which encompass at least nine model
cells (20 km× 20 km). The lower simulated NO2 levels in
Bogotá likely stems from an underestimation of emissions.
A study by Rojas et al. (2023) utilized local data to estimate
on-road emissions in Colombia and revealed substantial un-
derestimation of NOx emissions by global inventories such
as EDGAR 6.1, CAMS and the Community Emissions Data
System (CEDS). Their findings recommend adjustments to
the emission factors used for NOx , particularly for heavy-
duty and passenger vehicles, followed by a recalculation of
the resulting emissions. The underestimation of NO2 can also
be noted in other cities such as Medellín, Guadalajara, Lima
and Quito (Fig. 8). These cities, along with Bogotá, possess
urban areas ranging from 235 to 890 km2 and are confined
within one or two cells of the models (20 km× 20 km). It
is possible that the average of observations is heavily influ-
enced by local sources, in which case a finer modeling reso-
lution is required to accurately capture the spatial variability
of air pollution.
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Figure 1. Location of air quality stations in major Latin American cities (Santiago, Bogotá, Mexico City, São Paulo) alongside the city’s
definition for computing the modeled city average. © OpenStreetMap contributors 2024. Distributed under the Open Data Commons Open
Database License (ODbL) v1.0.

Model intercomparison

For NO2, CAMS underestimates the observations in the four
cities, whereas SILAM underestimates this pollutant in Bo-
gotá, Mexico City and São Paulo (only in July) and over-
estimates the observations in Santiago and in São Paulo (in
January). CAMS displayed larger MNBIAS and FGE than
SILAM. In general, SILAM reproduces at least 80 % of the
NO2 levels, with the exception of Bogotá, where only 30 %
of the NO2 levels are simulated. The correlation coefficient
is better for SILAM (R∼ 0.6) than for CAMS (R∼ 0.3).

The results from regional models are very diverse. In gen-
eral, WRF–MPI, CHIMERE and EMEP have lower values
of MNBIAS and FGE for NO2 in São Paulo and Mexico

City (Table A2). In São Paulo, except for WRF–USP, re-
gional models tend to overestimate NO2 with a MNBIAS be-
tween 20 % and 70 %. WRF–USP reproduces about 76 % of
NO2 concentrations. In Mexico City, the tendency of regional
models is to overestimate the NO2 levels (MNBIAS: 10 % to
75 %). In Santiago, CHIMERE achieves the lowest MNBIAS
(−2 %) in January but not in July (−119 %). In Bogotá, the
MNBIAS in regional models remains consistently negative.

In Fig. 2, the model variation is visible. In Santiago in win-
ter the range of NO2 values is 48 ppb, which corresponds
to a coefficient of variation (CV) of 71 % (Table A8); this
contrasts with the range in summer of 15 ppb (CV= 49 %).
Other large variations are observed in Mexico City in July
(range 54 ppb, CV 57 %) and São Paulo (range 32 ppb, CV
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Figure 2. Observed (black) and simulated NO2 daily mean concentrations in Santiago, Bogotá, Mexico City and São Paulo for January (left)
and July (right) 2015.

46 % to 58 %). It is interesting to note the case of Bogotá,
where all models consistently underestimate NO2, but the
model variation is the lowest (8 ppm with CVs of 39 % and
56 %).

Ensemble performance

The median ensemble underestimates NO2 concentrations in
Bogotá and to a lesser extent in Santiago. This is consistent
with the underestimation trend by most of the models. The
ensemble in these two cities has some of the lowest MN-
BIAS, FGE and R, but they are not always better than indi-
vidual models (Table A2). On the contrary, in Mexico City
and São Paulo, the ensemble median outperforms the models
for NO2. In summer and winter, the ensemble presents the
lowest FGE in both cities. The correlation coefficient range
is between 0.5 and 0.8 within the criteria benchmark R > 0.5
(Zhai et al., 2024). The MNBIAS values are also the lowest
(−2.9 % to 17.7 %).

3.1.2 Ozone – O3

Observations

The number of stations per city recording O3 during January
and July 2015 varies between 9 in Santiago and 29 in Mexico
City (Appendix B). The highest observed ozone concentra-
tion was in Mexico City in July with an average of 31 ppb.
However, this value is significantly lower than the surface
ozone concentrations reported in the MAM (March–April–
May) season, with values larger than 70 ppb (Barrett and
Raga, 2016; Silva-Quiroz et al., 2019). The second largest
ozone value occurs in São Paulo during January with daily
averages of 24 ppb. This is probably due to an abundance of
ozone precursors, in particular volatile organic compounds
(VOCs) from the use of biofuels in the transportation sec-
tor (de Fatima Andrade et al., 2017; Gavidia-Calderón et al.,
2024) and biogenic VOCs (Martins et al., 2006). Santiago
experiences a marked seasonal cycle of ozone concentrations
with summer values of approximately 22 ppb and winter con-
centrations around 3.6 ppb. This seasonal difference has been
observed in other studies (Seguel et al., 2024). In Bogotá,
ozone concentrations are the lowest and below 13 ppb.
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Model performance

In the four cities, simulations of O3 are mainly overestimated
(Fig. 3). In the summer in São Paulo and Mexico City, simu-
lations can reach up to 100 ppb, which is significantly above
the observations. In Santiago in the winter, the mean of mod-
els (∼ 20 ppb) is significantly larger than observations, indi-
cating that the models have difficulty reproducing low values
of this secondary pollutant. In the summer, ozone estimates
are much closer to observations. Similarly, in Bogotá, mod-
els estimate an average of 17 ppb, which is on the same order
of magnitude as the observations.

The overestimation of O3 in Santiago might be related to
the underestimation of NO2 previously described and the in-
adequate titration of ozone. Ozone formation in Santiago has
been found to be VOC-limited (Seguel et al., 2020). This sit-
uation is also observed in Bogotá, where most models over-
estimate O3 with a MNBIAS between 25 % and 80 % (Ta-
ble A3). In contrast, in Mexico and São Paulo, the models
that overestimate NO2 also overestimate O3. This complex
situation is explained by the nonlinearities in the formation of
ozone (Grewe, 2004). In general, correlation coefficients for
O3 are very low (R < 0.3), especially in São Paulo and Mex-
ico City, indicating the challenge to adequately reproduce the
spatial and temporal variability of this pollutant. Only in San-
tiago in January is the criteria benchmark for O3 (R > 0.5)
achieved by some models (Emery et al., 2017).

Model intercomparison

In the case of global models, CAMS underestimates O3 in
the four cities except in Santiago during winter. Addition-
ally, CAMS tends to have low correlation levels along with
a higher bias and error (Table A3). SILAM displays a lower
bias and error compared to CAMS. However, just like with
CAMS, SILAM significantly overestimates O3 levels in San-
tiago during the winter. In Bogotá, SILAM underestimates
O3 to a lesser extent than CAMS, with a larger FGE in July
(74 %) than in January (22 %).

In São Paulo, daytime concentrations of ozone are gener-
ally overestimated by most models (except for CAMS). The
largest overprediction of O3 (MNBIAS from 30 % to 90 %) is
associated with overestimation of NO2, especially for MPI,
EMEP and CHIMERE models. For the models with NO2
levels in reasonable agreement with observations (SILAM,
USP), the ozone overprediction is lower (MNBIAS< 25 %).
Among the regional models, EMEP and WRF–MPI consis-
tently overestimate O3 levels in all cities, with relatively high
MNBIAS and FGE. In contrast, WRF–USP proves particu-
larly suitable for São Paulo, achieving some of the lowest
FGE. CHIMERE also performs well in Santiago in the sum-
mer, likely owing to local adjustments and parameterizations
tailored to these specific cities.

Figure 3 shows a relatively large model variation for
ozone. The largest ozone variability is shown in Mexico City

in summertime with a range of 62 ppb and a CV of 72 %
(Table A8). This wide variability is caused by the simulation
of the EMEP model (71 ppb) and CAMS (9.6 ppb), which
represent the extreme cases of over- and underestimation. In
a similar manner, in Bogotá, São Paulo and Santiago, the
CVs are 61 %, 49 % and 47 %, respectively, explained by the
strong underestimation of CAMS and severe overestimation
by EMEP and WRF–MPI.

Ensemble performance

In Santiago in January, the median ensemble showed one of
the lowest MNBIAS and FGE, surpassed only by CHIMERE
(Table A3), and achieved the criteria benchmark for this pol-
lutant (R > 0.5) (Emery et al., 2017). In July, the overesti-
mation of ozone by most models impacts the performance of
the ensemble, which also overestimates O3 concentrations.
In Bogotá, the ensemble has some of the best scores for
MNBIAS and FGE and represents an intermediate value be-
tween all models. In São Paulo, in wintertime, the ensemble
has superior metrics (MNBIAS∼−3.4 %) compared to any
individual model, while in the summer the ensemble over-
estimates the observations as most models do. In Mexico
City, the ensemble median performs better than all individ-
ual models with a MNBIAS between 4 % (summer) and 13 %
(winter) and a FGE less than 32 %. Similar to the individual
models, for most of the cases, the correlation coefficient for
the ensemble does not meet any of the benchmarks (Emery
et al., 2017).

3.1.3 Carbon monoxide – CO

Observations

The number of stations per city recording CO during Jan-
uary and July 2015 varies between 7 in Bogotá and 24 in
Mexico City (Appendix B). CO levels are generally below
1.0 ppm for all cities (Fig. 4). However, in Santiago during
winter some values surpass 1.5 ppm due to a combination
of adverse meteorological conditions and emissions from the
transportation sector and residential combustion, commonly
employed for heating in neighboring municipalities (Saide
et al., 2016; Gallardo et al., 2012).

There is a slight increase of CO in São Paulo in July with
respect to January, due to the atmospheric conditions where
lower winds and lower boundary layer increased the primary
pollutant concentration during winter. Additionally, biomass
burning from wildfires, which begin in July and peak in Au-
gust and September for the southern part of the Amazon rain-
forest, can bring more CO (Marlier et al., 2020). Likewise,
larger CO concentrations in Bogotá in January are part of the
wildfire season in northern South America lasting from the
end of December until April (Mendez-Espinosa et al., 2019).
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Figure 3. Observed (black) and simulated O3 daily mean concentrations in Santiago, Bogotá, Mexico City and São Paulo for January (left)
and July (right) 2015.

Model performance

Santiago records the largest simulated value of CO in win-
ter with peak of 5.0 ppm (Fig. 4). The second largest val-
ues are observed in Mexico City with values around 3.0 ppm.
In both cases, models severely overestimate the observations
with some MNBIAS larger than 100 % (Table A4). São Paulo
displays intermediate values with an average CO of 0.5 ppm,
and Bogotá has the lowest modeled values with an average
of 0.27 ppm.

CO simulations in Santiago, São Paulo and Mexico City
both over- and underpredict observations (Fig. 4). However,
in Santiago in winter only the SILAM model overpredicts
CO values (MNBIAS 98 %); the other models underpredict
the values (MNBIAS between −152 % and −1 %). This sit-
uation could be explained by emissions, synoptic conditions
or the models’ simulation of the boundary layer (Mazzeo
et al., 2018). In Bogotá, all models consistently underesti-
mate the CO with a MNBIAS between −50 % and −131 %
(Table A4). In January correlation coefficients for CO hover
around 0.6, achieving benchmarks (R > 0.4) (Zhai et al.,
2024). This result demonstrates the model’s capability to
reproduce the time variability of this pollutant in Bogotá,

even if the levels are under- or overestimated. The same
situation is observed in Mexico City and São Paulo, where
goal (R > 0.6) and criteria (R > 0.4) benchmarks are often
achieved (Zhai et al., 2024).

The underestimation in Bogotá is similar to that observed
for NO2, which we attributed to a shortfall in emissions. Ac-
cording to the local inventory, CO emissions are predom-
inantly attributed to mobile sources (99 %), with motorcy-
cles contributing to 45 % of these emissions, automobiles ac-
counting for 36 % and the remainder originating from other
vehicles (SDA – Secretaría Distrital de Ambiente, 2018). No-
tably, it has been identified that motorcycle emissions are
underestimated in Colombia (Rojas et al., 2023). The sig-
nificant rise in the number of motorcycles in the country and
their declining condition is not accurately reflected in global
emission inventories, such as EDGAR 6.1.

Observed CO mixing ratios are also underestimated in
cities such as Medellín, Guadalajara, Quito and Lima
(Fig. 8), which might be explained by the coarse resolution
of the model not capturing the local characteristics. It is pos-
sible that issues with CO emissions in global inventories or
excess of OH radicals in photochemistry also contribute to
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Figure 4. Observed (black) and simulated CO daily mean concentrations in Santiago, Bogotá, Mexico City and São Paulo for January (left)
and July (right) 2015.

this trend. In addition, a major source of atmospheric CO is
the oxidation of BVOCs (Worden et al., 2019), which are sig-
nificantly underestimated in the Southern Hemisphere (Zeng
et al., 2015).

In São Paulo, five out of six models slightly underesti-
mate CO with a relatively high correlation coefficient. The
simulated concentrations for daily values range from 0.1 to
2.0 ppm, similar to that found in other studies (Deroubaix
et al., 2024). Nevertheless, concentrations exceeding 1.2 ppm
are simulated only for certain days (13 January and 30 July)
and are probably due to wood burning (Fig. C1).

Model intercomparison

Global models, particularly CAMS, tend to underestimate
CO levels in Bogotá, São Paulo and Mexico City with a MN-
BIAS<−50 %. In Santiago, CAMS adequately simulates
CO levels with a MNBIAS <±2.5 % and a FGE < 25 %.
The correlation coefficient achieves the criteria benchmark
(R > 0.4) proposed by Zhai et al. (2024). SILAM underes-
timates CO in Bogotá (model / observations of ∼ 0.6) and
overestimates it in Santiago, while it performs relatively well
in São Paulo and Mexico City (MNBIAS< 22 %). Corre-

lation coefficients meet the criteria and goal benchmarks
(R > 0.4 and R > 0.6) proposed by Zhai et al. (2024).

When it comes to regional models, WRF–USP consis-
tently underestimates CO levels with a high bias (MN-
BIAS<−60 %) and error (FGE> 60 %). WRF–MPI has
better performance, especially in São Paulo and Mexico City
(MNBIAS<±15 %), and correlation coefficients within the
goal benchmark (Zhai et al., 2024). EMEP and CHIMERE
largely overestimate observations in Mexico City, while in
São Paulo they closely match observations. In Santiago, these
models tend to overpredict CO in the summer and underpre-
dict it during the winter.

The largest model variation is observed in Santiago during
wintertime with a range of 3.2 ppm and CV of 106 % (Ta-
ble A8). Mexico City also shows large variation in summer
(CV: 72 %) and winter (CV: 56 %). Bogotá and São Paulo
present less variation between model results.

Ensemble performance

In winter in Santiago and Bogotá in both periods, the ensem-
ble follows the underestimation pattern of all models (Ta-
ble A4). In São Paulo there are models with better perfor-
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mance than the ensemble, but the ensemble results are rea-
sonable, with a MNBIAS close to −15 % and an R of ap-
proximately 0.5. In Mexico City, the overestimation of CO
by the EMEP and CHIMERE models (MNBIAS> 60 %) is
reduced in the ensemble (MNBIAS ∼ 15 %).

3.1.4 Sulfur dioxide – SO2

Observations

The number of stations per city recording SO2 during Jan-
uary and July 2015 varies between 4 in Santiago and 26 in
Mexico City (Appendix B). The largest concentration of SO2
is observed in Mexico City with values between 3.0 ppb (Jan-
uary) and 4.4 ppb (July) due to volcanic emissions (de Foy
et al., 2009) and the heavy consumption of coal in power
generation and cement production, especially in the proxim-
ity of the “Tula–Vito–Apasco” industrial area (SEMARNAT
and INECC, 2020). On the other hand, SO2 in Bogotá, Santi-
ago and São Paulo is lower, with concentrations ranging from
1.0 to 1.8 ppb (Fig. 5).

Model performance

The largest simulation is shown in Mexico City, with an av-
erage of 45 ppb SO2, followed by São Paulo, with a mean
concentration of 8.5 ppb. In Santiago, the average SO2 value
is 8.5 ppb. The lowest modeled values are found in Bogotá,
with an average of 0.97 ppb (Table A5).

The models’ simulated SO2 exhibits significant discrepan-
cies when compared to the observations, with severe over-
estimation in Santiago, Mexico City and São Paulo (Fig. 5),
with a MNBIAS reaching up to 190 % and a FGE up to 200 %
(Table A5). On the contrary, for Bogotá the predicted SO2
values are in reasonable alignment with the observations, ex-
cept for the WRF–Chem USP simulation, which drastically
underestimates SO2 (MNBIAS: −200 %) (Table A5).

The overestimation of SO2 levels could stem from issues
within global emission inventories. In fact, an overestima-
tion of SO2 emissions in CAMS was observed for Buenos
Aires and Santiago when compared to the PAPILA inventory
(Castesana et al., 2022). These emissions primarily originate
from the energy and industrial sectors, where the sulfur con-
tent in coal appears to significantly contribute to this overes-
timation.

The good performance in Bogotá might be related to lower
SO2 emissions apportioned in the city. In fact, the vast ma-
jority of SO2 emissions (∼ 90 %) in Colombia originate from
the industrial and energy production sectors (IDEAM, 2020).
However, these facilities are typically located outside major
urban areas. Bogotá contributes only 1.5 % of the total na-
tional SO2 emissions (de Ambiente, 2018).

Model intercomparison

CAMS and SILAM severely overestimate SO2 in Mexico
City, São Paulo and Santiago with a MNBIAS and a FGE
larger than 100 %. In Bogotá, both global models underesti-
mate SO2 concentrations (MNBIAS from −56 % to −80 %)
but with lower FGE (< 80 %) than CAMS. In January, cor-
relation coefficients in São Paulo met the criteria benchmark
(R > 0.35) suggested by Zhai et al. (2024).

The performance of regional models for SO2 is quite di-
verse. WRF–USP severely underestimates SO2 in all cities
(MNBIAS close to −200 %). In Santiago, Mexico City and
São Paulo the models overestimate SO2 in a similar fashion
to global models. In Bogotá, EMEP and WRF–MPI show the
lowest MNBIAS (< 16 %).

The largest model variation for SO2 is found in Mexico
City, where the range of models is 200 ppb, and the CV is
larger than 150 % (Table A8). In Santiago and São Paulo,
the model variation is close to a CV of 95 %. In Bogotá, the
variation is the lowest (CV: ∼ 75 %).

Ensemble performance

In Mexico City, Santiago and São Paulo, SO2 is overesti-
mated by all models, except the USP. Therefore, the median
ensemble also overestimates SO2 concentration and does not
represent any improvement in the evaluation metrics (Ta-
ble A5). In Bogotá, the ensemble tends to underestimate the
concentrations (MNBIAS: ∼−55 %) to a lesser extent than
individual models.

3.1.5 Fine particulate matter – PM2.5

Observations

The number of stations per city recording PM2.5 during Jan-
uary and July of 2015 varies between 9 in Bogotá and 16
in Mexico City (Appendix B). The largest PM2.5 concentra-
tions are found in Santiago during the Southern Hemisphere
winter, with daily values around 56 µg m−3. This can be at-
tributed to adverse meteorological conditions and emissions
from transportation and residential combustion in the sur-
rounding municipalities (Mazzeo et al., 2018; Saide et al.,
2016). The second largest values are shown in Mexico City,
with an average of 23 µg m−3 due to local emission sources.
In São Paulo, PM2.5 levels are larger in July (19 µg m−3)
than in January (16 µg m−3), due to the impact of wild-
fires from the Amazon basin and sugarcane burning (de Fa-
tima Andrade et al., 2017). In Bogotá, PM2.5 concentrations
are the lowest in July (13 µg m−3) due to the influence of
trade winds (Pachón et al., 2018) but with larger values in
January (19 µg m−3) due to biomass-burning events and fre-
quent thermal inversions (Ramírez et al., 2018).
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Figure 5. Observed (black) and simulated SO2 daily mean concentrations in Santiago, Bogotá, Mexico City and São Paulo for January (left)
and July (right) 2015.

Model performance

In Santiago in wintertime, the mean of the models is larger
than observations, whereas in summer the simulations are
mostly below observations. In Mexico City, simulated val-
ues are approximately double the observations. In São Paulo,
PM2.5 is under- and overpredicted by the models. In Bogotá,
most of the simulations are below the observations (Fig. 6).

In Santiago, Bogotá and Mexico City, models over- and
underpredict PM2.5 (Table A6). In São Paulo, overestimation
is observed in all models with the exception of WRF–USP
and may be linked to an excess of fire emissions, as suggested
by other studies (Deroubaix et al., 2024). The MNBIAS
varies from 35 % to 120 % except for WRF–USP, whose
MNBIAS is negative (Table A6). The correlation coefficients
for PM2.5 are in some cases larger than the goal (R > 0.7)
or criteria (R > 0.4) benchmarks proposed by Emery et al.
(2017). It is worth noting the cases of Mexico City in Jan-
uary and São Paulo in July, where most models achieve the
goal or criteria metric. In smaller urban areas like Medellín,
Lima and Quito (Fig. 8), most models tend to underestimate
observations, potentially due to the coarse resolution of the
models.

Hourly simulations of PM2.5 are useful to understand the
discrepancies between model and observations. In Fig. C2,
we show the hourly data and model outputs. In São Paulo,
the highest PM2.5 concentrations are simulated by SILAM
on 13 January (> 320 µg m−3) and 30 July (> 400 µg m−3),
which corresponds to days with high simulated CO values
as well (Fig. C1 in Appendix C) and may indicate an over-
estimation of biomass burning by the IS4FIRES module in
SILAM. From 15 to 30 January there is also an excess of
PM2.5 from SILAM.

In Mexico City, the highest PM2.5 concentrations are sim-
ulated by the CAMS model with about 250 µg m−3 in Jan-
uary and 160 µg m−3 in July (Fig. C3), which are severely
overestimated. The large PM2.5 values are distributed in the
whole period rather than specific days and do not correspond
to high CO concentrations to suspect the influence of fires.
This situation might indicate a local and continuous source
of PM2.5.

Model intercomparison

Both global models consistently overestimate PM2.5 in San-
tiago, São Paulo and Mexico City, but they behave differently
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Figure 6. Observed (black) and simulated PM2.5 daily mean concentrations in Santiago, Bogotá, Mexico City and São Paulo for January
(left) and July (right) 2015.

in Bogotá. In Mexico City, CAMS has a greater overestima-
tion than SILAM, but in São Paulo and Santiago SILAM
values are larger (Fig. 6). In Bogotá, CAMS overestimates
PM2.5 (MNBIAS∼ 37 %), whereas SILAM underestimates
it (MNBIAS∼−85 %). The SILAM correlation coefficient
meets the criteria benchmark suggested by Emery et al.
(2017).

Among the regional models, EMEP shows the largest
underestimation (MNBIAS<−110 %) in all cites, except
in São Paulo, where the model overestimates PM2.5 but is
within the criteria benchmark (MNBIAS<±60 %) (Boylan
and Russell, 2006) and with a correlation coefficient (R >
0.4) that meets the criteria benchmark by Emery et al. (2017)
in July (Table A6). WRF–USP heavily underestimates in Bo-
gotá and Santiago but performs well in São Paulo with the
lowest errors. This difference in behavior might be explained
by a good adaptation of the model’s inputs to the city. The
WRF–MPI model meets goal benchmarks for MNBIAS and
FGE in Bogotá and Mexico City.

The largest model variation is observed in Mexico City
and Santiago during wintertime with a CV greater than
100 % (Table A8). Santiago in summer and Bogotá present

intermediate values (CV of 70 to 80 %), whereas São Paulo
shows the least variability between models (CV< 56 %).

Ensemble performance

Considering the large underestimation of most models in Bo-
gotá and Santiago, the ensemble displays lower bias and
error than some of the individual models (Table A6). In
Mexico City, the ensemble outperforms models with a MN-
BIAS of −5 % in January and +30 % in July, achieving the
goal benchmark suggested by Boylan and Russell (2006), as
well as the correlation coefficient (R > 0.8) in January. For
São Paulo, all models tend to overestimate PM2.5, so it fol-
lows that the ensemble presents the same behavior as MN-
BIAS> 61 %. The correlation coefficient meets the criteria
benchmark (R > 0.4) in both periods (Emery et al., 2017).

3.2 Spatial seasonal variability of predictions

For all pollutants, models and periods, maps of mean concen-
trations were constructed to visualize the spatial differences
(Appendix D). In order to summarize the results, other spatial
plots were also prepared: median ensemble (Fig. 7), median
absolute deviation (Fig. E1 in Appendix E) and mean stan-
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dard deviation (Fig. E2). In Fig. 7, pollution hot spots are
clearly visible around major urban areas, in particular in São
Paulo on the southeastern coast and Mexico City in the north-
western part of the continent. São Paulo and Mexico City
each cover a significant area, of approximately 3600 km2,
spanning at least nine modeling cells (400 km2 each). This
extensive coverage offers some spatial representation of the
physical and chemical atmospheric processes. Other regions
highlighted on the maps include Lima and Santiago on the
Pacific coast, Buenos Aires along the southern shore of the
Río de la Plata, and cities in the northern part of South Amer-
ica like Quito, Bogotá, Medellín and Caracas. However, most
of these cities are encompassed by six or fewer modeling
cells, limiting the potential for significant spatial variation.

The temporal seasonality can also be observed in Fig. 7.
The left and right panels show results for January and July,
corresponding to the Southern Hemisphere summer and win-
ter, respectively. For SO2, major hot spots appear in Mexico
City, São Paulo and the surrounding areas, and the Pacific
coast in Chile. The SO2 concentrations are associated with
volcanic emissions and the use of coal in power generation,
cement production and copper smelting, which are active in
both summer and winter (Huneeus et al., 2006; SEMARNAT
and INECC, 2020). Similarly, NO2 hot spots are common in
major urban areas due to transportation emissions.

In January, the median ensemble shows high concentra-
tions of PM10 in several areas. In the south of Argentina, the
concentrations are primarily due to dust from the Patagonia
desert areas (Gassó and Torres, 2019). In the north of Brazil
and the Guianas, increased PM10 levels are most likely asso-
ciated with fires in the Orinoco basin during the dry season
(Hernandez et al., 2019). In a similar manner, PM2.5 concen-
trations show an increase in the northern part of Brazil due to
biomass burning. Large concentrations of PM2.5 in São Paulo
in both January and July are probably caused by overestima-
tion of fires, as previously discussed.

During the austral summer, the southeastern part of Brazil
(including São Paulo) displays high concentrations of ozone
that were simulated mainly by the regional models WRF–
Chem and EMEP and the global SILAM (Fig. D3 in Ap-
pendix D). Several studies have shown the influence of urban
plumes of NO2 on the Amazon rainforest, rich in BVOCs,
with the consequent generation of ozone (Rafee et al., 2017;
Nascimento et al., 2022). In January, simulated O3 concen-
trations are also high in Mexico City during winter, a sit-
uation that has been observed in other studies (Barrett and
Raga, 2016). There is a maximum of CO in the area be-
tween north of Argentina, south of Bolivia, Paraguay and
south of Brazil, probably related to fires and the abundance
of BVOCs.

In July, during the austral winter, concentrations of CO,
PM2.5 and PM10 are significant in Santiago due to transporta-
tion and residential heating emissions under adverse mete-
orological conditions. PM10 concentrations are high in the
Caribbean and central Mexico, primarily due to the transport

of Saharan dust into these urban areas (Kramer and Kirt-
man, 2021; Ramírez-Romero et al., 2021). Similarly, along
the Pacific coast between Chile and Peru, increased PM10
is probably explained by anthropogenic emissions of cop-
per smelters in connection with strong eastern wind events
(Huneeus et al., 2006). Large concentrations of O3 are vis-
ible in Mexico City that are associated with clear skies un-
der high-pressure atmospheric conditions (Barrett and Raga,
2016). Elevated O3 values in the Andes between northern
Chile and central Peru might be explained by the abundance
of VOCs from metropolitan regions and industrial zones
(Seguel et al., 2020).

The median absolute deviation maps (Fig. E1) and the
standard deviation maps (Fig. E2) display spatial differences
between model simulations. In particular, for particulate mat-
ter (PM10 and PM2.5) a notorious dissimilarity is observed in
northern Brazil in January, Venezuela in July and the south of
Argentina in both periods. The reason for this disagreement
is the simulation of the WRF–MPI model, which contributes
with significant PM mass in the mentioned zones, probably
due to an overestimation of fires in the northern part of the
continent and dust in the southern areas. In July, CO showed
large differences in the Colombian and Peruvian Amazon,
mostly driven by the EMEP model. This situation might be
related to an incorrect estimation of BVOC emissions as pre-
cursors of CO in forested areas. The inadequate simulation
of NO2 by the CAMS model, explained in Sect. 3.1.1, is the
cause of the large standard deviation of model results for this
pollutant.

3.3 Large versus small urban areas

The coarse resolution used in the modeling systems
(0.2°× 0.2°) poses challenges in adequately representing
the intricate topography and diverse meteorological condi-
tions of the different cities in LAC. Capturing these phys-
ical phenomena can be very difficult and requires a finer
scale with much greater computational demand. In the last
few years, emission inventories for LAC at high spatial and
temporal resolution have been constructed (Castesana et al.,
2022; Álamos et al., 2022; Puliafito et al., 2015, 2017; Rojas
et al., 2023), and it is expected they will complement ex-
isting global emission inventories at coarse resolution. We
observe that, in large urban areas (> 3500 km2), the mod-
els tend in general to have a lower and positive MNBIAS
compared to medium-size (600< area< 3600 km2) or small-
size (area< 600 km2) cities (Fig. 8). For example, for Mex-
ico City and São Paulo, the two largest cities in LAC, the
mean of the models shows the lowest MNBIAS and FGE
for CO (−27 % to 29 %) and NO2 (−6 % to 6 %), while in
other cities they display a larger and negative MNBIAS and
FGE (Tables A2 and A4). The discrepancies in NO2 have a
corresponding impact in the overestimation of O3. For par-
ticulate matter, a similar pattern is observed, with a posi-
tive MNBIAS for larger urban areas and a negative MNBIAS
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for medium and small cities. High-resolution simulations are
necessary to resolve the spatial variation, but unfortunately
global models at high performance are scarce in the South-
ern Hemisphere (Zhang et al., 2023).

Although the size of cities can influence the performance
of the models at coarse resolution, other challenging features
for models exist. For instance, Bogotá and Santiago have
several challenges in terms of topography and meteorology
(Mazzeo et al., 2018; Nedbor-Gross et al., 2017; Reboredo
et al., 2015), and local emissions are not always accounted
for in global inventories (Castesana et al., 2022; Huneeus
et al., 2020; Osses et al., 2022; Rojas et al., 2023). Ideally,
we would have access to more cities of various sizes to make
this determination with more certainty; unfortunately, local
measured data were only available for the cities we consid-
ered.

4 Conclusions and future developments

This study performed the first intercomparison and model
evaluation effort in Latin America with the idea to develop
an AQF system that can inform the public about air pollution
episodes and support policy actions. Despite the limitations
of air quality and emissions data, as well as computing re-
sources, the scientific community in Latin America, with in-
ternational support, has achieved significant progress in air
quality modeling and in understanding the fate and transport
of pollutants in the region. For instance, the impacts of Saha-
ran dust, biomass burning from the Orinoco and the Amazon
basins, and biogenic VOCs of the Amazon rainforest are be-
coming better understood through modeling.

Several challenges still exist. In addition to the intricate to-
pography and diverse meteorological conditions, limitations
are found in anthropogenic, volcanic and biogenic emissions;
in spatial and temporal profiles; in land use and vegetation
types; and in other data that are relevant for the calculation
of wildfire emissions. This last source is crucial in the region
under a climate change scenario, for which adequate param-
eterization of biomass burning is necessary. The boundary
conditions of the models can be improved, which are espe-
cially important for long-lived species. The experience of lo-
cal researchers who have been implementing air quality mod-
els for several years can greatly benefit international efforts,
such as global emission inventories and the recently launched
WMO GAFIS initiative.

At this first stage of development, interesting and insight-
ful findings were identified for the region. Despite the fact
that some of the models were still in an early phase for re-
gional implementation, most models could adequately repro-
duce air quality observations with the best performance ob-
served for nitrogen dioxide in Mexico City and São Paulo.
These enormous urban areas (> 3500 km2) outperformed
Bogotá and Santiago, which are cities between 500 and
1000 km2. This suggests an accurate portrayal of the tem-
poral and spatial variability in large cities with the current
model resolution (0.2°× 0.2°) and the need for a finer model
domain in smaller cities that could capture circulation and
emission features. At the moment, high-resolution global
simulations in the Global South remain rare.

The ensemble median was evaluated on its potential to out-
perform individual models. In certain periods and cities, the
ensemble performed better than any individual models, for
example, when the errors of the models compensate for each
other but not when the errors are recurring in all the mod-
els. The results varied per city, pollutant and period. Before
defining whether the ensemble is the correct approximation
for an AQF system, more research is necessary. This work
only looked at 2 months (1 in summer and 1 in winter); a
thorough analysis of one entire annual cycle with sufficient
spinup time should be conducted. More observations should
also be included for model calibration and evaluation. For
2015, only eight cities in LAC had data that complied with
quality and completeness criteria. In recent years, more AQ
networks have been implemented and data are more publicly
available.
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Figure 7. Spatial variability of simulated PM10, PM2.5, O3 and CO in LAC for January and July 2015 (based on the median of the models).

Figure 8. MNBIAS estimated for large and small urban areas.
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Appendix A: Evaluation scores

Table A1. Metrics used for model evaluation.

Metric Formula for each city, model and month

Model / observation ratio ratio= m

O
=

∑
dmd∑
dOd

Mean bias BIAS= 1
N

∑
d (md−Od)

Modified normalized bias MNBIAS= 2
N

∑
d
md−Od
md+Od

Fractional gross error FGE= 2
N

∑
d |
md−Od
md+Od

|

Root mean square error RMSE=
√

1
N

∑
d (md−Od)2

Correlation coefficient R = 1
N

∑
d (md−m)(Od−O)

σmσO

Coefficient of variation CV= σm
m

or CV = σO
O

Metric formula for each pixel and hour

Median of models (ensemble) MED=median({mi}) with i ∈N,1≥ i ≥ 6

Metric formula for each pixel

Median absolute deviation MAD=median({|mi,d −MEDd |})
i ∈N,1≤ i ≤ 6 and d ∈N,1≤ d ≤ 31

Metric formula for each city, day and model

Observation Od =
∑
j,kgAj,kMj,k with

∑
j,kgAj,k = 1

j,k ∈N representing a specific pixel
gAj,k proportion of area of the pixel with the area of the polygon of the city

Od and md are the observation and modeled value for each day. m is the mean of the models for each month and O the mean of the observations
for each city. σm denotes the standard deviation for each model. N is the number of model–observation pairs available for each month.
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Table A8. Coefficient of variation (CV) per city during January and July.

City NO2 O3 CO SO2 PM2.5

Santiago 22 % 29 % 13 % 58 % 10 % 33 % 15 % 20 % 22 % 32 %
Bogotá 22 % 18 % 23 % 23 % 29 % 17 % 28 % 34 % 33 % 18 %
São Paulo 35 % 31 % 37 % 38 % 26 % 31 % 37 % 41 % 49 % 45 %
Mexico 24 % 23 % 31 % 20 % 24 % 26 % 60 % 30 % 37 % 24 %

Appendix B: Air quality observations

Table B1. Station availability and location for Mexico City.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

Mexico number of stations 21 24 21 24 21 24 21 24 21 24 21 24 21 24
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.24 0.26 0.29 0.22 0.26 0.20 0.24 0.15 0.36 0.29 0.50 0.16 0.35 0.35

NO2

Mexico number of stations 24 24 24 24 24 24 24 24 24 24 24 24 24 24
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.24 0.23 0.29 0.21 0.46 0.52 0.22 0.15 0.30 0.24 0.38 0.14 0.38 0.38

O3

Mexico number of stations 21 29 28 29 28 29 28 29 28 29 28 29 28 29
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.31 0.20 0.25 0.22 0.17 0.14 0.27 0.23 0.41 0.26 0.32 0.33 0.28 0.30

PM10

Mexico number of stations 17 24 17 24 17 24 17 24 17 24 17 24 17 24
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.27 0.20 0.55 0.27 0.28 0.23 0.24 0.26 0.48 0.31 0.52 0.25 0.48 0.43

PM2.5

Mexico number of stations 14 16 14 16 14 16 14 16 14 16 14 16 14 16
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.37 0.24 0.52 0.32 0.28 0.22 0.25 0.19 0.34 0.19 0.52 0.30 0.48 0.46

SO2

Mexico number of stations 23 26 23 26 23 26 23 26 23 26 23 26 23 26
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.60 0.30 0.35 0.20 0.25 0.09 0.26 0.15 0.30 0.14 0.38 0.18 0.35 0.28

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability
refers to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days and USP missing information for Mexico, given their
simulation domain did not include it.
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Table B2. Station availability and location for Bogotá.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

Bogotá number of stations 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.29 0.17 0.16 0.17 0.10 0.13 0.18 0.14 0.26 0.17 0.18 0.14 0.25 0.31 0.33 0.30

NO2

Bogotá number of stations 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.22 0.18 0.24 0.26 0.42 0.57 0.21 0.14 0.30 0.15 0.28 0.39 0.28 0.24 0.37 0.29

O3

Bogotá number of stations 10 11 10 11 10 11 10 11 10 11 10 11 10 11 10 11
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.23 0.23 0.11 0.13 0.08 0.11 0.22 0.21 0.14 0.19 0.18 0.15 0.18 0.27 0.35 0.24

PM10

Bogotá number of stations 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.27 0.22 0.31 0.19 0.16 0.21 0.33 0.52 0.37 0.17 0.26 0.14 0.37 0.40 0.33 0.34

PM2.5

Bogotá number of stations 9 10 9 10 9 10 9 10 9 10 9 10 9 10 9 10
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.33 0.18 0.29 0.22 0.16 0.22 0.29 0.40 0.40 0.18 0.28 0.11 0.40 0.42 0.34 0.33

SO2

Bogotá number of stations 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.28 0.34 0.22 0.20 0.12 0.15 0.24 0.20 0.41 0.24 0.24 0.45 0.32 0.18 0.30 0.37

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability
refers to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days.
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Table B3. Station availability and location for Santiago.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

Santiago number of stations 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.10 0.33 0.10 0.19 0.27 0.29 0.13 0.10 0.13 0.16 0.12 0.29 0.17 0.25 0.13 0.20

NO2

Santiago number of stations 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.22 0.29 0.11 0.16 0.36 0.32 0.17 0.14 0.14 0.13 0.11 0.28 0.17 0.26 0.21 0.27

O3

Santiago number of stations 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.13 0.58 0.16 0.24 0.16 0.20 0.24 0.14 0.13 0.29 0.17 0.22 0.24 0.60 0.25 0.40

PM10

Santiago number of stations 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.20 0.36 0.15 0.20 0.24 0.23 0.24 0.17 0.14 0.22 0.16 0.31 0.23 0.27 0.20 0.22

PM2.5

Santiago number of stations 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.22 0.32 0.15 0.13 0.24 0.23 0.20 0.13 0.12 0.19 0.16 0.32 0.29 0.29 0.20 0.22

SO2

Santiago number of stations 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.15 0.20 0.16 0.18 0.11 0.16 0.18 0.14 0.12 0.19 0.21 0.22 0.17 0.36 0.12 0.17

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability refers
to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days.
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Table B4. Station availability and location for São Paulo.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

São Paulo number of stations 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.26 0.31 0.26 0.31 0.37 0.42 0.22 0.34 0.29 0.48 0.42 0.26 0.40 0.50 0.41 0.34

NO2

São Paulo number of stations 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.35 0.31 0.28 0.27 1.13 0.87 0.27 0.33 0.26 0.36 0.34 0.20 0.45 0.53 0.49 0.45

O3

São Paulo number of stations 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.37 0.38 0.35 0.44 0.32 0.36 0.33 0.48 0.35 0.57 0.38 0.43 0.47 0.85 0.43 0.41

PM10

São Paulo number of stations 23 22 23 22 23 22 23 22 23 22 23 22 23 22 23 22
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.39 0.37 0.27 0.33 0.34 0.36 0.27 0.36 0.40 0.75 0.39 0.33 0.56 0.76 0.47 0.38

PM2.5

São Paulo number of stations 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.49 0.45 0.29 0.37 0.34 0.36 0.26 0.38 0.35 0.60 0.40 0.32 0.61 0.88 0.47 0.37

SO2

São Paulo number of stations 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.37 0.41 0.28 0.31 0.28 0.36 0.26 0.40 0.31 0.48 0.30 0.39 0.35 0.46 0.34 0.34

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability refers
to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days.
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Table B5. Station availability and location for Quito.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

Quito number of stations 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.17 0.16 0.15 0.15 0.07 0.06 0.14 0.12 0.31 0.32 0.18 0.12 0.15 0.16 0.34 0.26

NO2

Quito number of stations 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.24 0.18 0.16 0.28 0.49 0.46 0.20 0.16 0.26 0.31 0.22 0.27 0.18 0.18 0.37 0.32

O3

Quito number of stations 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.17 0.20 0.13 0.13 0.08 0.07 0.21 0.21 0.26 0.20 0.20 0.12 0.24 0.27 0.33 0.18

PM10

Quito number of stations 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.34 0.24 0.22 0.23 0.14 0.12 0.25 0.33 0.26 0.41 0.19 0.16 0.22 0.38 0.40 0.26

PM2.5

Quito number of stations 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.19 0.24 0.20 0.19 0.14 0.12 0.21 0.24 0.23 0.32 0.19 0.13 0.23 0.33 0.40 0.26

SO2

Quito number of stations 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.33 0.35 0.21 0.33 0.09 0.08 0.19 0.17 0.19 0.27 0.19 0.25 0.12 0.19 0.34 0.34

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability refers
to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days.
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Table B6. Station availability and location for Medellín.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

Medellín number of stations 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
availability [%] 76.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.14 0.11 0.10 0.09 0.08 0.13 0.13 0.13 0.34 0.30 0.19 0.09 0.14 0.12 0.18 0.14

NO2

Medellín number of stations 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.19 0.16 0.13 0.17 0.68 0.70 0.16 0.15 0.37 0.25 0.25 0.18 0.24 0.16 0.20 0.20

O3

Medellín number of stations 4 3 4 3 4 3 4 3 4 3 4 3 4 3 4 3
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.21 0.17 0.13 0.10 0.12 0.14 0.13 0.18 0.17 0.21 0.11 0.11 0.18 0.26 0.30 0.17

PM10

Medellín number of stations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.16 0.20 0.14 0.15 0.17 0.29 0.32 0.39 0.22 0.33 0.13 0.16 0.22 0.18 0.31 0.37

PM2.5

Medellín number of stations 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.15 0.14 0.14 0.15 0.18 0.30 0.27 0.30 0.18 0.25 0.14 0.13 0.22 0.20 0.27 0.35

SO2

Medellín number of stations 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
availability [%] 10 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.20 0.19 0.26 0.20 0.20 0.23 0.28 0.22 0.74 0.52 0.17 0.15 0.27 0.31 0.22 0.25

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability refers
to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days.
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Table B7. Station availability and location for Lima.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

Lima number of stations 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.21 0.17 0.08 0.09 0.08 0.10 0.11 0.09 0.10 0.08 0.36 0.13 0.33 0.19 0.20 0.14

NO2

Lima number of stations 2 6 2 6 2 6 2 6 2 6 2 6 2 6 2 6
availability [%] 93.33 96.67 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.23 0.16 0.10 0.13 0.38 0.70 0.08 0.11 0.14 0.10 0.25 0.12 0.20 0.19 0.20 0.19

O3

Lima number of stations 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.47 0.29 0.14 0.13 0.18 0.15 0.17 0.08 0.12 0.10 0.12 0.12 0.19 0.18 0.31 0.25

PM10

Lima number of stations 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.13 0.27 0.09 0.12 0.13 0.18 0.16 0.19 0.24 0.23 0.11 0.11 0.20 0.18 0.16 0.23

PM2.5

Lima number of stations 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.16 0.22 0.12 0.13 0.13 0.18 0.18 0.14 0.20 0.11 0.18 0.13 0.28 0.23 0.16 0.23

SO2

Lima number of stations 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100 100 100
CV 0.19 0.37 0.15 0.11 0.12 0.05 0.10 0.12 0.19 0.10 0.22 0.21 0.24 0.16 0.19 0.15

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability refers
to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days.
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Table B8. Station availability and location for Guadalajara.

Obs Ensemble CAMS MPI EMEP CHIM SILAM USP

Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul Jan Jul

CO

Guadalajara number of stations 7 7 7 7 7 7 7 7 7 7 7 7 7 7
availability [ %] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.20 0.12 0.22 0.14 0.20 0.13 0.14 0.18 0.28 0.20 0.32 0.16 0.30 0.27

NO2

Guadalajara number of stations 8 8 8 8 8 8 8 8 8 8 8 8 8 8
availability [%] 100 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.25 0.17 0.30 0.17 0.64 0.88 0.16 0.18 0.34 0.24 0.39 0.28 0.32 0.33

O3

Guadalajara number of stations 8 8 8 8 8 8 8 8 8 8 8 8 8 8
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.16 0.31 0.16 0.16 0.28 0.24 0.22 0.27 0.22 0.16 0.18 0.12 0.26 0.27

PM10

Guadalajara number of stations 8 8 8 8 8 8 8 8 8 8 8 8 8 8
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.22 0.20 0.32 0.20 0.28 0.29 0.34 0.47 0.34 0.25 0.31 0.19 0.36 0.37

SO2

Guadalajara number of stations 8 8 8 8 8 8 8 8 8 8 8 8 8 8
availability [%] 96.67 100 100 100 100 100 100 100 100 100 83.33 66.67 100 100
CV 0.52 0.41 0.33 0.12 0.26 0.17 0.20 0.21 0.26 0.16 0.28 0.23 0.30 0.28

The observation availability refers to the percentage of days in each period when at least one station records enough data to construct their daily average (minimum of 18 h).
Additionally, only stations that maintain at least 75 % of daily availability throughout the entire period are considered (at least 23 d with 18 h minimum). The model availability refers
to the percentage of days for which we have modeled data, with CHIMERE being the only one with missing days and USP missing information for Guadalajara, given their simulation
domain did not include it.
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Appendix C: Particular hourly simulations

Figure C1. Hourly CO simulations in São Paulo for January and July 2015.

Figure C2. Hourly PM2.5 simulations in São Paulo for January and July 2015.

Figure C3. Hourly PM2.5 simulations in Mexico City for January and July 2015.
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Appendix D: Simulation of all models

Figure D1. NO2 simulations of January 2015 for all models.

Figure D2. NO2 simulations of July 2015 for all models.
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Figure D3. O3 simulations of January 2015 for all models.

Figure D4. O3 simulations of July 2015 for all models.
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Figure D5. CO simulations of January 2015 for all models.

Figure D6. CO simulations of July 2015 for all models.
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Figure D7. SO2 simulations of January 2015 for all models.

Figure D8. SO2 simulations of July 2015 for all models.
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Figure D9. PM2.5 simulations of January 2015 for all models.

Figure D10. PM2.5 simulations of July 2015 for all models.
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Appendix E: Model deviations

Figure E1. Median absolute deviation (MDA) of the models with respect to the ensemble for PM10, PM2.5, O3, CO, SO2 and NO2 in LAC
for January and July 2015.
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Figure E2. Standard deviation (SD) of the models with respect to their mean for PM10, PM2.5, O3, CO, SO2 and NO2 in LAC for January
and July 2015.

Code and data availability. All model data analyzed in the in-
tercomparison are archived at https://doi.org/10.5281/zenodo.
10934489 (Pachón et al., 2024). The tool to create the plots, MO-
SPAT, can additionally be found on GitHub at https://github.com/
NeoMOSPAT/NeoMOSPAT_PAPILA.git (Huneeus and Opazo,
2024).
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