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Abstract. Process-based ecosystem models are increasingly
important for predicting forest dynamics under future envi-
ronmental conditions, which may encompass non-analogous
climate coupled with unprecedented disturbance regimes.
However, challenges persist due to the extensive number of
model parameters, scarce calibration data, and trade-offs be-
tween the local precision and the applicability of the model
over a wide range of environmental conditions. In this pa-
per, we describe a protocol that allows a modeller to collect
transferable ecosystem properties based on ecosystem char-
acteristic criteria and to compile the parameters that need to
be described in the field.

We applied the procedure to develop a new parameterisa-
tion for European beech (Fagus sylvatica L.) for the Biome-
BGCMuSo model, the most advanced member of the Biome-
BGC family. For model calibration and testing, we utilised
multiyear forest carbon data from 87 plots distributed across

five European countries. The initial values of 48 new eco-
physiological parameters were defined based on a literature
review. The final values of six calibrated parameters were
optimised for single sites as well as for multiple sites using
generalised likelihood uncertainty estimation (GLUE) and
model output conditioning that ensured plausible simulations
based on user-defined ranges of carbon stock output variables
(carbon stock in aboveground wood biomass, soil, and litter)
and finding the intersections of site-specific plausible param-
eter hyperspaces. To support the model use, we tested the
model performance by simulating aboveground tree wood,
soil, and litter carbon across a large geographical gradient of
central Europe and evaluated the trade-offs between param-
eters tailored to single plots and parameters estimated using
multiple sites.

Our findings indicated that parameter sets derived from
single sites provided an improved local accuracy of simula-
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tions of aboveground wood, soil, and litter carbon stocks by
35 %, 55 %, and 11 % in comparison to the a priori parame-
ter set. However, their broader applicability was very limited.
A multi-site optimised parameter set, on the other hand, per-
formed satisfactorily across the entire geographical domain
studied here, including on sites not involved in the parameter
estimation, but the errors were, on average, 26 %, 35 % and
9 % greater for the aboveground wood, soil, and litter carbon
stocks than those obtained with the site-specific parameter
sets. Importantly, model simulations demonstrated plausible
responses across large-scale environmental gradients, featur-
ing a clear production optimum of beech that aligns with em-
pirical studies. These findings suggest that the model is capa-
ble of accurately simulating the dynamics of European beech
across its range and can be used for more comprehensive ex-
perimentations.

1 Introduction

Complex process-based vegetation dynamics models
(PBMs) typically contain many parameters that specify
physiology, biochemistry, phenology, and allocation patterns
of different vegetation types or species (Cameron et al.,
2013; van Oijen, 2017). Parameter values are estimated
based on different field or laboratory measurements, trial-
and-error parameter adjustments, or probabilistic methods
(Forrester et al., 2021). A comprehensive review of cal-
ibration methods can be found in Hollés et al. (2022).
Thereby, each measurable parameter has its own variability
that emerges from environmental conditions, sampling, and
measurement errors. Such a value range can be interpreted as
a parameter probability distribution or parameter uncertainty
(van Oijen, 2017). Calibration is often applied to narrow
the initial parameter ranges and capture regional or local
peculiarities.

The challenges of model calibration include a selection of
the most influential variables to be calibrated using a sensitiv-
ity analysis (SA) and coping with equifinality, i.e. a situation
when various combinations of parameter values produce the
same results (Beven, 2006). To this end, different calibration
approaches, such as trial-and-error parameter adjustments or
probabilistic methods (Forrester et al., 2021; Hollds et al.,
2022), including Bayesian methods (Fer et al., 2018; van Oi-
jen, 2017) or the generalised likelihood uncertainty estima-
tion (GLUE) (Beven and Binley, 2014), have been proposed.
The calibration can focus on one or several variables simulta-
neously. Multivariate approaches are preferred as they aim to
identify parameter values that minimise the differences be-
tween simulated and observed values of multiple variables
(Kamali et al., 2022; Wohling et al., 2013). The spatial aspect
may be dealt with in a similar manner. The model calibrated
for single sites provides outputs with a high local accuracy,
whereas it loses the ability to generalise outside the calibra-
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tion data (Blyth et al., 2011; Kramer et al., 2002; Levins,
1966). Therefore, introducing advanced calibration designs
that are supposed to maintain a balance between the local ac-
curacy and wide applicability and provide good performance
across multiple variables is needed.

In this study, we aimed to formulate a calibration workflow
that offers improvements beyond the broadly used methods
detailed in Keenan et al. (2011) and Wallach et al. (2021). We
used the process-based model Biome-BGCMuSo (BBGC-
MuSo; Hidy et al., 2016, 2022, 2012), which is the most
rapidly developing member of the Biome-BGC model fam-
ily (Thornton, 1998). It simulates the storage and fluxes of
carbon, nitrogen, and water within and between the pools.
The model has been extensively used in the research of for-
est ecosystems concerning their productivity (Kimball et al.,
1997; Sever et al., 2017), carbon (Churkina et al., 2003; Os-
trogovi¢ Sever et al., 2021; Yan et al., 2016), water (Pietsch
et al.,, 2003), and nitrogen dynamics (Merganicova et al.,
2005; Pietsch et al., 2003), including effects of climate
change (Churkina and Running, 2000; Hlasny et al., 2011;
Jager et al., 2000; White et al., 1999). The recent devel-
opments of BBGCMuSo included a multilayer soil profile;
complex water cycling between soil, vegetation, and atmo-
sphere; intra-annual phenology; and complex management
operations (Hidy et al., 2012, 2016, 2022). However, robust
testing of ecological plausibility and model performance in
forest ecosystems as well as regionally calibrated species-
specific parameter sets are still lacking. These tasks are chal-
lenging given the substantial increase in model structural
complexity and the number of parameters, which limit the
use of former parameter sets (Pietsch et al., 2005).

The aim of this study is to develop a multi-objective cali-
bration procedure of model parameters that considers balanc-
ing the trade-off between the local precision of model out-
puts and a broad applicability of parameters and to perform a
comprehensive model benchmarking of the ecological plau-
sibility of model results across a large environmental gradi-
ents. We hypothesise that parameter estimates optimised for
single sites are not sufficiently robust to be applied across
large geographical space, while the multi-site optimisation
reduces the ability of the model to capture the phenotypic
plasticity of vegetation that causes alterations in plant prop-
erties, e.g. allocation ratios between different plant organs in
response to environmental conditions, thereby reducing the
local accuracy (Gratani, 2014). The proposed method was
applied to calibrate ecophysiological parameters of BBGC-
MuSo v6.2 for European beech (Fagus sylvatica L.), the most
widespread deciduous tree species in Europe. These findings
may serve as a reference for calibrating other tree species
and/or different models.
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2 Data and methods
2.1 Model

Biome-BGCMuSo (Hidy et al., 2012, 2016, 2022) is a de-
scendant of the Biome-BGC model (Thornton, 1998). It is
a biogeochemical model that simulates cycling of carbon,
water, nitrogen, and energy in terrestrial ecosystems at a
daily time step (Thornton, 1998). Biome-BGC was one of
the earliest biogeochemical models that included explicit car-
bon, water, and nutrient cycles. The represented processes
include photosynthesis, evapotranspiration, allocation, respi-
ration, litterfall, and decomposition (Thornton et al., 2002).
These processes are defined for a unit ground area that is
considered homogeneous. A so-called “two-leaf” model that
represents stand foliage with one sunlit and one shaded leaf
is used to simulate radiation interception, evapotranspira-
tion, and gross primary production for the sunlit and shaded
canopy fractions (Thornton and Rosenbloom, 2005). The
modelled ecosystem consists of several components repre-
senting different plant parts (leaf, stem, and roots), litter, soil,
and coarse woody debris. The ecosystem status and dynam-
ics are represented by carbon (C), nitrogen (N) and water
(W) pools and fluxes between the pools. The main pools rep-
resent the leaf (C, W, N), aboveground wood (C, N), coarse
root (C, N), fine root (C, N), coarse woody debris (C, N),
litter (C, N), soil (C, W, N), yield (C, N), standing dead
biomass (C, N), and cut-down biomass (C, N). BBGCMuSo
contains a number of new features, including a multilayer
soil representation that allows for the simulation of more re-
alistic dynamics of water, carbon, and nitrogen across the
soil profile; a possibility of using dynamic annual mortal-
ity rates; adjustable intra-annual allocation driven by phe-
nology; improved representation of transpiration, soil evap-
oration, and inorganic nitrogen; and flexible simulation of
management operations, including forest thinning and har-
vesting (Hidy et al., 2012, 2016, 2022). It can also simulate
acclimation to temperature and short-term temperature de-
pendence of maintenance respiration, drought legacy effects
through a reduction in non-structural carbohydrate storage
pools, and a CO»-concentration-dependent stomatal conduc-
tance (Hidy et al., 2016). The model version 6.2 uses 53
soil-related and 105 ecophysiological parameters (Hidy et
al., 2021), of which some are site-specific (e.g. soil depth
ad soil texture), while others, such as the C : N ratio in dif-
ferent tree compartments, are species-specific. The number
of parameters in BBGCMuSo has been tripled in compari-
son to the original model, Biome-BGC, although 17 parame-
ters concern crops and are not relevant for forest ecosystems.
To perform simulations, a species or a plant functional type
needs to be defined. In addition, site, soil, and daily climate
data are required inputs. In the case of forest ecosystems,
stand age and past forest management are also necessary in-
put data. The model, including its source code, is available at
https://nimbus.elte.hu/bbgc/ (last access: 9 October 2024).
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2.2 Data

The dendrometric and environmental data represented 87 for-
est sites distributed across central Europe within the distri-
butional range of European beech (Fig. 1). The dataset in-
cludes sites from the International Co-operative Programme
on Assessment and Monitoring of Air Pollution Effects on
Forests (ICP Forests; Michel et al., 2018) long-term forest
research plots from thinning trials supervised by different na-
tional institutions and highly instrumented intensively mon-
itored plots equipped with weather stations, dendrometers,
and instruments measuring sap flow, soil water content, etc.
(Table S2 in the Supplement). The plots are located in Croa-
tia, Hungary, Slovakia, Czech Republic, and Poland along an
elevation gradient from 20 to 1325 m a.s.l. Their mean annual
precipitation totals vary from 419 to 1883 mm, mean annual
temperatures range from 3.5 to 13.3 °C, and soil depths vary
between 0.4 and 2 m (Table 1). Most plots were of a circular
shape from 0.09 to 1.05 ha in size. Forest stands were estab-
lished between 1787 and 1984, i.e. their age in the year 2022
varied from 38 to 235 years. Both managed and unmanaged
forest stands, originating from either natural or artificial re-
generation or a combination thereof, are represented. Time
series lengths and the number of observations differed be-
tween the sites depending on the year of plot establishment
and the frequency of re-measurements of tree dimensions.
The maximum time series length was 60 years, and the max-
imum number of observations in a single series was 30.

Out of the whole dataset, 11 beech-dominated sites with
the most comprehensive data and the balanced coverage of
the geographical and environmental space were used for
model calibration (hereafter referred to as calibration sites;
Fig. 1; Table 1). The northern part of the selected region is
underrepresented due to the insufficient data for model cal-
ibration at northern sites. Eight beech-dominated sites with
repeated stand measurements covering the full range of en-
vironmental conditions represented in our database (Table 1)
were used for an independent model validation (hereafter re-
ferred to as validation sites). All 87 sites were used for testing
the plausibility (realism) of simulated output. The compari-
son of beech natural distribution ranges (Pagan, 1996) with
the covered ranges of latitude, elevation, climatic, and soil
characteristics suggested that the selected sites should be rep-
resentative of the central European beech population.

The dataset contains information on site, forest stand
structure and development, soil, climate, nitrogen deposition,
and physiological processes (Table S2). Site description data
comprise plot coordinates (latitude and longitude), elevation,
aspect, and slope. Forest stand data comprise information on
tree species composition, stand age, stand structure, individ-
ual tree dimensions or mean stand characteristics (e.g. mean
diameter at breast height, DBH, and mean tree height, H),
mortality, applied management, and damages. Soil dataset
contains soil depth, texture, pH, nutrient stocks, and indica-
tors of water regime. If soil information was not available,
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Figure 1. (a) Distribution of used forest sites across Europe with the forest cover displayed in the background (CLMS, 2023). (b) The
coverage of the entire climatic space of European beech in Europe (represented by grey dots using data from Caudullo et al., 2017) by the
used forest sites. Black dots indicate the 87 sites used for testing model plausibility. Red triangles indicate 11 data-rich sites used for the
calibration of the BBGCMuSo model. Blue crosses (a) and diamonds (b) represent eight validation sites.

Table 1. Summary of site and forest stand characteristics for the whole data set (All) and calibration and validation sets. Climate data

represent the period from 1950 to 2018. NA: not available.

Dataset

All

Calibration

Validation

Number of sites

87

11

8

Dominant tree species

Fagus sylvatica,
Picea abies,
Pinus sylvestris,
Quercus spp.

Fagus sylvatica

Fagus sylvatica

Site variables

Mean (min-max)

Years with observations

Latitude [°]
Longitude [°]
Elevation [ma.s.1.]

Annual precipitation [mm]
Mean temperature [°C]

Soil depth [m]
Plot size [ha]
Stand age [yr]

(1990-2018)
(45.4814-54.559 N)
(14.2736-23.72E)
544.2 (20-1325)
789 (419-1884)
7.75 (3.52-13.28)

(1949-2018)
(44.8164-50.7349 N)
(14.3000-22.4917E)
686.8 (240-1325)
1018 (663-1884)
7.34 (4.86-10.3)

(1990-2018)
(45.4814-54.5592 N)
(14.2736-19.4701 E)
502.5 (120-1180)
784 (458-1592)

8.37 (6.41-11.11)

0.99 (0.4-2) 0.92 (0.45-2) 0.99 (0.5-1.8)
0.31 (0.09-1.05) 0.45 (0.25-1.05) 0.28 (0.09-0.84)
84 (35-232) 118 (64-232) 79 (41-122)

Aboveground wood carbon [kgC m72] 8.62 (0.01-36.87)
Soil carbon [kgC m_z] 13.31 (1.13-16.24)
0.256 (0.086-0.344)

Litter carbon [kgC m™2]

16.92 (0.03-35.87)  16.89 (4.30-33.74)
1321 (1.13-1624)  NA
0.256 (0.086-0.344)  NA

it was obtained from the Harmonized World Soil Database
(HWSD v1.21; FAO, 2012) that provides soil attributes, such
as soil depth, soil texture, and pH, at a grid cell size of ap-
proximately 1km.

Climate data include daily values of the minimum and
maximum temperature, solar radiation, precipitation, and
vapour pressure deficit (VPD). These data were compiled
from different sources, including observations at individual
sites and nearby meteorological stations, or, if no local data
were available, the E-OBS gridded dataset, providing the
daily minimum and maximum temperature and precipitation
with a 0.1° resolution was used (Cornes et al., 2018). The
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climate data covered the period from 1950 to 2018. To cope
with the limited availability of the local data, we combined
the on-site measurements with the E-OBS data. The MT-
CLIM model (Hungerford et al., 1989) was used to extrapo-
late the climate time series from the nearest E-OBS grid cell
to account for the elevation difference between the source
cell and the target site and to calculate daylight values of
mean temperature, VPD, solar radiation, and day length at
individual sites required by BBGCMuSo.

Annual CO, data were taken from Mauna Loa observa-
tions (Keeling et al., 1976). Since nitrogen deposition data

https://doi.org/10.5194/gmd-17-7317-2024
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were directly available only for ICP Forests plots, they were
taken from Tian et al. (2018) for the remaining sites.

Data about site, soil texture, pH, stand age, management,
nitrogen deposition, CO, concentration, and daily climate
data were used as model inputs to run site-specific simula-
tions. Model calibration and validation were based on carbon
stocks in aboveground wood, litter, and soil (AbgwC, Lit-
terC, and SoilC). AbgwC was derived from the dendromet-
ric characteristics of individual trees by first calculating the
total aboveground wood volume using species-specific two-
parameter regressions (Petrd$ and Pajtik, 1991). The pro-
duced values were subsequently converted to carbon stock
using the species-specific basic wood density (Merganic et
al., 2017; 570 kg m~3 for beech) and 50 % carbon content in
biomass (IPCC, 2003).

2.3 Simulation design

The simulations were performed in three steps: (1) spin-up
run, (2) transient run, and (3) normal run (Hidy et al., 2021).
The spin-up was performed with a constant CO, concentra-
tion and nitrogen deposition equal to the pre-industrial values
of 277.15 ppm and 0.002 kgN m~2 yr~!, respectively. During
the transient run, CO; concentration and nitrogen deposition
increased annually from the pre-industrial to the current val-
ues. The transient run started in 1850 and lasted until the year
preceding the establishment of the current stand. Hence, the
length of the transient run varied between sites, and it was
used only for the simulations of the stands established af-
ter 1850, while the maximum length of the transient run was
134 years. Both spin-up and transient runs were performed
with no management, no fire-induced mortality, and a con-
stant natural (background) mortality.

The normal run was driven by the temporally varying CO;
and N deposition and included management reconstructed
based on forest inventory records or yield tables if no site-
specific information on management interventions was avail-
able. The simulations started at stand age O (i.e. the year of
stand establishment) and continued to the present days; i.e.
the simulation length equalled the actual stand age. In simu-
lation year 1, a clear-cut was applied followed by the removal
of 90% of the aboveground woody biomass accumulated
during the spin-up and transient runs, with all non-woody
biomass, i.e. the foliage, remaining in the stand. Natural mor-
tality was changing annually (Fig. S1 in the Supplement).
In the first 30 years after the stand establishment, natural
mortality rates followed a decreasing exponential function,
reaching the highest annual mortality rate 1 year after the
stand establishment and having a subsequent gradual reduc-
tion over time, resembling the survival rates of forest regen-
eration from experimental studies focusing on beech (Barna
et al., 2011; Hiilsmann et al., 2018). After 30 years, we used
a constant annual mortality rate of 0.9 % (Pajtik et al., 2018;
Vanoni et al., 2019) in managed stands, while unmanaged
stands were simulated using the dynamic natural mortality
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rates that fluctuated between 0.76 % and 4.1 % during a cycle
of 300 years, following the elliptical function (Mergani¢ova
and Merganic, 2014).

2.4 Parameter estimation

The estimation of model parameters (i.e. model calibration)
consisted of several phases (Fig. 2) described below.

2.4.1 A priori parameter setting

Prior to the calibration of model parameters, the default or a
priori parameter values were set (the WS1 phase in Fig. 2).
The initially defined set (column titled First in Table 2) was
defined based on values of 40 ecophysiological parameters
included in previous model versions taken from Pietsch et
al. (2005). The values of new 48 parameters, which were in-
troduced in the latest model version, were set based on the
literature review and the TRY database (Kattge et al., 2020).
This set was used for the first simulations of all 87 sites to
examine the success of simulated development. By a suc-
cessful simulation, we understand a simulation from spin-up
until the end of the normal run, during which the ecosystem
stability was maintained; i.e. carbon stocks in vegetation and
soil were accumulated during the spin-up until they reached
a balanced state, and the vegetation existence, confirmed by
non-zero values of vegetation (AbgwC, foliage, and roots)
carbon pools, was maintained throughout the entire normal
run simulation. Based on the results of unsuccessful simu-
lations, we identified parameters the values of which may
have caused the problems, such as insufficient water or nitro-
gen supply resulting in the cessation of vegetation existence.
Subsequently, we used a trial-and-error approach to alter the
respective parameters until we reached a 100 % success rate
of the simulations. Those parameter values represented an a
priori parameter set (column titled A priori in Table 2).

2.4.2 Sensitivity analysis

The sensitivity analysis (SA; the WS2 phase in Fig. 2) was
performed to identify the effect of model parameters on sim-
ulated carbon stocks in aboveground wood, soil, and litter
(AbgwC, SoilC, and LitterC) at the calibration sites (Ta-
ble 1). The three carbon stock variables were selected instead
of typically used carbon fluxes to cover a wider range of envi-
ronmental conditions since fluxes are usually measured only
at a limited number of sites. Moreover, BBGCMuSo has al-
ready been found to effectively simulate C fluxes (Hidy et
al., 2016; Maselli et al., 2009), while its ability to simulate
C stocks is much less documented (Ostrogovi¢ Sever et al.,
2021). Moreover, focusing on C stocks rather than fluxes
enables us to evaluate model performance over the multi-
decadal time span of up to 69 years represented by our data.

First, we performed a local, i.e. single-parameter, SA
(WS2a in Fig. 2) using regular sampling of parameter val-
ues from their predefined ranges based on the literature re-
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Figure 2. A general workflow used for the optimisation of ecophysiological parameters of BBGCMuSo for European beech using the multi-

objective calibration approach.

view. The sensitivity of variable i to parameter P was quan-
tified using the sensitivity index (SI) proposed by Hoffman
and Gardner (1983):

SIPi _ maxp; minp; ’ (1)
Vmax;

where Vmaxp; and Vminp; are the maximum and minimum
values of the simulated output variable i when testing the ef-
fect of parameter P, and Vmax; is the absolute maximum
value of the output variable obtained from the tests of all pa-
rameters.

Afterwards, a global, i.e. multi-parameter, SA (WS2b in
Fig. 2), which assesses the sensitivity of all selected pa-
rameters across the entire parameter space simultaneously,
was performed using the least-squares linearisation (LSL)
approach (Verbeeck et al., 2006). A commonly used global
SA method is the variance-based Sobol analysis, which per-
forms Monte-Carlo simulations on the parameter-space. The
method estimates the Sobol sensitivity index that distributes
the overall variability in model outputs to the contributions
from each model input (Saltelli et al., 2004). As the param-
eter space expands, an increasing number of Monte-Carlo
simulations is required to accurately estimate the sensitiv-
ity. To simplify this process and enhance the accuracy with
a fewer number of simulations, surrogate models are em-
ployed. The simplest surrogate models are multivariable lin-
ear models (Verbeeck et al., 2006), including LSL. This ap-
proach utilises the ordinary least-squares method to approx-
imate the process-based model with a surrogate multidimen-
sional linear model. The coefficients derived from the fitted

Geosci. Model Dev., 17, 7317-7346, 2024

model are then used to calculate the relative Sobol sensitivity
indices.

The procedure first simultaneously samples values of all
selected model parameters from their predefined ranges with
Monte Carlo simulations while assuming a multivariate uni-
form distribution. Then, the simulated outputs are examined
with regard to parameter deviations from the mean using
LSL, which splits the overall output uncertainty into its indi-
vidual sources. This allowed us to estimate the contribution
of each tested parameter to the model output uncertainty and
identify the parameters that affected AbgwC, SoilC, and Lit-
terC most. The results of SA were used to select the parame-
ters to be calibrated (WS3 in Fig. 2). The SA was performed
using the musoMonte and musoSensi functions implemented
in the RBBGCMuSo package (Hollds et al., 2023) available
at https://github.com/hollorol/RBBGCMuso (last access: 9
October 2024).

2.4.3 Parameter calibration

First, we performed a site- and variable-specific calibration
(WS4a in Fig. 2) using the GLUE method (Beven and Bin-
ley, 2014) implemented in the calibMuso function of the RB-
BGCMuSo package (Hollés et al., 2023). With this proce-
dure, a selected parameter set was optimised using the least-
squares likelihood function based on the comparison of the
simulated values of the selected output variable with the cor-
responding observations in the predefined parameter space:

(Vobstsim)2
L=e"V S 2
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Table 2. List of parameters tested and modified during the calibration of Biome-BGCMuSo for Fagus sylvatica L. Columns Min and
Max represent the minimum and maximum values used to define the parameter ranges for the sensitivity analysis and optimisation. Local
sensitivity contains the values of the sensitivity index per output variable (carbon stock in aboveground wood, soil, and litter labelled as
AbgwC, SoilC, and LitterC) calculated following Hoffman and Gardner (1983, Eq. 1). The column First is the first parameter approximation
identified based on the species-specific values derived for Biome-BGC by Pietsch et al. (2005) (in italics) and the complementary literature
review. The column A priori contains parameter values that enabled the successful simulations of all 87 sites (result of the WS1 phase in
Fig. 2). The column MSMYV contains the multi-site and multivariate calibrated parameter set (result of the WS4d phase in Fig. 2) based on 11
calibration sites and three output variables (AbgwC, SoilC, and LitterC). The calibrated parameters are indicated in bold. dim: dimensionless,
nday: number of days.

Parameter Tested range ‘ Local sensitivity ‘ Parameter set
Name Abbreviation Unit Min Max ‘ AbgwC SoilC LitterC ‘ First A priori MSMV
Transfer growth period as a fraction of growing season GP dim 0.05 0.3 0.005 0.073 0.003 0.2 0.2 0.2
Litterfall as a fraction of growing season LP dim 0.2 0.6 0.002 0.027 0.001 0.2 0.2 0.2
Base temperature T_base °C 0 7 0 0 0 5 5 5
Annual live wood turnover fraction WTF dim 0.5 1 | 0.00002  0.00026 0.00001 0.7 0.7 0.7
Annual fire mortality fraction FM dim 0 1 0.078 0.716 0.008 0 0 0
Whole-plant mortality fraction in vegetation period WPM dim 0 0.1 0.996 0.493 0.006 0.005 0.005 0.005
C: N of leaves CN_lIv kgC kgN~! 16.5 40 0.017 0.183 0.004 26.9 26.9 26.9
C : N of leaf litter after retranslocation CN_li kgCkgN~! 10 114 0.0002 0.015 0.178 44 44 44
C: N of fine roots CN_ro kgC kgN~! 10 75.8 0.005 0.054 0.007 47.6 47.6 47.6
C : N of live wood CN_lw kgCkgN~! 17 100 0.004 0.041 0.001 50 50 50
C: N of dead wood CN_dw kgCkgN~! 300 819 | 0.00002  0.0002 0.005 550 550 550
Leaf litter labile proportion LLaP dim 0.1 0.6 | 0.00002 0.111 0.004 0.124 0.124 0.124
Leaf litter cellulose proportion LCeP dim 0.1 0.7 | 0.00002 0.157 0.004 0.561 0.561 0.561
Fine-root labile proportion RLaP dim 0.1 0.6 | 0.00002 0.067 0.003 0.34 0.34 0.34
Fine-root cellulose proportion RCeP dim 0.1 0.6 | 0.00003 0.080 0.002 0.44 0.44 0.44
Dead-wood cellulose proportion WCeP dim 0.5 0.9 | 0.00004 0.361 0.376 0.77 0.77 0.77
Canopy water interception coefficient CWIC mmLAI~!d~! 0.01 0.063 0.003 0.017 0.011 0.034 0.034 0.034
Canopy light extinction coefficient CLEC dim 0.3 0.7 0.012 0.136 0.004 0.6 0.6  0.6616
All-sided to projected leaf area ratio SLA:PA dim 1.5 2.5 0.0007 0.001 0.00002 2 2 2
Ratio of shaded SLA to sunlit SLA shSLA:suSLA  dim 0.2 5 0.073 0.568 0.004 2 2 2
Fraction of leaf N in rubisco FLNR dim 0.1 0.3 0.008 0.087 0.003 0.162 0.162  0.1383
Maximum I conduct (projected area basis) MSC ms~! 0.001 0.009 0.088 0.925 0.020 0.006 0.005  0.0051
Cuticular conductance (projected area basis) cC ms~! 0.00001  0.0001 0.001 0.011 0.000 | 0.00006 0.00006 0.00006
Boundary layer conductance (projected area basis) BLC ms~! 0.01 0.09 0.005 0.076 0.002 0.01 0.01 0.01
Maximum depth of rooting zone MRD m 0.2 4.1 0.001 0.021 0.003 2 2 2
Root distribution parameter rootDistr dim 0.5 4 0.001 0.088 0.123 3.67 1.5 1.5
Growth respiration per unit of C grown GRC dim 0.1 0.5 0.020 0.216 0.016 0.3 0.3 0.3
Maintenance respiration in kgC per day per kilogram of tissue N~ MRperN kgC ng’1 d-! 0.1 0.4 0.091 0.902 0.023 0.218 0.218 0.218
Theoretical maximum proportion of non-structural NSC: SCmax dim 0.05 0.3 0.0001 0.0004 0.00001 0.1 0.1 0.1
to structural carbohydrates
Proportion of non-structural carbohydrates available NSC2MR dim 0.1 0.5 | 0.00002 0.00011  0.000008 0.3 0.3 0.3
for maintenance respiration
Symbiotic and asymbiotic fixation of N Nfix kgN m2 yr’l 0.0001 0.01 0.046 0.494 0.991 0.0005 0.01 0.0091
Time delay for temperature in photosynthesis tau day 0 50 0.0003 0.0035 0.0001 10 10 10
acclimation
‘Volumetric water content ratio to calculate soil VWCratio_liml  dim 0.1 0.9 0.004 0.067 0.002 0.99 0.1 0.1
moisture limit 1
‘Volumetric water content ratio to calculate soil VWCratio_lim2  dim 0.5 1 0.0001 0.0049 0.0021 0.99 0.99 0.99
moisture limit 2
Minimum of soil moisture limit 2 multiplicator min_soilstress2  dim 0 1 0 0 0 0.4 0.4 0.4
(full anoxic stress value)
Vapour pressure deficit — start of conductance reduction VPDS Pa 500 1500 0.005 0.079 0.003 600 600 600
Vapour pressure deficit — complete conductance reduction VPDC Pa 1500 3500 0.080 0.783 0.009 3000 3000 2910
Maximum senescence mortality coefficient of SMCA dim 0 0.01 0 0 0 0.001 0 0
aboveground plant material
Maximum senescence mortality coefficient of SMCB dim 0 0.01 0.0001 0.001 0.00002 0.001 0 0
belowground plant material
Maximum senescence mortality coefficient of SMCL dim 0 0.01 0.003 0.079 0.004 0.0001 0 0
non-structured plant material
Lower-limit extreme high-temperature effect SNSC_extl °C 30 40 0 0 0 30 30 30
on senescence mortality
Upper-limit extreme high-temperature effect SNSC_ext2 °C 30 50 0 0 0 40 40 40
on senescence mortality
Turnover rate of wilted standing biomass to litter TRWB dim 0.01 0.1 0 0 0 0.01 0.01 0.01
Turnover rate of non-woody cut-down biomass to litter TRCN dim 0.01 0.1 0 0 0 0.05 0.01 0.01
Turnover rate of woody cut-down biomass to litter TRCW dim 0.0001 0.1 0 0 0 0.01 0.0009 0.0009
Drought tolerance parameter DSWScirt nday 0 100 0 0 0 30 100 100
Effect of soil stress factor on photosynthesis Sseff dim 0 04 0.006 0.066 0.002 0 0 0
Leaf carbon allocation proportion dim - - - - - 0.173 0.173 0.173
Fine-root carbon allocation proportion dim - - - - - 0.094 0.094 0.094
Live woody-stem carbon allocation proportion dim - - - - - 0.101 0.101 0.101
Dead woody-stem carbon allocation proportion dim - - - - - 0.556 0.556 0.556
Live coarse-root carbon allocation proportion dim - - - - - 0.012 0.012 0.012
Dead coarse-root carbon allocation proportion dim - - - - - 0.064 0.064 0.064
Canopy average specific leaf area (projected area basis) m?2 kgC’l - - - - - 48 34.5 34.5
Canopy growth proportion dim - - - - - 0.5 0.5 0.5
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where L is the estimated likelihood, Vobs and Vsim are the
observed and the simulated values of the output variable, and
n is the number of observations.

For every site, we performed 100 000 Monte Carlo simu-
lations, each with a unique combination of parameter values
randomly sampled from the predefined parameter ranges (Ta-
ble 2).

Then, we evaluated the plausibility of simulated AbgwC,
LitterC, and SoilC (WS4b in Fig. 2) at the end of the spin-
up and in individual years of the normal run simulations. We
applied the following constraints derived from the literature
to evaluate the plausibility of simulated values: carbon stock
in aboveground wood below 70 kgC m~2 (Barna et al., 2011;
Georgi et al., 2018; Standovar and Kenderes, 2003; Trotsiuk
et al., 2012), soil carbon in the whole soil profile between 5
and 25 kgC m_z, and litter carbon amount of between 0.1 and
4kgC m—2 (De Vos and Cools, 2011; Pavlenda and Pajtik,
2010; Wellbrock et al., 2016; Wellbrock and Bolte, 2019). A
simulation was identified as plausible if all three examined
output variables were within the given ranges.

The site-specific multivariate optimised parameter values
(SSMV parameter sets resulting from the WS4c phase in
Fig. 2) were derived from the subsets of plausible simula-
tions selected for each calibration site as those minimising
the estimation errors in AbgwC, SoilC, and LitterC and max-
imising the joint-likelihood function (WS4b in Fig. 2). We
applied the normal likelihood function to each of the three
output variables and afterwards calculated the sum of log-
likelihood values for each year, assuming the independence
of the estimation errors.

Next, we performed a parameter optimisation across the
studied geographical domain (WS4d in Fig. 2) by processing
the plausible simulations from calibration sites (selected in
the WS4b phase in Fig. 2). We identified feasible ranges for
each parameter and site based on intersections of variable-
specific parameter ranges (Fig. 3a). Then, we derived the
multi-site feasible parameter ranges by intersecting the site-
specific feasible parameter ranges (Fig. 3b) within the tested
six-dimensional parameter space defined by the calibrated
parameters. Afterwards, we divided the multi-site feasible
ranges of each parameter into five equally wide sub-intervals
that define five discrete steps in each dimension (Fig. 3b) of
the multi-dimensional parameter space. This categorisation
was needed because the applied parameter values in site-
specific Monte Carlo simulations differed between the sites.
In the hyperspace, we identified 10 cells with the highest
number of allocated sites and simulations and the smallest
arithmetic mean errors in AbgwC, SoilC, and LitterC. Fi-
nally, we calculated mean parameter values for each cell. The
final multi-objective, i.e. multi-site multivariate (MSMYV) op-
timal parameter set was the one that led to successful simula-
tions of all calibration sites and generated the smallest errors.

Geosci. Model Dev., 17, 7317-7346, 2024
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2.5 Robustness, validation, and plausibility tests
2.5.1 Robustness of calibrated parameter values

The robustness of the site-specific (SSMV) and multi-site
(MSMV) optimised values of parameters was tested by simu-
lating all calibration sites with all derived parameter sets and
calculating the root mean square errors (RMSEs) of the sim-
ulated output variables. This test allowed us to examine the
possible overfitting as well as the applicability of site-specific
parameter sets outside the actual site conditions.

Next, we applied decision trees (DTs) to identify the prob-
lems arising from the trade-off between variables and/or sites
based on the evaluation of the entropy. For each site and out-
put variable, we determined parameter ranges within which
the plausible simulations can be expected, with the highest
probability achieved by constructing a DT from the outputs
of 100 000 Monte Carlo simulations per calibration site. The
simulations were split into plausible and implausible ones
based on the constraints specified for the three tested vari-
ables (done under the WS4b phase in Fig. 2; Sect. 2.4.3). In
total, we derived 33 decision trees (11 sites x 3 variables)
using the rpart R package (Therneau et al., 2023). The plau-
sible ranges for each parameter, site, and variable were de-
termined based on the selection of the most probable leaf
node. The ranges may differ from those obtained under the
WS4b phase, where each parameter was analysed separately
(Fig. 3a), because DTs evaluate all parameters at the same
time (Fig. 4). Then, we searched for the intersections of these
ranges to obtain the final parameter-wise plausible ranges for
a specific site and all variables together and for multi-site
ranges for all calibration sites and variables together (Fig. 4).
The SSMV and MSMV optimised parameter values were
considered robust if they occurred within the respective DT
parameter ranges.

The next test was aimed at analysing if SSMV parameter
values followed any trends along specific gradients. Specifi-
cally, we examined the interdependencies between the pairs
of parameters and the trends of their site-specific values
along stand and site gradients — namely, age, elevation, lat-
itude, climate, and soil characteristics. Any significant trend
may indicate that the respective parameter should not be han-
dled as a constant but should vary with specific conditions.
The analyses were based on Spearman correlations and lin-
ear regressions performed in R environment (R Core Team,
2018). Subsequently, we examined the physiological mean-
ingfulness of revealed trends and relationships using the em-
pirical evidence collected from the scientific literature.

Following the identification of the significant relation-
ships and their biological plausibility, we derived 10 mul-
tiple linear regression models that explain the variation in
site-specific values of the canopy light extinction coeffi-
cient (CLEC) of calibration sites using different combina-
tions of environmental predictors and analysed the explana-
tory power and performance of the models with the follow-
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Figure 3. Identification of site-specific feasible parameter ranges using a multivariate approach (a) and identification of multi-site and
multivariate optimised (MSMYV) parameter values and their parameter ranges (b). The approach in (a) is demonstrated using an example for
a single site, a single parameter, and two variables. The tested parameter interval is indicated by the dotted grey pattern, the feasible parameter
ranges for individual variables are indicated with blue and green colours, and the multivariate feasible parameter range is shown in orange.
The approach in (b) is demonstrated using a hypothetical two-dimensional parameter space and site-specific optimised parameter ranges for
two sites. The dotted grey space indicates the tested two-dimensional parameter space, the blue and green colours refer to two-dimensional
parameter space for specific sites, and the orange space refers to multi-site and multivariate feasible parameter ranges. Min: minimum, max:

maximum, opt: optimised values of tested parameters.

ing statistical characteristics: R squared, adjusted R squared,
Akaike information criterion, Bayesian information crite-
rion, Mallows’ statistic, and residual standard deviation. This
was performed in the R environment using the car (Fox et
al., 2023) and ImSubsets (Hofmann et al., 2021) R pack-
ages. We then applied the derived functions to all 87 sites, for
which we calculated site-specific values of CLEC and simu-
lated each site with the respective CLEC value. Afterwards,
we examined the robustness and plausibility of the simulated
output with a varying CLEC across the whole geographical
domain.
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2.5.2 Model performance with parameter values
optimised for multiple sites

The MSMYV parameter set derived in the WS4d calibration
phase (Fig. 2) was validated using an independent dataset
from eight European beech-dominated sites (Table 1, Fig. 1),
each represented by at least two repeated observations of
the aboveground wood carbon. The simulations consisted
of a spin-up, transient run, and normal run, as described in
Sect. 2.3. The validation was based on the comparison of
modelled and observed carbon stocks in aboveground wood
at specific time points. We calculated the bias, defined as an
arithmetic mean of differences between modelled and ob-
served values of the respective variable, mean absolute er-
ror (MAE), mean percentage error (MPE), and root mean

Geosci. Model Dev., 17, 7317-7346, 2024
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Figure 4. Determination of plausible ranges of parameters using decision trees across all sites and output variables. Par: parameter, back-
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optimised parameter ranges based on decision trees performed for carbon stock in aboveground wood (AbgwC), soil (SoilC), and litter (Lit-
terC). The dashed red rectangle represents the plausible range of a single parameter based on the intersection of its plausible ranges derived

for the three output variables.

square error (RMSE). SoilC and LitterC were compared to
the plausible ranges derived from the literature (De Vos and
Cools, 2011; Pavlenda and Pajtik, 2010; Wellbrock et al.,
2016; Wellbrock and Bolte, 2019) since no observed data on
soil and litter carbon were available for the validation sites.

2.5.3 Robustness and plausibility of simulated output
at a large scale

To evaluate the broad applicability of the derived multi-

objective parameter set across the whole studied geograph-
ical region, we simulated forest development at 87 sites, en-

Geosci. Model Dev., 17, 7317-7346, 2024

compassing the main climatic and soil gradients in the study
area (Fig. 1). We specifically assessed the plausibility of ab-
solute values of AbgwC, LitterC, and SoilC by comparing
them with values documented in the literature (e.g. Barna
et al., 2011; Pavlenda and Pajtik, 2010). We also examined
the responses of simulated carbon stocks to environmental
conditions (e.g. latitude; longitude; elevation; annual precip-
itation; mean temperature; proportion of sand, silt, and clay
fractions; and soil depth) and compared the observed shapes
to the patterns published in empirical studies. We analysed
the responses of simulated outputs using Spearman corre-
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lations and linear and quadratic regressions and generalised
additive models (GAMs). When explaining the patterns of
the main three variables along environmental gradients, we
also examined other stocks, such as carbon stock in roots
and leaves as well as some carbon fluxes, particularly het-
erotrophic respiration, to reveal the mechanisms driving the
model responses. All tests were performed in the R environ-
ment (R Core Team, 2018), and the results were visualised
using the ggplot2 R package (Wickham, 2016).

3 Results
3.1 Parameter sensitivity analysis

The local (single-parameter) sensitivity analysis (WS2a in
Fig. 2), focusing on evaluating the effects of individual pa-
rameters, revealed that the aboveground wood carbon stock
was affected the most by the whole-plant mortality rate
(WPM). Soil and litter carbon stocks were the most sensitive
to the maximum stomatal conductance (MSC) and nitrogen
fixation (Nfix), respectively (Table 2). The analysis of trends
in variable changes due to modifications of parameter val-
ues clarified how the increase in the parameter value affected
the values of the respective output variable, e.g. the increase
in MSC caused an increase in all tested output variables
(AbgwC, SoilC, and LitterC) in the whole parameter range
(Fig. S4). The impact of other parameters was more com-
plex as we revealed both positive and negative trends, while
in the case of the increase in, for example, Nfix, the posi-
tive ones prevailed in AbgwC and SoilC and negative ones
in LitterC. A more detailed analysis identified the changes
in output variables along the parameter range; e.g. the in-
crease in Nfix caused an initial increase in LitterC, which
was followed by its gradual reduction as Nfix was increasing
(Fig. S2a).

The global (multi-parameter) sensitivity analysis (WS2b
in Fig. 2) showed that Nfix had the highest impact on all
three analysed carbon pools (Fig. 5). The subsequent param-
eters were MSC, growth respiration per unit of carbon allo-
cation (GRC), maintenance respiration in kgCd~! per kg of
tissue nitrogen (MRperN), and fraction of leaf nitrogen in ru-
bisco (FLNR). However, the ranking of parameters differed
between the individual output variables (Fig. 5).

Based on the results of SA, we selected six parameters
to be calibrated: canopy light extinction coefficient (CLEC),
FLNR, MSC, Nfix, vapour pressure deficit for complete con-
ductance reduction (VPDC), and effect of soil stress factor
on photosynthesis (Sseff) as they had a substantial effect on
carbon stock in aboveground wood, soil, and litter (Fig. 5).
Other parameters with a high influence on the simulated C
pools (such as the C: N ratio in leaves; Fig. S2b) were not
selected for calibration due to a strong support of their actual
values from the literature (e.g. Fig. S3).
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3.2 Parameter estimation

The site-specific multivariate (SSMV) optimised values of
all six calibrated parameters for 11 calibration sites dif-
fered from the a priori ones, varied within the whole tested
ranges (Table 2), and strongly differed between the sites
(Fig. 6). Two parameters (FLNR and VPDC) showed a grad-
ual change in SSMV values across the whole tested range,
while the SSMV values of others, especially CLEC and Ss-
eff, were clustered. In comparison to a priori values, SSMV
values of individual parameters changed by 41 % on average,
while Nfix was modified the most substantially (67 % on av-
erage).

The median reduction in model errors at calibration sites
simulated with SSMV parameter sets in comparison to the a
priori set was 35 %, 55 %, and 11 % for AbgwC, SoilC, and
LitterC, respectively, and 26 %, 35 %, and 9 % in comparison
to the simulation output obtained with the MSMYV parameter
set (Fig. 7).

Parameter values obtained from the multi-site optimisa-
tion (WS4d in Fig. 2) were changed by 2 % to 15 % relative
to their a priori estimates except for Sseff, which remained
unchanged (Fig. 6; Table 2). The MSMV values substan-
tially differed from the SSMV values of most sites, although
the differences were parameter-specific. The lowest variation
was observed for Sseff, while the largest differences between
MSMYV and SSMYV values were found for Nfix (Fig. 6). The
simulation results obtained using the MSMV parameter set
showed reduced mean errors for all three output variables,
i.e. AbgwC, SoilC, and LitterC, in comparison to the results
obtained with the a priori set, by 10 %, 26 %, and 5 %, re-
spectively (Table 3; Fig. 7).

The simulations performed with the site-specific and
multi-site optimised parameter sets produced more accurate
estimates of carbon stocks in aboveground wood, soil, and
litter than the a priori set. The non-parametric Wilcoxon
signed rank test (Wilcoxon, 1945) using the continuity cor-
rection data confirmed insignificant differences between the
observed and modelled AbgwC and LitterC simulated with
SSMYV parameter sets (V = 1807, p = 0.14 for AbgwC and
V =26, p=0.92 for LitterC), while the differences for
soil carbon were significant (V =528, p = 1.04 x 10_5; see
Sect. 4.2 for the explanation). The use of the MSMV pa-
rameter set resulted in insignificant differences in SoilC
(V. =1396, p =0.64), while the estimates of AbgwC and
LitterC were significantly different from the observations
(V=4094, p=1.10x 1070 and V =54, p =0.004, re-
spectively). Nevertheless, the magnitudes of their mean er-
rors calculated for the whole set of calibration sites as well
as for most of the individual sites were substantially reduced
(Table 3; Fig. 7).
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Figure 7. Heatmaps of root mean square errors (RMSEs) for carbon stocks in aboveground wood, soil, and litter (AbgwC, SoilC, and
LitterC) and their sum (SumC) for individual calibration sites (X axis) and 13 variants of parameter sets (Y axis): 1 a priori set, 11 site-
specific (SSMV) optimised sets identified by site abbreviations, and 1 multi-objective (multi-site and multivariate, MSMV) optimised set.
The grey colour indicates unsuccessful simulations, which ended with zero or close-to-zero values of carbon state variables.

Table 3. Evaluation of model performance at 11 calibration sites using the a priori parameter set and the parameter sets optimised with
respect to the observed carbon stocks in aboveground wood, soil, and litter (AbgwC, SoilC, and LitterC in kgC m~2). “Site-specific” refers
to parameter sets derived for single sites using a multivariate approach (SSMV, WS4c phase in Fig. 2). “Multi-site” refers to multi-site and
multivariate (MSMV) parameter values derived collectively for all calibration sites (WS4d in Fig. 2). RMSE is the root mean square error,
bias is the arithmetic mean of differences between modelled and observed values of the respective variable, MAE is the mean absolute error,
MPE is the mean percentage error, and MinDif and MaxDif are minimum and maximum differences between the modelled and observed
values of the respective variable.

Parameter set Variable N  RMSE Bias MAE MPE MinDif MaxDif
A priori 96 9.7727 7.3911  7.8366 29.502 —8.1569 27.007
Site-specific AbgwC 96 2.0698 —0.2887 1.4873 0.012 —5.4830 5.7422
Multi-site 96 6.8718 4.1734  5.4798 19.246  —9.5527 27.756
A priori 72 3.5242 22276  2.2630 58.329 —0.2268 11.729
Site-specific SoilC 72 6.8068 —2.7876 6.3782 —0.408 —9.7400 4.7630
Multi-site 72 3.0803 0.1167 2.6423 38.068 —2.4427 10.243
A priori 10 0.2424 0.2117 02117 121.774 0.0611 0.4651
Site-specific LitterC 10 0.2035 0.0030 0.1653 42.005 —0.2894 0.4382
Multi-site 10 0.1849 0.1417 0.1419 91.327 —0.0007 0.4185

The robustness test of SSMV and MSMV optimised pa-
rameter values using decision trees (DTs) revealed that in
78 % of cases, site-specific and multi-site parameter values
occurred within the parameter ranges derived from deci-
sion trees for individual output variables and sites (Table 4;
Fig. S8). The discrepancies between the optimised parame-
ter values and DT ranges occurred for the variables and sites
with lower proportions of plausible simulations (Fig. S16) or
in the cases when DT parameter ranges derived for individ-
ual output variables did not overlap (e.g. the ranges derived
for FLNR and site CR2015; Fig. S8).

The analysis of interdependencies between the site-

3.3 Robustness, validation, and plausibility tests
3.3.1 Robustness of calibrated parameter values

When simulating the development of calibration sites with
the site-specific (SSMV) parameter sets optimised for other
sites, we revealed a high variation in modelled outputs per
site (Figs. 7 and S5). In 47 % of cases, we encountered unsuc-
cessful simulations during which the modelled forests ceased
to exist. Only three SSMV parameter sets led to successful
simulations in all calibration sites, but their errors exceeded
those obtained with the a priori, SSMV or MSMV optimised

sets (MPE values of AbgwC, SoilC, and LitterC were 39 %,
296 %, and 570 %, respectively).
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specific optimised parameter values revealed the only sig-
nificant Spearman correlation between CLEC and MSC,
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Table 4. Robustness of site-specific (SSMV) and multi-site (MSMV) parameter values based on the analysis of the optimised parameter
value that occurred within the plausible parameter ranges derived for the individual calibration sites and carbon stocks (aboveground wood,
soil, and litter carbon labelled as AbgwC, SoilC, and LitterC) using decision trees (DTs; Sect. 2.5.1). The values for SSMV represent the
mean of 11 calibration sites. The value of 1 indicates that the MSMV value or all SSMV optimised parameter values occurred within the DT
ranges. CLEC: canopy light extinction coefficient, FLNR: fraction of leaf nitrogen in rubisco, MSC: maximum stomatal conductance, Nfix:
nitrogen fixation, VPDC: vapour pressure deficit for complete conductance reduction, Sseff: effect of soil stress factor on photosynthesis.

Proportion of optimised parameter values inside parameter
ranges derived using the decision tree method

Output variable AbgwC \ SoilC \ LitterC

Parameter set SSMV  MSMV | SSMV  MSMV | SSMV ~MSMV

Parameter ~CLEC 1.00 1 0.91 1 0.91 1
FLNR 0.73 1| 064 0| 0.64 0
MSC 1.00 1| 055 1| 036 0
Nfix 0.91 0| 100 0| 036 1
VPDC 1.00 1| 100 1 1.00 1
Sseff 1.00 1 1.00 1 1.00 1
Mean of all ~ 0.94 083 | 085 067 | 071 0.67

which were negatively correlated at a 95 % significance level
(r = —0.6, p =0.04; Fig. 8a). The highest, although non-
significant, correlation was found between Nfix and FLNR
(r =0.7, p =0.37), suggesting that if Nfix increases, FLNR
should also increase.

Spearman correlations between parameters and site char-
acteristics revealed that the site-specific optimised values of
two calibrated parameters (CLEC and VPDC) were signifi-
cantly related to elevation (r = 0.5 and —0.7 and p = 0.04,
respectively). Significant relationships were also found be-
tween CLEC and several climatic variables (Fig. 8). The
highest positive correlation (r = 0.9, p = 0.01) of CLEC was
with the long-term mean annual precipitation total (AM-
PRCP) and the highest negative correlation (r = —0.8, p =
0.01) with the long-term mean annual vapour pressure deficit
(AMVPD). The increasing AMVPD was positively signifi-
cantly related to the values of MSC (r = 0.7, p = 0.05). For
other parameters, we did not reveal any significant relation-
ships with climate conditions, nor could we confirm any sig-
nificant correlations of parameter values to soil conditions
(Fig. S9), although positive or negative trends with several
environmental characteristics were identified for some pa-
rameters, mainly for MSC and VPDC (Figs. 8b and S9).

3.3.2 Model performance with parameter values
optimised for multiple sites

The mean absolute error (MAE) between the simulated and
observed aboveground wood carbon of eight validation sites
was 0.26kgC m~2, with a 95% confidence interval from
—0.025 to 0.56kgC m~2, while the individual absolute dif-
ferences varied between —2.06 and 5.11 kgCm~2 (Fig. 9).
The root mean square error was 1.22kgCm™2. The non-
parametric Wilcoxon signed rank test with continuity cor-

Geosci. Model Dev., 17, 7317-7346, 2024

rection indicated non-significant differences between simu-
lations and observations of aboveground wood carbon (V =
1385, p value =0.1962). The mean percentage error in
AbgwC was 1.25 % of the observed carbon stock in above-
ground wood. Hence, both absolute and relative differences
were of negligible magnitudes.

Since no observed data on soil and litter carbon were avail-
able for validation sites, the simulated SoilC and LitterC
were tested against their ranges reported in the literature. The
results showed that both variables occurred within the plau-
sible ranges (Fig. S12).

3.3.3 Robustness and plausibility of simulated output
at a large scale

The simulations of all 87 research sites using the multi-
site optimised (MSMV) parameter values were successful,
and the simulated values of the three output variables (i.e.
AbgwC, SoilC, and LitterC) at the end of the spin-up run
were well aligned with the plausible ranges indicated in the
literature (Fig. S13).

The simulated values of output variables varied across the
studied geographical space (Fig. 10) and were significantly
correlated with several site characteristics (Figs. 11, S17, and
S18). The modelled AbgwC exhibited distinct unimodal re-
sponses along the gradients of elevation, long-term mean air
temperature, and VPD. The results manifested a production
optimum of beech in central Europe at elevations of 500-
600 m a.s.l., mean annual air temperature of 9 °C, and VPD
of 530 Pa. The SoilC and LitterC demonstrated an increas-
ing trend along the elevation gradient and decreasing trends
along the climatic gradients. The responses of SoilC and Lit-
terC carbon stocks to soil properties followed a linear pat-
tern, while they significantly decreased with the increasing

https://doi.org/10.5194/gmd-17-7317-2024
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Figure 9. Comparison of the temporal development of observed
(points) carbon stock in aboveground wood (AbgwC) and simulated
AbgwC (lines) using the multi-site multivariate optimised (MSMV)
parameter set at eight validation research sites.

clay content and were positively correlated with the sand
content in soil. Aboveground wood carbon was found to be
significantly correlated with the proportion of clay in the first
and second soil layers and with the proportion of silt in the
fifth layer (Fig. S18). The highest levels of simulated AbgwC
were observed on loamy or sandy—loamy soils (Fig. S20).
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4 Discussion
4.1 Selection of parameters for calibration

The global SA showed small differences in the parameter im-
pact between the three examined output variables because
they are all a part of the carbon cycle, which makes them
naturally interconnected. The similarity in parameters affect-
ing these output variables underscores the importance of con-
sidering a forest holistically since, due to the interactions be-
tween different components of the ecosystem, changes in one
part cause cascading effects throughout the system. There-
fore, a comprehensive approach that accounts for these in-
terdependencies is crucial for accurate modelling and under-
standing of forest carbon dynamics.

Several highly influential parameters identified by SA
were excluded from the calibration for different reasons.
Growth respiration per unit of carbon allocation (GRC)
and maintenance respiration per kilogram of tissue nitrogen
(MRperN) were not calibrated because we could not sup-
port the modification of their values used in previous model
versions (Thornton et al., 2005) by observations. Such data
would be needed since the empirical evidence suggests that
respiratory parameters may substantially differ between sites
(Lavigne and Ryan, 1997). Other parameters were not in-
cluded in calibration because the data from the literature sup-
ported their current values and/or because of the adverse im-
pact on the variables of interest. For example, the C : N ratio
in leaves was found to have a substantial effect on all exam-
ined carbon pools (Fig. 5), but to obtain a desired reduction
in AbgwC, we would need to increase this parameter from
its a priori value (Fig. S2). However, the analysis of the val-
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ues obtained from site-specific measurements performed at
some sites and the data from the TRY database (Kattge et
al., 2020) suggested that increasing the value of C : N ratio
in leaves would cause a significant deviation from the mean
or median of experimental observations (Fig. S3). Similarly,
the parameter representing the natural whole-plant mortality
was not calibrated since we applied dynamic mortality rates
during the normal run simulations instead of the temporarily
constant mortality. The rates depended on the applied man-
agement and were derived from published field observations
(Barna et al., 2011; Hiilsmann et al., 2018; Pajtik et al., 2018;
Vanoni et al., 2019). The possibility of using dynamic mor-
tality rates in BBGCMuSo is a major improvement over the
original Biome-BGC model as mortality has been found to
be a driving process of vegetation dynamics in forest growth
models (Bugmann et al., 2019; Hlasny et al., 2014).

The identification of influential parameters is crucial for
not only model calibration, but also future studies as it pro-
vides valuable information about the key parameters the val-
ues of which should be collected in the field since apply-
ing site-specific values obtained from experimental data may
substantially reduce the uncertainty in model simulations. As
Thornton et al. (2002) already presented, some parameters,
such as the C: N ratio in leaves, should be treated as site-
specific. In the case, the site-specific values of parameters
are available, they need to be set prior to the calibration due
to the covariance of parameters and need to be excluded from
the sensitivity analysis. In our case we aimed at a generic pa-
rameter set applicable across the whole studied region, and
thus, we used a generalised value of this parameter.

4.2 Parameter estimation
The mean error metrics (root mean square errors and mean
absolute and percentage errors) showed the increased accu-

racy of modelled output obtained using single-site (SSMV)
and multi-site (MSMV) optimised parameter sets in com-
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parison with those obtained with the a priori parameter set
(Table 3). Greater errors in soil carbon for SSMV param-
eter sets resulted from site-specific very tight positive rela-
tionships between the simulated AbgwC and SoilC revealed
when analysing Monte Carlo simulations. Due to this, even
the high number of performed simulations (100000 simu-
lations per site) generally covered only a small portion of
the two-dimensional space defined by AbgwC and SoilC
(Fig. S6). Hence, in some cases, improving the results for
one of these two carbon pools caused the increase in the er-
ror in the other pool within the tested space of six calibrated
parameters (Fig. S7). Although some empirical studies re-
ported the positive correlation between aboveground wood
and soil carbon stock in the top soil, the relationship is not
strong (R? = 0.24; Woollen et al., 2012) and frequently in-
significant (Osei et al., 2022), as SoilC primarily depends on
climate; topography; soil mineralogy; and soil texture, espe-
cially the content of clay (Powers and Schlesinger, 2002) or
sand (Devi, 2021). Our results indicated that different or ad-
ditional parameters may need to be included in the calibra-
tion that may increase the variability in model output and
thus loosen the current high correlations between AbgwC
and SoilC.

The application of site-specific calibrated parameter sets
outside the respective sites pointed out the contradiction be-
tween their generality and the local accuracy of model es-
timations. SSMV optimised parameters were not generally
applicable as 47 % of simulations of calibration sites with
SSMYV parameter sets optimised for different sites collapsed
(Fig. 7). Calibrating models for individual sites may often re-
sult in model overfitting due to the small amount of available
data (Tsai et al., 2021), which may lead to completely differ-
ent parameter sets in the case of a recalibration and hence a
high variance in calibrated values, reducing thus the reusabil-
ity of calibrated parameter values.

The parameter values optimised for single and multiple
sites frequently substantially differed (Fig. 6), which indi-

https://doi.org/10.5194/gmd-17-7317-2024
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cates the existence of the calibration equifinality, i.e. that
many different parameter sets may produce similar output
predictions (Beven, 2019). This issue was not apparent at the
multi-site level but occurred at the level of individual sites,
at which it can be partially solved using the conditional in-
terval reduction method (CIRM; Hollés et al., 2022). The
CIRM approach is based on the iterative narrowing of plausi-
ble intervals of parameters using the constraints on the model
output. It is an efficient way of dealing with the equifinality
unless the contradictions between different output variables
occur.

As expected based on similar calibration works of forest
growth models that used comprehensive data sources (For-
rester et al., 2021; Minunno et al., 2019), the multi-site and
multivariate calibration increased the generality and robust-
ness of the model application by finding a parameter set that
worked across all calibration sites (Fig. 7) and the valida-
tion set (Fig. 9). Nevertheless, differences in data quality
and availability across space can substantially influence the
calibration results. This problem can be mitigated with cali-
bration techniques that utilise a more appropriate likelihood
function (i.e. formal likelihood; Hollés et al., 2022). In this
way, the issue of the significant spatial autocorrelation can
be resolved using the inclusion of an appropriate error co-
variance matrix in the construction of the likelihood function
(Tarantola, 2005).

In addition, the multi-site calibration can also reduce spa-
tial heterogeneity of model outputs, causing the average
model performance to be good but, at specific sites, be com-
pletely wrong. This could be overcome by applying a hybrid
approach that combines the site-specific and multi-site cali-
bration. With such an approach, site-specific values obtained
from local measurements, well-established relationships de-
rived from large databases or calibrated for specific sites, will
be used for the parameters that are known to vary in space,
while generic values will be used for the other parameters.
Thus, the overall correctness can be ensured by multi-site
calibration and spatial heterogeneity by site-specific calibra-
tion.

Another aspect affecting the calibration is data availabil-
ity. Although we tried to select calibration sites to cover the
whole geographical and environmental space, the central part
of the region was overrepresented, while northern parts were
not covered due to the insufficient data required for calibra-
tion. Nevertheless, the ranges of environmental conditions
(Table 1; Fig. 1) covered by our data also included extreme
sites and seem to represent the natural distribution of Euro-
pean beech (Pagan, 1996) well. To ensure more robust cali-
bration results, more balanced geographical coverage, more
long-term data of multiple variables of interests at individual
sites, and a combination of the information about stocks and
fluxes at the same sites would be required.

Geosci. Model Dev., 17, 7317-7346, 2024

4.3 Trends in parameters
4.3.1 Covariance between parameters

The covariance analysis between parameters found correla-
tions of different magnitudes, indicating that, in most cases,
the parameters were not independent. The revealed signif-
icant negative linear relationship between the site-specific
values of the canopy light extinction coefficient (CLEC) and
the maximum stomatal conductance (MSC; Fig. 8) suggested
that low values of CLEC should be coupled with high values
of MSC and vice versa. However, we have not found any em-
pirical evidence in the literature to confirm or refute the re-
vealed relationship between CLEC and MSC, and therefore
it is not clear if the revealed pattern is biologically realis-
tic or if it is only a side effect of the calibration procedure.
Due to this, we did not incorporate this relationship into the
calibration procedure. Another strong (R = 0.7) though non-
significant relationship was revealed between nitrogen fixa-
tion (Nfix) and fraction of leaf nitrogen in rubisco (FLNR;
Fig. 8). Examining this relationship in more detail revealed
a non-linear pattern between the two parameters resembling
a parabolic curve reaching a maximum of FLNR in the mid-
dle of the Nfix range (Fig. S10). Similarly as for the previous
relationship, we have not found any empirical research deal-
ing with the presented issue although the study by Tang et
al. (2019) analysing different species in subtropical ecosys-
tems suggests that nitrogen-fixing trees allocate lower frac-
tions of N to rubisco than non-nitrogen-fixing trees. The
FLNR values of different Eucalyptus species published by
Warren and Adams (2004) do not show any significant trend
with the increasing nitrogen amount. The global study by
Luo (2021) showed that FLNR is considerably affected by
climate and soil factors, including light, atmospheric dryness,
soil pH, and sand content. Based on these results, nitrogen
fixation does not seem to be directly related to FLNR. Nev-
ertheless, the environmental conditions that affect nitrogen
availability can indirectly influence how nitrogen is allocated
within the leaf, including rubisco, suggesting a complex re-
lationship between them. Still, the pattern of the relationship
between FLNR and Nfix across one tree species in temperate
ecosystems remains unclear.

Our results indicate the necessity of analysing the covari-
ance between parameters during a model calibration as it not
only enlightens the model behaviour and interdependencies
between specific parameters but can also increase the effi-
ciency of the calibration procedure by excluding one of the
correlated parameters from the calibrated parameter set and
estimating its value only subsequently. In addition, such in-
formation may also help to identify the gaps in the available
empirical evidence and the direction of future empirical re-
search.
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4.3.2 Parameter correlations with site characteristics

The analysis of the variation in the optimised site-specific
values of parameters across environmental gradients revealed
some significant trends (see Figs. 8 and S9). This may indi-
cate that a specific parameter should not be kept as a con-
stant but rather as a characteristic that changes depending
on driving conditions. An example of such a parameter is
the canopy light extinction coefficient (CLEC) that specifies
the proportion of solar radiation intercepted in the canopy.
A number of process-based models that use this parameter
set its value around 0.5, while some models differentiate val-
ues between different species (Zhang et al., 2014). Based on
our multi-objective optimisation for beech ecosystems, we
set the MSMYV value of CLEC to 0.66, which is 10 % higher
than the value used by Pietsch et al. (2005) in the original
Biome-BGC model for beech (0.6), but it is within the range
for broadleaved forests reported by Zhang et al. (2014).

Although most models keep this parameter constant across
sites and throughout their simulations (Liu et al., 2021;
Zhang et al., 2014), in reality, its value changes during a day
as well as during a year as it depends on the solar zenith an-
gle, leaf area, leaf incline angle, and leaf clumping (Parker,
2020; Wang et al., 2004; Zhang et al., 2014). It also changes
with stand age, while it reaches its maximum in young stands
(Brown and Parker, 1994). A constant value of CLEC causes
intra-annual errors in estimations of plant transpiration and
soil evaporation during a year (Tahiri et al., 2006). Due to
this, a variable CLEC seems to be a more appropriate op-
tion. Our analysis revealed significant trends in the SSMV
optimised values of CLEC with multiple environmental char-
acteristics, while the correlations with elevation and precip-
itation were positive and with temperature and VPD nega-
tive (Fig. 8). Such patterns were not observed in other stud-
ies analysing measured data of CLEC, but the number of
tested observations was low (Zhang et al., 2014) as it was
also in our case. Nevertheless, the empirical data showed
that CLEC increases with decreasing plant density (Timlin
et al., 2014) and leaf area index (LAI) (Zhang et al., 2014).
Since our model operates at a stand level, stand biomass can
be considered a proxy for stand density. Our results showed
the decreasing trend of CLEC with the increasing above-
ground wood carbon stock (Fig. S11), which is in agreement
with Timlin et al. (2014). Moreover, the simulated AbgwC
of calibration sites decreased along the elevational gradient
(Fig. S11), explaining the positive correlation of CLEC to el-
evation, which can be considered a side effect of stand den-
sity, which is lower at high elevations.

Tahiri et al. (2006) successfully applied a simple empir-
ical approach using a linear regression with the leaf area.
Parker (2020) calculated CLEC as a ratio between the ef-
fective LAI and the total LAI. CLEC is usually calculated
following the simplified Beer—Lambert law as a function
of above- and below-canopy solar radiation and leaf area
(Zhang et al., 2014). A more sophisticated approach includes
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the solar zenith angle and the clumping index. Some models
also use the inclination angle of leaves, while, most com-
monly, the spherical distribution of leaves is assumed (Liu et
al., 2021), although Pisek et al. (2013) found that tree species
in temperate and boreal regions are usually characterised by
planophile or plagiophile leaf angle distribution.

Although we derived several multiple linear regres-
sions explaining the variation in site-specific CLEC val-
ues using different combinations of environmental predic-
tors (Fig. S15), the simulations with varying CLEC based
on environmental conditions did not produce satisfactory re-
sults (33 % and 27 % of all and calibration sites collapsed if
simulated with CLEC derived from its regression to annual
precipitation, respectively). The possible reason is the exis-
tence of interdependencies between parameters discussed in
Sect. 4.3.1.

Moreover, we found that MSC was also significantly re-
lated to environmental conditions — namely, VPD (Fig. 8).
MSC specifies the highest possible rate at which stomata can
open and allow for the exchange of gases between the plant
and the environment under present-day CO; concentration
and optimal environmental conditions, i.e. maximum radia-
tion and unlimited water availability when VPD is zero and
there is no soil water stress. Such conditions rarely occur in
the field, and, hence, the observed maximum conductance,
which represents the highest conductance on fully expanded
leaves that was measured during the summer growing season
(Murray et al., 2019), does not usually reach the theoreti-
cal maximum (McElwain et al., 2016). The theoretical MSC
can be derived from leaf anatomy — namely, stomatal den-
sity, maximum stomatal pore area, and stomatal pore depth
(McElwain et al., 2016; Murray et al., 2020). The SSMV op-
timised values of MSC were found to be positively related to
the long-term mean VPD (Fig. 8), which decreases with ele-
vation, whereas the stomatal conductance as well as stomatal
characteristics specifying MSC usually increase with eleva-
tion (Bresson et al., 2011; Petrik et al., 2022). In line with
this, the studies from temperate European ecosystems re-
ported an inverse relationship between the stomatal conduc-
tance and VPD (Korner, 1995; Urban et al., 2017). Similarly,
the site-specific values of another ecophysiological parame-
ter representing the stomata closure (VPDC, i.e. the vapour
pressure deficit causing the complete conductance reduction)
were found to be significantly negatively related to elevation
(Fig. 8), while the empirical studies did not reveal any differ-
ences on the onset of stomatal closure along an elevational
gradient (Korner and Cochrane, 1985). Hence, we assume
that the revealed correlations in our data are by-products of
the site-specific calibrations.

Due to the above-stated inconsistencies and the lack of
data and supporting information, we decided not to apply the
dynamically changing CLEC, MSC, and/or VPDC along en-
vironmental gradients. However, this approach may be con-
sidered a potential way forward in future model develop-
ment when more scientific knowledge becomes available.
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Nonetheless, our results pointed out that for simulations at
a local level, some parameters may need site-specific values.
Such a hybrid approach, of using a combination of general
and site-specific parameters, which was already applied by,
for example, Thornton et al. (2002), may be beneficial to re-
duce the uncertainty in local predictions. Since the values of
many of the parameters are usually not measured at research
plots, global trait databases, such as TRY (Kattge et al., 2020)
or the ones by Liu et al. (2023), Maire et al. (2015), and Lin
et al. (2015), might be useful to estimate the local values for
a specific site and species considering site-specific environ-
mental conditions. Naturally, the best solution for any local
study is to obtain measurements of required parameters from
specific sites, which is, however, not always feasible due to
time and financial restrictions.

4.4 Robustness and plausibility tests of simulated
outputs at a large scale

4.4.1 Carbon stock in soil

Soil carbon represents a large storage of terrestrial carbon
(Amundson, 2001), accounting for approximately a half of
total forest ecosystem carbon (Domke et al., 2017; Jobbagy
and Jackson, 2000). A similar proportion was also revealed
in the output of our simulations (median = 47.7 %, mean
=51.5%, first quartile = 32.6%, third quartile = 69.9 %).
The absolute values of simulated carbon stock in soil per unit
area occurred within the range of soil organic carbon (SOC)
reported by empirical studies (De Vos and Cools, 2011; Well-
brock et al., 2016; Wellbrock and Bolte, 2019), although
the variability in simulated values was lower (Fig. S13).
The mean value of the simulated SoilC (min = 7.9, first
quartile = 12.1, median = 13.3, mean = 13.1, third quartile
= 14.4, max = 17.0kgC m_z) was similar to the mean val-
ues observed in European beech forest stands (e.g. Meier and
Leuschner, 2010; Mund, 2004).

The site-specific simulated SoilC significantly decreased
with the increasing air temperature (Fig. 11), which is con-
sistent with the observed patterns in soil carbon stocks from
soil profile data along temperature gradients (Hartley et al.,
2021; Jobbagy and Jackson, 2000; Post et al., 1982; Sun
et al., 2019; Wang et al., 2013). The impact of temperature
was also apparent in the relationships between the simulated
SoilC and elevation or latitude, both of which were signif-
icantly positive (Fig. S17). The increasing trend of SoilC
with latitude matched the trend of soil carbon stock found
in temperate regions of the Northern Hemisphere (Minasny
et al., 2014). These trends result from faster decomposition
(Wang et al., 2013) and, hence, the microbial soil respiration
as the temperature increases (Cao et al., 2019; Rodeghiero
and Cescatti, 2005; Sun et al., 2019), a pattern that was found
to be significant (r = 0.33, t = 3.15, p value = 0.002, 95 %
confidence interval, CI = (0.12,0.51)) also in our simulated
output (Fig. S19a).
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Unlike the increasing trend of SOC with the increasing
precipitation reported in the literature (Jobbagy and Jackson,
2000; Post et al., 1982), the simulated SoilC was not sig-
nificantly related to the precipitation amount (Fig. S19b). In
general, the impact of precipitation on SOC changes depend-
ing on whether the examined ecosystems are water-limited
(Wiesmeier et al., 2019). The small-scale study of SOC in
beech forests in Germany revealed its significant correlation
to precipitation (Meier and Leuschner, 2010), while at high-
latitude ecosystems, precipitation only has a minor impact
on SOC stock (Devos et al., 2022). Our study includes a
much wider variety of environmental conditions, including
different temperature ranges, soil depths, and soil textures,
than the study of Meier and Leuschner (2010), which may
mask the relationship between SoilC and precipitation. Un-
fortunately, we could not derive the regional relationships be-
tween measured SOC and environmental characteristics from
our dataset due to the lack of data on soil carbon stock at all
plots. Hence, we only performed plausibility tests with mod-
elled values and compared the revealed trends with those re-
ported in published papers from elsewhere.

When we checked the relationship of simulated SoilC
to soil characteristics, we found the opposite correlation of
SoilC with the increasing clay content (Fig. 11) to the one
reported in the literature based on soil measurements (Hart-
ley et al., 2021; Jobbagy and Jackson, 2000). The fine min-
eral fraction composed of medium to fine silt particles and
clay is known to have a stabilisation effect on SOC (Hartley
et al., 2021) due to which it is often used as an indicator for
SOC storage (Wiesmeier et al., 2019). However, our model
results showed that SoilC decreased with the increasing con-
tent of fine particles (clay or silt) and increased as sand frac-
tion dominated (Fig. 11). Under real conditions, higher clay
content supports the formation of soil aggregates that can
save organic matter from decomposers and sequester SOC
(Angstetal., 2018; Schmidt et al., 2011). In BBGCMuSo this
mechanism is not accounted for as SOC formation is driven
solely by temperature and SWC and the litter input (Hidy et
al., 2022). Moreover, the data used for our model simulations
did not include the full range of clay content since the maxi-
mum in our database was 56 % and most site-specific values
did not exceed 30 % (median = 20 %, mean = 19.6 %, third
quartile = 22 %). When we experimentally increased the clay
content in soils of some sites to the maximum value (i.e. clay
content = 100 %), we could see the reversed pattern in the
relationship (Fig. S19c¢).

Soil acidity enhances the storage of SOC by reducing soil
microbial activities driving the decomposition of soil organic
matter (Funakawa et al., 2014). The new BBGCMuSo model
includes soil pH as a factor affecting the process of nitrifica-
tion in soil layers (Hidy et al., 2022). The observed decreas-
ing trend in the simulated output of SoilC with the increas-
ing pH (Fig. S19d) is consistent with the experimental results
(Funakawa et al., 2014), confirming the correct implementa-
tion of pH impact on soil processes in the model.
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Soil carbon is the result of carbon inputs from vegetation
followed by decomposition processes. In the model, decom-
position is driven by soil temperature and soil water con-
tent, which is dependent on the precipitation amount, and
water infiltration driven by soil texture (Hidy et al., 2022).
In nature, around 60 % of the variability in soil respiration
is explained by soil temperature and precipitation (Cater
and Ogrinc, 2011). Our simulated output also showed a sig-
nificant increase of heterotrophic soil respiration with the
increasing temperature (Fig. S19g), but the changes with
the soil water content or precipitation were insignificant
(Fig. S19h, i). Nevertheless, the increase in the simulated
soil water content with the increasing fraction of clay and
the decreasing fraction of sand in soil (Fig. S20) was con-
sistent with the general knowledge about the impact of soil
texture on soil moisture (Kaufmann and Cleveland, 2008).
However, the simulated soil microbial respiration was found
to have an increasing though insignificant trend with the in-
creasing clay proportion (Fig. S19¢) and a significant de-
creasing trend with the sand proportion (Fig. S19f). Although
these results explain the negative correlation between SoilC
and clay content, they contradict our expectations based on
the evidence from empirical studies that suggest that de-
composition should be faster in coarse-sized soils (Hartley
et al., 2021). In addition, soil respiration is strongly driven
by root biomass (Cater and Ogrinc, 2011), which was also
detected in our simulations (Fig. S19j; significant Pearson’s
product moment correlation between the carbon stock in fine
roots and heterotrophic respiration, with » = 0.53, t = 5.74,
p value = 1.45 x 1077, and 95 % CI = (0.36, 0.67)). These
findings suggest that while the impact of temperature and
vegetation on decomposition is captured well in the model,
the influence of soil water seems to be insufficient. Without a
thorough data-based analysis, it is, however, not possible to
state if the reason lies in the missing process description in
the model or in the values of decomposition-related param-
eters. Nevertheless, the last methodological paper presenting
Biome-BGCMuSo (Hidy et al., 2022) also identified decom-
position as a process requiring further development.

Similarly to the reported positive relationship of soil car-
bon with organic carbon input (Cao et al., 2019; Jobbagy
and Jackson, 2000), our outputs showed that SoilC increased
with the increasing vegetation carbon stock (Fig. S19k) al-
though the correlation was not significant (Pearson’s prod-
uct moment correlation r = 0.15, t = 1.43, p value = 0.16,
95 % CI = (—0.06, 0.36)). In the model, direct carbon in-
puts into soil storage come from the litter (Hidy et al., 2022).
The significant positive correlation (r =0.89, r =16.79, p
value < 2.2 x 1071%, 95% CI = (0.82, 0.92)) between the
simulated litter and soil carbon stocks (Fig. S191), confirmed
that the model captured the carbon flow from vegetation to
the soil according to expectations based on published field
data (Hilli et al., 2010). In the model, litter is formed by
leaf fall, fine-root mortality, and defragmentation of coarse
woody debris (CWD; Hidy et al., 2022). Surprisingly, the re-
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lationships of simulated SoilC to the annual amount of car-
bon in leaves or fine roots were insignificant (Fig. S19m, n),
while the correlation of SoilC with CWD was significantly
positive (Fig. S190). These results were caused by a much
higher amount of accumulated CWD in the simulated ecosys-
tem in comparison to the input from leaves or fine roots.
Hence CWD represents the main source of carbon for soil. In
the current model version, the actual amount of CWD results
from the accumulation over the whole simulation that can-
not be reduced by a user although the usual practice in man-
aged forests has been to remove dead trees during logging
operations for sanitary reasons (Kirby et al., 1998; Paletto et
al., 2012). Hence, the actual amount of CWD found in man-
aged forests normally represents only a small fraction of the
CWD stock that can be found in nature reserves (Christensen
et al., 2005). To make the ecosystem development under hu-
man influence more realistic, the future model version will
include the possibility of simulating the extraction of CWD
or its part from the system at any time during the normal run
simulation.

4.4.2 Carbon stock in litter

The absolute values of simulated carbon stock in litter (min
= 0.33, first quartile = 0.53, median = 0.59, mean = 0.61,
third quartile = 0.68, max = 1.07 kgC m~2) were consistent
with the litter carbon stock reported from beech forests in
Europe (Meier and Leuschner, 2010; Mund, 2004; Vesterdal
et al., 2008). The litter amount represented approximately
2.5 % of the total ecosystem carbon (min = 0.6, first quar-
tile = 1.4, median = 2.2, mean = 2.5, third quartile = 3.7,
max = 9.8 %), which is lower than the relative mean litter
C stock reported globally (5 % based on Pan et al., 2011)
or for the USA (7 %; Domke et al., 2016). Such a relatively
small amount of organic litter is typical of temperate hard-
wood forests on fertile soils (BMELF, 1997).

We revealed similar trends in LitterC along environmental
gradients to those of SoilC; e.g. the simulated carbon stock in
litter significantly decreased with the increasing temperature
since the heterotrophic respiration also increases along the
temperature gradient (Sun et al., 2019). Similar trends were
also found with elevation and latitude as well as with soil
characteristics (Figs. S17 and S18). The decreasing trends
of simulated LitterC with the increasing pH, clay, and silt
proportion in soil and with the decreasing content of coarse
sand were consistent with the trends derived from field mea-
surements (Vesterdal and Raulund-Rasmussen, 1998). Based
on the empirical evidence by Meier and Leuschner (2010),
fine-root biomass is the major factor affecting carbon stock
in litter. However, our analysis did not reveal a significant
relationship between carbon stock in fine roots and litter
(Fig. S19p), which is probably due to the differences in the
perception of the term “litter” in the model and in empir-
ical studies. Vesterdal and Raulund-Rasmussen (1998) also
found significant correlations of LitterC to the soil content of
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other chemical elements (P, Ca, K, and Mg) which are not
included in our model and in most available models of veg-
etation dynamics (Mergani¢ova et al., 2019). Nevertheless,
due to the ongoing climate change, including the dynamics
of other nutrients in models may become more important,
especially if they represent limiting factors for ecosystems
(Zaehle, 2013).

4.4.3 Carbon stock in aboveground wood biomass

The accumulated carbon stock in wood biomass strongly de-
pends on the forest age or the forest developmental phase.
Due to this, we first compared the absolute values of AbgwC
at the end of spin-up simulations to the stock observed in
over-aged and old-growth beech forests (Barna et al., 2011).
The absolute values occurred within the reported range al-
though the variability in simulated values was substantially
lower than in the observed ones (Fig. S13). On average,
around 40 % of total ecosystem carbon was fixed in simulated
AbgwC (first quartile = 21.6, median = 43.5, mean = 39.9,
third quartile = 57.9, max = 78.7 %), similarly to what was
reported from temperate European forest ecosystems (Well-
brock et al., 2017).

Simulated values of AbgwC exhibited a parabolic relation-
ship to elevation and temperature, with maximum values at
elevations of around 500-600 m a.s.l. and a mean annual air
temperature of approximately 9 °C (Fig. 11). These results
coincide with optimum growth conditions for beech reported
in the literature based on which the beech growth optimum
occurs between 450 and 900 m a.s.l. (Schieber et al., 2013)
and at sites with a mean annual temperature of 7 to 10°C
(Czajkowski et al., 2006; Pagan, 1996; Paule, 1995). The lit-
erature also suggests the optimum annual precipitation total
for beech is from 700 to 1000 mm (Czajkowski et al., 2006;
Paule, 1995), but the relationship of the simulated AbgwC
with precipitation explained only 5 % of AbgwC variability.
Nevertheless, the unimodal relationship of AbgwC with VPD
revealed the maximum AbgwC is at around 530 Pa of VPD
(Fig. 11), which falls within the optimum VPD range for
plant growth (500 to 1200 Pa; Noh and Lee, 2022). Although
empirical studies reported an inverse relationship of beech
production with VPD (Lendzion and Leuschner, 2008; Roibu
et al., 2022; Tumajer et al., 2022), they focus on short-term
changes, whereas, in our analysis, we used a long-term mean
VPD characterising overall site conditions. Leuschner (2002)
already showed in his experiment that the prevailing VPD
during the plant development determines the growth poten-
tial of plants under the conditions of central Europe. The lab-
oratory experiment by Lihavainen et al. (2016) revealed that
the effect of VPD changes in time. While the initial reduction
in VPD to low values caused an acceleration in the growth
rate of silver birch, the effect diminished in time due to ni-
trogen limitation (Lihavainen et al., 2016). Since VPD seems
to have a more profound effect on an intra-annual growth
of broadleaved tree species than temperature (Tumajer et al.,
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2022), more research is required to clarify the impacts at dif-
ferent temporal levels.

The simulated AbgwC trend along the soil gradient was
consistent with the empirical knowledge about optimum soil
conditions for beech. Beech prefers well-drained soils and
does not tolerate wet clay soils. It frequently occurs on loamy
or sandy—loamy soils (Packham et al., 2012), on which the
simulated AbgwC was the highest (Fig. S20). Loams are the
most productive soils because of their moderate soil texture
due to which they are able to hold a large amount of wa-
ter available for plants (Kolb, 2019). Soil texture also affects
fine-root production; e.g. Weemstra et al. (2017) observed
significantly higher fine-root biomass on sand than on clay.
We did not discover such a trend in our simulation outputs
(Fig. S19q; Pearson’s product moment correlation » = 0.11,
t=1.0,df =82, p value =0.32,95 % CI = (—0.11, 0.32))
because C allocation in the model is fixed and does not de-
pend on soil texture. Although beech forests grow on soils
with a large range of pH, from 3.5 to 8.5 (Packham et al.,
2012), the optimum values at which the maximum biomass
production is achieved fluctuate between 5.5. and 6 (Pagan,
1996). The pH of the plots in our database varied between
3.69 and 7.5 (first quartile = 5.1, median = 5.2, mean = 5.6,
third quartile = 6.4), but we did not discover a significant
trend in AbgwC in relation to pH in the simulated output
(Fig. S19r).

4.5 Future model development

Model structural uncertainty and parameter uncertainty are
not distinguishable. Inevitable structural uncertainties exist
in Biome-BGCMuSo and, essentially, in all other process-
based models, which means that the processes are simplified
and that some internal processes can compensate for each
other. We typically call this phenomenon getting good results
for the wrong reasons.

The variability in output data along the gradients of in-
dividual characteristics indicates the complex nature of the
model and the combined impact of multiple environmental
and ecosystem conditions on the final state of the system. In
general, we can say that the model output behaves accord-
ing to well-known natural rules along environmental gradi-
ents. The revealed discrepancies are of lesser importance and
point out the issues in the model that should be dealt with
in future model development. Water seems to play a minor
role in modifying the simulated carbon-related output, but
this requires more thorough tests using data capturing the
water cycle that were not used in the current study. Sim-
ilarly, the impact of soil texture needs to be examined in
more detail to drive the conclusion. Moreover, there are en-
vironmental characteristics which are not accounted for in
the current model but may explain the differences between
the observed and modelled trends in soil carbon stock, e.g.
parent rock material (Wiesmeier et al., 2019) or the propor-
tion of coarse rock fragments in soil that may substantially
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influence soil properties, such as water holding capacity and
movement, plant growth, and decomposition processes (Poe-
sen and Lavee, 1994). In the current study, we have not ad-
dressed these issues due to the lack of field observations.

Carbon cycling in simulated forest ecosystems is primar-
ily driven by allocation, respiration, mortality, and decompo-
sition. The relationships between individual output variables
representing the carbon cycle are, in general, consistent with
the empirically based knowledge. Including the possibility of
CWD removal from an ecosystem due to management inter-
ventions will enable more realistic simulations of managed
forests and should also result in better capturing the relation-
ships between SoilC and carbon in foliage or fine roots.

Although in the model, a forest is represented by two
leaves, one sunlit and one shaded; this only has implica-
tions for the calculations of photosynthesis, while the other
processes are not separated between the two parts. Due to
this, the parameter called the ratio of shaded specific leaf
area (SLA) to sunlit SLA did not have a substantial effect
on the examined carbon stocks, especially in aboveground
wood (Table 1). Future model development could account for
the differences in respiration and allocation proportions and
mortality of overstorey and understorey. This would enhance
the model applicability to simulate the development of two-
storeyed forests and should also increase the variability in
model output due to the differences in the growth efficiency
between the forest storeys.

Another limitation is the fixed C allocation over the whole
simulated period driven by species-specific C allocation pa-
rameters. This approach is the simplest one (Merganicova et
al., 2019) and was found sufficient when simulating short-
term dynamics of ecosystems. However, for multi-site sim-
ulations covering long-term dynamics, a fixed C allocation
may lead to bias in model output at certain sites or during
certain developmental phases of forests, which may require
site-specific or phase-specific parameter values.

Other structural improvements needed in Biome-
BGCMuSo include an improved N cycle and consideration
of additional SOC decomposition mass flows, including
root exudates, priming, and litter decomposition, to avoid
the bias in the estimated parameters. It is a major challenge
for the community, and it is not foreseen that the parameter
estimation will ever be free from errors.

5 Conclusions

This work presented a novel multi-objective calibration ap-
proach that uses the generalised likelihood uncertainty esti-
mation method, plausibility checks of output variables, and
intersection principles. The proposed approach solves the
problems of model overfitting, calibration efficiency, spatial
heterogeneity, and the amount and quality of available data.
The sensitivity results highlighted the need for the multivari-
ate approach as the impact rates of parameters and the trends
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of changes differed between the selected output variables.
The integration of the plausibility checks of model outputs
ensures the realism of the simulated dynamics. The most im-
portant advantage of the presented method is that it considers
the environmental dependency of ecophysiological param-
eters in a spatial context. Moreover, the approach can also
be used to select site (environment) invariant parameters that
are globally applicable. Another advantage compared to tra-
ditional Bayesian or frequentist methods is the plausibility
check of the optimised parameters and their ranges, where
global databases on plant traits play a crucial role. The solu-
tion improves the reliability of the optimisation and may be
generally applicable to any process-based model of ecosys-
tem dynamics.

The disadvantage of the optimisation method is the pos-
sible bias of optimised model parameters that can occur be-
cause the parameters are forced towards specific values dur-
ing the optimisation process to match the simulated output
with observations. This can be partially avoided by including
multiple pieces of data into calibration which represent di-
verse parts of an ecosystem, such as vegetation, litter, and
soil, as it was presented in this study; simulated nutrients
(in our case, it would be carbon, nitrogen, and water); and
processes. To identify the bias in parameter values, on-site
measurements of parameters would be needed. Hence, it is
worth considering obtaining the information on some plant
characteristics, e.g. C : N ratios in different ecosystem com-
partments, and FLNR routinely from research plots.

The presented optimisation method can be further en-
hanced. In this study, the likelihood function did not include
the uncertainty in the observations, which means a lack of
weighting of errors with respect to their magnitudes. Thus,
the likelihood can be reformulated to include the observa-
tion uncertainty. Moreover, the method does not currently ac-
count for the covariance between output variables. This could
be done by constructing a covariance matrix representing the
relationships between the output variables from the model
simulations and incorporating it into a multivariate likelihood
function. Such an approach could provide a more accurate
and realistic estimation of the uncertainties associated with
model parameters. On the other hand, including covariance
would further increase the computational complexity of the
method, which is already high.

The calibration of the model performed at individual sites
(SSMV) and multiple sites (MSMV) revealed pros and cons
of both approaches. Site-specific parameter values improved
the accuracy of the simulated outputs of interest for the spe-
cific sites and are thus more suitable for local simulation
studies than the generalised parameter set, which is more ap-
propriate for studies covering a larger spatial scale.

The independent validation, robustness, and plausibility
tests confirmed the robustness of the multi-site and multi-
variate calibrated set of ecophysiological parameters for Eu-
ropean beech at a regional level. The study highlighted the
gaps in the empirical data and knowledge explaining the re-
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lationships between parameters or between parameters and
environmental conditions, which should be addressed by fu-
ture research. For future applications, additional parameters
that were not considered in this study, such as parameters
specifying drought-induced mortality, may need to be cali-
brated with additional empirical data since the occurrence of
extreme events and disturbances has been increasing due to
climate change.

Code and data availability. The current version of Biome-
BGCMuSo, together with sample input files and a detailed
user guide, is available on Zenodo (https://doi.org/10.5281/
zenodo.5761202; Hidy and Barcza, 2021) and on the web-
site of the model at http://nimbus.elte.hu/bbgc/download.html
(last access: 14 October 2024) under the GPL-2 licence.
Biome-BGCMuSo v6 is also available at GitHub at https:
//github.com/bpbond/Biome-BGC/tree/Biome-BGCMuSo_v6 (last
access: 10 October 2024). The RBBGCMuSo package (Holl6s et
al., 2023) is available at https://github.com/hollorol/RBBGCMuso.
Experimental data used in the study are available from ICP Forests
(http://icp-forests.net, ICP Forests, 2024) and from the authors that
provided the data upon request. The code for the optimisation of
parameters is in the Supplement.
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