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Abstract. Anthropogenic climate change is changing the
Earth system processes that control the characteristics of nat-
ural hazards both globally and across Australia. Model pro-
jections of hazards under future climate change are neces-
sary for effective adaptation. This paper presents BARPA-R
(the Bureau of Meteorology Atmospheric Regional Projec-
tions for Australia), a regional climate model designed to
downscale climate projections over the Australasian region
with the purpose of investigating future hazards. BARPA-
R, a limited-area model, has a 17 km horizontal grid spac-
ing and makes use of the Met Office Unified Model (Me-
tUM) atmospheric model and the Joint UK Land Environ-
ment Simulator (JULES) land surface model. To establish
credibility and in compliance with the Coordinated Regional
Climate Downscaling Experiment (CORDEX) experiment
design, the BARPA-R framework has been used to down-
scale ERA5 reanalysis. Here, an assessment of this evalu-
ation experiment is provided. Performance-based evaluation
results are benchmarked against ERA5, with comparable per-
formance between the free-running BARPA-R simulations
and observationally constrained reanalysis interpreted as a
good result. First, an examination of BARPA-R’s represen-
tation of Australia’s surface air temperature, precipitation,
and 10 m winds finds good performance overall, with bi-
ases including a 1 ◦C cold bias in daily maximum temper-
atures, reduced diurnal temperature range, and wet biases
up to 25 mm per month in inland Australia. Recent trends
in daily maximum temperatures are consistent with observa-

tional products, while trends in minimum temperatures show
overestimated warming and trends in precipitation show un-
derestimated wetting in northern Australia. Precipitation and
temperature teleconnections are effectively represented in
BARPA-R when present in the driving boundary conditions,
while 10 m winds are improved over ERA5 in six out of
eight of the Australian regions considered. Secondly, the pa-
per considers the representation of large-scale atmospheric
circulation features and weather systems. While generally
well represented, convection-related features such as tropi-
cal cyclones, the South Pacific Convergence Zone (SPCZ),
the Northwest Cloudband, and the monsoon westerlies show
more divergence from observations and internal interannual
variability than mid-latitude phenomena such as the westerly
jets and extratropical cyclones. Having simulated a realis-
tic Australasian climate, the BARPA-R framework will be
used to downscale two climate change scenarios from seven
CMIP6 global climate models (GCMs).

1 Introduction

Australia experiences some of the highest global levels
of interannual climate variability. As such, climate haz-
ards are a key risk in Australia, encompassing wildfires
(known as “bushfires” in Australia), high-intensity precipita-
tion, tropical and extratropical storms, flooding, heatwaves,
and drought. The risks associated with climate hazards are
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already changing as the planet warms and will continue to
do so into the future. These hazards are set by a range of
factors including the interaction of weather processes across
the Australian geography and length scales from kilometres
to hundreds of kilometres. Therefore, climate projections en-
compassing these scales across Australia are needed to in-
form the assessment of future natural hazards and associated
disaster risk (Binskin et al., 2020).

Projections of hazards in Australia’s climate can be
sourced from dynamically downscaled climate projections:
powerful tools that can help translate global climate projec-
tions to hazard-relevant length scales (Coppola et al., 2021).
These projections are generated by regional climate models
(RCMs), a class of climate models that focus on the simula-
tion of a limited regional domain rather than the whole globe.
Typically, RCMs are limited-area models (LAMs) with lat-
eral boundaries sourced from global models, however com-
plementary stretched grid models (SGMs) such as the Con-
formal Cubic Atmospheric Model (CCAM) can also be used
for this purpose (McGregor and Dix, 2008, 2005).

RCMs have been used to study hazard projections across
Australia (Herold et al., 2021) with focused studies exam-
ining changes in bushfires (Dowdy et al., 2019; Di Virgilio
et al., 2019a), east coast lows and extratropical cyclones
(Pepler et al., 2016; Pepler and Dowdy, 2022), heatwaves
(Perkins-Kirkpatrick et al., 2016; Hirsch et al., 2019), and ex-
treme precipitation (Bao et al., 2017), amongst others. State-
based regional climate projections have been produced to as-
sess the risks associated with a changing climate on a sub-
national scale (e.g., Corney et al., 2010; Evans et al., 2014;
Clarke et al., 2019; Trancoso et al., 2020).

Due to a wide range of combinations of global projec-
tions, emissions pathways, RCMs, and downscaling domains
that are possible, coordination across different institutions
is crucial to ensure that climate information available to
users is consistent and comparable (Giorgi et al., 2009).
The Coordinated Regional Climate Downscaling Experiment
(CORDEX) project is an initiative of the World Climate Re-
search Programme (WCRP) that provides a consistent frame-
work to produce downscaled climate projections (Jones et al.,
2011). Global driving model projections for CORDEX are
sourced from the Coupled Model Intercomparison Project
(CMIP). Due to computational expense, the full CMIP en-
semble generally cannot be downscaled, and a representative
subsample may be coordinated instead at a regional level
(e.g., Grose et al., 2023). CORDEX has defined a set of
16 climate regions, including the Australasian region, which
consists of Australia, New Zealand, the western Pacific, and
parts of Southeast Asia (shown in red in Fig. 1). Six dy-
namical RCMs, produced using five independent modelling
frameworks, contributed downscaled projections of the Aus-
tralasian region to the first Coordinated Regional Climate
Downscaling Experiment (CORDEX-CMIP5) (Di Virgilio
et al., 2019a; Evans et al., 2021).

When downscaling ERA-Interim reanalyses, the
CORDEX-Australasia CMIP5 ensemble framework
featured persistent cold daily maximum biases on the
order of 2–5 ◦C, reduced diurnal temperature ranges, and
dual-signed precipitation biases with magnitudes of up to
40 mm per month (Di Virgilio et al., 2019b). Downscaling of
the CMIP5 historical experiment model ensemble reflected
these temperature biases and showed dry precipitation biases
in the tropical monsoonal regions and wet biases elsewhere
(Evans et al., 2021). However, Evans et al. (2020) showed
that the CORDEX-CMIP5 Australasia ensemble generally
outperformed the driving global climate model (GCM)
ensemble, particularly at simulating the tails of temperature
and precipitation distributions.

Here, we introduce the Bureau of Meteorology Atmo-
spheric Regional Projections for Australia (BARPA-R), an
RCM designed for the Australasian region. BARPA-R is
being developed by the Australian Bureau of Meteorology
(henceforth the Bureau) and the Australian Climate Service
(ACS), together with a forthcoming convection permitting
model, BARPA-C. The BARPA-R model configuration and
developmental trials were presented by Su et al. (2022b).
This model is a continuation of prototype work developed
for the Energy Sector Climate Information (ESCI) project,
documented by Su et al. (2021) and from hereon referred
to as ESCI-BARPA. BARPA-R adheres to the principle of
seamless weather and climate prediction by following the
Australian Community Climate and Earth-System Simulator
(ACCESS) modelling framework and uses a 17 km (0.1545◦)
grid spacing. This means that BARPA-R uses an atmo-
spheric model configuration that is complementary to the
Bureau’s operational numerical weather prediction (NWP)
configuration and seasonal prediction configuration, allow-
ing learning and development from NWP to be applied over
longer timescales into the regional climate change space.
Furthermore, BARPA-R is being developed in tandem with
BARRA2 reanalysis (version 2 of the Bureau of Meteorology
high-resolution Atmospheric Regional Reanalysis for Aus-
tralia, Su et al., 2022a), allowing for seamless comparison
between the data-assimilated and fully model-based simula-
tions.

The Bureau intends to downscale an ensemble of at least
seven CMIP6 global climate models (GCMs) using the
BARPA-R framework. Downscaling GCMs have been se-
lected based on their performance over Australia, representa-
tion of climate drivers, modelling centre independence, and
the overall ensemble coverage of a range of warming and pre-
cipitation change scenarios in the Australian region, follow-
ing Grose et al. (2023). Through ACS, BARPA-R is intended
to produce complementary regional climate projections to
existing Australian RCM systems, broadening the ensemble
of climate hazard projections available in the Australasian
region. BARPA-R will be compliant with next generation of
CORDEX, CORDEX-CMIP6. Since the atmospheric com-
ponent of ACCESS and the UK Met Office’s Unified Model
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Figure 1. Map of the region of interest with the BARPA-R domain
marked by a black box and CORDEX-Australasia domain marked
by a red box. The National Resource Management (NRM) clusters
described in Sect. 2.3 and used in model evaluation are indicated in
colours as per the figure legend.

(MetUM) are co-developed and share a code base, BARPA-R
also joins a family of MetUM-based regional climate simu-
lations around the world. These include the PRECIS regional
climate modelling system, CP4Africa (Stratton et al., 2018),
and the HadREM CORDEX-Europe (Tucker et al., 2022)
simulations.

This paper presents an assessment of the BARPA-R eval-
uation simulation. The evaluation simulation is driven at the
lateral boundaries using ERA5 reanalysis (Hersbach et al.,
2020) and is designed to test the performance of the RCM.
This paper proceeds as follows. In Sect. 2, descriptions of the
BARPA-R model configuration, the evaluation methodology,
and the reference datasets are provided. Section 3 evaluates
the performance of BARPA-R in simulating the observed
precipitation and temperature and near-surface wind climates
in the Australian region. Section 4 provides a process-based
evaluation in order to assess the representation of key circu-
lation features and weather systems in the Australian region.

2 Data and methods

2.1 Experimental design and model configuration

BARPA-R is a land–atmosphere limited-area regional cli-
mate model. The experimental design follows the CORDEX-
v2 Australasia guidelines. The limited-area domain cov-
ers the CORDEX-Australasia domain, as shown in Fig. 1,
and includes Australia, New Zealand, the western Pacific,
and the Maritime Continent. The horizontal grid spacing is
0.1545◦ in latitude and longitude, which roughly corresponds
to 17 km in each direction. A total of 63 vertical model lev-
els have been used, with a 40 km model top. A stretch sigma
grid is used with a higher density of levels near the surface,
with the first model level is located 10 m above ground level

(a.g.l.). Model levels are terrain following near the surface
and relax to surfaces of uniform radial height approximately
18 km a.g.l. The model integration updates on a 7.5 min dy-
namical time step.

The simulation was initialised from the deterministic
ERA5 reanalysis on 1 January 1979. Soil moisture was
initialised from the 1 January climatological mean of the
BARRA-V1 reanalysis (Su et al., 2019). Boundary condi-
tions were updated every 3 h and derived from the ERA5
pressure level dataset, which consists of 37 vertical lev-
els. The 3D model inputs from ERA5 at the lateral bound-
aries were horizontal winds, specific humidity, temperature,
cloud liquid, cloud ice, and cloud cover. Between 2000 and
2006, boundary inputs were derived from ERA5.1 to avoid
stratospheric temperature and humidity biases present in
the original ERA5 dataset. Sea surface temperatures were
sourced from ERA5 and updated daily. Model configura-
tion followed the MetUM standard configuration HadREM3-
GA7.05 (Tucker et al., 2022) with a few modifications as de-
scribed in the BARPA-R version 1 model description paper
(Su et al., 2022b). Firstly, the “fountain buster” correction
to the advection scheme was applied to improve moisture
conservation during strong convective events. Secondly, the
“prognostic entrainment” scheme (Willet and Whitall, 2017)
was applied to improve the representation of convection and
precipitation. Thirdly, Newtonian relaxation (Telford et al.,
2008; Stassen et al., 2023) is used to improve alignment
between the driving model and the interior of the domain.
This relaxation is applied from model level 38 and above
(11 km a.g.l.) with a 6 h relaxation timescale. These modi-
fications were demonstrated in trial experiments to improve
the climatologies of Australian precipitation and near-surface
temperatures. The University of Melbourne (UM) and Joint
UK Land Environment Simulator (JULES) code branches
used in the publication have not all been submitted for code
review and inclusion in the UM/JULES trunk or released
for general use. These branches are associated with nudging,
support for the 365 d calendars used by some GCMs, and
performance optimisation for the Australian national com-
putational infrastructure (NCI) and were provided to the re-
viewers of this article.

HadREM3-GA7.05 uses a non-hydrostatic, fully com-
pressible, deep atmosphere formulation with an itera-
tive, semi-implicit dynamical solver (Wood et al., 2014).
Awakara-C grid staggering is used in the horizontal di-
mensions (Arakawa and Lamb, 1977), and Charney–Phillips
staggering is used in the vertical dimensions. Key pa-
rameterisation schemes include the prognostic condensate
(PC2) cloud scheme (Wilson et al., 2008), the Lock et al.
(2000) boundary layer scheme, the Gregory and Rowntree
(1990) mass flux convection scheme, the Edwards and Slingo
(1996) radiation scheme and the Wilson and Ballard (1999)
mixed-phase cloud microphysics. These schemes have been
routinely improved since their publication through regular
model development (Walters et al., 2019). Observed histor-
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ical greenhouse gas, aerosol, and ozone forcing are imple-
mented following Tucker et al. (2022). This approach pre-
scribes 4D aerosol optical properties on nine shortwave and
six longwave bands in the SOCRATES radiative transfer
code, combining seasonal and spatial variation derived from
an offline simulation using the Global Model of Aerosol Pro-
cesses (GLOMAP) scheme (Mann et al., 2010) with interan-
nual variation derived from the EasyAerosol project (Stevens
et al., 2017).

The MetUM atmosphere is coupled to the Joint UK Land
Environment simulator (JULES, Best et al., 2011). JULES
uses a nine-tile approach to represent sub-grid-scale land
cover heterogeneity, namely broadleaf and needle-leaf trees,
C3 and C4 grass, shrubs, inland water, bare soil, urban areas,
and land ice. Four soil levels are present with thicknesses of
0.1, 0.25, 0.65, and 2 m. In BARPA-R, land surface proper-
ties are prescribed as per Walters et al. (2019), with the ex-
ception of the land sea mask, which is derived from the ERA
Climate Change Initiative (CCI, Hartley et al., 2017), and the
broadleaf canopy height, which is derived from Simard et al.
(2011) following Dharssi et al. (2015). Land cover categori-
sation is fixed using a seasonal climatology following Hurtt
et al. (2020).

2.2 Reference datasets

This paper evaluates the performance of BARPA-R against
three main observationally derived datasets: version 1 of the
Australian Gridded Climate Dataset (AGCD, also known as
AWAP), the ERA5 deterministic reanalysis, and the Aus-
tralian Bureau of Meteorology’s point-based station dataset.
The current BARRA-V1 regional reanalysis is not used in
this work as our core evaluation period goes back to 1985.

AGCD is a near-surface analysis product that uses
an anomaly-based modified Barnes successive corrective
method to interpolate gridded station data to a regular grid
(Jones et al., 2009). In this work, AGCD version 1 is used to
evaluate the ability of the BARPA-R system to reproduce the
observed temperature and precipitation climate across Aus-
tralian land points. The three AGCD variables used in this
study, daily maximum temperature, daily minimum temper-
ature, and daily total precipitation, are available on a regu-
lar grid with 0.05◦ latitude and longitude spacing. AGCD’s
performance hinges on the availability of station data, and it
thus suffers from data availability issues in sparsely popu-
lated regions. A spatial mask, shown in Fig. 2, is applied to
precipitation metrics to remove the influence of regions most
poorly constrained by observations; however, observational
uncertainty in the AGCD dataset remains.

Jones et al. (2009) describe key sources of observational
uncertainty in AGCD. They highlight underestimations of
maximum temperatures in regions of tight climate gradients
and sparse observational coverage, including coastal north-
western Australia and the Nullarbor Plain, due to the poor
resolution of maritime effects. They also note large analysis

errors in daily precipitation estimates, with mean absolute er-
rors up to 50 % of the total. King et al. (2013) demonstrated
that AGCD is suitable for the study of rainfall extremes,
trends and variability across much of Australia, with limi-
tations occurring in regions where station coverage is sparse.
Meanwhile, Chubb et al. (2016) established large systematic
dry biases between AGCD and an independent gauge net-
work in the Snowy Mountains. In the following analysis, the
direction of the AGCD biases is opposite to the BARPA-R
bias presented. This means that the biases presented in this
paper are likely overestimates, ensuring that our analysis is
conservative.

ERA5 (Hersbach et al., 2020) is a global reanalysis prod-
uct that combines data assimilation with ECMWF’s Inte-
grated Forecasting System (IFS) model. As well as providing
boundary conditions, ERA5 is used in the assessment of the
BARPA-R evaluation simulation. In the performance evalua-
tion section below, BARPA’s biases are compared to ERA5’s
biases, both with respect to AGCD. However, since ERA5
benefits from assimilating observations while BARPA-R is a
free running model within its regional boundaries, this refer-
ence is not regarded to be a minimum benchmark for some
metrics. For example, it is not expected that BARPA-R will
outperform ERA5 based on direct comparisons with obser-
vations at exact times and locations. When comparable lev-
els of performance are present in BARPA-R and ERA5, this
is interpreted as a good result for BARPA-R. There are also
expectations that some climatological metrics could indicate
benefits from the BARPA-R downscaling, such as metrics
based on spatio-temporal averages of weather conditions.

2.3 Evaluation methodology

In Sect. 3, the temperature and precipitation climatology is
evaluated through analysis of derived standardised climate
indices defined in the ICCLIM project (Pagé et al., 2022).
These indices have been selected to evaluate aspects of the
tails of the precipitation and temperature distributions, such
as monthly maximum and minimum temperatures and high
precipitation rates. Indices have been computed on the 0.25◦

ERA5 grid following conservative remapping, aggregating
from daily temperature extrema and precipitation data to
monthly indices.

Performance was assessed over eight Australian regions,
known as the National Resource Management (NRM) clus-
ters (Clarke et al., 2015). These clusters are shown in Fig. 1
and have been designed to be climatologically distinct and
follow the boundaries of the Australia’s 54 National Re-
source Management regions. This assessment is based on
the decomposition of root-mean-square error into bias, cor-
relation, and variance error metric components following
Su et al. (2013) and Gupta et al. (2009) and presented in
Eq. (1). Error metrics selected were the seasonal biases,
annual variance errors, climatological seasonal correlations,
and climatological spatial correlations. These error metrics
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are adjusted to reflect important climatological aspects of
model performance, as a like-for-like reproduction of ob-
served weather events is not expected from free-running cli-
mate downscaling experiments.
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Here, m and o represent the three-dimensional, monthly
modelled and observed indices, respectively; SDx and
correlx represent the act of computing the standard devia-
tion or Pearson correlation of inputs over dimension x; and
n indicates the number of grid points in the NRM cluster of
consideration. The variance formula is modified by an offset
of 1 to avoid division by zero in regions of low rainfall.

3 Performance evaluation

3.1 Mean state

This section evaluates the performance of BARPA-R at simu-
lating Australian monthly temperature and precipitation met-
rics as compared to AGCD and ERA5. Firstly, we examine
the mean state bias maps of seasonal-mean daily maximum
and minimum temperatures and precipitation. Secondly, spa-
tial and temporal characteristics of six temperature and four
precipitation indices are examined, aggregated over the eight
NRM clusters. These indices were chosen with some empha-
sis on including properties of high-impact weather. Finally,
contemporary climate trends of the same 10 indices are com-
pared across the three data products.

Figure 2 displays seasonal bias maps over the Australian
region of daily minimum temperature, daily maximum tem-
perature and monthly precipitation totals, all averaged over
the core evaluation period (1985–2014). Two seasons are pre-

sented here: December to February (DJF) and June to Au-
gust (JJA). The remaining transition seasons are provided
in Fig. A1. When temperature biases show a decrease in
maximum temperatures coupled to an increase in minimum
temperatures in the same season, this can be interpreted as
an underestimation of the diurnal temperature range. Dur-
ing the Austral summer and northern Australian wet season,
BARPA-R shows improvements in both daily minimum and
daily maximum temperatures compared to ERA5, whose di-
urnal temperature range is reduced compared to observations
across the country. However, BARPA-R does show a reduced
diurnal temperature range across the southeastern coast. Per-
sistent warm biases of daily maximum temperatures in the
Nullarbor may derive from observational uncertainty due to
the low density of station data contributing to AGCD in these
regions (Jones et al., 2009).

During the winter season, both BARPA-R and ERA5 show
a reduced diurnal temperature range compared to the ob-
served climate, with overly warm minimums and cool max-
imums, except for in the tropical north. The magnitude of
the biases is higher in BARPA-R than ERA5, particularly on
the highly populated Australian East Coast. In all seasons,
BARPA-R has a more realistic representation of Australia’s
inland lakes than ERA5.

The final two rows of Fig. 2 show the monthly aggregated
precipitation biases. Overall, BARPA-R is overly wet, con-
sistent with the overall performance of ACCESS-based mod-
els in the Australian region, including in NWP (Hudson et al.,
2017). A prominent wet bias is present over the highlands in
eastern Victoria in both seasons. However, wet biases sur-
rounding the two masked regions in Western Australia (grey)
are likely to be related to underestimates in AGCD due to the
sparse station network (Jones et al., 2009). BARPA-R shows
a reduction in ERA5’s dry biases in southwestern Australia,
western Tasmania, the Pilbara, and Cape York.

Six temperature indices have been selected to examine
BARPA-R’s representation of Australia’s regional tempera-
ture climates. The indices considered are the number of sum-
mer days (SU; Tmax > 25), number of tropical nights (TN;
Tmin > 20), the monthly minimums and maximums of the
daily minimums (TNn, TNx), and the same of the daily max-
imums (TXn, TXx). These indices have been computed on a
monthly timescale from daily maximum and minimum tem-
perature data for AGCD and ERA5 and then regridded to the
BARPA-R grid as described in Sect. 2. Performance statis-
tics described in Sect. 2.3, namely biases, variance errors,
and correlations of the seasonal cycles, are calculated at each
grid point and then averaged across each NRM cluster. A
spatial correlation was additionally calculated on the overall
climatological mean of each index for each NRM cluster.

The resultant statistics are presented in Fig. 3. The num-
ber of summer days is substantially improved in BARPA-R
compared to ERA5, with reduced biases in most cases (save
for summer in the north-most clusters), similar spatial cor-
relations, and a much-improved seasonal cycle in the wet
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Figure 2. Bias in temperature and precipitation climate indicators (rows: TX, TN, and PRCPTOT) for two seasons, DJF and JJA, for BARPA-
R and ERA5 (second and third columns) against AGCD (first column) averaged across the core evaluation period (1985–2014). The annotated
figures indicate the area-averaged bias (top) and mean absolute error (bottom).

tropics. Tropical nights also show reduced biases but worse
variance errors in many cases and worse performance in the
South Slopes cluster. Absolute monthly maximum tempera-
tures exhibit a strong cold bias in BARPA-R throughout the
southern NRM clusters, consistent with the results shown in
Fig. 2.

The equivalent bar charts for precipitation-based variables
are shown in Fig. 4. The metrics selected were number of
rain days (RR1, with at least 1 mm of daily precipitation;
heavy precipitation days (R10m, with at least 10 mm of

daily precipitation); the monthly maximum daily precipita-
tion amount (Rx1day); and the Simple Daily (precipitation)
Intensity Index (SDII), which is calculated as the average
precipitation rate across all days with at least 1 mm of pre-
cipitation. BARPA-R’s wet bias is generally visible across
the first three of these metrics, with BARPA-R biases gen-
erally tending towards more precipitation and rain days and
being larger in magnitude than the ERA5 biases. Exceptions
to this include the winter rain and heavy rain day count in the
southern and southwestern flatlands, which are negative and
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Figure 3. BARPA-R (solid bars) and ERA5 (outlined bars) performance of six temperature indices across the eight Australian NRM clusters.
Reference data are sourced from AGCD. Rows show number of summer days (SU; with daily maximum temperatures exceeding 25 ◦C),
tropical nights (TN; with daily minimum temperatures exceeding 20 ◦C), and the monthly minimums and maximums of the daily mini-
mums and maximums (TNn, TNx, TXn, and TXx). Skill metrics are indicated by colour and column, with blue and orange showing the
bias aggregated over summer and winter, respectively (left), green representing the ratio of interannual standard deviations (middle), red
representing the correlations in the climatological seasonal cycles, and purple representing the spatial correlation across the NRM cluster of
the climatological mean (right). All temporal metrics are computed at each grid point and then spatially aggregated.

reduced compared to ERA5, and rain days in the two tropical
clusters where large positive biases in ERA5 are improved
by BARPA-R. Maximum daily precipitation is consistently
more variable on an interannual timescale in BARPA-R than
in AGCD across all NRM clusters. However, the SDII has a

consistent negative bias across ERA5 that is significantly im-
proved in BARPA-R, particularly during the summer months.
Both SDII and maximum daily precipitation have low spatial
and seasonal correlation values, consistent with expectation
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Figure 4. As per Fig. 3 but for precipitation indices: wet days (RR1, > 1 mm d−1), heavy rain days (R10mm; > 10 mm d−1), monthly
maximum daily precipitation (RX1day), and monthly precipitation (PRCPTOT).
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that these fields will be quite noisy due to the influences of
extreme values.

3.2 Trends

In order for the BARPA-R system to be of use in dynamically
downscaling climate projections, it is crucial that BARPA-R
is able to sensibly simulate changes in climate. Additionally,
the subset of CMIP6 that will be downscaled with BARPA-
R has been selected to cover a range of wetting and drying
and high and low warming scenarios, with the intention that
BARPA-R outputs can be used in a larger ensemble together
with projections from other RCMs within CORDEX Aus-
tralasia. Although it is possible that BARPA-R may be found
to diverge from its host GCM for good reasons, this model se-
lection was based on the hypothesis that this spread in future
change will be translated to some degree into the BARPA-R
ensemble. Therefore, this section investigates the degree to
which BARPA-R is able to simulate observed trends in con-
temporary climate.

The study periods used for this analysis are two 10-year
time slices: 1985–1994 and 2005–2014. Due to their short
durations, these time slices will include a degree of interan-
nual variability as well as any anthropogenic climate change.
However, it is expected that this variability will be in phase
and consistent across the observations and driving reanalysis
data, and therefore should be reproducible by BARPA-R.

This trend analysis must be caveated by the observational
uncertainties associated with the trends of both AGCD and
ERA5. Long-term trends in observational datasets, including
analyses and reanalyses, are sensitive to temporal inhomo-
geneities in their input datasets (Gibson et al., 2019, e.g.,).
Simmons et al. (2021) found that temperature trends over
Australia are affected by inhomogeneities in the observa-
tional inputs; however, the poorest performance occurs prior
to 1970, before our study period. AGCD has been designed
to be more robust to long-term trends through the applica-
tion of an anomaly-based approach that takes advantage of
climate normals at a subset of stations with longer coverage.
Jones et al. (2009) demonstrate that this approach provides
consistent maps of precipitation trends compared to monthly
analyses derived only from stations with long climate records
and found that temperature trends were similarly robust at the
large scale.

With these caveats in mind, this paper accounts for ob-
servational uncertainty in rainfall trends by focussing at-
tention on established trends that have been studied else-
where, namely southern Australian cool-season drying, wet-
ting trends in northwestern Australia during summer, and
the intensification of short-duration heavy convective rainfall
(Tolhurst et al., 2023; Borowiak et al., 2023; Fowler et al.,
2021).

The contemporary change in the temperature-based IC-
CLIM indices across BARPA-R, AGCD, and ERA5 are
shown in Fig. 5. BARPA-R shows warming trends for all

the indicators across all the clusters. There is some consis-
tency between BARPA-R and AGCD, particularly for the in-
dicators based on maximum temperatures. Statistically sig-
nificant AGCD trends present in monthly mean maximum
temperature (TX), summer days (SU), and monthly maxi-
mum temperature (TXx) in the southern clusters are gen-
erally well captured and significant in both BARPA-R and
AGCD. However, minimum temperature-based indices show
increased rates of warming in BARPA-R that are not reflected
in the observed products. Aside from in the Murray basin
cluster, these changes are not statistically significant at the
p < 0.05 level. However, some cooling trends are observed
in AGCD and ERA5 that are not present in BARPA-R, most
noticeably in the monsoonal north and in absolute minimum
temperatures.

Corresponding trend plots for precipitation indices are
shown in Fig. 6. As contemporary trends show a strong sea-
sonal dependence, these trends have been split into warm-
season (October–March) and cool-season (April–October)
panels. The direction of change is generally consistent across
all three datasets in the warm season. Significant AGCD-
based increases in precipitation intensities across multiple
NRM clusters (Fig. 6e) are not reflected in either BARPA-
R or ERA5. This result highlights the difficulty that param-
eterised convection models and reanalysis products have in
simulating the observed intensification of short-duration ex-
treme precipitation (Fowler et al., 2021). A decrease in the
number of dry days in the southern slopes region is evident
in ERA5 but insignificant in BARPA-R. Conversely, in the
cool-season drying trends are typically more pronounced in
BARPA-R and ERA5 than in AGCD. Reductions in rain days
are consistent across all three datasets.

3.3 Interannual variability

BARPA-R outputs are examined here in relation to three
key modes of interannual climate variability: the El Niño–
Southern Oscillation (ENSO), the Indian Ocean Dipole
(IOD), and the Southern Annular Mode (SAM). These modes
of variability typically have the largest observed telecon-
nections to Australian climate during the Austral Spring
(September to November), so this section focuses on that
season. In order to increase the sample size of modes of vari-
ability, the full 42-year period from 1979 to 2020 has been
sampled.

Figure 7 shows the composite differences between the ac-
tive phases of each mode of variability and the climatological
means for precipitation and daily maximum temperatures,
aggregated across the NRM clusters. Precipitation anoma-
lies are presented as percentages of the climatological mean.
Spatial variability in the IOD teleconnection is very similar
across all three datasets. In the northern clusters, precipita-
tion anomalies during the positive phase of the SAM are too
weak in BARPA-R and do not reflect AGCD’s statistical sig-
nificance. BARPA-R also misses significant warm and cool
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Figure 5. Contemporary change in annual means of eight temperature indices between the period 1985–1994 and 2005–2014 aggregated
across NRM clusters. Indices are as per Fig. 3, together with the monthly mean daily temperatures (TX and TN). Values are annotated on the
panels when the early and late samples are significantly distinct at the p > 0.05 level using a Welch’s t test.

temperature anomalies in the central slopes and East Coast
clusters due to both phases of ENSO. However, there is a re-
markably close correspondence between maximum tempera-
ture and the SAM across BARPA-R and AGCD. Overall, all
three teleconnections are well represented by BARPA-R.

3.4 The 10 m winds

In the absence of a gridded wind analysis, near-surface wind
speeds have been evaluated against 3-hourly station obser-
vations taken from 10 m masts. Where quality information
was present, observations that were flagged as wrong, sus-
pect, or inconsistent were excluded from the analysis. Model
and reanalysis data corresponding to the observations were
extracted from ERA5 and BARPA-R. For each station, in-
stantaneous wind speed data for a height of 10 m a.g.l. were

extracted from the nearest grid cell to the station position.
The model dynamical time steps (7.5 min for BARPA-R and
12 min for ERA5) roughly correspond to the observational
averaging period (10 min), which ensures that the modelled
and observed wind speeds are comparable. Only time sam-
ples for which valid station data were present are considered.
The resulting model and observation data were then aggre-
gated to NRM cluster level.

Resulting quantile–quantile (Q-Q) plots of observed and
corresponding modelled 10 m wind speed for each NRM
cluster are presented in Fig. 8. The Perkins skill score (PSS
Perkins et al., 2007) has been used to compare the distribu-
tions of BARPA-R and ERA5 to the observed station wind
speeds and is listed in the captions of Fig. 8. The PSS mea-
sures the difference between two normalised distributions,
ranging between 1 for a perfect match to 0 for no over-
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Figure 6. Contemporary change in seasonal means of five precipitation indices between 1985–1995 and 2005–2015. Indices are as per Fig. 4,
together with monthly total precipitation (PRCPTOT). Values are annotated on the panels when the early and late samples are significantly
distinct at the p > 0.05 level using a Welch’s t test.

lap between distributions, and is sensitive to histogram bin
width, in this case 0.5 m s−1. In six of the eight NRM clus-
ters, BARPA-R shows an improved PSS and improved 99th
percentile wind speeds compared to ERA5. BARPA-R gen-
erally shows improved high percentile tail values compared
to ERA5, while both models underestimate “calm” weather
conditions with wind speeds of 0 m s−1. In the upper tail,
there is a general tendency for both BARPA-R and ERA5
to have the Q-Q line tending towards lower values, similar to
previous results for BARPA-R downscaling of CMIP5 sim-
ulations that also found an improvement for this when using
BARPA-C convection-permitting simulations (Dowdy et al.,
2021). This is as expected to some degree given the very
strong winds from some localised storms may be better sim-
ulated at finer scales.

In summary, performance evaluation of precipitation and
surface air temperatures has demonstrated that BARPA-R is
capable of producing a faithful representation of present-day
climate when deriving driving inputs from ERA5. BARPA-
R shows a persistent wet bias across a set of precipitation-

related indices and a winter cold bias in maximum temper-
atures. Maximum temperature trends are broadly consistent
with observations, while warming trends in minimum tem-
peratures are overestimated. Precipitation trends resemble
ERA5 more closely than AGCD, and while the cool-season
drying in southern Australia is well captured, deficiencies in
simulating the intensification of heavy precipitation by pa-
rameterised convection models is evident in both BARPA-R
and ERA5. Regional correlations with key modes of variabil-
ity, namely ENSO, IOD, and SAM, are well simulated. The
10 m winds are improved over ERA5 but still underestimate
the high tails of the distribution in many regions.

4 Process evaluation

This section provides an analysis of the BARPA-R’s repre-
sentation of some key atmospheric dynamical and thermo-
dynamical processes that are important for the Australian re-
gion. Focus is placed on key wind circulation features and
on large-scale weather systems. Firstly, the climatologies of
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Figure 7. Spring fractional precipitation (a–c) and maximum temperature (d–f) composite anomalies under positive and negative phases of
(a, d) ENSO, (b, e) IOD, and (c, f) SAM. Values are annotated on the panels when the composite anomaly is statistically significant from 0
at the p > 0.05 level using a Welch’s t test.

these features are compared between BARPA-R and obser-
vational datasets. This climatological analysis is provided to
demonstrate the fidelity with which BARPA-R reproduces
regional climate process. Secondly, interannual correlations
of location and frequency statistics for each circulation fea-
ture or weather system are computed between BARPA-R and
the real-world observations. This correlation analysis demon-
strates the degree to which the weather and circulation is
coupled with the boundary conditions versus the degree to
which these systems are free to evolve independently within
the model.

4.1 Circulation

Figure 9 shows heatmaps of the frequency of the presence of
three key large-scale circulation features of the Australian re-
gion across four seasons: the barotropic and subtropical jets

and the monsoonal westerly winds. Table 1 further shows the
biases and interannual correlations with ERA5 key properties
of each circulation feature. In this analysis, ERA5 is used as
the reference dataset. The computational methods apply sim-
ple thresholds to daily mean wind speeds to determine the
horizontal locations of each circulation feature. The occur-
rence frequencies are likely to be somewhat sensitive to the
choice of thresholds; however, further analysis (not shown)
has found that BARPA-R model biases are robust to thresh-
old choice. The location of the South Pacific Convergence
Zone is also shown. Feature definitions are given below.

– The barotropic westerly jet (blue) where 850 and
200 hPa zonal winds both exceed 10 m s−1.

– The monsoon westerlies (green) where 850 hPa zonal
wind is westerly, while 200 hPa zonal wind is easterly.
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Figure 8. Q-Q plots of observed and modelled hourly wind speeds at station locations in each NRM cluster of ERA5 (red) and BARPA-R
(blue) compared to station observations. Perkins skill scores and 99th percentile biases are given in each panel’s legend. Station locations are
shown as black dots in the inset maps. Model data are derived from time step instantaneous winds and interpolated to station locations using
a nearest-neighbour interpolation scheme. The number of stations and hours are given in each panel label.

– The subtropical jet (red) where 200 hPa zonal winds ex-
ceed 30 m s−1.

– The South Pacific Convergence Zone (SPCZ, orange),
which shows a linear fit to the latitude of the monthly

maximum of precipitation in the southwestern Pacific
for each longitude point between 150 and 200◦ E. This
methodology is modified from Brown et al. (2013) for
the BARPA-R domain. In Fig. 9, the orange marker in-
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dicates the interannual inter-quartile range of the sea-
sonal SPCZ location.

All four features are present in both BARPA-R and ERA5 in
Fig. 9, with matching seasonal cycles. Some biases are evi-
dent, however, which are further summarised in Table 1. The
largest biases are present in the monsoon westerlies, which
are shifted too far east, particularly during the boreal mon-
soon, and the SPCZ, which is shifted south in March to May.
The spatial extent of the subtropical jet is additionally re-
duced in all seasons. The bias in the monsoon westerlies is
a persistent systematic MetUM bias (Rodríguez and Milton,
2019). This bias has been linked by Martin et al. (2021) to
errors in the representation of convection over the Maritime
Continent and the western to central equatorial Indian Ocean.
Systematic rainfall biases in the maritime continent are com-
mon due to the complex, multi-scale nature of convection in
this region. A reduced southerly bias in the SPCZ location
has been documented in the ACCESS-S1 seasonal forecast
system (Beischer et al., 2021), suggesting that ocean cou-
pling may improve the representation of the SPCZ.

The right-hand side of Table 1 shows the correlations be-
tween the circulation system indices (latitude, longitude, spa-
tial extent, and SPCZ slope) in ERA5 and BARPA-R. These
correlations are not measures of model performance, as it is
not required that BARPA-R shows perfect agreement in inter-
annual variability phasing as its driving model. Instead, they
show where circulation systems are influenced by the inter-
nal variability of the BARPA-R system and where they are
constrained by boundary conditions and sea surface temper-
ature (SST) forcing. From the table, it is evident that tropical
features, namely the SPCZ and the monsoon westerlies, have
a larger degree of internal variability, while the subtropical
and barotropic jets are more constrained and remain in phase
with ERA5.

4.2 Weather systems

Figure 10 and Table 2 follow the format of Fig. 9 and
Table 1 but consider a set of large-scale weather systems
that influence Australia, namely tropical and extratropical
cyclones, and Australian Northwest Cloudbands (NWCBs).
Where weather features only occur in limited seasons are not
necessarily observed in every year, interannual correlations
are only given for the feature counts, and statistics are only
shown in seasons when the weather systems are present. In
this analysis, some direct observational products are avail-
able, and these are used as references where possible. Where
no direct observation is available, ERA5 is used as the ref-
erence. Identification algorithms and reference datasets are
described below.

Firstly, tropical cyclones are identified using the Okubo–
Weiss–Zeta (OWZ) methodology following the methodology
of Tory et al. (2013) and Bell et al. (2018). This algorithm
uses a low-deformation vorticity parameter derived from vor-
ticity and deformation parameters at 850 and 500 hPa, and

tropical cyclone environment parameters derived from rel-
ative and specific humidity at 950 and 700 hPa. The ref-
erence dataset is the International Best Track Archive for
Climate Stewardship (IBTrACS Knapp et al., 2010). In Ta-
ble 2, tropical cyclones are split into eastern and western
systems along the longitude band at 135◦ E, corresponding
to the Indian Ocean and western Pacific Ocean tropical cy-
clone basins. Secondly, extratropical cyclones are identified
using the University of Melbourne (UM) tracker (Pepler and
Dowdy, 2021) by identifying local minima in mean sea level
pressure for which the maximum sea level pressure Lapla-
cian exceeds 0.8 hPa deg lat−2 and which originate south of
35◦ S. In this case, tracks derived with the same algorithm
using ERA5 reanalysis are used as the reference dataset.

Finally, NWCBs are identified using the MetBot (Hart
et al., 2012). This algorithm identifies bands of continuous
low daily outgoing longwave radiation (OLR) spanning from
the tropics through the subtropics and has been used to iden-
tify similar weather systems in southern Africa and South
America. In this Australian application, the OLR threshold
has been set to 240 K in observations and 255 K in BARPA-
R, with the latter selected through matching quantiles of daily
OLR. Each NWCB must intersect the longitude range 110–
155◦ E along each latitude band between 29 and 11◦ S.

Together, Fig. 10 and Table 2 show that extratropical cy-
clones are well represented in BARPA-R across all seasons.
There is a westward bias in feature locations and high cor-
relations above 0.8 across BARPA-R and the ERA5-based
reference. Tropical cyclones are generally shifted south and
west, and the large spike in cyclone systems in northwest-
ern Australia is underestimated. Tropical cyclone interannual
variability is decoupled from observations, with very low and
even negative correlation values present. Further investiga-
tion (not shown) indicates that tropical cyclone locations and
paths diverge on seasonal and sub-seasonal timescales be-
tween BARPA-R and observations away from the domain
boundaries. Finally, the spatial distribution of NWCBs has
the correct shape, with a maximum over the Australian East
Coast in the DJF season. However, cloud band counts are re-
duced by 13 % in this core NWCB season. Interannual corre-
lations with observations are 0.5 and 0.66 in DJF and MAM,
respectively, suggesting a degree of coupling with the bound-
ary conditions as well as real-world interannual variability.

5 Lagged temperature–precipitation relationship

Correct simulation of multivariate relationships between
RCM output variables are important for accurately represent-
ing weather processes, compound events, and downstream
impact modelling, which take multiple inputs from RCMs
(Kim et al., 2021, 2023; Sain et al., 2011). Therefore, it is
important to assess how well BARPA-R captures multivariate
relationships, particularly between key variables like temper-
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Figure 9. Heatmaps of seasonal circulation feature fractional frequency, ranging from 0 to 1, in BARPA-R (a–d) and ERA5 (e–h). Colours
indicate the westerly jet at 850 hPa (blue), the monsoonal westerlies at 850 hPa (green), the subtropical jet at 200 hPa (red lines; contour
interval = 0.15; first contour: 0.2). Additionally, the location of the SPCZ is shown in orange. Feature definitions are provided in Sect. 4.1.

Table 1. Bias and interannual correlations of circulation features compared to ERA5.

Feature Index Units
Biases Correlations

DJF MAM JJA SON DJF MAM JJA SON

Subtropical jet
Latitude Deg lat −0.17 −0.02 0.01 −0.10 1.00 1.00 1.00 1.00
Longitude Deg long −0.31 −0.15 −0.09 −0.14 0.99 0.99 0.99 1.00
Extent % grid −0.53 −0.52 −0.37 −0.47 0.99 0.98 0.99 0.99

Monsoon westerlies
Latitude Deg lat −0.23 0.20 0.47 0.40 0.81 0.81 0.72 0.87
Longitude Deg long 0.78 1.37 3.19 1.94 0.96 0.93 0.93 0.98
Extent % grid −0.23 −0.33 0.25 0.62 0.9 0.92 0.97 0.97

Barotropic jet
Latitude Deg lat 0.08 −0.11 −0.17 −0.05 0.91 0.95 0.98 0.98
Longitude Deg long 0.02 −0.03 −0.03 −0.08 0.97 0.99 0.98 0.99
Extent % grid 0.00 −0.04 −0.09 −0.01 0.98 0.98 0.99 0.99

SPCZ
Latitude Deg lat −1.34 −2.73 −0.88 −0.17 0.74 0.84 0.76 0.81
Slope 1 −0.05 −0.04 0.00 −0.01 0.19 0.53 0.48 0.71

ature and precipitation, as compared to existing observational
and reanalysis datasets.

A useful metric for characterising the relationship between
two variables is their time-lagged correlation, which can in-
dicate how each variable responds to anomalies of the other
through examination of positive and negative lags, respec-
tively. Hence, the lagged correlations between these variables
may be useful to examine the time lag and determine the
strength and direction of the relationship between them (Ku-
mar et al., 2013). At longer timescales, lagged correlations
can also be helpful to identify potential feedback mecha-
nisms between precipitation and temperature. For instance, if
increased precipitation leads to cooler temperatures, this can
lead to enhanced vegetation growth, which can further in-

crease precipitation due to amplified transpiration and evap-
oration. In convective climates, positive correlations at neg-
ative lags may be linked with atmospheric instability as the
land heats up, thus making conditions favourable for convec-
tion to occur, while negative correlations at positive lags sug-
gest that the precipitation cools the surface due to evapora-
tion and cloud cover, resulting in lower temperatures. More-
over, positive correlations at positive lags (especially in the
minimum temperatures) may be associated with increased
cloudiness, thereby increasing the chances of instability and
precipitation; additionally, an increase in warm and humid
conditions is expected, leading to higher temperatures.

This section evaluates the daily temperature–precipitation
relationship in BARPA-R and compared to AGCD and
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Figure 10. Heatmaps of seasonal weather feature frequency, in units of events per square degree per season, in BARPA-R (a–d) and observa-
tions (e–h). Colours indicate tropical cyclones (blue), extratropical cyclones (green), and NWCBs (red lines; contour interval: 1 event/season;
starting value: 2). Feature definitions are provided in Sect. 4.2. Observational products vary by feature: IBTRaCS tropical cyclones, ERA5
extratropical cyclones, and NOAA satellite-derived daily OLR-based cloud bands.

Table 2. Bias and interannual correlations of weather features compared to IBTRaCS, ERA5 and NOAA OLR as per text.

Feature Index units Metric DJF MAM JJA SON

Tropical cyclone (east)

Latitude Deg lat Bias −2.27 −0.41 – –
Longitude Deg long Bias −2.10 −2.71 – –
Count % diff Bias 5.5 −2.5 – –
Count 1 Correl 0.30 0.09 – –

Tropical cyclone (west)

Latitude Deg lat Bias −0.77 −0.91 – –
Longitude Deg long Bias −0.79 −2.50 – –
Count % diff Bias −29.1 −30.1 – –
Count 1 Correl −0.07 0.17 – –

Extratropical cyclone

Latitude Deg lat Bias 0.23 0.10 0.03 −0.01
Longitude Deg long Bias 1.08 1.60 1.63 2.00
Count % diff Bias 0.13 −1.90 0.85 1.09
Count 1 Correl 0.83 0.87 0.92 0.84

Northwest Cloudband

Latitude Deg lat Bias 2.47 2.58 – –
Longitude Deg long Bias −1.09 −2.08 – –
Count % diff Bias −13.6 9.7 – –
Count 1 Correl 0.51 0.66 – –

ERA5. Seasonal Spearman ranked correlations with lag time
of±10 d are computed between the daily maximum and min-
imum temperature and precipitation outputs from 1985 to
2014. A lower precipitation threshold of 1 mm d−1 was ap-
plied before ranking the precipitation data to remove sensi-
tivity to data storage precision. Incorporating a precipitation
threshold of 1 mm d−1, assuming that this is the minimum
amount of precipitation required to be considered a precip-
itation event for a particular day. The time steps of AGCD

maximum temperature data were shifted by 1 d to ensure that
valid times were consistent across all datasets.

Figures 11 and 12 show the lagged Spearman ranked cor-
relations between daily precipitation and near-surface min-
imum and maximum temperatures (tasmin and tasmax) in
the different datasets: namely, BARPA-R, ERA5, and AGCD
in DJF and JJA over the eight NRM clusters. The remain-
ing seasons showed similar results (not shown). The lagged
temperature–precipitation correlation relationships between
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Figure 11. Lagged Spearman ranked correlations between daily precipitation and maximum temperature (tasmax). Lines indicate BARPA-
ERA5 (red), ERA5 (black), and AGCD (marked in blue) in DJF (solid lines) and JJA (dashed lines) over the eight NRM clusters across
Australia (as labelled). Daily AGCD and modelled precipitation data are set to zero where the values are less than (<) 1 mm d−1. The
correlation is computed at each grid point, before being spatially averaged over each region.

ERA5 and AGCD are very similar across seasons and NRM
clusters.

In the mid-latitude regions (Fig. 11a–e), precipitation gen-
erally leads tasmax with negative correlation at positive lag
of around 1 d, suggesting that precipitation initially cools
the surface, leading to lower maximum temperature. This
is consistent across all three datasets in all seasons. In all
three datasets and in both seasons, tasmin leads precipita-
tion (Fig. 12a–e) with positive correlation at negative lag
of around 1 d (which may accelerate evaporation, leading to
an increase in atmospheric moisture and condensation). Sea-
sonal differences in the tasmin–precipitation relationship are
well distinguished by BARPA-R in the southern slopes, Mur-
ray basin, and SSW flatlands regions, while in the central
slopes (Fig. 12d) and East Coast (Fig. 12e) the BARPA-R
DJF relationships more closely resemble the observed rela-
tionships in JJA.

In northern central Australia, the observed precip–tasmin
relationship is distinctly different between DJF and JJA
(Fig. 12f–h). In JJA, this relationship is characterised by
positive correlations and is well simulated by BARPA-R.
However, in DJF, negative correlations are seen at a posi-
tive lag of around 1 d in both AGCD and ERA5. However,
BARPA-R still shows positive correlations at negative lag
(Fig. 12f–h), resembling its relationship in JJA. In these re-
gions, namely, the rangelands, monsoonal north, and wet

tropics, BARPA-R shows a substantially different minimum
temperature–precipitation relationship to AGCD and ERA5.
This suggests that in the aforementioned regions (Fig. 12f–
h) BARPA-R is unable to perform well relative to AGCD
and ERA5 and does not reproduce the observed daily mini-
mum temperature–precipitation relationship in the DJF sea-
son (Fig. 12f–h). BARPA-R performs considerably better at
simulating the observed precip–tasmax relationship in north-
ern Australia (Fig. 11g, h), resolving the strong seasonal dif-
ferences between DJF and JJA apparent in the monsoonal
north and wet tropics. In these regions, the DJF correlations
are strongly negative, with maximum values between −0.55
and −0.65.

The maximum strength of the correlations between pre-
cipitation and minimum or maximum temperature between
the two variables is generally quite strong (±0.3–±0.4) in
the NRM clusters for all the datasets. The strongest corre-
lation (±0.6) between precipitation and maximum tempera-
ture is observed in DJF season over the monsoonal north and
wet tropics in all the datasets. In all other regions, BARPA-
R precipitation is more sensitive to minimum temperature in
the summertime (DJF) relative to AGCD and ERA5; hence,
BARPA-R shows a slightly larger magnitude in correlations
(with all peaking about zeroth lag). Further results can be
found in the Appendix where the spatial maps of Spearman’s
ranked correlation coefficients at lag 0 between the daily
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Figure 12. Lagged Spearman ranked correlations between daily precipitation and minimum temperature (tasmin). Lines and subplots as per
Fig. 11.

precipitation and minimum temperature outputs from 1985–
2014 are shown (Figs. A4 and A5) in DJF and JJA in the
BARPA-R, AGCD, and ERA5 datasets.

Overall, BARPA-R simulates realistic relationships be-
tween daily maximum temperatures and precipitation across
all NRM clusters and in both seasons. Relationships between
daily minimum temperatures and precipitation are also well
simulated in mid-latitude regimes, namely during winter, and
across southern Australia. In convective regimes, such as
northern and central Australia and to a lesser extent along the
East Coast, a shift in the minimum temperature–precipitation
relationship is apparent in observational datasets but not re-
flected in BARPA-R. Instead, the BARPA-R JJA relationship
persists into DJF in these clusters. These conclusions are con-
sistent with spatial maps of the zero-lag correlations provided
in Figs. A4 and A5.

The skilful representation of multivariate relationships has
implications for the interpretation of climate risk assessments
of compound weather events. For example, hot and dry con-
ditions may lead to enhanced bushfire risk, while hot and
humid conditions are associated with enhanced heat stress
on humans and livestock. In regions where models strug-
gle to represent correct multivariate relationships, simula-
tions of compound events may be adversely impacted. Im-
provements to the representation of atmospheric convection,
either through improved parameterisation or explicit simu-
lation, may improve the minimum temperature precipitation
relationship in the northern Australian wet season.

6 Discussion and conclusions

This paper has analysed the ability of the BARPA-R RCM
to maintain a realistic Australian climate when driven with
ERA5 reanalysis. Performance in the simulation of Aus-
tralian temperatures and precipitation was found to be fre-
quently on par with and sometimes improved on the ERA5
reanalysis, despite the contribution of data assimilation in
ERA5. This analysis considered mean state biases, seasonal-
ity, and interannual variability of key ICCLIM metrics cho-
sen to describe the temperature and precipitation climates in
the Australian region. Precipitation and temperature telecon-
nections of the SAM, ENSO, and IOD were shown to be well
captured by BARPA-R when the appropriate circulation sig-
nals are present in the driving boundary inputs and sea sur-
face temperatures. Contemporary change signals of warming
were present and, in many cases, overestimated in BARPA-
R, while contemporary wetting signals in northern Australia
were underestimated.

Key mean state biases that exceeded those present in
ERA5 included JJA cold biases in daily maximum temper-
atures of around 1 ◦C across the southern NRM clusters
and JJA warm biases in daily minimum temperatures, to-
gether leading to a reduced cold-season diurnal tempera-
ture range. These JJA temperature biases are also evident
in MetUM-based regional reanalyses (Su et al., 2023). The
mean monthly maximums in daily precipitation were over-
estimated by 2–12 mm d−1 across all NRM clusters in both
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summer and winter. DJF rain day counts were improved in
northern regions compared to ERA5 but degraded in south-
ern regions. The simulation of near-surface wind speeds was
improved compared to ERA5, but nevertheless underesti-
mated the tail of the distribution in all but the two northern-
most NRM clusters.

BARPA-R shows improvements in mean state biases over
Australia when compared to the previous generation of
RCMs, namely CORDEX-CMIP5 (Di Virgilio et al., 2019b)
and the ESCI prototype BARPA-R simulations (Su et al.,
2021). The pronounced June–August maximum temperature
cold bias, which ranged from −2 to −5 ◦C in CORDEx-
CMIP5, is substantially reduced to −1.1 ◦C in BARPA-R.
The mean state East Coast precipitation bias is reduced but
remains substantial with an overall DJF mean of 10 mm d−1.
The bias in the number of overall rain days is reduced in the
DJF season from values of up to 5 extra days per month in the
ESCI-BARPA simulations to 1–2 extra days across all NRM
clusters in BARPA-R. Meanwhile, the ESCI-BARPA under-
estimation of heavy rain day frequency by 1.5–2 d in the wet
tropics is transformed to a 0.1 d positive bias in BARPA-R.
These changes are likely to be attributable to the inclusion of
the improved, “prognostic entrainment” convection scheme
in the new version (Su et al., 2022b).

As BARPA-R projections are intended to produce hazard
information for risk assessment purposes, it is important that
BARPA-R is able to simulate correct frequencies of hazard-
relevant weather and circulation systems. As a first attempt
at analysing this, Sect. 4 focused on the representation of key
circulation and large-scale weather systems, such as tropi-
cal cyclones, extratropical cyclones, and monsoon westerlies.
All circulation and weather systems analysed were present
with accurate seasonal cycles in BARPA-R. This is a reassur-
ing but expected result, given that the length scales of the sys-
tems are large and that these systems are well represented in
the driving datasets. Future investigations into the represen-
tation of finer-scale systems such as sea breeze circulations,
dry lines, and mountain meteorology may yield more insight-
ful findings. In general, tropical systems such as the monsoon
westerlies, tropical cyclones, and the Northwest Cloudbands
showed larger biases in location and frequency statistics than
extratropical systems such as extratropical cyclones. These
tropical systems also showed less correlation on interannual
timescales than extratropical systems. This has implications
for future experiment design on hazard analysis. While a
case study approach comparing BARPA-R with its driving
model may be appropriate for studying extratropical systems
in some instances, it is unlikely to be practical for tropical
systems due to the divergence between driving and down-
scaling model behaviour. A larger sample size may therefore
be required, especially for studies of rare events such as trop-
ical cyclone landfall.

Both BARPA-R and ERA5 underestimate the intensifi-
cation trend of wet-day precipitation (SDII) observed in
AGCD. This result is consistent with global studies of at-

mospheric models with parameterised convection and has
been found elsewhere to be rectified by the explicit represen-
tation of atmospheric convection (Fowler et al., 2021; Lee
et al., 2022; Luu et al., 2022). This is particularly true for
subdaily rainfall, which has not been evaluated in this paper.
Further downscaling of both climate projections and regional
reanalysis to convection-permitting length scales over the
Australian region are therefore necessary for the assessment
of changes in high-intensity, short-duration rainfall (Wasko
et al., 2023).

Many of the biases and limitations in BARPA-R identi-
fied by this study are common biases of the MetUM. These
include the overall wet bias (Hudson et al., 2017), the overes-
timation of the monsoon westerlies (Martin et al., 2021), and
the reduced diurnal temperature range in winter (Su et al.,
2023). Future development of BARPA-R will take advantage
of ongoing MetUM model development, such as the inclu-
sion of the CoMorph convection scheme and updates to the
JULES land surface model, with the potential of improving
these model shortcomings going forward.

This paper has demonstrated that BARPA-R is able to
downscale ERA5 reanalysis to produce a reasonable cli-
mate over Australia. This evaluation experiment meets the
CORDEX requirement to downscale ERA5 reanalysis in or-
der to evaluate RCM performance in the absence of biased
GCM-based driving inputs. Having shown good performance
in the evaluation experiment, GCM-based downscaling with
BARPA-R is now underway. This BARPA-GCM ensemble
will require additional evaluation and is not guaranteed to
show similar performance over the Australian region. If key
planetary-scale model circulations and processes, such as
ENSO or the subtropical jet, are biased or missing in the driv-
ing GCM, BARPA-R is unlikely to be able to compensate for
these errors. Additionally, non-linear errors may arise from
incompatibility between driving GCMs and the downscaling
BARPA-R GCM, such as if the two models have very differ-
ent favoured vertical profiles of temperature or humidity.

Further work will perform a broader evaluation of
BARPA-R’s performance at downscaling both ERA5 and
CMIP6 GCMs. Benchmarking of the performance of
BARPA-R and other CORDEX-CMIP6 RCMs at downscal-
ing historical experiments is needed to establish the credi-
bility of their downscaled projections. The added value of
RCMs over GCMs must be evaluated in order to assess the
value of computationally expensive dynamical downscaling
going forward. Hazard-specific evaluations are required to
understand the representation of hazards in BARPA-R simu-
lations before these simulations may be used for risk assess-
ment. Following this evaluation of the full BARPA-R sys-
tem, these simulations will provide hazards intelligence and
climate services to support and inform decision-making.
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Appendix A: Supplementary Figures

Figure A1. Bias in temperature and precipitation climate indicators (rows: TX, TN, and PRCPTOT) for transition seasons MAM and SON
for BARPA-R and ERA5 (second and third columns) against AGCD (first column) averaged across the core evaluation period (1985–2014).
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Figure A2. BARPA-R (solid bars) and ERA5 (outlined bars) transition season biases of six temperature indices across the eight Australian
NRM clusters. Reference data are sourced from AGCD. Panels show the number of summer days, (SU; with daily maximum temperatures
exceeding 25 ◦C), tropical nights, (TN; with daily minimum temperatures exceeding 20 ◦C), and the monthly minimums and maximums of
the daily minimums and maximums (TNn, TNx, TXn, and TXx). Blue and orange bars show the bias aggregated over austral autumn and
spring, respectively.
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Figure A3. As per Fig. A2 but for precipitation indices: wet days (RR1; > 1 mm d−1), heavy rain days (R10mm; > 10 mm d−1), monthly
maximum daily precipitation (RX1Day), and the overall monthly precipitation (PRCPTOT).

Figure A4. Spatial maps of Spearman’s ranked correlation coefficients between the daily precipitation and maximum temperature in DJF
and JJA in BARPA-ERA5, AGCD, and ERA5 datasets.
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Figure A5. Spatial maps of Spearman’s ranked correlation coefficients between the daily precipitation and minimum temperature in DJF and
JJA in BARPA-ERA5, AGCD, and ERA5 datasets.
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