
Geosci. Model Dev., 17, 7263–7284, 2024
https://doi.org/10.5194/gmd-17-7263-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Improved definition of prior uncertainties in CO2 and CO fossil fuel
fluxes and its impact on multi-species inversion
with GEOS-Chem (v12.5)
Ingrid Super1, Tia Scarpelli2, Arjan Droste1,3, and Paul I. Palmer2,4

1Department of Climate, Air and Sustainability, TNO, P.O. Box 80015, 3508 TA Utrecht, the Netherlands
2School of GeoSciences, University of Edinburgh, Edinburgh, UK
3Department of Water Management, Water Resources Section, Faculty of Civil Engineering and Geosciences,
Delft University of Technology, Delft, the Netherlands
4National Centre for Earth Observation, University of Edinburgh, Edinburgh, UK

Correspondence: Ingrid Super (ingrid.super@tno.nl)

Received: 4 September 2023 – Discussion started: 26 January 2024
Revised: 8 August 2024 – Accepted: 19 August 2024 – Published: 10 October 2024

Abstract. Monitoring, reporting, and verification frame-
works for greenhouse gas emissions are being developed by
countries across the world to keep track of progress towards
national emission reduction targets. Data assimilation plays
an important role in monitoring frameworks, combining dif-
ferent sources of information to achieve the best possible es-
timate of fossil fuel emissions and, as a consequence, better
estimates for fluxes from the natural biosphere. Robust esti-
mates for fossil fuel emissions rely on accurate estimates of
uncertainties corresponding to different pieces of informa-
tion. We describe prior uncertainties in CO2 and CO fossil
fuel fluxes, paying special attention to spatial error corre-
lations and the covariance structure between CO2 and CO.
This represents the first time that prior uncertainties in CO2
and the important co-emitted trace gas CO are defined con-
sistently, with error correlations included, which allows us
to make use of the synergy between the two trace gases to
better constrain CO2 fossil fuel fluxes. CO : CO2 error cor-
relations differ by sector, depending on the diversity of sub-
processes occurring within a sector, and also show a large
range of values between pixels within the same sector. For
example, for other stationary combustion, pixel correlation
values range from 0.1 to 1.0, whereas for road transport, the
correlation is mostly larger than 0.6. We illustrate the added
value of our definition of prior uncertainties using closed-
loop numerical experiments over mainland Europe and the
UK, which isolate the influence of using error correlations
between CO2 and CO and the influence of prescribing more

detailed information about prior emission uncertainties. For
the experiments, synthetic in situ observations are used, al-
lowing us to validate the results against a “truth”. The “true”
emissions are made by perturbing the prior emissions (from
an emission inventory) according to the prescribed prior un-
certainties. We find that using our realistic definition of prior
uncertainties helps our data assimilation system to differenti-
ate more easily between CO2 fluxes from biogenic and fossil
fuel sources. Using improved prior emission uncertainties,
we find fewer geographic regions with significant deviations
from the prior compared to when using default prior uncer-
tainties (32 vs. 80 grid cells of 0.25°× 0.3125°, with an ab-
solute difference of more than 1 kg s−1 between the prior and
posterior), but these deviations from the prior almost consis-
tently move closer to the prescribed true values, with 92 %
showing an improvement, in contrast to the default prior un-
certainties, where 61 % show an improvement. We also find
that using CO provides additional information on CO2 fos-
sil fuel fluxes, but this is only the case if the CO : CO2 er-
ror covariance structure is defined realistically. Using the de-
fault prior uncertainties, the CO2 fossil fuel fluxes move far-
ther away from the truth in many geographical regions (with
50 % showing an improvement compared to 94 % when ad-
vanced prior uncertainties are used). With the default uncer-
tainties, the maximum deviation of fossil fuel CO2 from the
prescribed truth is about 7 % in both the prior and posterior
results. With the advanced uncertainties, this is reduced to
3 % in the posterior results.
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1 Introduction

With the signing of the Paris Agreement, 195 nations have
committed themselves to reducing their greenhouse gas
(GHG) emissions. This calls for active monitoring of emis-
sions and emission trends to ensure climate plans are be-
ing met. Work is currently ongoing to build a GHG moni-
toring, reporting, and verification (MRV) framework, which
will track and verify emissions of the major GHGs using
a multi-tiered observing system. The MRV framework will
support the 5-yearly global stocktake (Balsamo et al., 2021;
Janssens-Maenhout et al., 2020; Petrescu et al., 2021) and
increase understanding of emission landscapes and the asso-
ciated dominant source sectors that are necessary for devel-
oping effective nationwide emission mitigation strategies to
support nationally determined contributions.

An important aspect of the MRV framework involves com-
bining different types of data, e.g. spatially disaggregated
bottom-up inventories, atmospheric data, and near-real-time
weather and economic data, to obtain the best possible es-
timate of national fossil fuel GHG emissions. This is of-
ten done through data assimilation (or inverse modelling),
which is a rigorous mathematical framework that combines
all these pieces of information (Lauvaux et al., 2016; Pil-
lai et al., 2016; Staufer et al., 2016; Wu et al., 2018). GHG
data assimilation uses state-of-the-art atmospheric transport
models, prior information on GHG sources and sinks, ob-
servational data, and the uncertainties in each of these data
sources. The uncertainties determine how much confidence is
assigned to each of the components and thus how much infor-
mation is taken from them, but some of these uncertainties,
e.g. model transport uncertainties, are notoriously difficult to
estimate. A limiting factor is often the lack of sufficient high-
quality observations. Although a relatively dense GHG mon-
itoring network exists in some regions, e.g. the UK, main-
land Europe, and North America, many regions only have
very sparse observations. Satellite data can significantly in-
crease this coverage and have proven useful in specific cases.
For an MRV framework targeting CO2 from combustion, one
major limitation of satellite data is that observations are at-
mospheric columns that include a large background concen-
tration (Broquet et al., 2018; Chevallier et al., 2022; Palmer
et al., 2008; Reuter et al., 2019).

One way to isolate the signal from combustion emissions
is by exploiting the synergy between CO2 and co-emitted
species, such as CO and NOx , which share the same com-
bustion sources. Many countries have an air quality moni-
toring network, and many air pollutants are observed from
space (e.g. CO and NO2), benefitting from relatively short e-
folding lifetimes (less than a few months) and consequently
having a smaller background contribution. Hence, co-emitted
species have a better spatiotemporal coverage than radiocar-
bon measurements, often seen as the most reliable indepen-
dent constraint on fossil fuel CO2 fluxes (Turnbull et al.,
2009). Several studies have explored the correlation between

CO2 and co-emitted species and the additional constraint im-
posed by co-emitted species on CO2 emissions, using both in
situ and satellite data (Boschetti et al., 2018; Brioude et al.,
2013; Palmer et al., 2022; Reuter et al., 2019; Silva et al.,
2013; Turnbull et al., 2006; Yang et al., 2023). Co-emitted
species have been used to separate fossil fuel CO2 from bio-
genic CO2 signals (Oney et al., 2017; Suntharalingam et al.,
2004; Vardag et al., 2015), to estimate CO2 emissions with-
out CO2 observations (Konovalov et al., 2016; Liu et al.,
2020; Lopez et al., 2013), and to allocate CO2 signals to
specific emission sectors (Nathan et al., 2018; Super et al.,
2020b; Turnbull et al., 2015). The latter makes use of the
sector-specific emission ratio of CO2 and co-emitted species.

Although there is promise in this multi-species approach,
the emission ratios are uncertain and dynamic in space and
time (Ammoura et al., 2016; Liñán-Abanto et al., 2021; Su-
per et al., 2017; Wu et al., 2022), and they may even de-
pend on human behaviour or meteorological conditions (Am-
moura et al., 2014; Hall et al., 2020). The objective of data
assimilation is to reduce the mismatch between posterior es-
timates and observations so that co-emitted species are only
useful for informing CO2 emissions if the uncertainties in the
CO2 emission estimates are larger than uncertainties associ-
ated with the observed ratios between CO2 and co-emitted
species. Therefore, an important role is laid out for accurately
assessing the uncertainties in prior emissions and the defini-
tion of error correlations, which is a complex task. Gridded
prior emissions are based on several data sources and there-
fore include uncertainties in activity data, emission factors
(the amount of pollutant emitted per unit of activity), and spa-
tial and temporal patterns. Some of these uncertainties might
also be correlated, e.g. between regions and/or trace gases.
Error correlations describe the synergy in emission uncer-
tainties and can increase the amount of information gained
from the same input data. One example is that gridded un-
certainties are not independent of uncertainties in nearby grid
cells.

In order to simultaneously optimize CO2 and CO emis-
sions, we need to make optimal use of these synergies. At
the national scale, the most uncertain parameter is the CO
emission factor. Unfortunately, the errors in the CO and CO2
emission factors are not correlated, limiting the use of CO in
constraining CO2 at the national scale (Palmer et al., 2006).
However, CO and CO2 emissions are correlated through fos-
sil fuel combustion activity, which determines, to a large ex-
tent, the spatial patterns of the emissions. In practice, the spa-
tial distribution for CO and CO2 emission estimates is often
based on the same spatial data. Therefore, gridded CO and
CO2 emission estimates show a much stronger error correla-
tion than national emissions. The relative error in CO2 emis-
sions for one grid cell is likely to be similar to the relative er-
ror in CO emissions for the same grid cell because the errors
are caused by the assumed shared activity. Hence, by quanti-
fying the gridded error correlations, we can make better use
of the CO information to constrain CO2.
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Few studies have tried to estimate gridded emission un-
certainties (Gately and Hutyra, 2017; Hogue et al., 2016;
Hutchins et al., 2017; Oda et al., 2019), and they have only
done so for CO2. These studies mostly compare different
emission datasets, which likely underestimate the uncertain-
ties when the inventories use similar underlying data. Super
et al. (2020a) provided a bottom-up uncertainty estimate of
gridded emissions for CO2 and CO using an emission inven-
tory with a consistent methodology for CO2 and co-emitted
species. This increases the use of error correlations between
CO2 and co-emitted species. In this previous work, spatial
errors were treated as independent, and no spatial correla-
tions were considered. Also, the error correlation between
CO2 and co-emitted species was not examined.

Here, we describe an effort to build a consistent set of prior
emission uncertainties for CO2 and co-emitted species (CO),
building further on the work done by Super et al. (2020a).
This paper starts with a description of the data (Sect. 2.1)
and methodology (Sect. 2.2) used to develop a more detailed
definition of prior uncertainties, including spatial error cor-
relation lengths and the error correlation between CO2 and
CO. The results are shown in Sect. 3.1. To illustrate the added
value of well-defined information on prior uncertainties, we
perform closed-loop numerical experiments, as explained in
Sect. 2.3. We show the results for CO2-only (Sect. 3.2) and
multi-species inversions (Sect. 3.3).

2 Methods

This section starts with a description of the data used to make
a detailed definition of prior uncertainties for gridded emis-
sions, including the prior emission inventory. For this, we
separate uncertainties in activity data, emission factors, and
spatial patterns. Next, we describe the methodology used to
estimate spatial error correlations and the error correlation
between CO and CO2. Additionally, we discuss how all un-
certainties are combined into one product that can be used
in data assimilation studies. Finally, we describe the setup
of the inversions, including descriptions of the models, state
vectors, input data, and different experiments.

In this work, we use the words “uncertainties” and “er-
rors”, which have slightly different meanings. We do not
know the exact errors in our data, so we talk about uncer-
tainties to define how reliable our data are. When referring to
correlations, we use the term “error”. For example, if errors
between neighbouring grid cells are positively correlated, it
means that if we overestimate a value for one grid cell, we are
likely to do the same for neighbouring grid cells. In this case,
we are talking about actual errors, which we cannot define
but know are correlated. It is not the uncertainty that is corre-
lated. For the same reason, we use the term “error covariance
matrix”.

2.1 Prior data

2.1.1 European emission dataset

The European prior emission dataset used as a basis for this
work is the TNO-GHGco-v4 inventory for 2018, with a spa-
tial resolution of 0.1° by 0.05°, developed at the Netherlands
Organisation for Applied Scientific Research (TNO). This
dataset provides a unique set of consistent emissions for a
range of GHGs and co-emitted species (Fig. 1), which allows
us to study the impact of error correlations between these
species on data assimilation studies.

The TNO-GHGco-v4 dataset is similar to the CAMS-REG
emission inventory (Kuenen et al., 2022), developed for the
Copernicus Atmosphere Monitoring Service (CAMS), ex-
cept that point sources are placed at their exact locations
instead of being assigned to grid cells. It is compiled from
emission reports delivered to the EMEP (European Monitor-
ing and Evaluation Programme) Centre on Emission Inven-
tories and Projections (Data reported by Parties under LR-
TAP Convention, 2022) and the United Nations Framework
Convention on Climate Change (UNFCCC) (National Inven-
tory Submissions 2020, 2022) by individual countries. The
reports contain emissions for a long list of sub-sectors and
fuels. In the final dataset, these emissions are aggregated into
12 sectors using GNFR (Gridded Nomenclature For Report-
ing) categorization (see Table 1). For countries that do not
report their emissions, other emission datasets are used for
gap filling, which are only available at the GNFR level. For
the uncertainty estimates, we work with the detailed reported
emission data. In the final product, we aggregate the data
into six sectors: public power (GNFR A), industry (GNFR
B), other stationary combustion (GNFR C), road transport
(GNFR F), shipping (GNFR G), and a sixth group for the
remaining minor GNFR sectors.

The country-level emissions are spatially downscaled to a
0.1° by 0.05° resolution using proxy maps (Kuenen et al.,
2022). The proxy maps describe the fraction of the country-
level emissions for a particular sub-sector that is assigned to
one grid cell, ensuring that the fractions sum to 1 for each
country-sector combination. Some proxy maps are used for
multiple sub-sectors. For some countries, the spatial proxies
are not available or are replaced with other datasets.

For shipping (GNFR G), a different approach is used be-
cause most of the emissions in this sector occur in interna-
tional waters and are therefore not reported by countries. All
shipping emissions are therefore taken directly from the Ship
Traffic Emission Assessment Model (STEAM) (Jalkanen et
al., 2012; Johansson et al., 2017), which provides gridded
emissions using AIS (automatic identification system) data
and vessel characteristics.

https://doi.org/10.5194/gmd-17-7263-2024 Geosci. Model Dev., 17, 7263–7284, 2024



7266 I. Super et al.: Improved definition of prior uncertainties in fossil fuel fluxes

Figure 1. TNO-GHGco-v4 emission maps of CO2 and CO for 2018.

Table 1. An overview of the aggregated emission categories in the European emission data (GNFR) is provided, including relative uncer-
tainties based on the Intergovernmental Panel on Climate Change (IPCC; 95 % confidence interval (CI)) in activity data (AD) and CO2
emission factors (EFs) for each GNFR sector, which are used for countries without their own reporting. Note that “rel. unc.” stands for
relative uncertainty.

GNFR category GNFR category name AD rel. unc. (%) EF rel. unc. (%)

A A_PublicPower 2.0 4.9
B B_Industry 3.0 4.9
C C_OtherStationaryComb 15.0 4.9
D D_Fugitives 5.0 75.0
E E_Solvents
F F_RoadTransport 5.0 5.0
G G_Shipping 5.0 1.5
H H_Aviation 50.0 5.0
I I_OffRoad 50.0 2.0
J J_Waste 13.5 7.1
K K_AgriLivestock
L L_AgriOther 20.0 20.0

2.1.2 Country-level emission uncertainties

In the emission reporting, over 250 different sector–fuel
combinations are differentiated. We make a pre-selection of
these by ordering the combinations based on their total emis-
sions for the entire European domain. Then, we select the
most important sector–fuel combinations until we have in-
cluded at least 95 % of the emissions for all species. We com-
bine the selections for all species, ensuring they are all the
same, and we end up with 90 sector–fuel combinations that
describe 96 % of CO2 emissions, 98 % of CO emissions, and
97 % of NOx emissions. For the selected sector–fuel com-
binations, we gather uncertainty data. All other sector–fuel
combinations receive an uncertainty of zero. A summary of
the country-level uncertainties is provided in Table S1 in the
Supplement.

Most countries in the European domain are “Annex I”
countries, which report their GHG emissions annually to the
UNFCCC following standardized reporting guidelines. Most
countries also include an uncertainty estimate in their Na-
tional Inventory Reports (NIRs), with separate uncertainty
estimates provided for activity data (AD) and emission fac-
tors (EFs), which form the starting point for our work. For

CO, such reported uncertainties are not available. Because
CO shares AD with CO2, we use the reported CO2-based
country-level uncertainties. For the EF uncertainty in CO, we
use global EF uncertainty data for each sector–fuel combina-
tion from the most recent EMEP guidebook (European En-
vironment Agency, 2019). These uncertainties are applied to
all countries, irrespective of whether emissions are reported
or taken from another emission dataset. The gap-filling pro-
cedure is explained in the Supplement.

For countries in the emission inventory domain that do
not report GHG emissions to the UNFCCC, we estimate the
uncertainties at the GNFR level from the Intergovernmen-
tal Panel on Climate Change (IPCC) guidelines (Eggleston
et al., 2006). Since the emission factor for CO2 depends
only on the fuel type and not on the combustion technology,
the uncertainty ranges are generic and consistent across sub-
sectors. When multiple fuel types are used within a sector, we
pick the dominant fuel type. For shipping (GNFR G), a sepa-
rate estimate has been made for the activity, based on a com-
parison of STEAM predictions with fuel reporting (Jukka-
Pekka Jalkanen, personal communication, 25 August 2022),
and the emission factors (Grigoriadis et al., 2021). This re-
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sults in the uncertainties given in Table 1. Note that the sec-
tors GNFR E (solvents) and GNFR K (livestock) are missing
because they are irrelevant for CO2.

2.1.3 Emission proxy map uncertainties

The spatial uncertainties in the emissions are caused partly
by the discrete nature of the grid but, more importantly, by
uncertainties in the proxy maps used for downscaling the na-
tional emissions. There are different sources of uncertainty
in the proxy maps. The three main ones are the value of each
pixel, e.g. the population density (which might be lower or
higher than in reality); the quality of the proxy, e.g. whether
there are missing cells that contain an activity (or vice versa);
and the representativeness of the proxy for the activity caus-
ing the emissions, e.g. the ability of a population density map
to reflect residential combustion emissions.

We include detailed spatial uncertainties for two GNFR
sectors (road transport (GNFR F) and other stationary com-
bustion (GNFR C)), which are the most important contrib-
utors to CO and CO2 emissions from area sources and have
the strongest CO : CO2 error correlations. These sectors each
consist of several sub-sectors that are downscaled with dif-
ferent proxy maps. By starting at the sub-sector level, each
grid cell receives a unique uncertainty at the GNFR level, de-
pending on the mix of sub-sectors. An overview of the proxy
maps for these two GNFR sectors is given in Table 2. Note
that spatial uncertainties are only included for countries for
which emissions are downscaled using these proxies (and not
for countries without reported emissions).

We start with the accuracy of the pixel value. The prox-
ies for road transport are based on the Open Transport Map
(Jedlička et al., 2016), which combines the OpenStreetMap
(OSM) road network with traffic volume from traffic sim-
ulation models. OSM is community-based and is not al-
ways complete or accurate. Yet, the main source of uncer-
tainty arises from the underlying traffic simulation models.
A wide range of models exist, with each model having its
own strengths and weaknesses. Some guidance on the accu-
racy of these models is given by Gao et al. (2010), who cal-
culated an average RMSE of 31 % in traffic volume for two
traffic models (MATSim and EMME/2). For another traffic
model, VISUM, a similar mean relative error of 30 % was
found (Raney et al., 2003). These studies therefore indicate
a 95 % confidence interval (CI) of about 60 % (about 2 times
the RMSE). However, both studies are performed at a very
high resolution (street links), whereas our resolution is much
coarser (∼ 6 km grid cells). Therefore, the uncertainty in our
proxy map is probably smaller, and we set the 95 % CI to
30 %. The population density is based on LandScan (Bright
et al., 2016). This product describes the ambient population,
which includes both the working and travelling populations,
by taking a 24 h average. Archila Bustos et al. (2020) com-
pared LandScan to population data from the Swedish Statis-
tics Bureau and found an average RMSE of 9 %, with larger

errors observed for sparsely populated areas. This suggests
that the uncertainty distribution is skewed, as also shown for
Poland (Calka and Bielecka, 2019). Here, we assume that the
RMSE is based on a sufficiently large population since the
largest absolute errors occur in densely populated areas, and
we estimate that the 95 % CI is more or less equal to 2 times
the RMSE. Finally, the wood use proxy is based on popula-
tion density and the proximity to wood/forests (Kuenen et al.,
2022). The uncertainty is expected to be large as the locations
where residential wood burning takes place are relatively un-
known. For example, Grythe et al. (2019) demonstrated large
differences in particulate matter emissions from residential
wood combustion between different datasets, even when ag-
gregated over large urban domains. We set the 95 % CI to
50 %.

The second source of uncertainty is the proxy quality,
which is a difficult uncertainty with which to work. There
is no way to correct a grid cell that falsely lacks activity as
scaling a value of zero always returns zero. This is mainly an
issue for categorical proxies, which are based on the presence
of certain characteristics (e.g. land use types) rather than on
numerical values. Similarly, if the location of a point source
is incorrect, it is difficult to estimate where it should be in-
stead. Since we cannot reliably compensate for this uncer-
tainty, we have chosen not to account for it while acknowl-
edging it as a local source of uncertainty in the location of
emissions.

Finally, the representativeness error behaves differently
from the uncertainty in the pixel values. Aside from adding
uncertainty to each pixel, it also causes errors to be correlated
between pixels that have similar characteristics. For example,
the heating demand for residential buildings depends on pop-
ulation density. People who live closer together, e.g. in high-
rise buildings, generally need less heating per person. This
means that heating emissions are not linearly related to pop-
ulation. If we make an error in describing this relationship,
it will affect pixels with similar characteristics in a similar
fashion; hence, errors are spatially correlated. We double the
pixel value uncertainty to include the representativeness er-
ror (Table 2). Moreover, we consider its impact on the error
correlation, which is discussed in Sect. 2.2.1.

The other sectors receive a fixed uncertainty (95 % CI) for
all grid cells, based on expert judgement. The public-power
and industry sectors contain point sources, for which the lo-
cational error can be large (Hogue et al., 2016). However, for
the TNO-GHGco-v4 emission inventory, locations have been
thoroughly checked, and we assume no spatial uncertainty.
The remainder (non-point sources) receives an uncertainty
of 200 %. For sea shipping, the spatial patterns are relatively
well known based on AIS data (Jukka-Pekka Jalkanen, per-
sonal communication, 15 September 2022), and we assume
no spatial uncertainty. However, the AIS coverage for inland
waterways is limited; therefore, we set the uncertainty at a
level similar to that used for the road transport sector (60 %).
The other sectors are minor but have a large spatial uncer-
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Table 2. Overview of the proxy maps used for downscaling GNFR C (other stationary combustion) and GNFR F (road transport), including
their 95 % CIs and correlation lengths. HDV: heavy-duty vehicle. PC: passenger car. LDV: light-duty vehicle.

Proxy map Uncertainty (95 % CI) Correlation length (km)

RoadTransport_Urban_PC 0.6 15
RoadTransport_Urban_Mopeds 0.6 15
RoadTransport_Urban_Motorcycles 0.6 15
RoadTransport_Urban_HDV 0.6 15
RoadTransport_Urban_LDV 0.6 15
RoadTransport_Urban_Buses 0.6 15
RoadTransport_Highway_HDV 0.6 28
RoadTransport_Highway_LDV 0.6 28
RoadTransport_Highway_Buses 0.6 28
RoadTransport_Highway_PC 0.6 28
RoadTransport_Highway_Motorcycles 0.6 28
RoadTransport_Highway_Mopeds 0.6 28
RoadTransport_Rural_Buses 0.6 21
RoadTransport_Rural_LDV 0.6 21
RoadTransport_Rural_HDV 0.6 21
RoadTransport_Rural_Motorcycles 0.6 21
RoadTransport_Rural_Mopeds 0.6 21
RoadTransport_Rural_PC 0.6 21
Population_total_2015 0.36 23
Population_rural_2015 0.36 23
Population_urban_2015 0.36 23
Wood_use_2014 1.0 26

tainty. Since they are grouped, some errors may cancel each
other out, and we assume an overall uncertainty of 200 %.

2.2 Prior emission uncertainties

In this section, we describe how the prior emission uncertain-
ties were calculated. An overview of all the steps is given in
Fig. 2. The details are described below.

2.2.1 Spatial error correlation length

The representativeness error in a proxy map causes errors to
be spatially correlated. We define the error correlation length
as the maximum distance at which two grid cells are still
correlated. This length scale is estimated by fitting spherical
and exponential semi-variograms to each proxy map listed
in Table 2 for each country. A semi-variogram describes the
spatial autocorrelation as a function of distance, i.e. the de-
gree of variability between points located at a certain dis-
tance from each other. In the case of the proxy maps, points
that are closer together are expected to be more similar, and,
therefore, their errors are more strongly correlated. We use
the “fit.variogram” function from the “gstat” geostatistical
package in the R software (Pebesma and Wesseling, 1998)
and take the range parameter as our length scale. We set the
limits of the considered distance between 6 km (original grid
spacing) and 120 km.

The fitting procedure optimizes the model parameters to
provide the best fit to the data and shows only small dif-

ferences between the spherical and exponential models. We
perform this fitting procedure twice: once without setting an
initial sill (the semi-variance at a distance of zero) and once
with the initial sill set to zero. This is done to ensure that the
resulting ranges are not just a consequence of the initial val-
ues set in the model. This results in two ranges per country
per proxy map, and we pick the value that is within our set
boundary or the average of the two values if both values are
within this range. We can only use one correlation length for
the entire domain to avoid irregularities near country borders;
therefore, we take the median of all country-specific ranges.
The results are illustrated in Sect. 3.1.

For the industry and public-power sectors, we set the er-
ror correlation length to zero since these sectors are domi-
nated by point sources which have no spatial uncertainty. For
shipping, we estimate an error correlation length of 100 km,
which is larger than that for road transport, given that it is
more difficult for ships to make a turn.

2.2.2 Error correlation between CO and CO2 emissions

The proxy maps used for spatial downscaling are the same
for all trace gases in the emission inventory; i.e. the CO2
emissions of sub-sector X are downscaled with the same
proxy map as that used for the CO emissions of sub-sector
X. This means that, at the sub-sector level, the spatial er-
rors are strongly correlated between all trace gases. Because
the mix of sub-sectors within an aggregated sector can differ
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Figure 2. Diagram of all the steps taken to calculate prior emission uncertainties and covariances.

for CO compared to CO2, the error correlation is reduced.
Therefore, we define a predictor to estimate the error corre-
lation between CO and CO2 in each grid cell for other sta-
tionary combustion (GNFR C) and road transport (GNFR F).
This predictor is validated against a Monte Carlo-based cor-
relation coefficient for seven countries that reflect relevant
variations in the domain (Czech Republic, Germany, France,
UK, Italy, the Netherlands, and Sweden). This predictor is a
measure of the dissimilarity between CO2 and CO emissions
within a grid cell and allows us to calculate the error correla-

tion for all grid cells without having to perform an expensive
Monte Carlo simulation.

The predictors (PC for GNFR C and PF for GNFR F),
which are calculated per grid cell, are based on the CO and
CO2 emissions per grid cell (c) per proxy map (m) for the
selected GNFR sector and the uncertainties (relative stan-
dard deviation (σ )) in the proxy maps. In Eq. (1), ST D is
the absolute standard deviation of the emissions per grid cell,
proxy map, and trace gas. When the relative contribution of
each proxy map differs strongly between CO and CO2, the
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correlation is weaker, which is expressed in the weighted-
difference (WD) vector (Eq. 2). The larger the number of
proxy maps used for downscaling emissions from a partic-
ular sector, the stronger the correlation generally is. This is
due to the damping effect on outliers. This results in the fol-
lowing set of equations:

ST Dc,m,g = fc,m ·Em,g · σm, (1)

WDc,m =

∣∣∣∣ ST Dc,m,CO2∑
(ST Dc,m,CO2)/n

−
ST Dc,m,CO∑
(ST Dc,m,CO)/n

∣∣∣∣ ,
(2)

PCc =
stdev(WDc,m)

n
and PFc =

max(WDc,m)

n
, (3)

where g is one of the two trace gases (CO or CO2), f is the
fraction of a proxy map in a grid cell, and n is the number
of proxy maps contributing to a grid cell. Note that the pre-
dictor is slightly different for GNFR C and GNFR F, being
based on the standard deviation and maximum value, respec-
tively, of the WD values of the proxy maps contributing to
each grid cell. We define a relationship between the predic-
tor and the Monte Carlo-based correlation coefficient to cal-
culate the CO : CO2 error correlation per grid cell based on
the predictor. For the Monte Carlo method, an ensemble of
gridded emissions was produced by randomly perturbing the
grid cell emissions of CO2 and CO for each proxy map, fol-
lowing the defined uncertainty ranges. The perturbations are
applied equally to CO2 and CO emissions, assuming a full er-
ror correlation for each proxy map, which is a valid assump-
tion at the grid cell level. The correlation coefficient results
from a linear regression of the total CO2 and CO emissions
per grid cell for a given GNFR sector. The results are shown
in Sect. 3.1 and the Supplement.

For the other sectors, we estimate a fixed value for all grid
cells. For the public-power and shipping sectors, the correla-
tion is likely to be very strong since there is little variation in
sub-sector activities. Therefore, we set the error correlation
to 0.95. For industry, the correlation is much smaller due to
different sub-processes taking place, and we set the error cor-
relation to 0.5.

2.2.3 Uncertainty propagation

We have now gathered all relevant information on the uncer-
tainties, which needs to be propagated to match the level of
detail pertaining to the dataset on prior emissions.

The country-level uncertainties represent a 95 % CI (nor-
malized to be unitless), which is given either as one value or
as lower and upper values. For the latter, when the lower and
upper values show less than a 5 % difference, we use a Gaus-
sian uncertainty distribution; otherwise, we use a log-normal
uncertainty distribution. For CO, the uncertainty distribution
is often log-normal. When the reported standard deviation
exceeds 30 %, we also use a log-normal uncertainty distribu-
tion to avoid obtaining negative values. We use uncertainty

propagation to estimate the uncertainty in emissions from the
standard deviations (σ ) in AD and EFs:

σE

E
=

√(σAD

AD

)2
+

(σEF

EF

)2
. (4)

To examine the importance of error correlations in AD and
EFs, we performed a sensitivity analysis on the European
emissions (see the Supplement). We found that including er-
ror correlations in AD and EFs has limited importance, and,
henceforth, we ignore these correlations.

Since these uncertainty error propagation equations as-
sume Gaussian errors, we need to translate log-normal error
distributions into equivalent Gaussian distributions. We ap-
proximate the Gaussian standard deviation of a log-normal
distribution using

σX

X
=
(ln
(
limupper

)
− ln(limlower))

4
, (5)

where limupper is the 97.5 percentile and limlower is the
2.5 percentile of the log-normal distribution. Note that the
combination of Gaussian and log-normal functions does not
result in a log-normal function because the result can be neg-
ative. However, here we assume that the combined distribu-
tion is log-normal because the Gaussian uncertainty is often
relatively small compared to the log-normal uncertainty.

The sub-sector-level emission uncertainty estimates are
propagated to obtain an uncertainty estimate at the GNFR
level:

σE,agg =

√√√√ n∑
i=s

σ 2
E,sub,s, (6)

where the subscript “agg” refers to the aggregated emissions
and uncertainties and the subscript “sub” refers to the sub-
sectors that are part of the aggregated sector. To use Eq. (6),
we need the emission budgets because this equation uses ac-
tual standard deviations instead of normalized ones.

These simple uncertainty propagation functions work well
under specific circumstances. When uncertainties follow a
non-Gaussian distribution or are correlated, a Monte Carlo
simulation can provide a more reliable estimate of the fi-
nal uncertainty. However, a Monte Carlo approach is also
computationally demanding when using such an extensive
dataset. We tested and compared both approaches for se-
lected countries and sectors. Detailed information can be
found in the Supplement, but the main conclusion is that
we can mimic the results from the Monte Carlo simulation
well with the uncertainty propagation functions. The meth-
ods show a similar order of magnitude and variability be-
tween countries and trace gases. Although there is no perfect
match between the two methods, we argue that this source of
uncertainty is negligible compared to the uncertainty in the
prior uncertainty data.
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For the spatial proxies, the same set of equations is ap-
plied, but to calculate the standard deviations, weighted
proxy maps are computed. This means that for each com-
bination of trace gas and country, we determine the relative
contribution of each sub-sector to the GNFR sector, assign
a weight to the corresponding proxy map, and multiply that
value by the fraction in each grid cell. This also results in
a new weighted-average proxy map for each GNFR sector,
with a sum of 1 for each country. Next, we calculate the un-
certainty in this weighted-average proxy map using Eq. (6),
slightly adapting it so that the standard deviation is now re-
lated to the weighted fraction (Pw) per proxy map (m) in each
grid cell. This results in

σP,agg =

√√√√ n∑
i=m

σ 2
Pw,m. (7)

The result of this is shown in Fig. 3.
Finally, we determine the error correlation length for the

GNFR sectors by calculating a weighted-average correlation
length. However, because the combined correlation length is
also slightly sensitive to the uncertainty in each proxy map,
the larger the uncertainty, the more impact the spatial cor-
relation has. Thus, we calculate the weight based on both
the CO2 emissions and the proxy map uncertainties (i.e. the
relative emission share multiplied by the relative uncertainty
share).

2.3 Inverse modelling approach

To examine the impact of the definition of prior uncertainties
on multi-species inversion, we perform a series of closed-
loop numerical experiments. For this, we generate a “true”
emission and use a chemical transport model to determine
the atmospheric concentrations of CO2 and CO that would be
observed by the in situ measurement network based on these
true emissions (the true observations). We perform an inver-
sion in which we confront a modelled atmosphere based on
a prior estimate of emissions with “real” observations (true
observations with noise), adjusting the prior estimate to min-
imize the model–observation differences. We can then com-
pare the posterior and true emissions to determine whether
our inversion approach is able to evaluate the accuracy of the
prior estimate.

The analytical inversion approach is described elsewhere
(e.g. Maasakkers et al., 2021), so we will only briefly de-
scribe it here. We use the model to generate a Jacobian matrix
(K) that represents the observation sensitivity to emission
perturbations. We then use the minimization of the Bayesian
cost function to solve for the posterior scale factor (x′),

x′ = xa +SaKT(KSaKT
+R

)−1 (
y−Kxa

)
, (8)

where xa and Sa represent the prior scale factor and error
covariance matrix, respectively, and y and R represent the

observations and observing-system error covariance matrix,
respectively. In the following sections, we describe the dif-
ferent aspects of the inversion system.

2.3.1 Atmospheric chemistry transport model

For the atmospheric chemistry transport model, we use ver-
sion 12.5 of GEOS-Chem (The International GEOS-Chem
User Community, 2019). We model CO2 and CO concentra-
tions over Europe (34–66° N, 15–35° E) for the year 2018.
The model is run at a 0.25°× 0.3125° resolution and driven
by Goddard Earth Observing System Forward Processing
(GEOS-FP) meteorology from the NASA Global Modeling
and Assimilation Office (Lucchesi, 2018). We use 3-hourly
CO2 and CO boundary conditions from a global simulation
with GEOS-Chem at a 2° by 2.5° resolution. For anthro-
pogenic CO2 and CO emissions, we use the TNO-GHGco-
v4 inventory, as described in Sect. 2.1.1, including sector-
specific temporal scaling factors provided by TNO (Denier
van der Gon et al., 2011), to increase the temporal resolu-
tion to a daily scale. We use fire emissions from version
4 of the GFED (Global Fire Emissions Database; van der
Werf et al., 2017), biogenic fluxes from the vegetation model
CASA-GFED (Ott, 2020), and ocean fluxes from Takahashi
et al. (2009). For the inversion, we re-grid these emissions
to basis functions (Fig. 4), which are created by aggre-
gating regional emissions until a given emission threshold
is reached while respecting country borders. We use pre-
computed monthly 3-D fields of the hydroxyl radical sink
of CO. Further details on the model setup are provided else-
where (Palmer et al., 2022; Scarpelli et al., 2024). We assume
a model uncertainty of 2 ppm and 8 ppb for CO2 and CO, re-
spectively.

2.3.2 State vector and error covariance matrix

The state vector consists of scale factors for the fossil fuel
(xFF

co2,x
FF
co ) and biogenic (xBio

co2) components, boundary con-
ditions (xBC

co2,x
BC
co ), and CO chemistry (xChem

co ) terms.

x =
(
xBC

co2,x
BC
co ,x

Chem
co ,xBio

co2,x
FF
co2,x

FF
co

)
(9)

These scale factors are optimized per basis function (Fig. 4)
and per month. We assume prior Gaussian uncertainties of
50 %, 5 %, and 5 % for the biogenic components, boundary
conditions, and CO chemistry scale factors, respectively.

For the fossil fuel state vector elements (xFF
co2,x

FF
co ), we use

a Monte Carlo approach to determine the prior uncertain-
ties, taking advantage of the advanced uncertainty estimate
presented here. Separate ensembles are made for the spatial
distribution and the country-level emissions, which are com-
bined into one ensemble of gridded emissions and fed into
the inversion system.

First, we generate an error covariance matrix of country-
level emissions, where each element corresponds to a single
GNFR sector and species (CO2 or CO). We use the standard
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Figure 3. Maps of gridded uncertainties (%) in CO2 fossil fuel (ff) for the sectors corresponding to other stationary combustion (a) and road
transport (b).

Figure 4. Map of the modelling domain, with the colours show-
ing basis functions. The blue dots represent locations where CO2 is
measured, and the red stars represent locations where both CO2 and
CO are measured (Integrated Carbon Observing System, 2024).

deviations derived in Sect. 2.2.3 (σx) to populate the diagonal
of the covariance matrix, whereas all off-diagonal values are
set to zero (i.e. no error correlations).

Second, for a given GNFR sector, we generate an error
covariance matrix for the spatial distribution using the uncer-
tainties for the proxy maps described above. Each sector’s
error covariance matrix includes both CO and CO2. The vari-
ances on the diagonal of the matrix are derived from the stan-
dard deviations described in Sect. 2.2.3 (and shown in Fig. 3).
The off-diagonals of the error covariance matrix include the
covariance between spatially neighbouring grid cells that be-
long to the same species (CO or CO2), derived from the spa-
tial error correlations described in Sect. 2.2.1, and the covari-
ance between gridded CO and CO2 emissions, derived from

Sect. 2.2.2. For the error covariances within a single species,
we define the covariances based on the spatial error correla-
tion length l. For this, we define the exponential decay in the
correlation coefficient r between elements i and j with dis-
tance d (Eq. 10). After distance l, we assume the correlation
is zero, following Kunik et al. (2019).

ri,j = e
−di,j /l (10)

We perform a Cholesky decomposition of each error covari-
ance matrix, resulting in the matrix L. Combining this ma-
trix with a vector of uncorrelated random samples (u) from
a Gaussian distribution, where µ= 0 and σ = 1, through a
dot product gives us a perturbation vector (p) that has the
covariance properties of the entire system. We can do this
for m unique perturbation vectors to generate an ensemble
of m spatial distributions or country-level emissions (xm) as
follows:

pm = L ·um, (11)
xm = x̄pm+ x̄, (12)

where xm represents the estimated values of the spatial map
for a given sector (including CO2 and CO) with respect to
ensemble memberm and x̄ is the expected value of the spatial
distribution.

Alternatively, for variables with a log-normal distribution,
we calculate the ensemble values using

xm = x̄e
pm . (13)

The ensemble of gridded emissions is a combination of the
ensemble of spatial distributions and country-level emis-
sions.
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2.3.3 Observations

We generate true emissions by perturbing the inventories
of prior emissions based on assumed error statistics, as de-
scribed previously, assuming that the previously described
error correlation between CO2 and CO is true. For the true
observations, we sample the 3-D modelled concentration
fields observed by the Integrated Carbon Observation Sys-
tem (ICOS) in situ network (Fig. 4), and, because our system
is linear, we can apply the same perturbations to the observa-
tion vectors as those applied to the true emissions. The true
observations are the CO2 and CO concentrations that would
result from the occurrence of the true emissions. We generate
our real observations by adding a noise term to the true obser-
vations, simulating what the observing network would have
generated had the true emissions occurred. The noise term is
a vector of perturbations taken from a Gaussian distribution
with a mean of 1 and standard deviations of 2 ppm and 4 ppb
for CO2 and CO, respectively, and represents the observation
uncertainty (i.e. the instrumentation error and the uncertainty
in the comparison of the gridded model output with point ob-
servations). The observations are 3-hourly averages (between
09:00 and 18:00 LT), aligning with the temporal resolution of
the model’s meteorology.

2.3.4 Experiments

To illustrate the impact of the new definition of prior uncer-
tainties, we also report the results from a second inversion
approach, which assumes a 100 % error correlation between
CO2 and CO emissions from fossil fuel combustion, allowing
for the use of one shared fossil fuel scale factor for both CO2
and CO (xFF). This uncertainty definition has been used be-
fore by Palmer et al. (2022) and serves as a base experiment.
Assuming a 100 % error correlation is not very realistic, and
with the numerical experiments, we test whether adjusting
the CO2 and CO error statistics to be closer to the “truth”
would provide a benefit over the base scenario. For the base
scenario, we use a combustion uncertainty of 10 % for the
entire domain and a spatial error correlation length of 20 km.
For comparison, the mean prior uncertainty in the advanced
experiment is 7.7 % for CO2 and 11.8 % for CO. Finally, we
perform the same numerical experiments without CO.

3 Results

3.1 Assessment of prior uncertainties and error
correlations

First, we show the results from the prior uncertainty cal-
culations before reporting the results from the closed-loop
numerical experiments. The spatial error correlation lengths
calculated per proxy map per country are shown in Fig. 5,
including the median value for all countries. The resulting
correlation lengths are also given in Table 2.

For population density, there are large differences between
country groups – for example, between northern and south-
ern Europe and between eastern and western Europe. The
clustering of people in cities and rural areas within these
broad geographical regions differs on a regional basis and
affects the correlation lengths accordingly. Nevertheless, the
largest group of countries shows correlation lengths of less
than 30 km, which, given the resolution of the data assimi-
lation system, is relatively small (∼ 5 pixels). For wood use,
which we use as a proxy map for residential biomass com-
bustion, we see a large cluster around 20–30 km (not shown),
and there are only a few countries with significantly different
length scales. For the road transport proxy maps, the vari-
ous vehicle types (passenger cars, light-duty vehicles, and
heavy-duty vehicles) do not show much variability in corre-
lation length, but differences are evident for different road
types; consequently, we combine the vehicle types to obtain
road transport correlation lengths per road type. This results
in longer length scales for highways than for urban roads.
In urban areas, short distances are covered more frequently,
resulting in weaker correlations in road transport activity be-
tween locations.

Next, we predict the CO : CO2 error correlation that re-
sults from the shared activity between the trace gases. The
relationship between the Monte Carlo-based CO : CO2 error
correlations and the predictor (Eq. 3) is shown in Fig. 6. As
mentioned before, the Monte Carlo simulation is performed
for seven selected countries. We find a clear cosine-shaped
relation for GNFR C (other stationary combustion), allowing
the correlation coefficient to be estimated with the following
equation:

r = a · cos(b ·PCc), (14)

where a and b are parameters estimated from the fit shown
in Fig. 6. The a parameter denotes the highest possible cor-
relation coefficient, which, for pixels with emissions from
only one sub-sector, should have a value of (close to) 1. For
the seven individual countries, the a parameter lies between
0.96 and 1.03. Since a correlation coefficient of more than 1
is not possible, we set the a parameter to a maximum of 1.
The b parameter is the period of the cosine function, which
indicates how sharply the function declines with increasing
predictor values. This parameter is between 3.36 and 4.44 for
these seven countries. The mean for all countries is 3.60.

We see some grid cells with a predictor value of zero,
whereas the correlation coefficient is much lower than the
a parameter. In these cases, there are only two proxy maps
with the same shares for CO and CO2 (hence, a stdev(WD)
value of zero is used in Eq. 3). These cases mostly occur in
Sweden, resulting in a relatively poor fit of the cosine func-
tion (R2 of 0.46). Overall, these cases make up 0.1 % of all
grid cells, and they have no significant impact on the defini-
tion of the average function, which has an R2 value of 0.85.
The fit for the other individual countries ranges between 0.79
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Table 3. Overview of inversion experiments. The advanced uncertainties and CO : CO2 error correlations refer to those developed here.
Simple uncertainties refer to a fixed 10 % combustion uncertainty. These are combined with a full CO : CO2 error correlation; i.e. one
scaling factor applies to both CO2 and CO fossil fuel fluxes. N/a: not applicable.

Experiment name Included trace gases Uncertainties CO : CO2 error correlation

Adv_CO2_CO CO2 and CO Advanced Advanced
Adv_CO2 CO2 Advanced N/a
Base_CO2_CO CO2 and CO Simple 100 %
Base_CO2 CO2 Simple N/a

Figure 5. Derived correlation lengths for (a) a European proxy map of total population density and (b–d) road transport proxy maps,
categorized by road type, for all vehicle types combined, binned in 5 km increments. The dashed black line shows the median value.

and 0.98. Plots for individual countries are shown in Fig. S3
in the Supplement.

For road transport, it is more difficult to extract a rela-
tionship between the predictor and the correlation coeffi-
cient. For individual countries, we mostly see several cosine-
shaped structures (shown in Fig. S4 in the Supplement),
which makes it impossible to identify one single function.
To understand this behaviour, we looked in more detail at
the vehicle and road types. Although different vehicle types
show very similar cosine functions within a country (Fig. 7),

when we combine them, the structure disappears. The rela-
tionship between the predictor and the correlation coefficient
seems to depend not only on the vehicle type but also on the
number of road types present in a grid cell. When combin-
ing all road and vehicle types, they start to affect each other,
meaning within the scatter plots, we can no longer identify
the vehicle types. Because we do not separate vehicle and
road types in our prior uncertainty data for the data assimila-
tion system, we only want one value. Compared to the sector
corresponding to other stationary combustion, we see much
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Figure 6. Hexbin plots of Monte Carlo-based (N = 500) correlation coefficients (r) per grid cell against the predictor calculated using
Eq. (3). In panel (a), the fit (R2) and cosine function parameters are shown. In panel (b), the mean, median, and standard deviation (SD) of
the correlation coefficients are shown.

less variability in the correlations; therefore, we use the me-
dian value of 0.88. For individual countries, the median value
lies between 0.82 and 0.96.

3.2 The effect of the definition of prior uncertainties

Next, we examine the impact of including this advanced def-
inition of gridded emission uncertainties and error covari-
ances on our ability to estimate CO2 combustion emissions
in an inversion framework. Figure 8 shows the annual aver-
age difference between the absolute prior and posterior devi-

ations from the true emissions:
∣∣∣∑(Eprior,monthly−Etrue,monthly)

12

∣∣∣−∣∣∣∑(Eposterior,monthly−Etrue,monthly)
12

∣∣∣. Positive (negative) values, rep-
resented by red (blue) colours, indicate that the posterior is
closer to (further from) the truth than the prior. With the
base uncertainties, there are several areas in which the re-
sults deteriorate (blue colours), such as the Netherlands, the
southeast of the UK, and some locations in Germany. The
differences range from −4.59 to 10.87 and from −5.13 to
11.99 kg s−1 for the Base_CO2 and Base_CO2_CO exper-
iments (Table 3), respectively. When using the advanced
uncertainties, these blue colours start to disappear, and the
differences range from −2.58 to 12.31 and from −1.60 to
12.92 kg s−1 for the Adv_CO2 and Adv_CO2_CO experi-
ments, respectively. The average CO2 fossil fuel flux in this
domain has a value of 7.55 kg s−1, with a maximum value
of just over 2000 kg s−1. With the default uncertainties, the
maximum deviation of fossil fuel CO2 from the prescribed
truth is about 7 % for both the prior and posterior results.
With the advanced uncertainties, this is reduced to 4 % and
3 % in the posterior for the experiments without and with CO,
respectively. Hence, the relative differences are small but still

show a consistent improvement with the advanced uncertain-
ties.

Generally, there seems to be fewer areas with significant
deviations from the prior when using the advanced uncer-
tainties, and regions that still show differences in the ex-
periments with advanced uncertainties mostly show an im-
provement. The number of grid cells in Fig. 8 with values
of more than 1 or less than −1 corresponds to 52, 80, 40,
and 32 for the respective panels. The share of these grid cells
with deteriorated results (blue colours) is 39 %, 50 %, 8 %,
and 6 % for the respective panels. This suggests that with the
advanced uncertainties, the system has a greater ability to
constrain fossil fuel CO2 emissions. This is also illustrated
by the reduced posterior error correlation between the CO2
biogenic and fossil fuel fluxes (Fig. 9). Although the differ-
ences are not significant, we see a tendency for more areas
with near-zero correlations when using the advanced uncer-
tainties. Note that the prior error correlations between bio-
genic and fossil fuel CO2 fluxes have a value of zero. A high
posterior error correlation means that the inversion system is
unable to assign model–data mismatches to specific sources
and instead updates multiple scaling factors at once, which
has a lower cost. For individual months, we see a tendency
for small negative error correlations in winter months and a
tendency for somewhat larger positive error correlations in
summer months for the Adv_CO2_CO experiment, which
indicates that CO might be a better constraint for CO2 fossil
fuel fluxes during winter. This likely has to do with the large
biogenic fluxes during summer, whereas CO emissions are
lower during this period. However, based on only 1 year of
monthly averages, we cannot draw any definite conclusions
on this.
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Figure 7. Scatter plots of Monte Carlo-based (N = 500) correlation coefficients (r) per grid cell are presented against the predictor calculated
using Eq. (3) for the Netherlands with respect to road transport per vehicle type (PC: passenger car; LDV: light-duty vehicle; HDV: heavy-
duty vehicle). The correlation (R2) and cosine function parameters per vehicle type are also shown. Note that the range of values for LDV
and HDV vehicles is very small compared to that for PCs (different y axis). Panel (d) shows the same scatter plot with all vehicle types
combined, including the mean, median, and standard deviation (SD) of the correlation coefficients.

3.3 Combining CO and CO2

Figure 8 also shows that adding CO to the experiment with
the base uncertainties causes more areas to show signifi-
cant differences between the prior and posterior. Moreover,
on average, the deviations from the prior are larger as well.
Since the main source of CO is fossil fuel combustion and
the uncertainties in CO emissions are large, this pollutant
is more sensitive to errors in prior emissions and, therefore,
causes larger deviations from the prior. This indicates that
CO adds additional information on fossil fuel fluxes to the
system, which causes the model–data mismatch in CO2 to be
assigned more clearly to either the CO2 biogenic fluxes or
the fossil fuel fluxes. This is also illustrated in Fig. 9, which
shows the posterior error correlations between CO2 biogenic
and fossil fuel fluxes. When adding CO to the base exper-
iment, the mean correlation per basis function is closer to

zero. This also results in a slight improvement in the poste-
rior scaling factors for CO2 biogenic fluxes (Fig. 10). The
results of the advanced experiments are not significantly dif-
ferent from those of the base experiments because most of
the information from the observations has already been used
to update the biogenic fluxes due to their high uncertainty.

However, Fig. 8 shows more blue colours for the
Base_CO2_CO experiment than for the Base_CO2 exper-
iment, e.g. in northern Italy, which means that the results
for CO2 fossil fuel fluxes are actually worse than when
only using CO2. The number of grid cells with blue colours
increases from 39 % to 50 %, as discussed before. This
pattern is not visible when comparing the Adv_CO2 and
Adv_CO2_CO experiments. For the Adv_CO2_CO experi-
ment, the share of grid cells with blue colours is even slightly
smaller than that for the Adv_CO2 experiment (8 % vs. 6 %).
In other words, adding CO can deteriorate the results from
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Figure 8. Maps of prior–posterior annual average absolute deviations from the truth in fossil fuel CO2 emissions for all four experiments.
Units are given in kg s−1 per grid cell. Note that the bounds of the colour bars are set from −2.5 to 2.5 kg s−1.

experiments in which the prior error correlation is not cor-
rectly defined due to the sensitivity of CO to assumed prior
emission uncertainties. Using a full CO : CO2 error correla-
tion causes larger changes in the scaling of CO2 fossil fuel
fluxes because the uncertainties in CO are relatively large
and can be scaled easily. CO2 then follows suit, which is
clearly not always correct. With the advanced uncertainties,
there are fewer large changes when comparing the experi-
ments with and without CO. However, there are some small
improvements visible in the UK, and results show no spuri-
ous changes in CO2. Hence, in the combined optimization of
CO2 and CO, there is a clear need for advanced uncertainties
to prevent inaccurate emission corrections.

4 Discussion and conclusions

We presented here a detailed assessment of prior emission
uncertainties to support data assimilation studies. Prior un-
certainties have a significant impact on data assimilation as
they determine the extent to which prior emissions can be
corrected. Underestimating the uncertainties limits the free-

dom of the system with respect to correcting the prior, which
means that the actual state can be outside the uncertainty
range and therefore unreachable. Overestimating the uncer-
tainties reduces the constraint pertaining to the prior informa-
tion, meaning that we do not make optimal use of the prior
knowledge provided to the system. Moreover, a definition of
prior uncertainties that includes covariances enables us to use
co-emitted species to estimate fossil fuel CO2. Hence, a re-
alistic definition of prior uncertainties is important.

Building on the work of Super et al. (2020a), we devel-
oped a definition of prior uncertainties that is based on the
uncertainties in the underlying data used to create the emis-
sion inventory. This ensures that the uncertainty definition
is fully consistent with the emissions and consistent across
multiple species (here, CO2 and CO). We presented a more
detailed analysis of the spatial uncertainties, including a de-
scription of spatial error correlation lengths. We particularly
focused on CO2 : CO error correlations, which are caused by
shared activities that result in emissions and mainly manifest
in spatial patterns.
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Figure 9. Histograms showing posterior error correlations between CO2 biogenic (bio) fluxes and CO2 ff fluxes for all basis functions across
all four experiments. Mean values are indicated by a vertical red line.

Figure 10. Scatter plots of true vs. posterior scaling factors for CO2 biogenic (bio) fluxes in the base experiment without CO and in the base
experiment with CO, with the dashed line representing the 1 : 1 line. The posterior (Post) correlation coefficient (R2) and standard deviation
are also given.

An important source of uncertainty in this work is the de-
tailed uncertainty data that we use as a starting point, i.e. the
reported emission uncertainties and the uncertainties in the
spatial proxies. For GHGs, the reported country-level uncer-
tainties are used. The IPCC not only encourages countries
to make country-specific uncertainty assessments based on
expert judgement but also provides default options (Eggle-
ston et al., 2006). Therefore, the reported uncertainties are

not necessarily consistent between countries. Nevertheless,
we adopt these reported uncertainties to ensure our uncer-
tainty estimates are well documented and consistent in terms
of methodology. For spatial proxies, uncertainties are also
based partly on expert judgement in the absence of better
quantification. For the representativeness error, we assume a
similar order of magnitude as the proxy value uncertainty,
which is an arbitrary choice. Hogue et al. (2016) estimated
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the uncertainty of using population density as a proxy for
CO2 emissions by comparing differences in emissions per
capita across all US states. They found that the representa-
tiveness error is often the dominant source of uncertainty;
hence, we argue that our estimate is conservative to be on
the safe side when estimating the impact of adding CO and
improving the prior uncertainty estimate in our experiments.
Since we start with a high level of detail, we assume a certain
fraction of the random errors in the prior uncertainty infor-
mation will cancel out. Moreover, we ignore the proxy qual-
ity as a source of uncertainty. We evaluate our approach by
comparing the results against previous work. The country-
level and grid cell uncertainties differ only slightly from the
results of Super et al. (2020a). These results are discussed in
detail there, whereas here we only focus on the spatial error
correlation lengths and CO2 : CO error correlations. We eval-
uate the overall definition of prior uncertainties using closed-
loop numerical experiments, which we discuss below.

The spatial error correlation lengths have been estimated
by fitting semi-variograms to the proxy data and range be-
tween 15 and 28 km, which is about 2.5–4.5 times the grid
size. Kunik et al. (2019) used a similar approach to estimate
the length at which the difference between two emission in-
ventories was still correlated. They found a correlation length
scale of 6 km, which is about 6 times the grid size. Other
studies optimized the correlation length based on the spatial
scale and resolution of their inversion and the density of the
observation network. Generally, a larger spatial-correlation
length means a larger aggregated uncertainty, and, therefore,
a larger correction to the observations is possible. Hence,
this length scale can be optimized statistically. For example,
Lauvaux et al. (2016) examined the impact of the spatial-
correlation length on inversions to estimate CO2 fluxes from
the city of Indianapolis in the US. They found that ignoring
the spatial correlation resulted only in local emission adjust-
ments around the measurement sites because areas further
from these sites are not constrained by the observations. In-
creasing the correlation length to 12 km adjusts the emissions
for the entire city at once, and the spatial patterns are not af-
fected. They concluded that a correlation length of 4–5 km is
most suitable for making optimal use of the observations and
prior information (Nathan et al., 2018). Similar conclusions
were drawn for N2O on a European scale (Corazza et al.,
2011) and for biogenic CO2 fluxes (Lauvaux et al., 2012). Of
course, the optimal length scale based on this approach de-
pends strongly on the spatial scale considered, and we con-
sider our correlation lengths to be relatively low compared to
the observation network. Based on these findings, we argue
that it is necessary to combine the data-driven estimate with a
statistical approach to find an optimal correlation length. Un-
fortunately, a methodology for this is not yet existent. More-
over, the spatial-correlation length scale may depend on the
considered timescales (Carouge et al., 2010). Hence, more
work is needed on this topic.

We developed a new approach to define the CO : CO2 er-
ror correlation. Previous studies have often assumed a per-
fect correlation between the errors in CO2 and CO fossil fuel
fluxes, e.g. through a fixed emission ratio (Brioude et al.,
2013; Nathan et al., 2018). However, emission ratios have a
large uncertainty, and, therefore, the CO2 and CO errors are
not perfectly correlated. Only few studies have tried to es-
timate the inter-species error correlation or have performed
sensitivity tests. Palmer et al. (2006) tried to make use of the
synergy between CO and CO2 by calculating error correla-
tions per country. These correlations are very small because
the CO EF dominates the uncertainty but is uncorrelated with
CO2. They concluded that the error correlation should be
larger than 0.5 for CO to be a useful constraint for CO2
fluxes, which is unrealistic at the country level. However, for
gridded emissions, the correlation is much stronger as spatial
patterns are linked to the activity. Moreover, the correlation is
larger for individual sectors. Therefore, we argue that our cal-
culated grid cell correlations, which range from 0.18 to 0.99
(with a mean value of 0.89), are realistic, considering that
they are sector-specific and gridded. Additionally, Boschetti
et al. (2018) tested different correlation strengths (0.1–0.9)
and found no significant difference in the posterior fluxes,
although uncertainty reduction increased with stronger corre-
lations. This makes sense because it means more information
is taken from CO priors and observations. We also find larger
uncertainty reductions when we add CO to the base case –
i.e. when there is a CO : CO2 error correlation of 1. How-
ever, we also illustrate that the results do not always improve.
The reason could be that Boschetti et al. (2018) assumed one
error correlation value for the entire domain and also evalu-
ated their results across the entire domain. Given the ranges
in the prior–posterior absolute uncertainties shown in Fig. 8
for the Base_CO2 and Base_CO2_CO experiments, we also
see no significant difference in the domain’s total emissions.
However, we do see clear differences across regions.

Closed-loop numerical experiments are useful for evaluat-
ing the capability of observing systems, including assumed
prior and measurement error covariance matrices, to deter-
mine accurate estimates of carbon fluxes (Masutani et al.,
2010). However, they also have limitations. The theoreti-
cal impact of an observing system will depend on several
factors, including the quality of the atmospheric transport
model used, the assumed structure and values used by the
assimilation error covariance matrices, and the spatial dis-
tribution of the observations. Some of these choices can be
based on expert judgement. For our numerical experiments,
we are also limited by the resolution of our basis functions,
and it is likely that we would see greater benefits from the
Adv_CO2_CO experiment if the inversion were performed
at a high resolution, leveraging the fine-scale variability in
the error correlations between CO and CO2 (e.g. along road
networks).

Our numerical experiments illustrate the impact of the
prior emission uncertainties. From these experiments, we can
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draw two important conclusions: (1) the definition of prior
uncertainties is important for differentiating between differ-
ent fluxes, such as biogenic and fossil fuel CO2, and (2) CO
can provide an additional constraint for estimating fossil fuel
CO2 fluxes only if the error covariance structure is defined
realistically. Generally, it is difficult to constrain CO2 fossil
fuel flux estimates due to the high uncertainty in biogenic
fluxes. However, we show here that, with the improved un-
certainty definition, the posterior error correlation between
biogenic and fossil fuel CO2 is weaker. A likely explanation
for this is that the largest fossil fuel sources are often clus-
tered in areas that differ from those with the largest biogenic
fluxes. Hence, when describing the spatial error structure cor-
rectly, the estimation framework used within the numerical
experiments can more easily detect which source is domi-
nant and update the estimates accordingly. Additionally, we
have shown that CO provides additional information on the
CO2 fossil fuel fluxes in the base experiments, whereas it has
a minor impact on the experiments with the updated prior un-
certainties. Since CO has relatively large prior uncertainties
(in emissions, models, and observations) compared to CO2,
the prior and observational information of CO contributes lit-
tle weight to the cost function. By setting the CO : CO2 er-
ror correlation to 1, the CO information becomes more im-
portant and thus results in larger corrections. The CO : CO2
error correlations in the advanced experiment are relatively
high (e.g. 0.88 for road transport), so this is likely not the
only reason. It is likely that a better definition of the prior un-
certainties will help to weigh all the information more effec-
tively and, therefore, address some of the spurious changes
seen in the Base_CO2_CO experiment.

In this study, we have used synthetic in situ observations
obtained across the UK and mainland Europe, which have
limited spatial coverage, with only 29 stations measuring
CO2, of which 19 also measure CO. Additionally, these sta-
tions are located in remote areas with limited local influence,
and, therefore, they are not very sensitive to fossil fuel fluxes.
Figure 8 shows that fluxes are mostly altered in central Eu-
rope, where the observation network is densest; therefore,
enough information is available to update the data on prior
emissions. Moreover, in these regions, the fossil fuel fluxes
are the largest. This stresses the need for a wide observation
network, ideally with co-located observations of CO2 and co-
emitted species, located in or near areas with high fossil fuel
fluxes. For this reason, we also argue that the added value of
CO is likely more pronounced with satellite data. The CO2
column observed by satellites has limited sensitivity to CO2
emissions perturbations, so our ability to constrain fossil fuel
CO2 fluxes separately from biogenic fluxes is limited. For the
co-emitted species, i.e. CO and NO2, the atmospheric col-
umn has a higher sensitivity to perturbations of combustion
emissions, adding value to their inclusion in the inversion
(Konovalov et al., 2016; Liu et al., 2020; Nathan et al., 2018;
Reuter et al., 2019). In addition, satellite instruments like the
TROPOspheric Monitoring Instrument (TROPOMI) provide

high-density observations of CO and NO2 globally, increas-
ing the information content of the inversion compared to a
CO2-only inversion, whereas for the in situ network used
here, we have fewer in situ stations with CO observations
compared to those measuring CO2.

Finally, our work illustrates the importance of using an ac-
curate definition of prior uncertainties in CO2 inversion and
multi-species inversion. A concerted effort is needed to quan-
tify the prior uncertainties in a way that is consistent with the
data and optimized for application in data assimilation stud-
ies. There is much room for further improvement in current
work – for example, by adding more detailed uncertainty es-
timates for sectors other than road transport and other station-
ary combustion. Given the nature of the spatial proxy maps
for the other sectors, which are often categorial or contain
point source locations, this poses an additional challenge.
Furthermore, temporal uncertainties need to be added as they
can have a major impact on data assimilation results (Super
et al., 2021).
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