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Abstract. The reduction of in situ observations over the last
few decades poses a potential risk of losing important in-
formation in regions where local effects dominate the cli-
matology. Reanalyses face challenges in representing clima-
tologies with highly localized effects, especially in regions
with complex orography. Empirical downscaling methods of-
fer a cost-effective and easier-to-implement alternative to dy-
namic downscaling methods and can partially overcome the
aforementioned limitations of reanalyses by taking into ac-
count the local effects through statistical relationships. This
article introduces RASCAL (Reconstruction by AnalogS of
ClimatologicAL time series), an open-source Python tool de-
signed to extend time series and fill gaps in observational cli-
mate data, especially in regions with limited long-term data
and significant local effects, such as mountainous areas.

Employing an object-oriented programming style, RAS-
CAL’s methodology effectively links large-scale circulation
patterns with local atmospheric features using the analog
method in combination with principal component analysis
(PCA).

The package contains routines for preprocessing observa-
tions and reanalysis data, generating reconstructions using
various methods, and evaluating the reconstruction’s perfor-
mance in reproducing the time series of observations, statis-
tical properties, and relevant climatic indices. Its high mod-
ularity and flexibility allow fast and reproducible downscal-
ing. The evaluations carried out in central Spain, in moun-
tainous and urbanized areas, demonstrate that RASCAL per-
forms better than the ERA20C and ERA20CM reanalysis,
as expected, in terms of R2, standard deviation, and bias.
When analyzing reconstructions against observations, RAS-

CAL generates series with statistical properties, such as sea-
sonality and daily distributions, that closely resemble obser-
vations. This confirms the potential of this method for con-
ducting robust climate research. The adaptability of RAS-
CAL to diverse scientific objectives is also highlighted. How-
ever, as with any other method based on empirical train-
ing, this method requires the availability of sufficiently long-
term data series. Furthermore, it is susceptible to disruption
caused by changes in land use or urbanization processes that
might compromise the homogeneity of the training data. De-
spite these limitations, RASCAL’s positive outcomes offer
opportunities for comprehensive climate variability analyses
and potential applications in downscaling short-term fore-
casts, seasonal predictions, and climate change scenarios.
The Python code and the Jupyter Notebook for the recon-
struction validation are publicly available as an open project.

1 Introduction

The origins of meteorological observation can be traced back
to ancient civilizations, where people began to notice pat-
terns in the weather and celestial phenomena. However, it
was not until the 17th century that systematic weather obser-
vations began in earnest with the development of instruments
such as the mercury barometer and the thermometer by sci-
entists Evangelista Torricelli and Daniel Gabriel Fahrenheit
(Barry and Chorley, 2009). An early example of this interest
in observing the atmosphere using instruments is the Central
England Temperature (CET) record (Manley, 1974), which
is one of the longest instrumental temperature records in the
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world, dating back to 1659. It provides a continuous monthly
temperature series for the central England region and is often
used as a proxy for temperature variations in western Eu-
rope. Other examples of early weather monitoring date back
to the 18th century, such as the Paris–Montsouris observa-
tions in France (Moisselin et al., 2002), the Zentralanstalt
für Meteorologie und Geodynamik in Austria (Vienna) (Auer
et al., 2007), the Uppsala University observations in Swe-
den (Bergström and Moberg, 2002), and the earliest obser-
vations recorded for the Iberian Peninsula like those starting
in Seville (Spain) in 1780 (Domínguez-Castro et al., 2014).
Since these first observations began, the number of surface
meteorological observatories worldwide has increased sig-
nificantly, as shown in Fig. 1a.

The critical role played by surface meteorological stations
in climate monitoring and research is emphasized by the In-
tergovernmental Panel on Climate Change (IPCC) in all its
assessments and reports (IPCC, 2021). One of the aspects
addressed is the need to maintain high-quality and consis-
tent data following high standards of quality assurance and
control (Begert et al., 2005). These kind of procedures are
essential to ensure that the data collected are homogeneous,
accurate, and reliable. Errors or inconsistencies in the data
can lead to erroneous climate assessments and predictions
(Yang et al., 2005). Another important fact mentioned is the
need for a dense network of surface meteorological stations
around the globe to provide comprehensive coverage of dif-
ferent regions and climates. Dense monitoring networks are
less common in remote or less densely populated regions or
where the environmental conditions are too harsh to operate
and maintain the instruments (Dinku, 2019; Fan et al., 2020;
Schween et al., 2020).

It has been commonly accepted that surface meteorologi-
cal stations are still the best way to identify long-term trends
and variability in climate. They have also proven to be criti-
cal for validating and calibrating other atmospheric databases
such as those obtained from satellites or remote sensing in-
struments (Salio et al., 2015; Emery et al., 2001; Huang et al.,
2019). They are also a key element for the development and
validation of gridded databases obtained by numerical mod-
els such as reanalyses (Molina et al., 2021; Bell et al., 2021;
Lavers et al., 2022; Bonshoms et al., 2022). More recently,
meteorological measurements have become an essential el-
ement of machine learning methods applied to atmospheric
modeling.

Due to the important role played by surface observations in
climate assessing and weather forecasting, several countries
established and expanded their surface meteorological obser-
vatories during the 20th century, trying to cover as much ter-
ritory as possible (Klein Tank et al., 2002), from several thou-
sand surface stations at the end of the 19th century to several
tens of thousands at the end of the 20th century (Fig. 1a).
However, as mentioned before, the results are very uneven
around the world (Fig. 1c), with important areas of the world
still under-monitored.

Contrary to what might be expected, the number of surface
meteorological stations has not increased in recent decades
at a rate that would fill the gaps in the documented under-
monitored areas. Rather, the ratio of operational stations has
slowed down and decreased since the 1970s (Fig. 1a). As
can be seen, the number of decommissioned stations has in-
creased in recent decades in many regions of the globe, dis-
rupting some historical climate time series.

One potential explanation for this decline in the num-
ber of surface stations is the advent of satellites as a novel
method for observing the weather and climate. Following
the launch of the world’s first weather satellite, TIROS-1,
in 1960, satellite weather observations became prevalent and
began to offer a number of advantages over on-site weather
observations, as cited in Purdom and Menzel (1996). For in-
stance, they permit global coverage and cost-effectiveness
since they do not necessitate an extensive network of ground-
based weather stations to cover vast areas. However, satel-
lite weather observations also have limitations. For example,
they have difficulties accurately measuring conditions at the
Earth’s surface, their data availability is highly dependent on
cloud cover, they often exhibit long-term instrument drift,
and they have calibration issues in remote areas where sur-
face observations are still unavailable.

Another potential factor contributing to this decline is the
increasing use of model reanalysis data to conduct climate re-
search (Dee et al., 2014; Hersbach, 2016). Model reanalyses
employ a combination of observational data sources, includ-
ing in situ surface weather observations, satellite data, and
others to generate a gridded and consistent dataset of weather
and climate information from the past. The resulting datasets
are comprehensive, are homogeneous, and have strong cli-
matological consistency. They cover global areas, enabling
analysis where in situ data are not accessible. In many cases,
reanalyses are used instead of in situ measurements for cli-
mate studies. They are certainly useful for studying broad
climate patterns and long-term climate trends, and they could
theoretically be used to fill gaps or extend the temporal and
spatial coverage of observations. However, they suffer signif-
icant losses with regards to temporal and spatial resolution,
as well as information relating to local phenomena. Global
reanalyses have inherent difficulties in providing fine-scale
details that are often missed in the physics of the models or
are meaningless at the low resolution considered.

Although it may seem that global weather data are fully ac-
cessible through the more precise reanalyses available nowa-
days, there may be a hidden loss of information about lo-
cal phenomena that only surface weather stations are able
to capture. When historical meteorological data are not con-
tinued indefinitely or interrupted, many of the resources in-
vested over decades are lost. In addition to these interrupted
time series, there are also numerous surface meteorological
observation series of good quality around the world as a re-
sult of short-term campaigns or very recent initiatives. These
time series also provide a wealth of information on local pro-
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Figure 1. (a) Total number of operative stations from 1850 to 2023. (b) Balance of decommissioned stations in the same period. The negative
value means the stations are no longer operative, and the absolute value represents the number of decommissioned stations. (c) Localization of
all stations from 1850 to 2023, with operative stations in 2023 marked in blue and decommissioned stations as of 2023 marked in red. Data
were obtained from the Global Historical Climatology Network daily (GHCNd, https://www.ncei.noaa.gov/products/land-based-station/
global-historical-climatology-network-daily, last access: 15 November 2023).

cesses, but their short duration is still insufficient for clima-
tological analyses (Durán et al., 2017).

We have global reanalyses that span the entire 20th cen-
tury and part of the 21st century, with low resolution and
limited phenomena. However, these datasets are sufficient to
consider the main drivers that force weather and climate at
the surface. In contrast, we have sets of interrupted or re-
cent surface measurements that capture local phenomena, but
these are too short to conduct climatological analyses. It thus
appears feasible to downscale reanalysis data in order to ob-
tain pseudo-observations that can provide the best of both
worlds.

Downscaling has been performed since the inception of
reanalysis. Two general approaches to downscaling are dy-
namical downscaling (DD) and empirical statistical down-
scaling (ESD). ESD relies on observational data to establish
empirical relationships between the large-scale fields pro-
vided by the reanalysis and the local phenomena seen in the
observations (Wilks, 2011; Bürger, 1996; Boé et al., 2006).
These are grouped into model output statistics, perfect prog-
nosis, and weather generators (in which analog models are
used). On the other hand, DD is achieved by using higher-
resolution physical models that account for lower-scale phe-
nomena nested within the reanalysis fields (Lo et al., 2008;
Durán and Barstad, 2018; Wang et al., 2021).

Numerous papers scrutinize the advantages and disadvan-
tages of the various methods (Hewitson and Crane, 1996;
Hanssen-Bauer et al., 2003; De Rooy and Kok, 2004). As
a rule of thumb, empirical techniques are generally less com-
putationally intensive than physical downscaling and may
yield better results at a lower cost. However, empirical down-
scaling is only feasible when a sufficiently long and uni-
formly collected dataset of observations is available. Assum-
ing the hypothesis that there is a connection between the

large-scale phenomena shown by the reanalysis and the local
phenomena captured by the observations is also essential.

Regardless of the chosen downscaling method, combining
reanalysis and surface observations to create long and ho-
mogeneous time series requires a significant amount of ef-
fort. Setting up a dynamic regionalization system can be ex-
pensive in terms of both computation and human resources,
but even a relatively simple statistically based regionalization
method entails a learning curve that may discourage or slow
down certain climate studies.

This work introduces and explains RASCAL v1.0 (Re-
construction by AnalogS of ClimatologicAL time series), an
open-source tool for climatological time series reconstruc-
tion and extension using ESD. The primary goal of RASCAL
is to promote and accelerate rigorous climate research in re-
gions where surface meteorological observations are insuffi-
cient for climate analysis and where relevant regional and lo-
cal meteorological processes can only be captured through in
situ observations. RASCAL could prove highly beneficial for
mountain climate research and other areas with unique mi-
croclimates, such as river valleys, forests, caves, or canyons.

This study is organized as follows: Sect. 2 provides a de-
tailed description of the implemented method, while Sect. 3
describes the model structure and implementation. In Sect. 4,
we evaluate the performance of the package by downscaling
the daily maximum and minimum temperatures and precip-
itation of four stations near a mountainous region in central
Spain. We draw final conclusions and important remarks in
Sect. 5.

2 Methods

RASCAL is based on an ESD type known as an analog model
or weather generator. This is a widely used technique in cli-
mate research (Zorita and Von Storch, 1999). It is based on
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the premise that large-scale atmospheric conditions tend to
produce comparable local weather patterns, allowing the pre-
diction of local conditions for a day without real-time obser-
vations. This is done by identifying an analog day from gen-
eral circulation models (GCMs), such as reanalyses, and as-
signing its local conditions. This approach allows the study
of climate variability over an extended time frame, provid-
ing valuable perspectives on long-term patterns and connec-
tions between different geographic locations, while also in-
corporating important local factors in the analysis (Hidalgo
et al., 2008; Benestad, 2010; Abatzoglou and Brown, 2012;
Saavedra-Moreno et al., 2015; Shulgina et al., 2023).

The analog method is a nonlinear technique that relies on
the identification of strong statistical relationships between
two fields: the predictor variable extracted from GCM prod-
ucts and the predictand variable obtained from local histori-
cal observations. To predict an atmospheric feature (the pre-
dictand) for a given day, this method searches for the day
with the most similar predictor field in the historical record
and uses its atmospheric features to make a prediction, allow-
ing the reconstruction of missing data points (Lorenz, 1969;
Horton et al., 2017).

To incorporate the relationship between large-scale mete-
orological patterns and local weather, the analog method is
often combined with principal component analysis (PCA).
PCA reduces the high dimensionality of the atmospheric
phase space by generating an orthogonal basis of vectors
that represent the main directions of variability. As a re-
sult, only a limited set of m coefficients, called princi-
pal components (PCs), are required to represent the atmo-
spheric state (Wilks, 2011). The resulting set of m coeffi-
cients of the PCs at time t are considered the predictor X(t)=

(X1(t),X2(t), . . .,Xm(t)) for the local predictand Y (t). For
a given day t , the objective is to identify N historical days
t1, t2, t3, . . ., tN such that the predictor X(t) is similar to the
predictors X(ti). The similarity between the predictors in the
historical record X(ti) and the predictor of the day to recon-
struct X(t) is measured with the Euclidean distance.

dX(t, ti)= ‖X(t)−X(ti)‖ (1)

The N days with the smallest distance dX(t, ti) consti-
tute an analog pool. Various similarity methods can be used
to select the best analog Ŷ (t) or group of analogs from the
pool. The most straightforward method is to choose the day
ti that has the smallest distance dX(t, ti) and that is the clos-
est day in the PC space. However, similar synoptic patterns
can sometimes produce different local weather if the role of
other variables or more complex phenomena is not taken into
account. Therefore, assigning the day with the most simi-
lar predictor field pattern as the analog day may not always
be accurate. To avoid making the reconstruction method too
complex, one solution is to select the N closest days from the
pool of analogs instead of just one. Then, perform a weighted

average of the predictand Y (ti) by the square of the distance
in space of the PCs of those days:

Ŷ (t)=
1
N

N∑
i=1

wiY (ti), (2)

where the weight wi is

wi =

1
dX(t,ti )

2∑N
j=1

1
dX(t,tj )2

. (3)

This way, the days with a more similar synoptic pattern
have more presence in the average, while also considering
possible phenomena that have not occurred on the closest day
but on the other similar days.

Averaging can impact the distribution of the variable by
smoothing the data and removing extreme values. To pre-
serve extremes while still accounting for possible phenom-
ena beyond the similarity of synoptic patterns, bias reduction
methods such as quantile mapping can be used. This tech-
nique employs a “mapping variable” Z(t) and examines the
quantile of the day to reconstruct Q(Z(t)) in the distribution
of this variable in the analog pool (Z(t1),Z(t2), . . .,Z(tN ))).
The method first examines the distribution of the predictand
variable in the analog pool (Y (t1),Y (t2), . . .,Y (tN ))) and se-
lects the day ti that occupies the same quantile as the best
analog.

Ŷ (t)= Y (ti), when Q(Y(ti))=Q(Z(t)) (4)

This approach improves the representation of extreme
events. However, it is crucial to note that the mapping vari-
able must have a strong correlation with the predictand vari-
able. One possible solution is to use the reanalysis predictand
variable as the mapping variable.

The analog method fundamentally involves the reorgani-
zation of observed time series data, aiming to maintain the
statistical characteristics of the original dataset. The efficacy
of this method relies on ensuring that the downscaling and
training periods exhibit a comparable climatic context (Zorita
et al., 1995). The reconstruction capability of the analog
method is constrained by the temporal extent and accuracy
of historical observations. This means that it cannot repli-
cate unobserved events and, therefore, cannot reproduce new
record values in the context of climate change. However, its
utility becomes pronounced in scenarios where external cli-
mate forcing induces shifts in the frequency of observed phe-
nomena. In essence, it serves as a valuable tool for discerning
alterations in the occurrence patterns of documented events.

3 Model structure

Empirical downscaling techniques involve laborious steps
that must be carefully addressed to ensure the quality of
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the local climate series reconstructions, as pointed out in
Boateng and Mutz (2023). RASCAL is a Python library
that implements the analog method in a clear and simple
way. It is an object-oriented library with four main blocks
or classes: Station, Predictor, Analogs, and RSkill. This li-
brary is a valuable complement to other empirical downscal-
ing libraries, such as pyESD from Boateng and Mutz (2023),
which is based on machine learning downscaling methods
that focus on generating monthly time series. RASCAL is
based on classical statistical methods, which produce results
that are easier to interpret physically, and additionally, it is
more focused on daily-resolution reconstructions rather than
monthly, which allows for the calculation of relevant daily
climate indices. This section describes these components and
their implementation workflow, as illustrated in Fig. 2.

3.1 Station class

The analog method requires (1) homogeneous time series of
observational data and (2) a reanalysis dataset or GCM prod-
uct that covers both the period to be reconstructed and the
period of historical observations. The Station class retains
the information about the historical record, including meta-
data about the observation point such as its name, elevation,
latitude, and longitude, as well as the observational data of
the variable to be predicted. The historical record must have
a daily to sub-daily resolution, and it is assumed to be ho-
mogeneous. The data are preprocessed to extract the desired
meteorological variable, such as maximum, minimum, mean,
or total accumulated, in the form of selected daily quantities.

3.2 Predictor class

The analog method has the benefit of low subjectivity due
to its limited parameters for adjustment (Wetterhall et al.,
2005). However, selecting and processing the predictor cor-
rectly constitute a crucial step for achieving accurate local
weather reproduction. The selection should be based on our
knowledge of atmospheric dynamics and the local climate
of the study area, as pointed out by other authors (Boateng
and Mutz, 2023). After selecting a predictor variable that is
expected to have a strong relationship to the predictand vari-
able, for instance its main large-scale forcing field, and that
is relevant to the proposed scientific question, it is necessary
to choose a predictor field domain that can identify relevant
synoptic patterns for the study area. These fields should be
carefully grouped for each day. Although the analog method
is based on recognizing patterns in a single predictor field, it
is possible to use multiple variables within the same field. To
use vector fields with multiple components or to include dif-
ferent variables, it is necessary to construct a composite field
by concatenating each variable on the longitude axis. This
results in a single field with dimensions of time, latitude, and
number of components× longitude.

These steps are implemented in the class Predictor. It
takes as input the paths to the files of the chosen predictor
and allows selecting the limits of the field domain and group-
ing them for each day, taking only 1 h, or computing the sum
or the average of all the available hours. The composite field
is obtained when the mosaic option is set to True and more
than one different variable is detected within the files of the
input paths.

Once the predictor field is chosen, the PCA is performed.
The PCA is implemented as the method Predictor.pcs(). To
perform the PCA it is necessary to calculate the anoma-
lies of the predictor field. In this method it is possible to
choose the months of each season and the number of sea-
sons, the number of principal components to be used, and the
scaling of the PCs. This scaling will subsequently influence
the selection of a pool of the N closest days. This method
wraps the Python library EOFs (Dawson, 2016) using xar-
ray (Hoyer et al., 2020), so it has its scaling options, which
are (0) un-scaled principal components, (1) principal com-
ponents scaled to unit variance (divided by the square root
of their eigenvalue), and (2) principal components multiplied
by the square root of their eigenvalue.

3.3 Analogs class

After establishing the predictor and determining its synoptic
patterns via PCA, the next step is to search for a set of days
with similar synoptic patterns for each day, known as the ana-
log pool. After determining the analog pool, the days with-
out observations are reconstructed using one of the follow-
ing similarity methods: (1) the “closest” method, which se-
lects the closest day in the space of the PCs; (2) the “average”
method, which calculates the weighted average of the N clos-
est days; or (3) the “quantile map” method, which chooses
the day that corresponds to the same quantile as the day to
be reconstructed in another variable called the mapping vari-
able. These steps are implemented in the Analogs class. This
object is fed by the historical observations from the Station
object and the PC time series of the Predictor object. This
object allows the user to select the number of analog days in
the pool as pool_size; the number of days to exclude from
the pool when testing the reconstruction performance; and
whether to exclude the previous, posterior, or both days as
vw_size and vw_type arguments. Additionally, it allows the
selection of the similarity method. To use the quantile map-
ping method a mapping variable is required. This variable
must be a time series from the reanalysis dataset in the grid
point of the station. The Predictor class can be used to obtain
this information by setting the domain limits to the station’s
localization, which is saved in the Station object.

3.4 RSkill class

To assess the quality of a reconstructed time series, it is nec-
essary to clearly state its goal beforehand. RASCAL is de-
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Figure 2. RASCAL main features and workflow. The colored boxes highlight the principal classes, and within them, the featured methods
and objects are shown. An example of the EOFs obtained for the total column water vapor flux (TCWVF), used as a precipitation predictor,
is included in the Predictor class box.

signed to produce daily reconstructions to calculate relevant
indices, such as days above the 0 °C isotherm or the length
of dry spells. However, it is not necessary for the daily re-
constructions to be completely in phase with the daily ob-
servations when the objective is to evaluate these quantities
at coarser temporal resolutions, such as monthly, seasonal,
or annual. It is sufficient that their behavior and statistical
properties are well-reproduced at these coarser temporal res-
olutions. To evaluate the skill of the reconstructions, RAS-
CAL is equipped with a skill evaluation class called RSkill.
This class contains functions to evaluate the behavior of the
reconstructions and assess their added value compared to
using the reanalysis data alone. The skill metrics and dia-
grams included are the following: Taylor diagrams, quantile–
quantile diagrams, time series and annual cycle plots, root
mean squared error (RMSE), correlation coefficient (R2),
mean bias error (MBE), MSE-based skill score (where MSE
is the mean squared error), Heidke skill score (HSS), and
Brier score (BS).

The MSE-based skill score (Wilks, 2011) is given by

SSMSE = 1−
MSE
MSEr

, (5)

where MSE is the MSE of the reconstruction and MSEr
the MSE of the reference model, in this case the reanalysis.
Therefore, the SSMSE can be interpreted as the relative error

reduction of the reconstruction compared to the reanalysis
series.

The Heidke skill score (HSS) is implemented in order to
assess the performance of the analog method in predicting
days where the predictand is above or below a certain thresh-
old compared to the reanalysis, based on a contingency table
analysis. The HSS scores events based on their occurrence
or absence and determines whether the performance of the
tested model is superior to that of the reference model. The
HSS is defined as

HSS(r)=
r − rr

1− rr
, (6)

where r is the proportion of correct forecast (true positive
and true negative) of the reconstructed series and rr the pro-
portion of correct forecast of the reanalysis. The proportion
of correct forecast is expressed as

r =
a+ d

a+ b+ c+ d
, (7)

where a is the number of times that an event is forecasted
and observed (true positive), b the number of times that is
forecasted but not observed (false positive), c the number of
times that is observed but not forecasted (false negative), and
d the number of times that is neither forecasted nor observed
(true negative).
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This score condenses the information on whether the
tested model performs better that the reference model with
a number in the interval (−∞,1]. A model that perfectly re-
produces the observations gets a score of 1; if it performs
as well as the reference model it gets a score of zero, and if
the model performs worse than the reference model it gets
negative scores.

3.5 RASCAL implementation

Although RASCAL is designed as a Python library, the
GitHub repository contains scripts that allow performing re-
constructions and skill evaluations without the need to write
a script. The multiple_runs_example.py script demonstrates a
workflow that reconstructs several stations and variables us-
ing different values for the parameters including analog pool
size, number of days in the weighted average, and similarity
method. There is also a Jupyter Notebook available, named
RASCAL_evaluation.ipynb, which evaluates the skill of the
reconstructions for daily, monthly, and annual series.

4 Application examples

To test RASCAL performance, we tested the skill of the re-
constructions of maximum and minimum temperature and
daily precipitation at four different surface stations in the
vicinity of the Central System of the Iberian Peninsula
(Spain), as shown in Fig. 3. This mountain range is of vital
importance as it is the main contributor to the hydrological
resources of central Spain due to the high levels of rainfall
and snow runoff in spring. This area has been the subject
of several studies by authors in recent years (Durán et al.,
2013, 2015; Durán and Barstad, 2018; González-Flórez et al.,
2022). The reader can refer to these previous works in order
to understand the importance of having long time series in
this area.

4.1 Observational data

The surface stations used are summarized in Table 1. All of
the stations belong to the Spanish Meteorological Agency
(AEMET; http://www.aemet.es, last access: 13 Septem-
ber 2023), which has conducted high-quality observations
of temperature and precipitation since 1893 and 1948, re-
spectively, for the case of Retiro station located in Madrid.
The Navacerrada station is the highest one, situated at
1888 m a.s.l. in the core of Sierra de Guadarrama, an area that
has been kept almost unaltered since its installation in 1946.
Stations Segovia and Colmenar are located on the northern
and southern slopes, respectively, of this mountain massif
(Fig. 3). This set of surface meteorological stations was se-
lected based on their long historical records, on the variety
of their orography and environments, and on the deep knowl-
edge of this area due to previous research carried out by the
authors of this work. Furthermore, they spread across a wide

range of altitudes. Of the four datasets, two are particularly
long: Retiro and Navacerrada.

Observations have been available at Navacerrada station
since 1946. The whole region has remained practically un-
changed since then, making it a valuable resource. In con-
trast, the Retiro station is located in the heart of the city of
Madrid, which has undergone significant growth, particularly
since the 1960s.

This set of observations can serve as a suitable test bed for
evaluating the strengths and weaknesses of RASCAL and its
working hypotheses.

4.2 Reanalysis data

The reconstruction of the time series was performed using
ECMWF reanalysis data. Specifically, ERA20C data for the
temperature and ERA20CM ensemble data for the precipita-
tion (Poli et al., 2016) were used for the period from 1900 to
2010, with a spatial resolution of 0.75°× 0.75° and a tempo-
ral resolution of 3 h.

Principal component analysis was conducted for each sea-
son (DJF, MAM, JJA, and SON) individually using geopo-
tential height (GpH) data at 925 hPa as a temperature pre-
dictor and TCWVF as the precipitation predictor. The quan-
tile map method used the 2 m temperature and TCWVF to
search for analogs in the dataset as the mapping variables.
The selection of these predictors was based on their previous
use in identifying circulation weather types for precipitation
and extreme snow events in the study region, as reported by
Durán et al. (2015) and González-Flórez et al. (2022).

4.3 Model evaluation

The reconstructions were performed for all stations using all
three similarity methods and varying values of pool size and
number of days to average in the average method to account
for the possible sensitivity of the results to these parameters.
To evaluate the quality of a reconstruction, it is necessary
to determine the similarity of the time series to the obser-
vations. However, in climate studies it may be more rele-
vant to consider the statistical characteristics of the series.
Therefore, it may be more effective to evaluate the ability
to reproduce daily distributions, seasonality, seasonal and in-
terannual variability, and relevant indices, such as the num-
ber of days below 0 °C or days of precipitation above a cer-
tain threshold. RASCAL evaluates the effectiveness of recon-
structions for use in climate studies. It assesses the behav-
ior of time series for maximum and minimum temperature,
as well as precipitation, and their statistical properties. Ad-
ditionally, it compares the performance of using the analog
method versus using reanalysis data to reproduce observa-
tions. To compare its performance against the reanalysis, the
temperature data from the reanalysis were corrected with the
elevation using the environmental lapse rate (−6.5 °C km−1).
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Figure 3. (a) Location of the Iberian Central System. (b) Locations of sites used in this example of application, these being S (Segovia), N
(Navacerrada), C (Colmenar), and R (Retiro).

Table 1. Observational data used.

Station Altitude Coordinates Variables Period Frequency

Segovia 1000 m a.s.l. 40°56′48.012′′ N, 6°6′56.998′′W Temperature 1988–2023 Daily
Precipitation 1948–2023 Daily

Navacerrada 1888 m a.s.l. 40°47′35.000′′ N, 4°00′38.000′′W Temperature 1946–2023 Daily
Precipitation 1946–2023 Daily

Colmenar 1004 m a.s.l. 40°41′46.000′′ N, 3°45′54.000′′W Temperature 1978–2023 Daily
Precipitation 1978–2023 Daily

Retiro 660 m a.s.l. 40°24′43.000′′ N, 3°40′41.001′′W Temperature 1893–2023 Daily
Precipitation 1948–2023 Daily

RASCAL includes options to cross-validate when generat-
ing the reconstructions. To test the performance of the model
in reconstructing gaps in the series and extending to periods
distant from the observation period, validation windows are
created. These moving windows of N days are taken around
each day to be reconstructed, as these are the days that are
likely to have the most similar large-scale pattern to the tar-
get day and therefore contain the most possible analogs. Ex-
cluding these days removes both the large-scale patterns and
their associated local meteorological times from the pool of
analogs, allowing a better evaluation of the performance of
the model and each reconstruction method. For this applica-
tion case, we excluded 60 d, the 30 d before and after each
target day.

4.3.1 Time series skill

Taylor diagrams were implemented in RASCAL to assess the
agreement between the reconstructed time series and the ob-
served data. As illustrated in Figs. 4, 5, and 6, these diagrams
provide a visual representation of the analysis, displaying the

standard deviation and correlation of each time series in com-
parison to the reference observations.

As depicted in Fig. 4 the precipitation reconstructions out-
perform the reanalysis precipitation in all the cases for both
total monthly and total yearly precipitation. Monthly recon-
structions yield better results than the yearly series, with cor-
relation coefficients ranging from 0.4 to 0.8, whereas the
yearly series ranges from 0.2 to 0.7. However, for both cases,
the reanalysis only shows correlations of 0.4 at best and neg-
ative correlations at worst (not visible in the diagram). Pan-
els (c), (f), (i), and (l) display the yearly time series in water
years (from October to September), comparing the observa-
tions with the reanalysis ensemble and the best reconstruc-
tion. The chosen reconstruction has a good correlation co-
efficient and a standard deviation close to the observations.
These panels demonstrate that the correlation and standard
deviation are better than the reanalysis and that biases are
corrected. An example that illustrates this point is Navac-
errada (Fig. 4i), where the reanalysis dry bias may be at-
tributable to a smoothed reanalysis orography that hampers
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orographic precipitation, an important contributor to total
precipitation in this region (Durán et al., 2017).

As evidenced in the difference in the location of points of
the same color in the Taylor diagrams, the reconstructions are
somewhat sensitive to the pool size selection, as one method
with different pool sizes can produce series with different
correlations than the observations and standard deviations.
However, this sensitivity is not significant enough to be con-
sidered a critical determinant in the simulations. Therefore,
adjusting this parameter can be useful for subtle modifica-
tions.

Additionally, the Taylor diagrams demonstrate how dif-
ferent scientific questions may require different similarity
methods. While “average10” shows the strongest correla-
tions, “quantilemap100” exhibits standard deviations closest
to the original series, resulting in more similar distributions.
Therefore, the choice of reconstruction methods may depend
on the specific goals that led to the reconstruction process.

Figure 5 illustrates that the reconstructions of maximum
temperatures yield better results than those of precipita-
tion, with correlation coefficients above 0.93 for the monthly
mean maximum temperature series and between 0.3 and 0.9
for the yearly mean maximum temperature series. The re-
analysis exhibits a very similar behavior to the quantile map
reconstructions for this variable, but the latter consistently
shows a slight improvement in correlation or standard devia-
tion. The time series in Fig. 5c, f, i, and l show that although
the behavior of the reanalysis is very close to the observa-
tions, the reconstructions correct the bias for all the stations,
even when the reanalysis was corrected with the elevation.

Maximum temperature reconstructions exhibit less agree-
ment between different similarity methods but demonstrate
more consistent outcomes for different pool sizes when com-
pared to the precipitation reconstructions. In this case, the
quantile map method is recommended for reconstruction
over the closest and average methods.

In Fig. 6a, d, g, and j, the monthly mean minimum temper-
atures exhibit a similar behavior to the maximum mean tem-
peratures in Fig. 5a, d, g, and j, with correlation coefficients
above 0.9 and a slight improvement in the correlation and
standard deviation compared to the reanalysis. The yearly
mean series (Fig. 5b, e, h, k) also show moderate improve-
ments compared to the reanalysis, with correlations ranging
from 0.3 to 0.9. The quantile map method was found to be
the most effective for reconstruction. The bias corrections are
apparent in Fig. 6c, f, i, and l.

It should be noted that the reconstruction of Retiro in
Fig. 6l shows a peculiar behavior, overestimating the mean
minimum temperatures before 1945, followed by an under-
estimation of the temperatures thereafter. This effect does
not appear in the maximum temperature reconstructions in
Fig. 5l; a possible hypothesis is that this is due to the pro-
gressive urbanization of Madrid, where Retiro is located in
the city core. This urbanization leads to a change in the land
use and to an increase in the heat island effect, which mainly

affects the increase in minimum temperatures (Yagüe et al.,
1991). This induces a change in the relationship between the
local scale and the synoptic scale and therefore in the rela-
tionship between the predictor and the predictand, ultimately
affecting the temperature trends.

4.3.2 Distributions

To evaluate the statistical properties of a reconstruction,
we first examined the distributions of the daily time series
in comparison to the observations. Figure 7 displays the
quantile–quantile plots of the daily time series for maximum
and minimum temperature, as well as precipitation. These
plots illustrate the values assigned to the same percentiles
for the distributions of the reconstructed and observed time
series. When the distributions are identical, the points align
along a 45° line. The distribution of the observations is well-
represented by the closest and quantile map methods, as
shown in the first row of Fig. 7. However, the average method
affects the extreme values as expected, narrowing the distri-
bution further as the pool size increases. The poor perfor-
mance of the reanalysis in representing precipitation distri-
butions is also evident, as it exhibits a skew towards lower
values. All methods show a high alignment with the observed
data regarding maximum and minimum temperatures, with a
slight narrowing in the distribution for the average methods.
The impact of bias correction compared to the reanalysis is
prominently noticeable in these variables as well.

4.3.3 Seasonality

Understanding the seasonality of meteorological variables is
crucial for climate studies as it enables the identification of
recurring patterns and trends throughout the year. As shown
in Fig. 8, the seasonal cycles of total monthly precipita-
tion and monthly standard deviation reveal that the recon-
structions generally reflect the observations more accurately
than the reanalysis. Notably, the quantile map method shows
better performance from January to June, while the closest
and average methods work better from July to December.
These differences between methods are more pronounced in
MAM and SON, which are the months of highest variabil-
ity (Fig. 8e, f, g, h). The standard deviation is well-captured
by the quantile map method, with exceptions noted in Febru-
ary and November. Navacerrada once again emerges as the
station that benefited the most from the reconstructions. It
exhibits the most similar precipitation cycles and standard
deviation, outperforming the reanalysis.

Figures 9 and 10 illustrate the annual cycles for maximum
and minimum temperatures, respectively. The quantile map
method outperforms the closest and average methods, as ev-
idenced by the standard deviation, and is therefore recom-
mended. These results demonstrate that RASCAL is more
effective than the reference reanalysis in representing sea-
sonality.
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Figure 4. Precipitation time series reconstruction skill for all the stations. The left panels (a, d, g, j) show the Taylor diagrams of the monthly
total precipitation series. The central panels (b, e, h, k) show the Taylor diagrams of yearly total precipitation series. The right panels (c, f, i,
l) show the time series of observations, reanalysis, and the selected best-performing reconstruction. In the precipitation case the yearly series
are based on water years beginning in October and ending in September.

4.3.4 Daily indices

In climate studies, it is common to employ indices that con-
dense key climatic features of the study area. These indices
are usually based on the comparison of a variable with a
fixed threshold or a threshold based on some statistical prop-
erty, such as a mean value or a percentile (Klein Tank et
al., 2009). Consequently, when using climate indices, the fo-
cus of a study may not necessarily be on making the recon-
structed time series closely resemble the observations, but
rather on effectively reproducing these indices. Given that
the indices are based on threshold crossings, a dataset char-
acterized by significant biases may result in a misrepresen-
tation of these indices. As demonstrated earlier, the station
Navacerrada stands out as the one most positively influenced
by the reconstructions. This is due to the fact that the re-
analysis provides a deficient representation of precipitation
and temperature, mainly due to its pronounced warm and dry
bias. Therefore, this station was chosen for the calculation

Table 2. Skill metrics for the best monthly reconstruction in Navac-
errada for days of PCP≥ 1 mm (R1 mm), icing days (ID), and frost
days (FD).

Index R2 MBE RMSE
(days per month) (days per month)

R1 mm 0.80 0.17 3.55
ID 0.91 0.22 2.3
FD 0.96 0.34 3.01

of relevant indices for a mountainous region using the recon-
structions, such as days with precipitation exceeding 1 mm
(R1 mm), icing days (IC, days of maximum temperature be-
low 0 °C), and frost days (FD, days of minimum temperature
below 0 °C).

Figure 11 presents the seasonal cycles of the indices for
both observations and the optimal reconstruction chosen in
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Figure 5. Maximum temperature time series reconstruction skill for all the stations. The left panels (a, d, g, j) show the Taylor diagrams of
the maximum temperature monthly mean series. The central panels (b, e, h, k) show the Taylor diagrams of yearly mean series. The right
panels (c, f, i, l) show the time series of observations, reanalysis, and the selected best-performing reconstruction.

Sect. 5.3.1. The aim is to ensure that the reconstructions ac-
curately replicate the climatic characteristics associated with
these indices without exhibiting any spurious behavior.

The R1 mm index in Fig. 11a reveals highly similar distri-
butions across all months, with only a slight overestimation
of the median value noted in March, June, and July. Fig-
ure 11b also demonstrates very good agreement in the ID
index between the reconstruction and observed distributions
and median values, although with slightly broader distribu-
tions during winter months. Finally, Fig. 11c reaffirms the
substantial agreement between observations and distributions
for the FD index, highlighting RASCAL’s capability to faith-
fully replicate the seasonal behavior inherent in these indices.

Upon examining the time series skill, Table 2 presents
the values for Pearson correlation coefficient (R2), mean
bias error (MBE), and root mean square error (RMSE) of
the indices. The table highlights the commendable perfor-
mance of the reconstructions in accurately reproducing these
indices, as evidenced by high correlations, particularly for

temperature-related indices. Furthermore, the MBE values
are significantly low, measuring less than 0.34 d per month,
and the RMSE values remain below 3.55 d per month.

5 Conclusions

We have confirmed that a decline of in situ observations is
a noteworthy concern as it may result in the loss of crucial
information in areas where local effects are relevant to cli-
matology. While the reanalysis provides a homogeneous and
comprehensive dataset, its applicability to studying clima-
tologies with highly localized effects, particularly in regions
with intricate orography, has been called into question.

In order to mitigate this possible loss of meteorological in-
formation based on surface observations, RASCAL has been
developed. This is an open-source Python tool designed to
fill gaps in observational data, enabling climate studies in
regions with limited long-term data. This tool proved to be
particularly useful for the test sites, especially in the moun-
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Figure 6. Minimum temperature time series reconstruction skill for all the stations. The left panels (a, d, g, j) show the Taylor diagrams of
the maximum temperature monthly series. The central panels (b, e, h, k) show the Taylor diagrams of yearly series. The right panels (c, f, i,
l) show the time series of observations, reanalysis, and the selected best-performing reconstruction.

tainous areas. It is expected to also be useful in other areas
with important local effects or distinctive locations like river
valleys, forests, caves, or canyons.

The package presented here utilizes an object-oriented
programming (OOP) approach, treating weather stations,
predictors, and reconstructions as objects with multiple func-
tional attributes that encompass all necessary functionalities.
This has allowed for the execution of all modeling steps with
just a few lines of code. The core methodology is based
on linking large-scale circulation patterns with local atmo-
spheric features. This linkage is established through the ana-
log method and principal component analysis and has been
shown to be more effective than reanalysis in conveying cli-
matic characteristics. It is a faster and less computationally
expensive alternative to dynamical downscaling methods and
an easier-to-interpret method than machine learning statisti-
cal downscaling methods.

The package was evaluated at four stations in Spain, in-
cluding three near a mountainous area in central Spain and

one in a highly urbanized area. The results were compared
to the products of the reanalysis ERA20C and ERA20CM.
RASCAL outperformed the reanalysis in terms of R2, stan-
dard deviation, and bias. This improvement was particu-
larly noticeable in the reconstruction of monthly total pre-
cipitation, with correlation values reaching 0.8. The recon-
structed maximum and minimum temperatures show a slight
improvement over the reanalysis in terms of standard devia-
tion and correlation, reaching very high values of correlation
of over 0.99. Additionally, the biases present in the reanalysis
are significantly corrected by the reconstructions. This is also
evident when examining the distributions of daily data. RAS-
CAL is proficient at generating series that closely resemble
the observations, unlike the reanalysis, which exhibits skew-
ness towards low precipitation and biases in maximum and
minimum temperatures.

The various methods for selecting the best analog have ex-
hibited diverse behaviors when examining the different char-
acteristics of the series. Therefore, it is recommended not to
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Figure 7. Quantile–quantile plot of the daily time series for all the stations (from left to right) including all the reconstructions and the
reanalysis. The first-row panels (a, b, c, d) are for the precipitation, the second row (e, f, g, h) for the maximum temperature, and the third
row (i, j, k, l) for the minimum temperature.

Figure 8. Annual cycle of monthly total precipitation for all the stations (left to right). The first-row panels (a, b, c, d, e) show the cycle for
the variable, and the second row (f, g, h, i, j) is for its standard deviation.
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Figure 9. Annual cycle of monthly mean maximum temperature for all the stations (left to right). The first-row panels (a, b, c, d) show the
cycle for the variable, and the second row (e, f, g, h) is for its standard deviation.

Figure 10. Annual cycle of monthly mean minimum temperature for all the stations (left to right). The first-row panels (a, b, c, d, e) show
the cycle for the variable, and the second row (f, g, h, i, j) is for its standard deviation.

designate a single method as the best possible but to choose
it based on the scientific objectives.

Seasonality also demonstrates a marked enhancement
compared to the reanalysis. RASCAL produces reconstruc-
tions with an annual cycle closely resembling the observa-
tions. While the precipitation annual cycle exhibits some
disparities during unstable months, such as November and
March, the cycles of maximum and minimum temperatures
are nearly identical to the observations in every month when
using the quantile map method. This method better repre-

sents the monthly variability for both precipitation and tem-
peratures.

In climate studies, the use of indices is a common prac-
tice to condense key climatic features of a study area. RAS-
CAL has demonstrated its capacity to reproduce indices like
days of precipitation above 1 mm, icing days, and frost days
well for a station situated in the core of a mountain range.
This achievement is particularly noteworthy given the dif-
ficult conditions posed by the strong dry and warm biases
of the reanalysis in this region, which would otherwise hin-
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Figure 11. Seasonal cycle of the observations and the best reconstruction of climatological indices in Navacerrada, these being (a) days of
PCP≥ 1 mm (R1 mm), (b) days of Tmax < 0 °C or icing days (ID), and (c) days of Tmin < 0 °C or frost days (FD).

der the accurate computation of these indices. The recon-
structed data showcase high correlation coefficients with ob-
servations, ranging from 0.8 to 0.96. Additionally, consis-
tently low values of MBE and RMSE were observed. These
outcomes highlight the significant potential of RASCAL to
facilitate climate studies in regions with complex climatic
dynamics. These results confirm RASCAL’s effectiveness in
capturing and reproducing important climatic features for re-
liable climate research, highlighting its potential in regions
with limited long-term weather data.

However, it is important to acknowledge instances where
this methodology may have limitations. This approach re-
quires sufficiently long series, as it cannot create reconstruc-
tions with data that have not been observed. Additionally,
land use changes or urbanization processes can disrupt the
intricate relationship between large and small scales, affect-
ing the relationship between predictor and predictand and,
ultimately, the quality of the reconstruction.

The implementation of this package has yielded positive
results, providing opportunities to conduct comprehensive
climate variability analyses within the study area. In a short
time, it is expected that we can use RASCAL in the analysis
of the climate variability and climate change in the mountain-
ous area of the Central System (Spain). On the other hand,
improvements to be implemented in this methodology will be
studied once it has been applied to different cases, scenarios,
and regions. Finally, whether this package can be extended
as a downscaling tool for short- and medium-term numerical
forecast, as well as for seasonal prediction and even climate
change scenarios, will be analyzed.

Code availability. RASCAL (version 1.0) source code is available
on GitHub (https://github.com/alvaro-gc95/RASCAL) and Zen-
odo (https://doi.org/10.5281/zenodo.12654140, Gonzalez-Cervera,
2024). The required dependencies, package usage, and func-
tionalities are described in the documentation (https://rascalv100.
readthedocs.io/en/latest/, last access: 15 July 2024). Additionally, a
Jupyter Notebook is available to represent and validate the recon-

structions and assess their skill. To run this library, Python 3.10 is
required. RASCAL is also installable via the Python package in-
dex (PyPI): https://pypi.org/project/rascal-ties/ (last access: 15 July
2024).

Data availability. The ERA5 reanalysis data to run the code ex-
amples described in the documentation are available on Zenodo
(https://doi.org/10.5281/zenodo.12626856, ECMWF, 2024).
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