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Abstract. Accurate hydrologic modeling is vital to charac-
terizing how the terrestrial water cycle responds to climate
change. Pure deep learning (DL) models have been shown
to outperform process-based ones while remaining difficult
to interpret. More recently, differentiable physics-informed
machine learning models with a physical backbone can sys-
tematically integrate physical equations and DL, predicting
untrained variables and processes with high performance.
However, it is unclear if such models are competitive for
global-scale applications with a simple backbone. Therefore,
we use – for the first time at this scale – differentiable hy-
drologic models (full name δHBV-globe1.0-hydroDL, short-
ened to δHBV here) to simulate the rainfall–runoff processes
for 3753 basins around the world. Moreover, we compare the
δHBV models to a purely data-driven long short-term mem-
ory (LSTM) model to examine their strengths and limita-
tions. Both LSTM and the δHBV models provide competi-
tive daily hydrologic simulation capabilities in global basins,
with median Kling–Gupta efficiency values close to or higher

than 0.7 (and 0.78 with LSTM for a subset of 1675 basins
with long-term discharge records), significantly outperform-
ing traditional models. Moreover, regionalized differentiable
models demonstrated stronger spatial generalization ability
(median KGE 0.64) than a traditional parameter regionaliza-
tion approach (median KGE 0.46) and even LSTM for un-
gauged region tests across continents. Nevertheless, relative
to LSTM, the differentiable model was hampered by struc-
tural deficiencies for cold or polar regions, highly arid re-
gions, and basins with significant human impacts. This study
also sets the benchmark for hydrologic estimates around the
world and builds a foundation for improving global hydro-
logic simulations.
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1 Introduction

Hydrologic models are vital tools to model and elucidate
the terrestrial water cycle, and they have been widely used
in flood forecasting (Maidment, 2017), water resource man-
agement (Jayakrishnan et al., 2005), and assessing climate
change impacts (Hagemann et al., 2013). Recently, deep
learning (DL) models have demonstrated superior perfor-
mance compared to traditional process-based hydrologic
models in accurately predicting different components of the
hydrologic cycle (Shen, 2018), such as soil moisture (Fang
et al., 2017, 2019; Fang and Shen, 2020), streamflow (Feng
et al., 2020; Konapala et al., 2020; Kratzert et al., 2019b; Liu
et al., 2024), snow water equivalent (Cui et al., 2023; Song
et al., 2024c), groundwater (Wunsch et al., 2021), and water
quality (Hansen et al., 2022; Rahmani et al., 2021; Saha et
al., 2023; Song et al., 2024a; Zhi et al., 2021). Long short-
term memory (LSTM) networks, which are a type of re-
current neural network (Hochreiter and Schmidhuber, 1997),
and transformers (Vaswani et al., 2017) are currently popular
DL algorithms for handling time series dynamics in hydrol-
ogy, while other architectures can also be employed. LSTM
models have established state-of-the-art accuracy for stream-
flow prediction at continental and smaller scales (Feng et al.,
2020, 2021; Kratzert et al., 2019a, b; Lees et al., 2021; Mai
et al., 2022).

Although DL models have shown great prediction accu-
racy compared to traditional models, they usually do not pos-
sess clear physical constraints inside the model and are often
regarded as “black boxes” despite some recent interpretive
efforts (Lees et al., 2022). Thus, purely data-driven models
are limited in that they cannot predict unobservable or un-
trained physical variables, which impedes the investigation
of the physical relations of different hydrologic variables be-
hind the change in the target variable. They may also become
overfitted and acquire incorrect sensitivities to inputs (Re-
ichert et al., 2024). In contrast, traditional process-based hy-
drologic models following physical laws like mass balances
can provide a full set of diagnostic outputs for hydrologic
variables like soil water storage, groundwater recharge, evap-
otranspiration, and snow water equivalent, even though they
are usually only calibrated on discharge observations (Bu-
rek et al., 2020; Müller Schmied et al., 2014). The multi-
variate output nature of these models provides an opportu-
nity for calibration on one or more observable variables to
better predict other, perhaps unobservable, variables (in real-
ity, whether this is the case or not depends on if the issue of
parameter non-uniqueness is addressed). However, it seems
quite difficult for the traditional physical model to approach
the performance level of the DL models in daily hydrograph
metrics (Feng et al., 2020; Kratzert et al., 2019b) or to im-
prove in generalization with increasing training data (Tsai et
al., 2021). In addition, traditional calibration is typically done
site by site and can be time- and labor-intensive. Therefore, it
logically follows that integrating DL and process-based mod-

els might enable harnessing their respective strengths while
circumventing their weaknesses (Shen et al., 2023).

By combining a physical model with a DL model, dif-
ferentiable modeling (Feng et al., 2022a; Shen et al., 2023)
provides a systematic solution to leveraging the strengths
of both model types while circumventing their limitations.
In differentiable models, we use process-based models as a
backbone and insert neural networks to either provide pa-
rameters (Tsai et al., 2021) or process substitutes for phys-
ical models (Aboelyazeed et al., 2023; Feng et al., 2022a,
2023; Höge et al., 2022; Jiang et al., 2020), or they could
use limited physical constraints (Kraft et al., 2022). They are
collectively called “differentiable models” in the sense that
they can rapidly compute gradients of outputs with respect
to inputs or parameters using automatic differentiation (or
any other means). The differentiability enables the training
of neural network components placed anywhere in the model
via backpropagation. Inserting neural networks into process-
based models can be perceived as posing questions regarding
some uncertain relationships given some known ones (pri-
ors), and we want to get answers for these questions by auto-
matically learning from big data.

Some of our recent work involved applying differentiable
modeling to the conceptual hydrologic model named Hydrol-
ogiska Byråns Vattenbalansavdelning (HBV) (Bergström,
1976, 1992; Seibert and Vis, 2012) and building a physics-
informed hybrid model for basins in the contiguous United
States (CONUS) (Feng et al., 2022a, 2023). The model is
“regionalized” in the sense that the embedded neural network
components are trained simultaneously on all basins in the
study region in order to provide physical HBV parameters
which are learned from raw information of basin attributes,
resulting in improved generalizability and reduced overfit-
ting to local noise. With the help of differentiable modeling
to flexibly evolve the original structure of HBV, the differen-
tiable hybrid models can approach the performance level of
the LSTM model whilst being constrained to physical laws
and keeping process clarity to predict untrained diagnostic
variables with decent accuracy (Feng et al., 2022a). Since
the framework is regionalized, this differentiable model can
be used to predict in ungauged regions, and it even extrapo-
lates better spatially than LSTM in data-sparse regions when
tested across the CONUS (Feng et al., 2023).

Owing to the complexity of calibration, current global hy-
drologic models are largely either uncalibrated (Hattermann
et al., 2017; Zaherpour et al., 2018) or only calibrated on
mean annual water budgets or in limited regions (Burek et
al., 2020; Müller Schmied et al., 2014). Only very limited
studies attempt to calibrate global models on monthly dis-
charge variations (Werth and Güntner, 2010). We desire ef-
ficient regionalized models that maximally leverage avail-
able information and provide accurate predictions on diverse
basins across different climate groups and geographic char-
acteristics in the world. We also want the models to per-
form decently even in data-sparse regions, showing com-
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petitive extrapolation ability, given that many large regions
such as in Africa and Asia lack publicly available stream-
flow data. DL and differentiable models seem plausible can-
didates for such simulations. Nevertheless, previous studies
on DL and physics-informed differentiable models mainly
focus on continental or smaller scales, with a relatively ho-
mogeneous forcing dataset – it is unclear if their observed
strengths, e.g., high performance and strong generalization
ability, can carry over to global scales, where the climate
is much more diverse and datasets differ widely in their bi-
ases and uncertainty characteristics. In particular, we want to
thoroughly examine how well these models can leverage in-
formation learned on data-rich continents to characterize the
hydrologic processes in ungauged regions across the world.
Meanwhile, DL models also show favorable scaling relation-
ships (or “data synergy”), where more data leads to more ro-
bust models (Fang et al., 2022). Thus, training on a larger
dataset may provide additional benefits.

In this study, we test physics-informed differentiable mod-
els (with the full version name δHBV-globe1.0-hydroDL,
where “δ” represents “differentiable”, globe1.0 is the ver-
sion, and “hydroDL” refers to our research group’s particu-
lar code implementation. δHBV is used as the abbreviation in
this paper) to simulate hydrologic processes for global basins
and compare results to purely data-driven methods and tradi-
tional modeling approaches. We focus on regionalized mod-
eling and emphasize the importance of spatial generalization
in data-sparse scenarios, since observed streamflow data in
many parts of the world are scarce. This means one frame-
work with parameter regionalization from geographic at-
tributes will be used to model all the global basins rather than
calibrating a separate model in each individual basin (Beck
et al., 2020a; Feng et al., 2022a; Mizukami et al., 2017).
We first investigate what prediction accuracy can be achieved
by different models at global scale by learning from a large
and diverse dataset. We then relate the global spatial patterns
of model performance to geographic characteristics and hy-
drologic processes to identify model structural deficiencies
and gain hydrologic insights. Finally, we provide evidence
indicating which type of model may be more appropriate
for next-generation global modeling by rigorously examin-
ing each model’s generalizability to ungauged regions across
the world.

2 Data and methods

2.1 Global datasets

We use a global database compiled in a previous study
(Beck et al., 2020a), which contains a total of 4229 head-
water catchments. The dataset includes basin mean mete-
orological forcings and catchment characteristics such as
the climate, topography, land cover, soil composition, and
geology to support parameter regionalization, along with

streamflow gauge discharge observations. Meteorological
forcings are the driving inputs of hydrologic models. This
global dataset includes daily precipitation from the Multi-
Source Weighted-Ensemble Precipitation (MSWEP) product
that merges gauge, satellite, and reanalysis precipitation data
(Beck et al., 2017b, 2019), and maximum and minimum tem-
perature from the Multi-Source Weather (MSWX) product
that bias-corrects and harmonizes meteorological data from
atmospheric reanalyses and weather forecast models (Beck
et al., 2022). Potential evapotranspiration (ET) was estimated
using the method from Hargreaves (1994). The discharge ob-
servations at the outlet gauges were used as prediction targets
to train the hydrologic models. We excluded some basins
with potential erroneous discharge records, such as show-
ing unreasonable magnitude way larger than precipitation or
dramatic differences between two time intervals, by manu-
ally performing visual screening, and we also excluded those
with severe amounts of missing data (less than 5 years’ worth
of data points available in the study period from 2000 to
2016). Thus, 3753 basins were finally used to evaluate differ-
ent models. These basins were classified into five Köppen–
Geiger climate classes in Beck et al. (2020a), including trop-
ical (489 basins), arid (109 basins), temperate (1423 basins),
cold (1593 basins), and polar (139 basins), as shown in Fig. 1.
To evaluate the simulations of untrained variables like ET,
MOD16A2GF (Running et al., 2021), a gap-filled 8 d com-
posite ET product estimated from the Moderate Resolution
Imaging Spectroradiometer (MODIS) satellite data and me-
teorological reanalysis data, was used as independent obser-
vations to compare against the simulated ET from differen-
tiable hydrologic models.

2.2 The long short-term memory (LSTM) streamflow
model for comparison

Here the LSTM model is used as a purely data-driven bench-
mark DL model. The LSTM has “cell states” and “gates”
to maintain and filter information, as shown in Fig. 2a. The
input, forget, and output gates control the flow of informa-
tion, respectively controlling what to let in, what to forget,
and what to output from the system. In this study we use the
LSTM streamflow model demonstrated in Feng et al. (2020),
which has been successfully applied to simulate streamflow
in hundreds of basins across the CONUS. The framework
takes meteorological forcings and basin attributes as inputs
and generates daily streamflow predictions for each basin at
each time step (Fig. 2a). We used mini-batches to train the
LSTM model, where each mini-batch was composed of 2-
year sequences from 256 randomly selected basins. The first-
year sequences are only used for initializing the cell states,
so we calculate the batch loss function only on the second-
year sequences. The training sequences were also randomly
selected from the whole training period, and one epoch was
finished when the model had seen all the training data. Note
that this sequence length is a subset of, and different con-
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Figure 1. Locations and climate groups of the 3753 global basins used in this study, which were originally compiled by Beck et al. (2020a).
Plotted in Python using Matplotlib Basemap Toolkit.

cept from, the length of the training period. Sequence length
specifically refers to the length of the training instance that
comprises a mini-batch, whereas training period refers to the
whole period when observations are available for training,
from which the mini-batch sequence length is randomly se-
lected. The model was forwarded on each mini-batch itera-
tively, and its weights were updated using gradient descent
after each forwarding. One epoch is regarded as having oc-
curred when the model is iterated over all the training data.
We trained the LSTM model for 300 epochs to achieve con-
vergence.

2.3 The hybrid differentiable hydrologic models

In this work, we used the hybrid differentiable models de-
veloped in Feng et al. (2022a) for regionalized modeling in
global basins (δHBV-globe1.0-hydroDL). The HBV model
used here as the physical backbone is a conceptual hy-
drologic model with representations of snowpack, soil, and
groundwater storages, and it can simulate flux variables such
as snow melting, evapotranspiration, and quick and slow out-
flows (Beck et al., 2020a; Bergström, 1976, 1992; Seibert
and Vis, 2012). The differentiable parameter learning (dPL)
framework (Tsai et al., 2021) is used to provide parameter
regionalization for HBV, as shown by the gA neural network
in Fig. 2b. The gA network, which is an LSTM unit here,
takes basin attributes and meteorological forcings as inputs,
and it outputs static or dynamic physical HBV parameters.
The differentiable HBV model then takes these parameters
and the meteorological forcings to simulate the hydrologic
process and predict daily streamflow discharge along with
other key flux variables. The whole framework, including
HBV itself, was implemented in a DL platform (PyTorch
1.0.1 was used for the original development, and the model
has also shown good compatibility with more recent PyTorch

versions; Paszke et al., 2017) supporting automatic differ-
entiation and trained with gradient descent to minimize the
difference between the simulated and observed streamflow
(the loss function). As in Feng et al. (2022a), we employed
the loss function based on root-mean-square error (RMSE)
with two weighted parts. The first part calculates RMSE di-
rectly on the simulated and observed discharges, while the
second part calculates RMSE on the transformed discharge
records to improve low flow representations. Note that we
do not directly train the HBV parameters; rather, we focus
on training the weights of the gA neural network to map
the relationship between basin-averaged characteristics and
HBV parameters. Differentiable models are also trained in
mini-batches that are formed in the same way as for train-
ing the LSTM streamflow model. Within one epoch, differ-
entiable models are forwarded and optimized over the ran-
domly formed mini-batches until the iterations have used all
the training data points. We train the differentiable models
for 50 epochs in total.

As described in Feng et al. (2022a), the differentiable mod-
eling framework enables optional modification of the struc-
tures of the original HBV model to enable better perfor-
mance, and we used two versions of the evolved HBV model
in this study. We used 16 parallel subbasin-scale response
units, each with a separate set of parameters to describe a
fraction of the basin with different hydrologic responses.
These components implicitly represent subbasin-scale spa-
tial heterogeneity. The simulated fluxes (e.g., runoff) are the
average of all the response units. The parameters of the multi-
ple components are different, and all are produced simultane-
ously by the same gA network. The first version of our model
(referred to as “dPL+ evolved HBV”) only has static param-
eters, which are kept constant during the hydrologic simu-
lation. The second version (referred to as “dPL+ evolved
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Figure 2. Illustrations of two different types of regionalized hydrologic models. (a) Framework of the purely data-driven LSTM streamflow
model (adapted from Fig. 2 in Feng et al., 2020) and (b) framework of the differentiable hydrologic model with parameter regionalization,
first developed in Feng et al. (2022a), trained on global data (δHBV-globe1.0-hydroDL) (adapted from Fig. 1 in Feng et al., 2022a). Here, the
neural network gA is an LSTM unit which is trained by the observed streamflow to produce the static or dynamic physical HBV parameters
(θ , β, γ ) from basin characteristics.

HBV with DP) further allows some formerly static parame-
ters of the multi-component model to vary daily with the me-
teorological forcings. These dynamic parameters (DPs) were
also produced by the gA LSTM unit. If we were to apply
the dynamic parameterization to all parameters, the model
could become overly flexible, potentially leading to overfit-
ting to the training data (which would lead to issues with
extrapolation beyond the training data). To reduce the risk of
overfitting, we restricted the dynamism to only two empiri-
cal parameters: the shape coefficient β in the equation that
describes the relationships between soil water and potential
runoff and a newly added shape parameter (γ ) which is in-

volved in the calculation of evapotranspiration. For more de-
tails regarding these differentiable HBV models, please refer
to our previous studies (Feng et al., 2022a, 2023).

2.4 Experiments and evaluation metrics

We ran one temporal and two spatial generalization exper-
iments to evaluate the performance of different regional-
ized models. For the temporal generalization experiment, the
models were trained for the period of 2000 to 2016 on all
global basins and tested for the period of 1980 to 1997.
Basins without discharge records or with less than 5 years’
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worth of data points in the testing period were excluded from
the evaluation. Without spatially holding out any basin dur-
ing training, this experiment aimed at evaluating the model’s
generalizability in the time dimension by testing prediction
ability on the same basins but in a different time period from
the training data. The other two spatial generalization ex-
periments served as the true litmus tests for evaluating the
effectiveness of regionalization schemes, i.e., how well the
model can be applied to basins that have never been seen dur-
ing training. The first spatial generalization experiment was
a traditional “prediction in ungauged basins” (PUB) prob-
lem, where we randomly divided the whole global basin set
into 10 folds (groups) and performed cross-validation across
these folds to obtain spatial out-of-sample predictions for all
basins (training on 9 of the folds, with the 10th fold held
out and used for testing, then rotating such that each fold is
used for testing once). The second spatial generalization ex-
periment, which we refer to as cross-continent “prediction
in ungauged regions” (PUR), was more challenging. In this
experiment, we assumed that all the basins in certain conti-
nents were ungauged and excluded from the training dataset,
trained a regionalized model in other data-rich continents,
and then tested the trained model to make predictions in the
ungauged continents. With random hold out, an ungauged
test basin in the first spatial generalization experiment always
has training gauges surrounding it. Therefore, the first PUB
experiment can be interpreted as spatial interpolation. The
second spatial experiment (cross-continent PUR) holds out
all the basins in one continent as testing targets; thus it is the
much harder test of spatial extrapolation.

To evaluate the overall performance of the hydrologic
models, we used the Kling–Gupta efficiency (KGE) (Gupta
et al., 2009; Kling et al., 2012), as compared in Beck et
al. (2020a), and the Nash–Sutcliffe efficiency (NSE) (Nash
and Sutcliffe, 1970). KGE has three components that account
for correlation, mean bias (the ratio of simulated and ob-
served means), and variability bias (the ratio of simulated and
observed coefficients of variation), while NSE mainly repre-
sents the variance explained by the simulations. Both met-
rics indicate better performance when their values are closer
to the maximum value of 1. We also examined the percent
bias of the top 2 % peak flow range (FHV) and bottom 30 %
low flow range (FLV) of streamflow predictions to evaluate
the model’s ability to simulate extreme events (Yilmaz et al.,
2008). All the reported performance metrics in this study are
from model evaluation on the testing dataset, which is not
seen by the model during the training process.

3 Results and discussion

3.1 General patterns over global basins

From the standpoint of daily hydrograph metrics (KGE and
NSE), LSTM and the two differentiable models all achieved

highly competitive performance for the global basins in the
temporal test (trained and tested on the same basins but in
different time periods) (Fig. 3). For the global dataset, all
three models obtained median KGE values close to or higher
than 0.7, but the LSTM model performed the best of the three
models here, achieving a median NSE (KGE) value of 0.70
(0.74) for all the evaluated basins. For a subset of 1675 basins
with long-term records (at least 15 years’ worth of stream-
flow data available in the training period and 5 years’ worth
of data available in the testing period, though not necessar-
ily continuous), LSTM even reached a median KGE of 0.78
(see Fig. A1). Both versions of the differentiable models ap-
proached the performance level of the LSTM, in agreement
with our previous assessment for the CONUS (Feng et al.,
2022a). The model with dynamic parameters achieved a me-
dian NSE (KGE) of 0.67 (0.69), followed by the model with
static parameters, which obtained a median NSE (KGE) of
0.65 (0.68).

The LSTM exhibited advantages for the low flow predic-
tions compared with the differentiable models, as shown by
the FLV metric (Fig. 3). However, for the peak flow predic-
tions, the LSTM and differentiable models were quite sim-
ilar, and they all underestimated the observed peaks (FHV
in Fig. 3). The underestimation for peak flows is consistent
with what was found in previous studies. For example, all
the physical and deep learning models have significant nega-
tive peak flow bias when benchmarked in the CONUS dataset
(Feng et al., 2020; Kratzert et al., 2019b). We hypothesize
that the systematic underestimation of peaks may be partially
related to bias in precipitation forcings. MSWEP is based
on the ERA5 reanalysis, which is known to underestimate
precipitation peaks (Beck et al., 2019). Furthermore, the use
of basin-averaged, daily averaged precipitation may further
suppress the peaks (Chen et al., 2017). In addition, the errors
with peak flow could also be partly due to some numerical
and structural issues with the differentiable models, e.g., nu-
merical errors introduced by the explicit and sequential so-
lution scheme of HBV with excessive use of threshold func-
tions that lead to different results when the sequence changes,
and structure limitations; e.g., deeper groundwater storage
cannot feed back to the upper layers. Given the commonality
of this issue, we call for community efforts and collaboration
to address this issue.

Both the LSTM model and the differentiable models per-
formed well over diverse landscapes, including North Amer-
ica (especially along the Rocky and Appalachian mountain
ranges and the Southeastern Coastal Plains), western Eu-
rope, Asia (mostly Japan), the southern part of Brazil, and
the northeastern coast of Australia (Fig. 4a and b). There
are other regions where none of the three models performed
well, such as the longitudinally central part of North Amer-
ica (Great Plains and Interior Lowlands), the southern edge
of Chile (with many glaciers), the state of Tasmania in Aus-
tralia, and the few basins in Africa. These regions, for exam-
ple, the northern Great Plains and the state of Texas in the
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CONUS, have always been difficult for all kinds of models,
likely due to incorrect basin boundaries, highly localized pre-
cipitation, the dry conditions with small runoff amounts, and
flash flooding mechanisms (Berghuijs et al., 2014; Driscoll et
al., 2002; Feng et al., 2020; Martinez and Gupta, 2010; New-
man et al., 2017), which are explored below. Despite some
challenges, however, these values currently represent the best
metrics reported at the global scale compared to earlier stud-
ies (e.g., Alfieri et al., 2020; Beck et al., 2017a, 2020a; Hou
et al., 2023), attesting to the great potential of these models
as global modeling tools.

3.2 Model behaviors and limitations across climate
groups and regions

All three models’ performances varied significantly across
different climate groups of the global basins (Fig. 5), re-
vealing their strengths and limitations. The LSTM model
behaved the best in the polar, cold, and temperate groups,
while the performance deteriorated in the tropical and arid
basins. Similarly to LSTM, differentiable models showed
strong performance in temperate and cold groups and worse
performance in tropical ones, with the worst performance
in arid basins. These clusters of challenging basins can also
be identified on the map (Fig. 4a and b). The differentiable
model with dynamic parameters performed better than the
model with static parameters in all climate groups except the
most challenging arid group. Dynamic parameterization with
more structural flexibility generally provides stronger model-
ing ability while also showing a higher risk of overfitting and
degraded generalizability in basins which are very difficult to
simulate. As we examine how LSTM and differentiable mod-
els behave differently, we find that such differences can be at-
tributed to processes missing from the simple process-based
backbone model (HBV here), as explained below. Here we
use LSTM as an indicator of upper bound; that is, it shows
the ideal performance of a model given the available infor-
mation from forcing and input data. Thus the distance from
LSTM indicates either systematic and predictable forcing er-
rors (which can be remediated by LSTM) or structural issues
with the differentiable model.

For example, the polar group stands out as a climate type
favoring LSTM, while the cold group shows a similar but
less pronounced contrast, both of which may be related to
HBV’s physical deficiencies and forcing issues with snow
undercatch. For the polar (cold) groups, LSTM surprisingly
had a median KGE of 0.81 (0.78), while the differentiable
model only reached 0.62 (0.71). The polar regions include,
for example, southern Chile (in region B in Fig. 4c). As
glaciers can store water for extended periods of time and are
driven mostly by temperature rather than rainfall, it is pos-
sible for LSTM to capture the temperature-driven dynam-
ics (Lees et al., 2022), while the original HBV itself does
not have a glacial module. HBV does not have the ability
to simulate frozen soil, sublimation, or snow cover fractions.

Furthermore, as snow gauges at high altitude are known to
suffer systematic bias due to undercatch problems (Beck et
al., 2020b), LSTM can learn to address such systematic bias,
while physical differentiable models cannot due to mass bal-
ance. For the cold regions, e.g., high-latitude regions of the
North American Great Plains (Region A in Fig. 4c – this
also includes the Prairie Pothole Region, or PPR), HBV may
suffer from not having descriptions for frozen ground con-
ditions (soil ice) which can influence infiltration and from
rainfall underestimation due to undercatch, ice blockage, and
other potential reasons (Beck et al., 2020b). In addition, an-
other reason why LSTM and differentiable HBV may have
trouble with PPR (but HBV performed especially poorly) is
the countless wetlands that store water until full and become
connected after snowmelt and large rainfall. HBV does not
have modules that can describe such large-scale fill–connect–
spill processes (Shaw et al., 2013; Vanderhoof et al., 2017).

A more prominent challenge is the arid regions (middle
CONUS, northern Chile, and eastern Brazil in Figs. 1 and 4).
This challenge can be attributed to the long duration of low
flows which requires long-term memory and to flash floods
which result from intense short-duration storms not well rep-
resented at the daily scale. Even the LSTM model cannot re-
tain year-long memory and cannot perform well for the base-
flow (Feng et al., 2020). Because HBV has a linear reservoir
for its slow-flow (lowest) bucket, it can neither generate zero
baseflows nor simulate the impact of intense hourly scale
rainfall well. These process improvements need to be con-
sidered in the future. Another reason for the challenge in arid
regions is the lack of reservoir management modules. Arid
regions tend to have water management infrastructure that
significantly influences streamflow (Veldkamp et al., 2018).
Since the HBV model does not have any module represent-
ing human impacts on the natural water cycle, the poor per-
formance in middle Brazil in region C may have come from
the missing representation of human interferences. There are
large populations and intensive agricultural activities in this
region which could induce significant impacts on the hydro-
logic process. Parameter compensations apparently cannot
make up for all the missing mechanisms.

The sensitivity of model performance to missing processes
in the differentiable models is both good and bad news. It is
good news because this means we can identify suitable or in-
sufficient process representations by learning from data. On
the other hand, this means more challenges, as we need to
increase the process complexity of this model before it can
perform well for these basins, unlike the purely data-driven
LSTM which is not explicitly concerned with physical pro-
cesses.

3.3 Spatial generalization for prediction in ungauged
regions

While LSTM maintains mild advantages over differentiable
models in data-dense settings, it was outperformed by dif-
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Figure 3. Performance comparison between the LSTM and differentiable models on global basins. dPL refers to the differentiable parameter
learning framework, “evolved HBV” refers to some modifications to improve the standard HBV model, and “with DP” indicates that some
parameters were allowed to be dynamic rather than static. Here, the horizontal line inside the colored box represents the median, while the
top and bottom of the colored box indicate the first and third quartiles. The bars extending from the colored boxes indicate the lowest and
highest data within 1.5 times the interquartile range from the first and third quantiles. NSE is Nash–Sutcliffe efficiency, KGE is Kling–Gupta
efficiency, FLV indicates the model’s percent bias on the bottom 30 % low flow range of streamflow, and FHV indicates percent bias on the
top 2 % peak flow range of streamflow.

ferentiable models in a highly data-scarce scenario. As men-
tioned above, the data-dense setting was tested in the ran-
domized holdout test called prediction in ungauged basins
(PUB), while the data-scarce scenario was tested in the re-
gional holdout test, or prediction in ungauged regions (PUR).
In the global PUB test, LSTM has a small edge (median KGE
of 0.67) over differentiable models (median KGE of 0.64).
Both were noticeably higher than the traditional regionaliza-
tion method using linear transfer functions reported by Beck
et al. (2020a) (Beck20, median KGE of 0.46), which already
represents the previous state-of-the-art performance of global
parameter regionalization. Differentiable modeling does not
rely on strong assumptions of the functional form for the pa-
rameter transfer function. It leverages the powerful ability
of neural networks to represent complicated functions, and
it automatically learns robust and generalizable relationships
between geographic attributes and physical model parame-
ters from large data. Therefore, we can expect significant
performance advantages from differentiable modeling com-
pared to traditional methods relying on linear transfer func-
tions. In the PUR scenario where European basins were held
out for testing, differentiable models (median KGE of 0.58)
performed significantly better (p-value less than 0.01 using
the one-sided Wilcoxon signed-rank test) than LSTM (me-
dian KGE of 0.52). In the South American PUR experiment,
lower performance was seen for all models, which can be
expected considering the prediction difficulties in this region
even for the in-sample scenario (Regions B and C in Fig. 4).
The median KGE of LSTM is 0.28, while the differentiable
model with static parameters achieves a higher median KGE
of 0.31 for the PUR scenario. It seemed that the differen-

tiable model with dynamic parameterization was somewhat
overfitted in this case, resulting in a median KGE that was
lower than the static-parameter differentiable model. We do
not have PUR results from traditional models available to
compare against, since this is a very challenging issue for tra-
ditional regionalization methods to make predictions across
continents.

With these results, we show that differentiable models
have demonstrated a high simulation capability that cannot
be obtained with traditional parameter regionalization ap-
proaches, and we also provide a robust extrapolation capa-
bility in large data-sparse regions that is stronger than purely
data-driven models like LSTM. This conclusion was not only
verified in the USA, but it has now also been confirmed in
global catchments with generalization tests including predic-
tion in neighboring ungauged basins and cross-continent pre-
dictions, each of which has different conditions with respect
to data availability and density.

3.4 Predicting untrained variables

The evapotranspiration (ET) simulations from differentiable
models are consistent with independent MODIS satellite esti-
mates of ET in both temporal dynamics and spatial patterns.
We did not use any ET observations as training targets to
supervise the differentiable models. At the global scale, the
mean annual ET comparison shows overall consistency with
MODIS, with most basins lying close to the 1 : 1 line and a
correlation of 0.75 for all the basins (Fig. 7a). Spatially, the
model was able to represent energy limitations in the cold
regions, e.g., high-latitude North America and Europe, and
water limitations, e.g., the southwestern US and arid basins
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Figure 4. The spatial patterns of different model performance and their differences shown by KGE metrics. (a) The LSTM model, (b) the
differentiable model with dynamic parameters (dPL+ evolved HBV with DP), and (c) the KGE difference between two models (KGE of
LSTM−KGE of dPL+ evolved HBV with DP). Plotted in Python using Matplotlib Basemap Toolkit.

of Australia (Fig. 7a and b). The model also represented high
ET in basins adjacent to the Amazon forest and those along
the US southeastern coast and Australian coast. Temporally,
the median correlation of ET time series between simulations
and MODIS products achieves 0.82 and 0.89, respectively,
for two differentiable models in 3753 basins (Fig. 7c).

The ET simulations show high correlation with MODIS
in most North American and European basins (Fig. 7d) in

line with good performance on streamflow modeling in these
regions. However, the correlation is relatively low in South
America, but the coefficient of variation in ET residuals
(CoV; the ratio of standard deviation of ET residuals to the
annual mean) is also small (Fig. 7e), in part because the ET
here is large and less driven by the seasonal energy cycle
(Niu et al., 2017). MODIS ET itself is not the ground truth
and always has large uncertainties in Amazonia regions due
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Figure 5. The performance comparison (KGE, Kling–Gupta efficiency) of different models for five climate groups. dPL refers to the overall
differentiable parameter learning framework, “evolved HBV” refers to some modifications to improve the standard HBV model, and “with
DP” indicates that some parameters were allowed to be dynamic rather than static. Here, the horizontal line inside the colored box represents
the median, while the top and bottom of the colored box indicate the first and third quartiles. The bars extending from the colored boxes
indicate the lowest and highest data within 1.5 times the interquartile range from the first and third quantiles.

Figure 6. The performance comparison (KGE, Kling–Gupta efficiency) of different models for spatial generalization tests. (a) Random
hold-out test for prediction in ungauged basins (PUB) and (b, c) holding out all the basins in Europe and South America, respectively, for
cross-continent predictions in ungauged regions (PUR). Beck20 refers to a traditional regionalization method using linear transfer functions
(Beck et al., 2020a), and LSTM is the purely data-driven long short-term memory network. dPL refers to the differentiable parameter learning
framework, “evolved HBV” refers to some modifications to improve the standard HBV model, and “with DP” indicates that some parameters
were allowed to be dynamic rather than static. Here, the horizontal line inside the colored box represents the median, while the top and bottom
of the colored box indicate the first and third quartiles. The bars extending from the colored boxes indicate the lowest and highest data within
1.5 times the interquartile range from the first and third quantiles.

to the cloud coverage and difficulties in observation (Hilker
et al., 2015; Xu et al., 2019). Furthermore, the simulations
could be negatively influenced by the data quality issues
with streamflow records in these regions. Upon examining
the records, some stations in South America show unrealistic
hydrographs that may indicate data processing errors. To ad-
dress such issues in the future, more in-depth data screening
and correction or constraining the model using datasets other

than streamflow, e.g., eddy covariance flux data, should be
considered. The CoV is less than 0.3 for most of the world,
showing that ET errors are mostly small relative to its an-
nual averages (Fig. 7e). Noticeable exceptions are the US
southwest, where ET varies strongly from year to year and
is highly dependent on the precipitation, and Chile, where
glaciers and deserts are both present, posing challenges to the
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Figure 7. The comparison between simulated ET from the differentiable hydrologic models and independent MODIS ET product. (a) Mean
annual ET comparison, (b) simulated mean annual ET for global basins, (c) boxplots for the temporal dynamic evaluation by correlation and
RMSE, (d) correlation, and (e) coefficient of variation for ET comparison in global basins. Maps plotted in Python using Matplotlib Basemap
Toolkit.

model. As the present study is basin-focused, we will leave
the evaluation of global gridded ET to future work.

3.5 Further discussion

Compared to the LSTM model which only outputs dis-
charge simulations, differentiable models offer a suite of in-
terpretable variables, including ET, soil water, recharge, and
baseflow, thus providing a comprehensive description for the
hydrologic cycle and far better interpretability. To create a
new differentiable model or turn an existing model into a
differentiable one, we need to implement the model on a
differentiable platform like PyTorch, TensorFlow, or JAX
while better enabling model parallelism in order to maxi-
mally leverage the computing power of modern graphical

processing units (GPUs). If a model contains mostly ex-
plicit calculations, automatic differentiation (AD) offered by
the above platforms can effortlessly provide gradient calcu-
lations, requiring only a syntax-level translation which can
nowadays be done easily. Sometimes, a limited number of
adjustments are needed to turn non-differentiable operations
into equivalent differentiable ones. However, when a model
contains iterative solutions to nonlinear systems, large ma-
trix solvers, or constrained optimizations, we can employ the
adjoint method (Song et al., 2024b). The adjoint method ex-
plicitly defines the gradient calculation method and alters
the order of calculations so iteration is avoided during gra-
dient calculations, which can dramatically reduce memory
demand and improve efficiency. Another important consider-
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ation is the effective use of parallelism and the modern com-
puting infrastructure for AI (i.e., GPUs). In our context, the
regionalized parameterization (in this case, training one neu-
ral network on a large amount of basins), which is crucial
to ensuring the generalizability of the model, requires going
through large data in high-throughput parallelism. Embrac-
ing parallelism may necessitate some coding adjustments. At
this point, several versions of differentiable hydrologic mod-
els have been proposed with varying complexities and differ-
ent handling of parameterization, post-processing (which we
did not use in this study, as it can interfere with interpretabil-
ity of the internal variables, mass balances, and the sensitiv-
ity to inputs encoded by the process-based components), and
dynamical parameters. Across geoscientific domains, differ-
entiable ecosystem (Aboelyazeed et al., 2023; Zhao et al.,
2019), flow and routing (Bindas et al., 2024), water quality
(Rahmani et al., 2023), and ice sheet (Bolibar et al., 2023)
models have already been demonstrated.

The challenges facing the differentiable models in this
study include not only missing processes like reservoir man-
agement, ground ice, and glaciers, but also large errors in
meteorological forcings and streamflow target data. Substan-
tial bias could exist in precipitation, e.g., due to snow-gauge
undercatch (Hou et al., 2023), or in discharge; e.g., stream-
flow is measured using different approaches which exhibit
large variability. As another example, gridded climate forc-
ing data often consistently underestimate the magnitudes of
heavy storms (Beck et al., 2017c). While LSTM can easily
adapt to systematic bias, such forcing errors put the differ-
entiable models under stress because they cannot reconcile
streamflow observations with such forcings given the con-
straint of mass balances. If our objective is to learn core
physics and parameterizations that are reliable despite forc-
ing discrepancies, we can set up forcing data correction lay-
ers that can, to some extent, shield the core processes from
being influenced by such errors. This will be an important
aspect of future work to ensure reliable prediction of future
water resources.

The backbone of a differentiable process-based model thus
serves as a double-edged sword: when such backbones are
essentially correct, they serve as a stabilizing element of the
model that mitigates overfitting and improves generalization;
when they lack critical processes or when observations have
large, unexplained bias, they can drag down model perfor-
mance and cause compensation between processes. How-
ever, the limitations are tractable: future work can gradually
incorporate critical processes and include more observations
to constrain the learning process, making sure each addition
is valuable and accretive. The research community collec-
tively already has substantial experience in evolving Earth
system models to include many processes. We expect some
processes to be invited back into the differentiable model-
ing framework. Nevertheless, with differentiable modeling,
we now have a new tool that was not previously available:
highly flexible deep neural networks that can be placed any-

where in the model, which provide a systematic way of man-
aging model complexity. With their help, such model evolu-
tion may take much less time than previously required. How-
ever, we still expect the development cycle to take longer
than that for purely data-driven models like LSTM, requir-
ing us to view differentiable models as evolving rather than
static entities, which need a bit of patience while maturing.

This study builds a benchmark and a basis for model se-
lection and diagnosis for next-generation global hydrologic
modeling, which previously did not learn from such large ob-
servations. With rigorous tests at the global scale, this study
proves that differentiable models are strong candidates as
global water models. With powerful spatial generalization
ability, they can be applied to characterizing the hydrologic
processes in ungauged regions by leveraging learned infor-
mation on data-rich continents. Differentiable models in this
study have already learned the generalizable and robust rela-
tionships between geographic attributes and physical model
parameters from thousands of global catchments. Therefore,
these models can easily be applied in providing seamless
global hydrologic modeling with parameters directly gener-
ated from worldwide geographic attributes. Future work can
use such models and continuously improved observational
datasets to produce global hydrologic fluxes while enhancing
some process representations in extremely arid, glaciated, or
heavily human-influenced basins.

4 Conclusions

In this work, we used both purely data-driven models and,
for the first time, physics-informed differentiable models
to simulate rainfall–runoff processes in 3753 global basins.
Both types of models achieved highly competitive perfor-
mance overall for global basins with diverse climate condi-
tions, yielding median KGE values close to or higher than
0.7, which is the state of the art at this large scale. The
LSTM still achieved the best performance for the temporal
generalization test, but the differentiable HBV models with
evolved structure (δHBV-globe1.0-hydroDL) approach the
LSTM’s performance level. Furthermore, the spatial gener-
alization experiments highlighted the stronger regionaliza-
tion and extrapolation ability of differentiable models than
the traditional modeling approach and LSTM, demonstrat-
ing its promise in being applied to data-scarce regions in the
world. River routing is not included in this work and will be
investigated in the future, possibly also with differentiable
approaches (Bindas et al., 2024).

Different models appear to have generally consistent spa-
tial performance patterns with the LSTM model, though ob-
vious distinctions stand out in several local regions. All mod-
els achieve good performance in the temperate and cold cli-
mate groups, while they all behave unsatisfactorily in the
arid group. For the polar group, the differentiable model
performed significantly worse than the LSTM. Without any
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physical constraints, LSTM shows strong power in simulat-
ing storage-dominated processes (snow and glacier), while
differentiable models are limited by the structure of their
physical backbone model, which in this case does not simu-
late multiyear ice buildup and melt. Another limitation could
be soil-sealing processes in extremely arid regions. These re-
gional performance comparisons thus reveal some deficien-
cies of the physical backbone in δHBV that cannot be mit-
igated even by advanced neural-network-based parameteri-
zation. These insights provide directions for future improve-
ments. Different from purely data-driven models only trained
by the target variable, differentiable models constrained by
the physical backbone can give accurate simulations for a
full set of hydrologic variables in the water cycle, including
evapotranspiration, snow water equivalent, water storage, in-
filtration, and baseflow. As some process limitations are ad-
dressed in the future, we believe differentiable models will
be strong candidates for next-generation global water mod-
els to characterize and predict the hydrologic processes in
ungauged regions across the world.

Appendix A

Figure A1. Performance comparison of the 1675 subset basins with long-term streamflow records (at least 15 years’ worth of streamflow
data available in the training period and 5 years’ worth of data available in the testing period, not necessarily continuous). Other items are
the same as in Fig. 3.
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Code and data availability. The source codes for the
differentiable hydrologic models can be accessed at
https://doi.org/10.5281/zenodo.7091334 (Feng et al., 2022b),
and this study evaluates these models at global scale.
The MOD16A2GF ET product can be downloaded at
https://doi.org/10.5067/MODIS/MOD16A2GF.061 (Running
et al., 2021). Meteorological forcing datasets MSWEP and
MSWX can be downloaded at https://www.gloh2o.org/mswep/
(GloH2O, 2019) and https://www.gloh2o.org/mswx/ (GloH2O,
2022), respectively. The streamflow observations used in this
study were initially compiled by Beck et al. (2020a) and can be
accessed from the original data sources, including the United
States Geological Survey (USGS) National Water Information
System (NWIS; https://doi.org/10.5066/F7P55KJN, U.S. Geo-
logical Survey, 2024), the Global Runoff Data Centre (GRDC;
https://grdc.bafg.de/GRDC/EN/Home/homepage_node.html,
GRDC, 2024), the HidroWeb portal of the Brazilian Agência Na-
cional de Águas (https://www.snirh.gov.br/hidroweb/apresentacao,
Brazilian Agência Nacional de Águas, 2024), the European Water
Archive (EWA) of EURO-FRIEND-Water (https://www.bafg.
de/GRDC/EN/04_spcldtbss/42_EWA/ewa.html; GRDC, 2014),
the CCM2-JRC CCM River and Catchment Database (http:
//data.europa.eu/89h/8c681046-726b-413d-aff8-b1afebd73c0a;
de Jager and Vogt, 2003), the Water Survey of Canada (WSC)
National Water Data Archive (HYDAT; https://www.canada.ca/
en/environment-climate-change/services/water-overview/quantity/
monitoring/survey/data-products-services/national-archive-hydat.
html, WSC, 2024), the Australian Bureau of Meteorology (BoM;
http://www.bom.gov.au/waterdata/, Australia BoM, 2024), and
the Chilean Center for Climate and Resilience Research (CR2;
https://www.cr2.cl/datos-de-caudales/, Chilean CR2, 2024).
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