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Abstract. A novel split-explicit (SE) external mode solver
for the Finite volumE Sea ice–Ocean Model (FESOM2)
and its sub-versions is presented. It is compared with
the semi-implicit (SI) solver currently used in FESOM2.
The split-explicit solver for the external mode utilizes a
dissipative asynchronous (forward–backward) time-stepping
scheme that does not require additional filtering during the
barotropic sub-cycling. Its implementation with arbitrary
Lagrangian–Eulerian vertical coordinates like Z star (z∗)
and Z tilde (z̃) is explored. The comparisons are performed
through multiple test cases involving idealized and realistic
global simulations. The SE solver demonstrates lower phase
errors and dissipation, while maintaining a simulated mean
ocean state very similar to the SI solver. The SE solver is
also shown to possess better run-time performance and par-
allel scalability across all workloads tested.

1 Introduction

All version 2 iterations of the Finite volumE Sea ice–Ocean
Model (FESOM2; Danilov et al., 2017), the same as its
predecessor FESOM1.4, rely on an implicit algorithm for
solution of the external mode. Its computational algorithm
maintains elementary options of the arbitrary Lagrangian–
Eulerian (ALE) vertical coordinate, such as z∗ or non-linear
free surface, but needs modifications to incorporate more
general options beginning from z̃, where information on hor-
izontal divergence in scalar cells is used when making de-
cisions about layer thicknesses on a new time level in the
internal (baroclinic) mode. This work aims to present the

modified time-stepping algorithm and its extension through
a split-explicit option for solution of the external mode.
Many modern ocean circulation models rely on the split-
explicit method to solve for their external mode. The pri-
mary motivation behind such a choice is expectation of bet-
ter parallel scalability in massively parallel applications. In-
deed, as is well known, the need for global communica-
tions to calculate certain global dot products in most itera-
tive solvers is a factor that potentially slows down the overall
performance (see e.g. Huang et al., 2016; Koldunov et al.,
2019). Although there are solutions minimizing the num-
ber of global communications per iteration (see e.g. Cools
and Vanroose, 2017), as well as solutions where global com-
munications are avoided (e.g. Huang et al., 2016), split-
explicit methods are an obvious alternative. This method
is followed by the Geophysical Fluid Dynamics Labora-
tory (GFDL) Global Ocean and Sea Ice Model OM4 whose
ocean component uses version 6 of the Modular Ocean
Model (MOM; Adcroft et al., 2019), the Nucleus for Euro-
pean Modelling of the Ocean (NEMO; Madec et al., 2019),
the Regional Oceanic Modelling System (ROMS; Shchep-
etkin and McWilliams, 2005), and the Model for Predic-
tion Across Scales – Ocean (MPAS-O; Ringler et al., 2013)
to mention some widely used cases. A careful analysis in
Shchepetkin and McWilliams (2005) discusses many details
of the numerical implementation for a split-explicit exter-
nal mode algorithm and proposes the AB3–AM4 (Adams–
Bashforth and Adams–Moulton) method, which is at present
followed by several models, i.e. ROMS (Shchepetkin and
McWilliams, 2005), the Coastal and Regional Ocean COm-
munity model (CROCO; Jullien et al., 2022), and FESOM-C
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(Androsov et al., 2019). However, a recent analysis in De-
mange et al. (2019) suggests a simpler choice of dissipative
forward–backward time stepping. The built-in dissipation in
this case allows one to avoid filtering the external mode so-
lution (see Shchepetkin and McWilliams, 2005). The sim-
plest commonly used filter requires that an external mode
be stepped across two baroclinic time steps to ensure tem-
poral centring. This doubles the computational cost of the
external mode solution. In the forward–backward dissipa-
tive method by Demange et al. (2019) an external mode is
stepped precisely across one baroclinic time step and not be-
yond. This method was ultimately found to be the best choice
around which to build a split-explicit scheme for our pur-
poses. Demange et al. (2019) also showed how dissipation
can be added to the AB3–AM4 method of Shchepetkin and
McWilliams (2005). We thus also explore dissipative AB3–
AM4 for dissipation and phase errors. The rest of the pa-
per is thus structured as follows. We begin with providing
a breakdown for individual steps of split-explicit schemes
as adopted in FESOM2 (Sect. 2). It is then followed by a
comparison of the individual temporal discretizations that are
characteristic of these time-stepping schemes (Sect. 3). We
then perform various experiments comparing the new solver
against the existing one using different test cases (Sects. 4
and 5). Finally, we summarize the results and argue for the
new proposed scheme and its solver being a great choice for
FESOM2 moving forward (Sect. 6).

2 Split-explicit asynchronous time stepping

This section provides a detailed description of the proposed
asynchronous time-stepping scheme for FESOM2 that incor-
porates a split-explicit barotropic solver whose schematic can
be found in Appendix A. FESOM in its standard version re-
lies on a semi-implicit barotropic solver that already uses an
asynchronous time stepping (Danilov et al., 2017). The asyn-
chronous time stepping is a variant of forward–backward
time stepping, which is formulated by considering scalar and
horizontal velocities as being displaced by half a time step
τ/2. The asynchronous time stepping is taken as the simplest
option. Other time-stepping options for the baroclinic part,
such as a third-order Runge–Kutta method, are under con-
sideration for future versions.

2.1 Momentum equation

The standard set of equations under the Boussinesq and stan-
dard approximations is solved. The equations are taken in a
layer-integrated form, and the placement of the variables on
the mesh is explained in Danilov et al. (2017). The layer-
integrated momentum equation in the flux form is

∂tU k +∇h · (Uu)k + (w
tut
−wbub)k + f ez×U k

+hk(∇hp+ gρ∇hZ)k/ρ0 = (VhU + (νv∂zu)
t

− (νv∂zu)
b)k, (1)

with U k = ukhk the horizontal transports, u the horizontal
velocity, hk the layer thickness, Vh the horizontal viscosity
operator, νv the vertical viscosity coefficient, f the Coriolis
parameter, ez a unit vertical vector, and ∇h = (∂x,∂y) with
respect to a constant model layer. Here, k is the layer index,
starting from 1 ar the surface layer and increasing downward
to the available number of levels with maximum value Nl.
We ignore the momentum source due to the added water W
at the surface. The term with the pressure gradient gρ∇hZk
accounts for the fact that layers deviate from geopotential
surfaces. The quantity Zk appearing in this term is the z co-
ordinate of the midplane of the layer with the thickness hk .
The equation for elevation is written as

∂η+∇h ·U =W, (2)

where U =
∑
kU k , and equations for layer thicknesses hk

and tracers will be presented in the following sections. Equa-
tions further in this section are for a particular layer k, and the
index k will be suppressed. In the implementation described
here, the discrete scalar state variables (elevation η, tempera-
ture T , salinity S, and layer thicknesses h) are defined at full
time steps denoted by the upper index n, whereas the 3D ve-
locities v= (u,w) and horizontal transports U are defined at
half-integer time steps (n+ 1/2, . . .). Since thicknesses and
horizontal velocities are not synchronous, layer transports U

are chosen as prognostic variables. Using them, we avoid the
question of hn+1/2 up to the moment of barotropic correc-
tion. Note that the flux form of the momentum advection
is used in Eq. (1). Adjustments needed for other forms are
straightforward and will not be discussed here.

First, we estimate the transport Un+1/2,∗ assuming that
hn,T n,Sn, ηn, un−1/2, Un−1/2, and wn−1/2 are known.

Un+1/2,∗
−Un−1/2

= τ
[
(RA

U +RC
U )
n
+ (RP

U )
n
+ (RhV

U )
n−1/2

]
(3)

The Ri
U terms with i = A,C,P,hV indicate advective, Cori-

olis, pressure gradient, and horizontal viscosity components
estimated at time step n for i = A,C,P , and n− 1/2 for the
horizontal viscosity. The momentum advection term is

RA
U =−∇(uU)−wu|tb,

where |tb implies that the difference between the top and bot-
tom interfaces of layer k is taken. The Coriolis term is

RC
U =−f ez×U .

Fields entering these advection and Coriolis terms are known
at n− 1/2, and the second- or third-order Adams–Bashforth
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method is used to get an estimate of RA
U and RC

U at n. For any
quantity f , f AB

= (3/2+β)f n−(1/2+2β)f n−1
+βf n−2.

For classical third-order interpolation (AB3), β is 5/12,
while β = 0 gives the second-order result (AB2). The pres-
sure gradient term is,

RP
U =−h∇zp/ρ0 =−h∇hp/ρ0−hg∇hZ,

where ∇z means differencing at constant z. Since pressure
and thicknesses are known at the time level n, no interpola-
tion is needed. This is one of the advantages of asynchronous
time stepping. Depending on how much layer thicknesses are
perturbed, other algorithms than that written above can be ap-
plied to minimize pressure gradient errors. As a default, the
approach by Shchepetkin and McWilliams (2003) is used in
FESOM. The pressure contains contributions from η, density
perturbations in the fluid column, and contributions from at-
mospheric and ice loading. The contribution from horizontal
viscosity is of either the harmonic or biharmonic type. For
simplicity, we write it here as

RhV
U =∇h · (hAh∇hu).

The implicit contribution from vertical viscosity is added as

Un+1/2,∗∗
−Un+1/2,∗

= τRvV
U = τ(Av∂zu

n+1/2,∗∗)|tb. (4)

The latter equation is rewritten for increments
1u= un+1/2,∗∗

−un+1/2,∗
= (Un+1/2,∗∗

−Un+1/2,∗)/h∗

and solved for 1u. At this stage of the scheme, a reliable
estimate for h∗ at n+ 1/2 is not available, but, since Av is a
parameterization and this step is first order in time, we use
h∗ = hn. When 1u is obtained, we update τRvV

U =1uhn

and Un+1/2,∗∗
= Un+1/2,∗

+1uhn. In preparation for the
barotropic time step, the vertically integrated forcing from
baroclinic dynamics is computed as

R
n
=

∑
k

[(RA
U )
n
+(R̃P

U )
n
+(RhV

U )
n−1/2
+(RvV

U )n+1/2
]k. (5)

Here, R̃P
U represents the pressure gradient force excluding

the contribution of η, as it will be accounted for explicitly in
the barotropic equation. The Coriolis term is also omitted for
the same reason. The vertically summed contribution from
vertical viscosity is in reality the difference in surface stress
and bottom stress. The bottom stress in FESOM is commonly
computed as Cd|u

n−1/2
b |u

n−1/2
b , where ub is the bottom ve-

locity.

2.2 Barotropic time stepping

Next is the barotropic step where η and U =
∑
kU k are esti-

mated by solving

∂tU + f ez×U + gH∇η =R, ∂tη+∇hU +W = 0. (6)

Here, H =H0+ η, W is the freshwater flux (positive out
of ocean), and R the is the forcing from the 3D part de-
fined above. These equations are solved from time step n

to n+ 1 as detailed below. Note that the baroclinic forcing
term is taken at time level n. Centring it at n+ 1/2 would
have involved many additional computations and is not im-
plemented at present. This set of equations presents a mini-
mum model. It is sufficient for basins with simple geometry.
In realistic applications, it has been found that an additional
viscous regularization term is needed to suppress oscillations
in narrow straits with irregular coastlines. In such cases we
add

R
hV
=∇h · (HAh∇hU/H) (7)

to the right-hand side of momentum Eq. (6) and subtract
the initial value of this term from R at each baroclinic
time step. Here, Ah is the viscosity coefficient tuned exper-
imentally to ensure stability in narrow, shallow regions. We
express it as a combination of some background viscosity
and a flow-dependent part that is proportional to the differ-
ences in barotropic velocity across cell edges. The subtrac-
tion mentioned serves to minimize the inconsistency created
by adding the new term. Note that in coastal applications, one
generally keeps bottom drag acting on the barotropic flow
as well as barotropic momentum advection (Klingbeil et al.,
2018). We treat them as slow processes here, but modifica-
tions might be needed for possible future applications.

As a default time stepping for the barotropic part, the
forward–backward dissipative time stepping by Demange
et al. (2019) is used. It is abbreviated as SE (for split-explicit,
as it will be the default choice) in subsequent sections.

U
n+(m+1)/M

−U
n+m/M

= (τ/M)

[
−

1
2
f ez

×

(
U
n+(m+1)/M

+U
n+m/M

)
− gH n+m/M

∇hη
n+m/M

+R
n
]

ηn+(m+1)/M
− ηn+m/M = (τ/M)

[
−∇h

·

(
(1+ θ)U

n+(m+1)/M
− θU

n+m/M
)
−W

]
(8)

Here, M is the total number of barotropic substeps per baro-
clinic step τ , and θ controls dissipation. The value of θ =
0.14 is mentioned by Demange et al. (2019) as being suf-
ficient1. This method is first-order accurate for θ 6= 0. We
also used another version that is based on the AB3–AM4
(Adams–Bashforth – Adams–Moulton) approach of Shchep-
etkin and McWilliams (2005), with dissipative corrections as
proposed in Demange et al. (2019) (abbreviated as SESM
below). The specific versions of AB3 and AM4 used are

f AB3
= (3/2+β)fm− (1/2+ 2β)fm−1

+βfm−2

f AM4
= δfm+1

+ (1− δ− γ − ζ )fm+ γ fm−1
+ ζfm−2, (9)

1Note that in FESOM, θ is implemented as a tunable parameter.
Its value of 0.14 was obtained by Demange et al. (2019) under cer-
tain assumptions. However, as is shown in this paper, in practice it
has been found to work well.
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with appropriate values of β,δ,γ,ζ discussed later. The time
stepping takes the form2

ηn+(m+1)/M
− ηn+m/M = (τ/M)

[
−∇h ·U

AB3
−W

]
U
n+(m+1)/M

−U
n+m/M

= (τ/M)
[
− f ez×U

AB3

− gHAM4
∇hη

AM4
+R

n
]
. (10)

The modified AB3–AM4 scheme should also be moved to
the first-order accuracy as concerns amplitudes but remains
higher-order with respect to phase errors.

2.3 Reconciliation of barotropic and baroclinic mode

Note that the use of dissipative time stepping in Eq. (8)
or Eq. (10) allows one to abandon the filtering of η and
U during the barotropic step that would be needed if non-
dissipative forward–backward (θ = 0) or the original AB3–
AM4 schemes were applied instead (see Shchepetkin and
McWilliams, 2005). The most elementary form of filtering
involves integration to n+ 2 with subsequent averaging to
n+ 1, which would double the computational expense for
the barotropic solver. To be in agreement with the tradi-
tional notation (Shchepetkin and McWilliams, 2005), we
write 〈η〉n+1

= ηn+m/M and 〈U〉n+1
= U

n+m/M
for m=M

(there would be a difference if filtering were needed). By
summing the elevation equations over M substeps, one gets
for the forward–backward dissipative case (Eq. 8)

〈η〉n+1
−〈η〉n =−τ∇h · 〈〈U〉〉

n+1/2, (11)

where

〈〈U〉〉n+1/2
=

1
M

M∑
m=1

U
n+m/M

+
θ

M

(
〈U

n+1
〉− 〈U

n
〉

)
. (12)

While η is consistently initialized with 〈η〉n for m= 0, there
is no good answer for U . One can use the last available 〈U〉n,
but because 3D and barotropic velocities are integrated using
different methods, this may lead to divergences with time un-
less some synchronization with 3D velocities is foreseen. We
return to this topic below. On time level n+1, the total thick-
ness becomes H n+1

=H 0
+〈η〉n+1. The horizontal trans-

port is finalized by making the vertically integrated transport
equal to the value obtained from the barotropic solution.

U
n+1/2
k = U

n+1/2,∗∗
k

−
h
n+1/2
k∑
kh
n+1/2
k

(∑
k

U
n+1/2,∗∗
k −〈〈U〉〉n+1/2

)
(13)

2Note that for the SE case, we integrate transport U before ele-
vation η in comparison to this case (SESM). The reason is historical.
We follow how these two methods were originally proposed, and in
principle, the integrations in SE can be interchanged where the η is
integrated first, but the gradient is θ -weighted, similar to the one in
SESM. Both, however, should result in identical damping.

2.4 Finalization of baroclinic mode

The estimate of the thickness at n+ 1/2 depends on the op-
tion of the ALE vertical coordinate and will be detailed be-
low. In treating the scalar part, we are relying on the V-
ALE (vertical ALE) approach in the terminology of Griffies
et al. (2020). It is assumed that there is some external pro-
cedure to predict hn+1

k = h
target
k constrained by the condition∑

kh
n+1
k =H 0

+〈η〉n+1. In the simplest case, this is the z∗

vertical coordinate with hn+1
k = h0

k(H/H
0). Here, as well as

in other cases when the decision regarding htarget does not
depend on layer horizontal divergences, hn+1/2 in Eq. (13) is
half the sum of the n and n+ 1 values. In more complicated
cases, such as z̃ (Leclair and Madec, 2011; Petersen et al.,
2015; Megann et al., 2022), the horizontal divergence in lay-
ers ∇ ·Un+1/2

k is needed to predict hn+1
k , and a reliable esti-

mate of hn+1/2 is not immediately available. Requiring that
hn+1
k is smooth and positive and also satisfies the barotropic

constraint
∑
kh
n+1
k =H 0

+〈η〉n+1 could be a non-trivial task
and may require a special procedure (see Hallberg and Ad-
croft, 2009 and Megann et al., 2022) that simultaneously ad-
justs U

n+1/2
k and hn+1. The description of the current imple-

mentation of z̃ in FESOM is presented in Appendix C. The
potential presence of such complications is the reason why
the decision regarding hn+1 is delayed to the end, and the
discretization of momentum equation is performed in terms
of U . Once the new thickness is determined, the thickness
equation,

hn+1
k = hnk − τ [∇h ·U +w|

t
b]k − τWδk1, (14)

is used to estimate the diasurface velocityw. Tracers are then
advanced, first taking into account advection and horizontal
(isoneutral) diffusion before being trimmed by implicit ver-
tical diffusion.

(hn+1T ∗)k = (hT )
n
k − τ [∇(UT )+ (wT )|

t
b]k

− τWTW δk1+ τ(∇(hK)∇T )
n
k

(hn+1T n+1)k = (h
n+1T ∗)k + τ(Kv∂zT

n+1)k|
t
b (15)

Here, TW it the value of scalar T in a freshwater flux. In
this procedure, if T n = const, the second equation will re-
turn this constant in T ∗. The two equations above could have
been combined into a single one. We treat them separately
to avoid the loss of some significant digits (and to avoid en-
suing errors in constancy preservation). Before solving the
last equation in Eq. (15), it is rewritten for the increment
1T = T n+1

− T ∗.
While U

n+1/2
k , trimmed as given by Eq. (13), ensures

by virtue of the first equation in Eq. (15) that
∑
kh
n+1
k =

h0
+〈η〉n+1 (as required for perfect volume conservation),

its vertical sum
∑
kU

n+1/2
k = 〈〈U〉〉n+1/2 deviates from the

barotropic transport at time level n+ 1/2 (i.e for m=M/2).
We tried to compensate for this difference by saving U

n+m/M
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for m=M/2 in the barotropic step and re-trimming the 3D
transports once tracers are advanced, but this has been found
to be redundant in practice3 4. The number of barotropic sub-
steps M depends on the quality of meshes with varying res-
olutions. It can always be estimated based on mesh cell size
and local depth. The presence of particularly small cells in
deep water may limit the scheme globally even if the rest of
the mesh is regular. Such limitations are absent in the present
version of FESOM that is based on an implicit barotropic
solver. Appendix B summarizes the changes needed to ex-
tend it (Danilov et al., 2017) to more general ALE options.

3 Temporal discretization for barotropic solver

This section provides a detailed numerical analysis of the
new external mode solver when using SE or SESM time
stepping vs. the current semi-implicit solver (Danilov et al.,
2017) of FESOM2, which uses a first-order implicit time
stepping in global simulations. Although parts of these im-
plementations are already known, we repeat them here for
clarity and comparison. A simple prototype system relevant
for this analysis is

∂tũ=−cp∂x η̃

∂tη̃ =−cp∂x ũ, (16)

where cp = (gH0)
1/2 is the phase velocity, ũ the dimension-

less vertically averaged velocity (u/cp), and η̃ the dimen-
sionless surface elevation (η/H ). It will be assumed that
η̃, ũ∼ eikx , where k is the wave number.

3.1 Characteristic matrix forms

3.1.1 Semi-implicit (SI) method of Danilov et al. (2017)

We begin with the semi-implicit method of Danilov et al.
(2017) used in the current model, FESOM2, which was
adapted from FESOM 1.4 (Wang et al., 2014) and can be
written as

η̃n+1
= η̃n− ic

[
αũn+1

+ (1−α)ũn
]

ũn+1
= ũn− ic

[
θη̃n+1

+ (1− θ)η̃n
]
. (17)

Here, 1/2≤ θ,α ≤ 1 are the control parameters, and c =

cpkτ is the Courant number. The characteristic matrix form
for this scheme is{
η̃n+1

ũn+1

}
=

1
αθc2+ 1

[
αθc2

−αc2
+ 1 −ic

−ic αθc2
− θc2

+ 1

]{
η̃n

ũn

}
.

(18)
3Note that alternative formulations of re-trimming are also pos-

sible, for example, setting
∑
kU

n+1/2
k

= (〈U〉n+〈U〉n+1)/2. This
is also a valid estimate and was tried, but similar to the case men-
tioned in the paper, this too was seen to be redundant in practice.

4Also note that despite being found to be redundant in practice,
the re-trimming

∑
kU

n+1/2
k

= 〈〈U〉〉n+1/2 was still left in the code.

3.1.2 Split-explicit (SESM) method of Shchepetkin and
McWilliams (2005)

The explicit method of Shchepetkin and McWilliams (2005)
based on an advanced forward–backward method combining
the AB3 and AM4 steps can be expressed as

η̃n+1
= η̃n− ic

[
(3/2+β)ũn− (1/2+ 2β)ũn−1

+βũn−2
]

ũn+1
= ũn− ic

[
δη̃n+1

+ (1− δ− γ − ζ )η̃n+ γ η̃n−1
+ ζ η̃n−2

]
.

(19)

Here, too, β,δ,γ,ζ are the control parameters. Its character-
istic matrix form is then


η̃n+1

η̃n

η̃n−1

ũn+1

ũn

ũn−1



=


1 0 0 −ic(3/2+β) ic(1/2+ 2β) −icβ
1 0 0 0 0 0
0 1 0 0 0 0

−ic(1− γ − ζ ) −icγ −icζ 1− c2δ(3/2+β) c2δ(1/2+ 2β) −c2δβ
0 0 0 1 0 0
0 0 0 0 1 0



×



η̃n

η̃n−1

η̃n−2

ũn

ũn−1

ũn−2


.

(20)

3.1.3 Split-explicit (SE) method of Demange et al.
(2019)

Finally, the SE method by Demange et al. (2019) can be ex-
pressed as

η̃n+1
= η̃n− ic

[
(1+ θ)ũn+1

− θũn
]

ũn+1
= ũn− icη̃n, (21)

with θ being the control parameter. Its characteristic matrix
form is

η̃n+1

ũn+1 =

[
1− c2(1+ θ) −ic
−ic 1

]
η̃n

ũn
. (22)

3.2 Dissipation and phase analysis

Depending on the control parameters, the schemes above
may lead to different dissipation and phase errors. Let the
characteristic matrices of Eqs. (18), (20), and (22) be denoted
by Mc. For I as an identity matrix of same rank as Mc and λ
an eigenvalue of Mc, the characteristic polynomials for each
scheme, given by det(Mc− λI), are
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P(λ)i=SE =−c
2θi + 1+ (c2θi + c

2
− 2)λ+ λ2

P(λ)i=SI =
αic

2θi −αic
2
− c2θi + c

2
+ 1

αic
2θi + 1

+

(
−2αic2θi +αic

2
+ c2θi − 2

αic
2θi + 1

)
λ+ λ2

P(λ)i=SESM = βiζic
2
+ c2

(
βi (γi − 2ζi )−

ζi

2

)
λ

+−c2
(
(δi + 3γi − 1)βi +

γi

2
−

3ζi
2

)
λ2

+
c2

2
(βi (6δi + 6γi + 4ζi − 4)+ δi + 4γi + ζi − 1)λ3

+(
1+

c2

2
(βi (−6δi − 2γi − 2ζi + 2)− 4δi − 3γi − 3ζi + 3)

)
λ4

+

(
−2+

c2δi
2
(2βi + 3)

)
λ5
+ λ6. (23)

Here, the index i serves to distinguish between the SE, SI,
and SESM schemes and their control parameters. The equa-
tions were obtained using the Maple symbolic solver. If λ
is an eigenvalue, then P(λ)i = 0. Given that the physical
eigenvalue should closely resemble the continuous solution
λ= eic5, we can expand it for small c as

λ= 1+mc+ nc2
+ qc3

+O(c4). (24)

If the schemes are to be at least second-order dissipative with
respect to c (see Demange et al., 2019), λ must also obey the
relationship

|λ| = 1−χc2
+O(c4), (25)

where χ is a parameter characterizing dissipation. Similarly,
the phase tan−1(=(λp)/R(λp)) must also closely resemble
the ideal phase c. The two conditions (24) and (25) then tie all
control parameters together. From the requirement to remain
formally second-order dissipative, one gets the conditions

SE(θ), 2χ = θ

SI(θ,α), 2χ = θ +α− 1

SESM(δ,γ,ζ ), 2χ = δ− γ − 2ζ −
1
2
, (26)

with the requirement thatm= i. Note that here i =
√
−1 and

that each equation in Eq. (26) admits its own set of parame-
ters, i.e. θSI 6= θSE. We also reject the possibility of m=−i
as it immediately gives the wrong phase.

5Here, we are exploring only the physical solution that corre-
sponds to a wave propagating in a negative direction.

SE(θ), n=−
1
2
(1+ θ),q =−

i

8
(1+ θ)2

SI(θ,α), n=−
1
2
(α+ θ),q =−

i

8
(α2
+ θ2
+ 6αθ)

SESM(δ,γ,ζ,β), n=−
1
2

(
1
2
+ δ− γ − 2ζ

)
,q

=−
i

8

(
1
4
[ζ(16γ − 16δ+ 24)+ γ (−8δ+ 4)− 7]

+4ζ 2
+ γ 2

+ δ2
+ 3δ+ 4β

)
(27)

Note that here too as in Eq. (26) the parameters will be differ-
ent for each scheme, i.e. θSI 6= θSE. At this point, only the SE
scheme is fully defined. The other schemes still have free pa-
rameters in need of optimization – α for SI and β,γ,ζ for the
SESM scheme. As in Shchepetkin and McWilliams (2005),
β can be set to 0.281105 for the largest stability limit. Given
that dissipation is now the same (up to the second order), one
can seek to optimize for phase errors. If third-order phase ac-
curacy is desirable, then for the SI scheme, it is only possible
if α = χ + 1/2± (1/6)

√
6+ 72χ2. For the SESM scheme,

this gives γ =−χ2
− 3ζ + 1/3−β. This still leaves ζ open

for optimization. It can be obtained through further optimiz-
ing for either phase accuracy or stability limit. If optimizing
for stability limit, the limit can be pushed much higher, as
in Demange et al. (2019) if one relaxes the third-order phase
accuracy constraint. The results of both optimizations are as
follows,

With O(c3) phase accuracy, ζ ≈−0.123c+ 0.223

− 0.169β − 0.169χ2, γ = 1/3−β − 3ζ −χ2.

Without O(c3) phase accuracy, ζ ≈ 0.010− 0.135χ ,
γ = 0.083− 0.514χ. (28)

Here, β,δ retain their earlier description. To demonstrate the
benefit in terms of phase accuracy for these split-explicit
schemes, we analyse their net amplitude and phase errors
per baroclinic time step, assuming that it consists of M = 30
barotropic steps in Fig. 1, together with the errors in the SI
scheme, vs. the baroclinic Courant–Friedrichs–Lewy (CFL)
number c = cpτk, where τ is the baroclinic time step. In
practical cases, where the largest k is defined by the mesh
resolution 1x (i.e. k→ π/1x), this baroclinic CFL num-
ber can become rather large. Because of the sub-cycling, the
barotropic CFL is M times smaller and stays within the sta-
bility bounds of the explicit schemes. Figure 1 shows how
all tested schemes in reality are able to maintain low dis-
sipation even for high baroclinic CFLs. The choice is then
made based on phase accuracy, which is very different be-
tween the implicit and explicit schemes. It is seen that both
the SE and SESM schemes have orders-of-magnitude-lower
phase errors compared to the SI scheme. For high c, the
SI scheme has to be used with parameters α and θ to en-
sure strong damping of wavenumbers with large dispersive
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errors. Also, between the SESM and SE schemes, SESM
seems to be the most accurate, even for same dissipation.
To conclude the tests on phase accuracy, we report that ir-
respective of dissipation level, the split-explicit schemes will
always by design provide orders-of-magnitude-better phase
accuracy compared to the semi-implicit implementation, es-
pecially in the range of high CFL numbers, i.e. smaller wave-
lengths.

4 Numerical experiments

This section compares measurements from the new external
mode solver to the existing one in FESOM2. The tests are
done for both an idealized case and a realistic global setup.
The idealized case is expected to highlight threshold perfor-
mance of the new solver compared to the global case, where
its impact will also be governed by mesh non-uniformity, the
presence of external forcing, complicated boundaries, and
bottom topography. The global case will, however, crucially
assess the practicality of this new solver.

4.1 Idealized channel

In Sect. 3 (see Fig. 1), the primary characteristics of the new
schemes were explored. In this idealized case, the solvers
are tested for correct representation of the mean dynamics.
We use the zonally re-entrant channel described in Soufflet
et al. (2016). It is 2000 km long (north–south), 500 km wide
(east–west), and 4 km deep. We test 10 km meshes of dif-
ferent types (triangular, quadrilateral) and unequally spaced
vertical levels (40, 60). The baroclinic time step is τ = 720 s,
and surface gravity wave speed cp = (gH0)

1/2
= 200 m s−1

so that a mesh cell is crossed by waves in less than 50 s.
We take M = 30 for the split-explicit solver, which means
τ/M = 24 s. The initial density stratification due to temper-
ature corresponds to a zonal jet. The zonally mean stratifi-
cation and velocity are relaxed to their initial distributions.
Some initial temperature perturbation leads to an onset of
baroclinic instability, which is maintained through the re-
laxation of the zonal mean profiles. Simulations are run for
20 years, and the last 13 years are used to compute means.
Figure 2 shows that mean depth profiles for this case are not
affected by implementation of the new solver regardless of
mesh configuration, i.e. a different mesh structure and num-
ber of vertical layers. This can be attributed to the predomi-
nantly baroclinic character of the flow, so the lower dissipa-
tion in the new solver is not necessarily seen. This is further
supported by the observation that when the bottom drag is
reduced, i.e. when the flow is made more barotropic, we see
the separation in mean eddy kinetic energy between the two
solvers grow, as shown in Fig. A2.

4.2 Surface gravity wave

In this test, we further show how the SE solver for the
barotropic mode being proposed is less dissipative and how
the differences between it and the current SI solver of FE-
SOM2 become more obvious when the barotropicity of the
flow is dominant. For that, we use a simple surface grav-
ity wave (SGW) setup where we simulate a channel (of the
same geometry as in Sect. 4.1) with an initial elevation dis-
tribution that is meridionally Gaussian, i.e. ln(η/A)=−(y−
ymid)

2/σ 2, where A= 3 m is the amplitude and σ = 200 km
is the half-bell width. The temperature is set at T = 20 °C,
the velocities are initialized to 0, and the simulation is run for
3 d with a baroclinic time step of τ = 5 min. As seen in Fig. 3,
which shows the final elevation for both cases after 3 d as
well as time series of their available potential energy (APE),
the APE for the SI solver asymptotes to 0 within the first 10 h,
with the SI solver heavily damping all the SGWs, whereas
the SE solver still maintains strong SGWs along with most
of its APE. In contrast to the results for the baroclinic test
case of Sect. 4.1, here we see a clear difference between the
two solvers because of the flow being purely barotropic. As
such, we see the gains in terms of the better energetic repre-
sentation that the new SE solver promises.

4.3 Realistic global ocean

For this case, we now test a more complicated case of a
global ocean–sea ice simulation similar to the one used by
Scholz et al. (2022). We use the standard coarse mesh of FE-
SOM2 with a minimum resolution of 25 km north of 25° N
and a coarse resolution of around 1.5° in the interior of the
ocean, with further moderate refinements in the equatorial
belt and around Antarctica. The mesh configuration consists
of 47 vertical levels with a minimum layer thickness of 10 m
near the surface, up to 250 m near the abyssal depth. The
baroclinic time step is τ = 2700 s, and we take M = 50 for
the split-explicit solver, which means that τ/M = 54 s. The
simulations were forced with the JRA-55do v1.4.0 reanaly-
sis data covering the period from 1958 to 2019. To show the
differences in the simulations carried out with the SI and the
SE barotropic solvers, we only show mean elevation, surface
temperature, and kinetic energy over the last 20 years (1999–
2019) of the simulation period. Due to the high similarity of
SE and SESM results (as seen earlier in Fig. 2 for the ideal-
ized case), only SE results are shown in Fig. 4. The differ-
ences in sea surface elevation are found to be rather small.
The pattern of difference in the sea surface temperature is
most likely associated with the transient variability that is
different in the two setups. The eddy kinetic energy increases
everywhere outside the equatorial belt. This increase could
be associated with the reduction in overall dissipation due to
use of the SE barotropic solver and the observation that the
barotropic kinetic energy contributes most to the overall ki-
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Figure 1. Comparison of amplitude and phase error for different schemes using the same dissipation χ = 0.07 and maintaining at least
second-order accuracy, i.e. ζ ≈ 0.010− 0.135χ,γ = 0.083− 0.514χ , for the SESM scheme as per Eq. (28). Additionally, the SI scheme is
also plotted using its recommended configuration θ,α = 1, which successfully damps the high phase error solutions corresponding to large
CFLs.

Figure 2. Comparison of area-averaged mean depth profiles for eddy kinetic energy (m2 s−2), root-mean-square vertical velocity (m s−1),
and buoyancy flux (m2 s−3), with the number of barotropic sub-cycles at M = 30. Here, 1 and [] mean triangular and quadrilateral meshes,
respectively. The meshes used have a fixed horizontal resolution of 10 km but varying vertical resolutions (40 or 60 layers).

netic energy budget at middle and high latitudes, as shown in
Aiki et al. (2011).

In summary, no significant difference in terms of time-
averaged measurements from the new SE external mode
solver was observed. For both the idealized and the global
test cases, the new SE external mode solver maintained mean
dynamics close to those reported by the current SI solver.

5 Runtime performance and parallel scalability

This section compares the parallel scalability of the new ex-
ternal mode solver to the existing one of FESOM2. As in

Sect. 4, we again utilize the two test cases – idealized and
global – described earlier. Additionally, the two cases are
also executed on different computer clusters providing for
even better estimation of their general performance. Again,
because of high similarities between SE and SESM paral-
lel scalability in comparison to SI, the plots of SESM are
omitted. In reality, SESM was found to be slightly less scal-
able than SE. The simulations are run for many model steps,
and the mean total time per task the model spends for the
barotropic solver is measured. For the idealized case, the
simulations were performed using the Ollie HPC at the Al-
fred Wegener Institute equipped with Intel Xeon E5-2697
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Figure 3. Comparison of elevation (m) distribution snapshots for both solvers (after 3 d) and their total available potential energy density
(m5 s−2) time series. The number of barotropic sub-cycles are M = 30 and θ = 0.14 for the SE solver, while for the SI solver, α = θ = 1 as
per the recommended configuration. Here, triangular mesh with sides of 10 km and a baroclinic time step of τ = 5 min is used.

v4 (Broadwell) CPUs (308 nodes with 36 cores). To en-
sure a sufficient workload, we used a fine 2 km triangular
mesh with 60 vertical layers on the same channel setup as
in Soufflet et al. (2016). The mesh contains approximately
2.5× 105 vertices, so the setup is expected to scale almost
linearly to about 103 cores, according to our previous expe-
rience (Koldunov et al., 2019). The baroclinic time step has
been reduced to τ = 144 s, and M was left without changes.
For this case, the simulations were run for 600 steps, i.e. 1
simulated day. As seen from Fig. 5 (left panel), the new exter-
nal mode solver (SE) scales significantly better and is faster
than the current SI solver of FESOM across all workloads.
In reality, the relative speed of the SE versus SI solver will
depend on M and on the efficiency of the preconditioner in
SI and may change. Since the barotropic solver takes only a
part of the total time step (10 %–20 %), the improved scala-
bility of the SE solver contributes noticeably to the reduction
in total computing time only after approximately 400 sur-
face vertices per core, as shown in the left panel of Fig. 5.
Its impact becomes significant only when parallelized be-
yond this limit. For the global case, the measurements were
performed using the Albedo HPC at the Alfred Wegener In-
stitute with 2xAMD Epyc-7702 CPUs (240 nodes with 128
cores). It uses the same setup and mesh from the global case
in Sect. 4. The mesh contains approximately 1.27× 105 ver-
tices. The baroclinic time step and M have been left un-
changed (τ = 2700 s and M = 50, respectively). Here, simu-
lations were run for 11 680 steps, i.e. 1 simulated model year.
Similar to the findings from the idealized channel case, Fig. 5
(right panel) shows the new SE solver scaling similarly faster
and further for the global case also. We again observe a per-
ceivable difference across all workloads. Similar to the ide-

alized case, these performance improvements only become
significant for highly parallelized workflows, i.e. for fewer
than approximately 400 vertices per core. In summary, the
performance of the SE solver shows visible improvement in
parallelization and computing time over the SI solver across
all tested workloads. The behaviour remained the same over
different test cases (idealized and global) and different com-
puter resources (Ollie HPC, Albedo HPC). For less-parallel
workloads, the benefits are marginal, but they become sig-
nificant for highly parallelized workflows, i.e. in cases with
fewer than approximately 400 vertices/core.

A preliminary implementation of the new split-
explicit external mode solver within the sea ice model
FESOM2 as proposed in this paper, including the
test cases, can be found in the public repository at
https://doi.org/10.5281/zenodo.10040944 (Banerjee et al.,
2023).

6 Conclusions

The new split-explicit external mode solver proposed in this
paper is more phase accurate, faster, and more scalable than
the SI solver used in FESOM (Danilov et al., 2017). The
dissipative asynchronous time-stepping scheme (SE) of De-
mange et al. (2019) is able to deliver phase accuracy orders of
magnitude higher than the first-order SI scheme used before.
It also provides comparable phase accuracy and dissipation
to the dissipatively modified AB3–AM4 scheme (SESM) of
Shchepetkin and McWilliams (2005). No filtering of fast dy-
namics is required due to the dissipative character of the SE
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Figure 4. Comparison of biases in sea surface heights (m), temperatures (°C), and eddy kinetic energies (m2 s−2) using M = 50 barotropic
sub-cycles. The SE solver uses dissipation parameter θ = 0.14, and depth-dependent fields are at 100 m.

Figure 5. Scaling results for the idealized test case with a 2 km uniform mesh on the Ollie HPC cluster and the global test case with a 60–
25 km unstructured mesh on the Albedo HPC cluster. The black line indicates linear scaling and the coloured lines give the mean computing
time over the parallel partitions for the solver part of the code. Here, the wall-clock time measured corresponds to the model runtime per
baroclinic step.
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solver. It is easier to implement compared to SESM, and
leads to very similar results as SESM in practice.

The new SE solver is one part of the adjusted time step-
ping of FESOM that facilitates the use of the arbitrary
Lagrangian–Eulerian vertical coordinate. As a demonstra-
tion, we extended z∗ in FESOM2 to the z̃ vertical coordinate
in the development version of FESOM2. The implementa-
tion of z̃ is outlined in Appendix C but still needs to be tested
in realistic simulations. Across different test cases using dif-
ferent mesh geometries and computing resources, the new
solver is shown to represent mean dynamics similarly to the
existing solver with no significant difference. In the case of
runtime performance and parallel scalability, it is shown to
improve across all workloads. The improvements are shown
to be especially significant for highly parallelized workloads.
Kang et al. (2021) presents a semi-implicit solver for MPAS,
showing that in contrast to the present work, it is more com-
putationally efficient than their split-explicit solver. While
a detailed answer to the question why the opposite conclu-
sion was reached needs a separate study, here we can only
mention that by following Demange et al. (2019), we per-
form fewer external time steps per baroclinic time step than
in MPAS (Ringler et al., 2013).

We note that on unstructured meshes, a semi-implicit
method can be more forgiving than a split-explicit one toward
the size of mesh elements. A small element in deep water will
hardly affect the solution of the semi-implicit solver but may
require an increased number of barotropic substeps in a split-
explicit method. This is why the semi-implicit option will be
maintained in FESOM alongside the novel split-explicit op-
tion. It will however, be modified to allow more general ALE
options as described in Appendix B. To conclude, this work
suggests that the new split-explicit external mode solver is a
good alternative to the existing solver of FESOM2.

Appendix A: Supplementary figures

Figure A1. Schematic diagram of the control flow for the split-explicit asynchronous time stepping proposed in this paper for FESOM2.
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Figure A2. Comparison of area-averaged depth profiles for eddy kinetics (m2 s−2) over a period of 10 years simulated with a baroclinic time
step of τ = 10 min on a 10 km triangular mesh with different linear bottom drags.

Appendix B: Adaptation of the semi-implicit scheme in
FESOM2

The main difference from the split-explicit method is that the
elevation η has to be defined at the same time levels as the
horizontal velocity. The elevation is therefore detached from
the thicknesses, which creates some conceptual difficulty. We
consider quantities at n−1/2 and n to be known (to start from
velocity).

– The predictor step is as follows

U∗ = Un−1/2
+ τ(RA

U +RC
U + R̃PGF

U )n+ τ(RhV
U )

v

− τghn∇hη
n−1/2τ.

Here, tilde implies that the contribution from the el-
evation to the pressure gradient force (PGF) is omit-
ted. It is taken into account explicitly (the last term).
However, since ηn+1/2 is unknown, we take the value
from the current time level n− 1/2. Our intention is
to get the Semi-Implicit form θηn+1/2

+ (1− θ)ηn−1/2,
1/2≤ θ ≤ 1 in the end. The momentum advection and
Coriolis terms are AB2 or AB3 interpolated to n. Im-
plicit vertical viscosity is taken into account by solving

U∗∗ = U∗+ τ(Av∂zu
∗∗)|tb.

It is solved similarly to the split-explicit asynchronous
case.

– The corrector step is as follows

Un+1/2
= U∗∗− τθghn∇h(η

n+1/2
− ηn−1/2).

This step is only written but is evaluated after ηn+1/2 is
available.

– We write the elevation step as

ηn+1/2
−ηn−1/2

=−τ∇h ·
∑
k

(αU
n+1/2
k +(1−α)Un−1/2

k ).

Here, 1/2≤ α ≤ 1, which is needed for stability. This
equation has to be solved together with the corrector
equation. We express Un+1/2 from the corrector equa-
tion and insert the corrector step into the elevation equa-
tion to get

δη = gθατ2
∇h ·H

n
∇hδη− τ∇h ·

∑
k

(αU∗∗k + (1−α)U
n−1
k

).

This equation is solved for δη = ηn+1/2
−ηn−1/2, giving

ηn+1/2
= ηn−1/2

+ δη.

– The corrector step is used to compute Un+1/2.

– We write the thickness equation for the ALE step as

hn+1
k −hnk =−τ [∇h ·U

n+1/2
k +w|tb].

These equations are summed vertically to give

H n+1
−H n

=−τ∇h ·
∑
k

U k.

The quantity H n+1
−H 0 is the elevation at time step

n+ 1. It is used to define hn+1 for the z∗ vertical co-
ordinate. The extension to z̃ follows similarly to the SE
case. After hn+1 is defined, w is found from the thick-
ness equation.

– The tracers are as follows

(Th)n+1
k − (Th)nk =−τ

[
∇ · (U

n+1/2
k T

n+1/2
k )+wT

n+1/2
k |

t
b

]
+ τ(∇hnK · ∇3T

n)k + τ(Kv∂zT
n+1)|tb.
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– By virtue of the thickness equation above,

ηn+1/2
− ηn−1/2

=

∑
k

[α(hn+1
k −hnk )+ (1−α)(h

n
k −h

n−1
k )].

We ignore the freshwater flux for simplicity, but it can
be added. The solution is

ηn+1/2
=

∑
k

(αhn+1
k + (1−α)hnk)−H

0.

If satisfied initially on cold start by formally taking
η−1/2

= 0 and h−1
k = h

0
k , this relationship will persist

with time. However, to avoid accumulation of round-
off errors, we reset ηn+1/2 to the right-hand side of the
last expression after the computations of hn+1

k . This new
ηn+1/2 will be used only in the next time step. The point
here is that the original ηn+1/2 is computed by an itera-
tive solver, whereby some significant digits are lost. The
reset compensates for that. α = 1/2 provides centring in
time.

Both split-explicit and semi-implicit asynchronous
schemes are relatively straightforward to implement. The
semi-implicit method with θ = 1/2 and α = 1/2 is non-
dissipative, and dissipation is added by shifting θ toward
1. As explained above, even though the dissipation can be
controlled well by offsetting θ = 1/2 only slightly, there are
dispersive errors. Since the SI method is used with large
Courant numbers for surface gravity waves, the contributions
from such waves will come with large phase errors and
should be damped. To keep the centring of η, we may take
α = 1/2 and θ > 1/2. FESOM in most applications uses
θ = 1 and α = 1, which implies more dissipation.

Appendix C: Implementation of z̃ in FESOM2

In the case of the z̃ vertical coordinate (Leclair and Madec,
2011), the horizontal divergence in a layer is split into fast
and slow contributions. The fast one modifies layer thickness,
and the slow one leads to diasurface w. Examples of practi-
cal implementation are provided by Petersen et al. (2015) and
Megann et al. (2022). Our implementation presents a simpli-
fied version of both. The desired layer thickness is computed
as

hn+1
k = h

target
k = h∗k +h

hf
k ,

where h∗k corresponds to the z∗ coordinate, and hhf
k is the

high-frequency component that augments z∗ to z̃. They will
be defined below. The bottom depth in FESOM is a cell-wise
constant, whereas elevation and layer thicknesses are defined
at vertices. For this reason, for a given vertex v, we modify
thicknesses of K ′ =K ′(v) layers that do not touch topogra-
phy (see Danilov et al., 2017). The total number of layers
under vertex v will be denoted K =K(v). We take

(h∗k)
n+1
= h0

k(1+ η
n+1/H ′), H ′ =

K ′∑
1
h0
k.

An alternative definition would be to stretch the layers pro-
portionally to their actual thickness, but Megann et al. (2022)
warn that some drift in h∗ may be present in such a case.
Excluding the fixed layers, we split the divergence Dk =
∇ · (U k) into a quasi-barotropic part that corresponds to h∗k
and the remaining quasi-baroclinic part (“quasi” because we
are limited to K ′ layers),

Dk =D
∗

k +D
′

k, D∗k = h
0
kD/H

′, (C1)

where D =
∑K
k=1Dk is the vertically integrated divergence

(note that all layers contribute to D). We will be interested
in D′k , which is computed as the difference between Dk

and D∗k . We use the available thicknesses hnk for hn+1/2
k in

Eq. (13) to determine transports U
n+1/2
k featuring in Dk . Af-

ter hn+1
k is fully specified, we re-trim U

n+1/2
k using hn+1/2

defined as a half sum of the thicknesses at full steps. Our
treatment of the barotropic part is admittedly less accurate
than in Petersen et al. (2015) and Megann et al. (2022), and
some barotropic waves will contaminate hhf

k . However, be-
cause of the fixed bottom layers, we have already introduced
uncertainty from the very beginning. Since ∂th

∗

k =−D
∗

k ,∑K
k=1D

′

k = 0. The high-frequency thickness hhf
k will be re-

lated to D′k and should sum to zero vertically. D′ is split into
low- and high-frequency parts,

D′k =D
lf
k +D

hf
k .

The low-frequency part is nudged to D′k as

∂tD
lf
k = (2π/τlf)(D

′

k −D
lf
k ),

where τlf is the timescale (about 5 d in Petersen et al., 2015,
but larger values can be of interest according to Megann
et al., 2022). The fast-frequency part is obtained by sub-
tracting the low-frequency part fromD′k . The high-frequency
contribution to thickness is

∂th
hf
k =−D

hf
k − (2π/τhf)h

hf
+∇h(Khf∇hh

hf
k ). (C2)

The second term on the right-hand side damps hhf
k to zero

over the timescale τhf (about 30 d). The last term will smooth
the thickness, and the diffusivity Khf is determined experi-
mentally. If Khf is vertically constant,

∑K
k=1h

hf
k = 0 if it was

initially so. A potential difficulty with Eq. (C2) is that hhf
k is

not bounded. A simple procedure is implemented at present.
Equation (C2) is stepped implicitly with respect to the re-
laxation term, and diffusion is applied in a separate step. If
(hhf
k )
n+1 is outside the bounds for any k in the column at

vertex v, τhf is adjusted for the entire column at this time
step to ensure that (hhf

k )
n+1 will be within the bounds, and

computations of (hhf
k )
n+1 are repeated. While this procedure

is sufficient for the simple channel test case, it remains to
be seen whether it will be sufficient in more realistic cases
or whether the solutions reported by Megann et al. (2022)

https://doi.org/10.5194/gmd-17-7051-2024 Geosci. Model Dev., 17, 7051–7065, 2024



7064 T. Banerjee et al.: Split-explicit external mode solver in the finite volume sea ice–ocean model FESOM2

will be needed. The field hhf is always damped stronger at
locations close to topography to eliminate possible incon-
sistencies with hhf

= 0 in cells touching bottom topography.
After (hhf

k )
n+1 is estimated, hn+1 is available; the transports

U
n+1/2
k can be re-trimmed, and diasurface velocities can be

estimated from the thickness equations.

Code and data availability. A preliminary implementation
of the new split-explicit external mode solver within the
sea ice model FESOM2 as proposed in this paper, includ-
ing the test cases, can be found in the public repository at
https://doi.org/10.5281/zenodo.10040944 (Banerjee et al., 2023).
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