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Abstract. An operational synoptic-scale sea ice forecasting
system for the Southern Ocean, namely the Southern Ocean
Ice Prediction System (SOIPS), has been developed to sup-
port ship navigation in the Antarctic sea ice zone. Practical
application of the SOIPS forecasts had been implemented
for the 38th Chinese National Antarctic Research Expedition
for the first time. The SOIPS is configured on an Antarc-
tic regional sea ice–ocean–ice shelf coupled model and an
ensemble-based localized error subspace transform Kalman
filter data assimilation model. Daily near-real-time satellite
sea ice concentration observations are assimilated into the
SOIPS to update sea ice concentration and thickness in the
12 ensemble members of the model state. By evaluating the
SOIPS performance in forecasting sea ice metrics in a com-
plete melt–freeze cycle from 1 October 2021 to 30 Septem-
ber 2022, this study shows that the SOIPS can provide re-
liable Antarctic sea ice forecasts. In comparison with non-
assimilated EUMETSAT Ocean and Sea Ice Satellite Ap-
plication Facility (OSI SAF) data, annual mean root mean
square errors in the sea ice concentration forecasts at a lead
time of up to 168 h are lower than 0.19, and the integrated ice
edge errors in the sea ice forecasts in most freezing months
at lead times of 24 and 72 h maintain around 0.5× 106 km2

and below 1.0× 106 km2, respectively. With respect to the
scarce Ice, Cloud, and land Elevation Satellite-2 (ICESat-2)
observations, the mean absolute errors in the sea ice thick-
ness forecasts at a lead time of 24 h are lower than 0.3 m,
which is in the range of the ICESat-2 uncertainties. Specif-
ically, the SOIPS has the ability to forecast sea ice drift, in
both magnitude and direction. The derived sea ice conver-

gence rate forecasts have great potential for supporting ship
navigation on a fine local scale. The comparison between the
persistence forecasts and the SOIPS forecasts with and with-
out data assimilation further shows that both model physics
and the data assimilation scheme play important roles in pro-
ducing reliable sea ice forecasts in the Southern Ocean.

1 Introduction

Surrounding Antarctica, sea ice motion in the Southern
Ocean is fast. This situation is partly caused by the natural
feature of Antarctic sea ice, where the majority of the ice
is thin first-year ice. Wind force leads to faster ice speed if
ice thickness is thinner. Moreover, the severe Antarctic en-
vironmental conditions, such as frequent westerly cyclones,
a complicated surface ocean circulation system, and drastic
nighttime katabatic winds off the ice shelf and coast, also
promote the rapid ice motion. Beyond the Antarctic Penin-
sula, the topographic shape of the high-latitude Southern
Ocean without a land barrier in the zonal direction provides
an advantage for rapid sea ice movement (Worby et al., 1998;
Heil and Allison, 1999; Turner et al., 2002; Wang et al.,
2014; Womack et al., 2022). Energetic sea ice in the South-
ern Ocean has become one of the major challenges for safe
maritime navigation due to the lack of timely and accurate
sea ice forecasting information (Wagner et al., 2020); e.g.,
during the austral summer of 2013–2014, both the Russian
icebreaker MV Akademik Shokalskiy and the Chinese ice-
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breaker MV Xue Long were trapped in the Adélie Depres-
sion region by quickly convergent sea ice under the influence
of several cyclones (Witze, 2014; Turney, 2014; Zhai et al.,
2015). Earlier in November 2007, the cruise ship MS Ex-
plorer sunk between the South Shetland Islands and Graham
Land in the Bransfield Strait, after striking an iceberg near the
South Shetland Islands, an area which is usually stormy but
was calm at the time. Hence, reliable synoptic Antarctic sea
ice forecasts are of great importance to Antarctic maritime
commercial and scientific activities in the coming decades,
when human activities in the Southern Ocean are expected to
flourish.

However, partly owing to the relatively small number of
people who need Antarctic sea ice information, few attempts
have been made by international weather forecasting centers
to construct an operational synoptic-scale sea ice forecasting
system for the Southern Ocean in comparison to the multi-
ple kinds of Arctic sea ice forecasting systems. The Cana-
dian Meteorological Centre (CMC) operates the Global Ice
Ocean Prediction System (GIOPS; Smith et al., 2016), which
is built on the Nucleus for European Modelling of the Ocean
(NEMO) version 3.1 and the Los Alamos National Labora-
tory Community Ice CodE (CICE) version 4.0, and the sys-
tem is driven by atmospheric forcing from the Global De-
terministic Prediction System. Since 2011, GIOPS has been
providing 10 d forecasts of global ocean and sea ice, includ-
ing the Southern Ocean, at a resolution of 0.25°. The United
Kingdom Met Office (UKMO) operates the Forecast Ocean
Assimilation Model (FOAM; Blockley et al., 2014), which
is also based on NEMO and CICE. Driven by atmospheric
variables at the ocean surface from the Met Office Unified
Model (UM) global numerical weather prediction (NWP)
system, FOAM produces 7 d forecasts of global ocean trac-
ers, ocean currents, and polar sea ice with a horizontal reso-
lution of 0.25°. Under the framework of the Copernicus Ma-
rine Environment Monitoring Service (CMEMS), the Merca-
tor Ocean International (MOI) has developed a global ocean
real-time monitoring and 1/12° high-resolution forecasting
system (GLO-HR; Lellouche et al., 2018) based on NEMO
and the Louvain-la-Neuve Sea Ice Model version 2 (LIM2),
and the atmospheric forcing is taken from the Integrated
Forecasting System (IFS). GLO-HR delivers 10 d forecasts
for the global ocean and polar sea ice on a daily basis. The US
Navy’s Global Ocean Forecast System version 3.1 (GOFS
3.1) is based on the HYbrid Coordinate Ocean Model (HY-
COM) and CICE and provides a global sea ice prediction
capability including both the Arctic and the Antarctic (Posey
et al., 2015). SEAS5, the fifth-generation seasonal forecast
system of the European Centre for Medium-Range Weather
Forecasts (ECMWF), which constitutes the NEMO ocean
model, LIM2 sea ice model, and IFS atmospheric model,
has a horizontal resolution of 0.25° for the global ocean and
sea ice and provides 10 d forecasts of Antarctic sea ice cover
and snow depth (Johnson et al., 2019). Nevertheless, all the
above-mentioned operational forecasting systems are built

on global coupled models, and their focus is not purely on
Antarctic sea ice forecasts. Although the resolution of global
models is constantly becoming finer, regional ice–ocean cou-
pled models at a similar resolution but with lower computa-
tional cost still offer some advantages when appropriate ini-
tial and boundary conditions are adopted (Mu et al., 2019;
Liang et al., 2020; Ren et al., 2021).

Data assimilation is an essential way to reduce short-term
forecast uncertainties by providing an optimally estimated
initial state, which has long been employed in geophysical
or biogeochemical applications (Verdy and Mazloff, 2017).
Various data assimilation algorithms have been widely used
to assimilate multi-source observations into sea ice forecast-
ing and analysis systems (Lindsay and Zhang, 2006; Masson-
net et al., 2013; Luo et al., 2021). Both GIOPS and GLO-HR
use the System Assimilation Mercator version 2 (SAM2) as
their ocean assimilation system, which was developed from
the singular evolutive extended Kalman (SEEK) algorithm
(Tranchant et al., 2006). FOAM and SEAS5 adopt a 3D-
Var data assimilation system for use with NEMO, namely
NEMOVAR (Mignac et al., 2022; Mogensen et al., 2009,
2012). GOFS 3.1 employs the Navy Coupled Ocean Data
Assimilation (NCODA) system based on the 3D-Var method
(Cummings and Smedstad, 2014). The Southern Ocean State
Estimate (Mazloff et al., 2010) constrains the model state
using in situ and satellite measurements through 4D-Var
data assimilation. These systems mainly assimilate near-real-
time satellite observations of sea ice concentration, sea level
anomaly, and sea surface temperature together with in situ
observations of ocean temperature and salinity profiles. Pre-
vious studies have shown that the ensemble Kalman filter
(EnKF) algorithm using dynamic background error covari-
ance is suitable for multi-variable data assimilation in po-
lar regions because it does not need to develop complex ad-
joint models and is computationally efficient; it has thus been
widely used in Arctic sea ice forecasts (Sakov et al., 2012;
Yang et al., 2014, 2015, 2016; Mu et al., 2018; Liang et al.,
2019).

In order to address the pressing need for sea ice fore-
casts in the Southern Ocean, especially in support of the Chi-
nese National Antarctic Research Expedition (CHINARE),
the motivation of this work is to describe a newly devel-
oped regional synoptic-scale forecasting system for Antarctic
sea ice, i.e., the Southern Ocean Ice Prediction System ver-
sion 1.0 (SOIPS v1.0), which is based on a sea ice–ocean–
ice shelf coupled model and an EnKF data assimilation algo-
rithm. The SOIPS has been operational since 1 January 2021
and provided sea ice forecasts for the 38th CHINARE-
Antarctic during the austral summer of 2021–2022. By eval-
uating sea ice forecasts in a complete melt–freeze cycle be-
tween 1 October 2021 and 30 September 2022, we show in
this study that this new system has the ability to provide pre-
cise forecasts for Antarctic sea ice evolution at a synoptic
timescale, where the forecast accuracy of sea ice drift in par-
ticular is substantially guaranteed. The paper is organized as
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follows. In Sect. 2, the system configuration, data assimila-
tion strategy, and design of comparison experiments are de-
scribed in detail. Antarctic sea ice forecasts, including the
sea ice concentration, sea ice edge, sea ice thickness, sea ice
drift, and sea ice convergence rate, are evaluated in Sect. 3.
Conclusions and discussions are presented in Sect. 4.

2 System description

2.1 Model configuration

The regional sea ice–ocean–ice shelf coupled model of the
SOIPS is configured on the Massachusetts Institute of Tech-
nology general circulation model (MITgcm; Marshall et al.,
1997; Losch et al., 2010). The ocean model uses curvilinear
coordinates with the open boundaries far north, away from
the domain of the Antarctic Circumpolar Current (ACC) and
any likely northern extent of the sea ice. There are 496×496
grid points in horizontal with an average resolution of ∼
18 km (Fig. 1). Vertically, it is composed of 50 unevenly
spaced layers with intervals from 10 m near the surface to
450 m at the bottom. The ocean model utilizing the finite-
volume incompressible Navier–Stokes equations adopts the
bulk formula for heat and momentum calculations at the sur-
face (Large and Pond, 1981, 1982) and the K-profile pa-
rameterization (KPP) for vertical mixing in the ocean inte-
rior (Large et al., 1994). The viscous-plastic rheology (Hi-
bler, 1979; Zhang and Hibler, 1997) and the zero-layer ice/s-
now thermodynamics (Semtner, 1976) are used in the sea ice
model, which shares the same horizontal mesh with the ocean
model. The ice shelf, serving as a static surface boundary
condition, exerts dynamic and thermodynamic influences on
the underlying ocean and thus affects ocean circulation and
sea ice (Losch, 2008). Dynamically, the ice shelf draft on
the top of the water column has a similar role to the sur-
face orography. Underneath an ice shelf, the pressure at the
top of the water column is the sum of the atmospheric pres-
sure and the weight of the ice shelf column. Thermodynam-
ically, the freezing and melting at the basal surface of the
ice shelf can induce an effective heat flux and a virtual salt
flux at the ice–ocean interface, with an additional tendency
term of temperature and salinity to the ocean at the depth of
the ice shelf draft. An oceanic boundary layer underneath the
ice shelf–ocean interface is formed following three physical
constraints: the interface must be at the freezing point, and
both heat and salt must be conserved at the interface (Hol-
land and Jenkins, 1999). Specific landfast ice parameteriza-
tion, iceberg parameterization, and tide forcing have not been
included in the SOIPS. The time step of the coupled model
is 1200 s.

The initial fields of ocean temperature and salinity are de-
rived from the World Ocean Atlas 2009 (WOA09; Locarnini
et al., 2010; Antonov et al., 2010). The initial fields of sea ice
concentration and thickness are obtained from observations

Figure 1. The domain of the Southern Ocean Ice Prediction System
(SOIPS). The contours show the bathymetry in meters.

of the Advanced Microwave Scanning Radiometer for the
Earth Observing System (AMSR-E; Toudal Pedersen et al.,
2017) and the Ice, Cloud, and land Elevation Satellite (ICE-
Sat; Kurtz and Markus, 2012), respectively. The ice shelf
draft is obtained from a consistent data set of Antarctic ice
sheet topography, cavity geometry, and global bathymetry
(Timmermann et al., 2010). Climatological monthly mean
oceanic boundary conditions are provided by the Estimating
the Circulation and Climate of the Ocean phase II (ECCO2;
Menemenlis et al., 2008) project, including ocean potential
temperature, salinity, and velocity.

In our previous work, a model free run from 1979 to 2020
without data assimilation was successfully conducted. It was
forced by atmospheric variables at the ocean surface derived
from the Japanese 55-year Reanalysis (JRA55; Kobayashi et
al., 2015; Harada et al., 2016), including 2 m air temperature
and humidity, 10 m wind velocity components, downward
shortwave and longwave radiation at the sea surface, and to-
tal precipitation. Validation of the model free run results, in-
cluding the simulated sea ice extent, sea ice concentration,
sea ice thickness, and net eastward oceanic volume transport
across the Drake Passage, has demonstrated that this regional
sea ice–ocean–ice shelf coupled model is capable of captur-
ing the main features of Antarctic sea ice and ocean (Zhao et
al., 2023).

2.2 Data assimilation scheme

The data assimilation algorithm used in the SOIPS is the
ensemble-based localized error subspace transform Kalman
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filter (LESTKF; Nerger et al., 2012), which is packaged in
the Parallel Data Assimilation Framework (PDAF; Nerger
and Hiller, 2013). LESTKF is a localized variant of the er-
ror subspace transform Kalman filter (ESTKF), in which the
dynamic background error covariance is applied. An optimal
localization scheme that allows for an adaptive localization
radius based on observation number is achieved by setting
the effective local observation dimension equal to the en-
semble size (Kirchgessner et al., 2014). Weights of obser-
vations within the optimal localization radius are calculated
based on a fifth-order polynomial function according to the
distance between the observation location and analysis grid
point (Hunt et al., 2007; Gaspari and Cohn, 1999). Studies
have indicated that LESTKF is suitable for high-dimensional
models with small-scale local features and a large number
of observations (Vetra-Carvalho et al., 2018). Considering
the balance between computational efficiency and forecast-
ing skills, 12 ensemble members are selected for the SOIPS
ensemble forecasts.

The SOIPS started running operationally on 1 Jan-
uary 2021. The initial ensemble of the SOIPS was generated
by disturbing the latest state of the model free run includ-
ing sea ice concentration and thickness. The 12 perturbations
which were used to initialize the SOIPS ensemble were cre-
ated by applying a second-order sampling scheme (Pham,
2001) to the leading 11 EOF modes of the daily model state
evolution in the historical model free run between 1 Jan-
uary 2019 and 31 December 2020. During each assimilation
step, near-real-time 6.25 km resolution sea ice concentration
data retrieved from the Advanced Microwave Scanning Ra-
diometer 2 (AMSR2) brightness temperature data were as-
similated into the SOIPS and used to update sea ice con-
centration and thickness in the 12 ensemble initial fields on
a daily basis. Since the uncertainties in the AMSR2 obser-
vations are not the same for different sea ice concentration
ranges (Spreen et al., 2008), for simplicity a uniform value
of 0.15 was assigned as the representative observation error.
Specifically, a post-assimilation procedure, during which the
modeled sea surface salinity was adjusted according to the
formula described by Liang et al. (2019) to match with the
change in sea ice thickness, was carried out. Atmospheric
forcing for operational forecasts were taken from the Na-
tional Centers for Environmental Prediction (NCEP) Global
Forecast System (GFS) 168 h atmospheric forecasts. During
each forecasting step, the 12 ensemble members, after assim-
ilating observed sea ice concentration, were separately inte-
grated for 168 h to create 12 members of 7 d forecasts, and
their ensemble mean was saved. The ensemble fields of the
24 h forecasts were also recorded as initial fields for the oper-
ational forecasts the following day (Fig. 2). In this study, we
perform three experiments utilizing the SOIPS on a daily ba-
sis to disentangle the impact of data assimilation from that of
model physics on the sea ice forecasts. The forecast experi-
ment with data assimilation, denoted by DA_Forecast, assim-
ilates the AMSR2 sea ice concentration data and is driven by

the GFS data for 168 h. The forecast experiment without data
assimilation, denoted by NoDA_Forecast, is driven by the
GFS data for 168 h without any data assimilation. The per-
sistence forecast experiment, denoted by PE_Forecast, uses
the daily initial condition of the DA_Forecast run as forecasts
of the following 168 h. The operational SOIPS actually uses
the setting of the DA_Forecast run; thus sea ice forecasts of
the DA_Forecast run are derived from the operational record
of the SOIPS. The NoDA_Forecast and PE_Forecast runs
have been conducted for comparison from 1 October 2021
to 30 September 2022.

3 Evaluation of sea ice forecasts

The SOIPS provided forecasts of the sea ice concentration,
sea ice thickness, sea ice drift, and sea ice convergence rate
for the 38th CHINARE-Antarctic during the austral summer
of 2021–2022. Here, we evaluate the three experiments dur-
ing a complete melt–freeze cycle from 1 October 2021 to
30 September 2022. Additionally, in the Supplement, we also
evaluate the operational records of the SOIPS until Septem-
ber 2023 to show that the SOIPS successfully predicted the
historical Antarctic sea ice extent minima in 2023, and we
compare the SOIPS forecasts to the physical analysis field of
the Antarctic ocean produced by MOI.

3.1 Sea ice concentration

The sea ice concentration product of the EUMETSAT Ocean
and Sea Ice Satellite Application Facility (OSI SAF), deliv-
ered daily at 10 km resolution in a polar stereographic projec-
tion, is used as an independent observation to evaluate the sea
ice concentration forecasts. This product is computed from
atmosphere-corrected brightness temperatures of the Special
Sensor Microwave Imager/Sounder (SSMIS), using a combi-
nation of state-of-the-art algorithms which are different from
the ARTIST Sea Ice (ASI; Spreen et al., 2008) algorithm
used for AMSR2 sea ice concentration.

We calculate the root mean square errors (RMSEs) of the
SOIPS forecasts at different lead times and the OSI SAF sea
ice concentration observations to evaluate the performance
of the SOIPS in sea ice concentration forecasts (Fig. 3). As
the spatial resolution of the SOIPS is coarser than that of
the OSI SAF data, we interpolate the OSI SAF data onto
the model grid of the SOIPS. Basically, the RMSEs of the
DA_Forecast run at each lead time gradually increase during
October–March (hereafter, the latter month is used in expres-
sions where the latter month precedes the former month to
denote the month of the next year) followed by a decrease
starting from April. The RMSEs of the DA_Forecast run are
generally lower than 0.15 during June–September, while they
are close to 0.2 during January–February. The RMSEs of the
DA_Forecast run have two peaks, one in December and the
other in April. The maximum RMSE of the DA_Forecast run
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Figure 2. Schematic diagram of the SOIPS and the experiment design. The blue and purple squares denote the 12 ensemble members of
the model state pre- and post-data assimilation step. The yellow block denotes the data assimilation model utilizing the ensemble-based
LESTKF. The green block denotes the Antarctic regional sea ice–ocean–ice shelf coupled model. The blue block with the thick arrow
denotes the near-real-time AMSR2 sea ice concentration observation. The orange block with the thick arrow denotes the operational GFS
atmospheric forcing.

in April is lower than 0.33. Comparison of the DA_Forecast
run at different lead times shows that the RMSEs generally
increase along with the prolongment of forecast lead time.
Statistical analysis reveals that the annual mean RMSEs of
the DA_Forecast run at lead times of 24, 72, 120, and 168 h
are 0.15, 0.16, 0.17, and 0.19, respectively. Comparison of
the three experiments shows that the DA_Forecast run per-
forms the best and the NoDA_Forecast run performs the
worst in most months except during late March–early June.
Since the PE_Forecast run includes observed sea ice con-
centration information, the PE_Forecast run generally per-
forms better than the NoDA_Forecast run and worse than
the DA_Forecast run. During late March–early June, the
PE_Forecast run performs worse than the other two runs at a
lead time of 168 h, suggesting that sea ice changes rapidly in
response to the oceanic and atmospheric forcing during this
onset-to-rapid-freezing period. We also assess the difference
between the assimilated AMSR2 and the OSI SAF sea ice
concentration data. Due to different remote sensors and re-
trieval algorithms, there are significant systematic deviations
between the OSI SAF and AMSR2 products. The RMSEs of

these two products increase in the melting season, reaching
a maximum value of 0.24 in February; thereafter the RMSEs
decrease rapidly in April, maintaining below 0.15 in the rest
of the freezing season. The systematic bias between the as-
similated data and the validation data partly explains the sea
ice concentration forecasting errors.

We further analyze spatial distributions of sea ice concen-
tration forecasting errors by evaluating monthly mean fields
of the DA_Forecast run at a lead time of 24 h (Fig. 4). During
October–November, relatively large RMSEs of sea ice con-
centration forecasts are mainly located in the north marginal
ice zone surrounding Antarctica, where the sea ice, normally
with a relatively low concentration and thickness, moves ac-
tively in response to external forces. In December, the RM-
SEs of sea ice concentration forecasts in the marginal ice
zone greatly shrink, except those in the southern Atlantic
Ocean sector between 30° W and 30° E. During January–
February, the sea ice concentration forecasting errors are
small in the entire ice zone except in some nearshore areas
of the eastern Antarctic. The sea ice concentration forecast-
ing errors start to increase in the Ross–Amundsen seas along
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Figure 3. Time series of the RMSEs of the assimilated AMSR2 data and sea ice concentration forecasts at different lead times with respect
to the OSI SAF data. The solid blue, green, yellow, red, and black lines denote the sea ice concentration forecasts of the DA_Forecast run at
lead times of 24, 72, 120, and 168 h and the AMSR2 data, respectively. The long-dashed blue and red lines denote the sea ice concentration
forecasts of the NoDA_Forecast run at lead times of 24 and 168 h, respectively. The short-dashed blue and red lines denote the sea ice
concentration forecasts of the PE_Forecast run at lead times of 24 and 168 h, respectively.

with the northward expansion of the sea ice zone during
March–April. In the following freezing months, relatively
large RMSEs of sea ice concentration forecasts re-emerge in
the north marginal ice zone, but their amplitudes are lower
than those in the previous October–November. The monthly
patterns of the RMSEs between the AMSR2 and OSI SAF
data (Fig. S1 in the Supplement) resemble and lay the basis
for those between the DA_Forecast run and OSI SAF data.

3.2 Sea ice edge

Instead of evaluating just a sea ice extent number, Goessling
et al. (2016) introduced a more useful verification metric,
i.e., the integrated ice edge error (IIEE), which is the sum
of all areas where the local sea ice extent is overestimated
or underestimated. Here, the sea ice edge is defined as the
locations where the sea ice concentration is 15 %. Firstly,
we evaluate the derived sea ice edges from the assimilated
AMSR2 and the OSI SAF data (Fig. 5). The IIEEs are larger
than 0.5×106 km2 during October–early January and smaller
than 0.5× 106 km2 in other months. The maximum IIEE oc-
curs in December with a value of 1.45× 106 km2. The sea
ice edge biases between the assimilated AMSR2 and the OSI
SAF data contribute to the first peak in the sea ice concentra-
tion RMSEs of the DA_Forecast run in December, as shown
in Fig. 3.

The evolutions of the IIEEs of the DA_Forecast run at
different lead times have similar shapes to those of the as-
similated AMSR2 data. In December the maximum IIEEs
of the DA_Forecast run at different lead times range from
1.35× 106 to 2.25× 106 km2. In the early freezing season,
large IIEEs of the DA_Forecast run re-emerge at the end
of March, corresponding to the second peak in the sea ice
concentration RMSEs of the DA_Forecast run (Fig. 3). The

large IIEEs of the DA_Forecast run in late March and early
April can not be attributed to the sea ice edge biases between
the assimilated AMSR2 and the OSI SAF data but rather
to the model’s ability to accurately simulate the expansion
of sea ice cover in the early freezing season. During June–
September, the IIEEs of the DA_Forecast run at a lead time of
24 h maintain around 0.5×106 km2, and those of 72 h are be-
low 1×106 km2. Comparison of the three experiments on sea
ice edge forecasts shows that the DA_Forecast run performs
the best, and the NoDA_Forecast run performs the worst over
the whole study period.

Spatially at first glance, the sea ice edge forecasts of the
DA_Forecast run at a lead time of 24 h are generally co-
incident with those in the OSI SAF data (Fig. 6). The sea
ice edge forecasting biases of the DA_Forecast run at a
lead time of 168 h (Fig. S2 in the Supplement) increase no-
ticeably in November–December, March–April, and July–
August. The areas with large sea ice edge biases are located
in the southeastern Atlantic Ocean sector, southwestern In-
dian Ocean sector, and southwestern Pacific Ocean sector. It
is noteworthy that besides the contributor to the IIEEs from
the north marginal ice zone, a significant contributor to the
IIEEs is from the nearshore areas surrounding Antarctica in
all months. By carefully checking the coastlines or ice shelf
fronts of Antarctica in the model domain and in the OSI SAF
data, we realize that part of the mismatch in sea ice edges in
the nearshore areas is misleading, originating from the diver-
gence of coastlines or ice shelf fronts in the model domain
and in the OSI SAF data. The lack of specific landfast ice
parameterization may lead to unrealistic landfast ice zones
around Antarctica, which possibly also contribute to the mis-
match in sea ice edges. The real IIEEs between sea ice fore-
casts and the OSI SAF data should be lower than those in
Fig. 5.
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Figure 4. Monthly patterns of the sea ice concentration RMSEs of the DA_Forecast run at a lead time of 24 h with respect to the OSI SAF
data. Panels (a)–(l) denote October 2021–September 2022.

3.3 Sea ice thickness

At present, continuous observations of the Antarctic sea ice
thickness over a large area are still difficult to obtain. With
the launch of the Ice, Cloud, and land Elevation Satellite-2
(ICESat-2) on 15 September 2018, the Antarctic sea ice free-

board can be estimated from measurements of the Advanced
Topographic Laser Altimeter System (ATLAS) instrument.
By applying the improved one-layer method (OLMi; Xu et
al., 2021) to the daily gridded sea ice freeboard estimate
product ATLAS–ICESat-2 L3B, we obtain daily Antarctic
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Figure 5. Time series of the IIEEs of the assimilated AMSR2 data and the forecasts at different lead times with respect to the OSI SAF data.
The solid blue, green, yellow, red, and black lines denote the IIEEs of the DA_Forecast run at lead times of 24, 72, 120, and 168 h and the
AMSR2 data, respectively. The long-dashed blue and red lines denote the IIEEs of the NoDA_Forecast run at lead times of 24 and 168 h,
respectively. The short-dashed blue and red lines denote the IIEEs of the PE_Forecast run at lead times of 24 and 168 h, respectively.

sea ice thickness distribution at discrete locations from 1 Oc-
tober 2021 to 30 September 2022.

We validate the daily evolution of the mean sea ice thick-
ness forecasts at the discrete locations where observations
on the corresponding date are available (Fig. 7). The results
show that sea ice thickness forecasts of the DA_Forecast
run at a lead time of 24 h are generally consistent with
the ICESat-2 observations, with an overestimation during
October–November. During most times of the validation
period, the mean absolute errors (MAEs) of the sea ice
thickness forecasts are lower than 0.3 m, which is signif-
icantly smaller than the uncertainties in the ICESat-2 ob-
servations. However, without assimilation of sea ice thick-
ness data, the DA_Forecast run also performs better than the
NoDA_Forecast run with respect to sea ice thickness fore-
casts. Sea ice thickness forecasts of the PE_Forecast run (not
shown) are approximately equal to those of the DA_Forecast
run at a lead time of 24 h since sea ice thickness changes by
a relatively small amount in 1 d.

We further evaluate spatial patterns of sea ice thickness
forecasts of the DA_Forecast run at a lead time of 24 h
(Fig. 8) after merging the daily sea ice thickness observations
into seasonal mean fields. The sea ice thickness forecasts
show good agreement with the observations, featured by
thick ice located in the Weddell Sea, the Amundsen Sea, and
the nearshore areas of the eastern Antarctic. During January–
March, the DA_Forecast run overestimates ice thickness in
the southern Weddell Sea, while it underestimates ice thick-
ness in the eastern Amundsen Sea. In other seasons, the
DA_Forecast run overestimates ice thickness in the western
Ross Sea and the southern Weddell Sea, while it underesti-
mates ice thickness in the Amundsen Sea and the nearshore
areas of the eastern Antarctic. The forecasting errors in the
southern Weddell Sea are in the range of the ICESat-2 un-

certainties, but the forecasting errors in the western Ross Sea
are out of the range of the ICESat-2 uncertainties. We sus-
pect that the larger sea ice thickness biases in these areas are
caused by the poor simulation of the growth rate of sea ice
thickness during the freezing seasons, partly originating from
the biases in the simulated ocean temperature or air tempera-
ture in the GFS data. The biases in sea ice thickness forecasts
of the DA_Forecast run at a lead time of 168 h (Fig. S3 in the
Supplement) do not change notably in comparison with those
of 24 h. Admittedly, the above evaluation ignores the errors
caused by the spatiotemporal discontinuity and the uncertain-
ties in the ICESat-2 observations.

3.4 Sea ice drift

The Polar Pathfinder daily Antarctic sea ice motion product
provided by the National Snow and Ice Data Center (NSIDC;
Tschudi et al., 2019) is used to assess Antarctic sea ice drift
forecasts. This data set is projected onto the EASE grid with
a spatial resolution of 25 km, including input data sources de-
rived from the Advanced Very High Resolution Radiometer
(AVHRR), AMSR-E, the Scanning Multichannel Microwave
Radiometer (SMMR), the Special Sensor Microwave/Imager
Sounder (SSMIS), SSMIS sensors, the International Arctic
Buoy Program (IABP) buoys, and the National Centers for
Environmental Prediction/National Center for Atmospheric
Research (NCEP/NCAR) reanalysis.

To validate sea ice drift forecasts, we convert the NSIDC
ice drift components (uo, vo) on the EASE coordinates into
the ice drift components (um, vm) on the model coordinates.
Sea ice drift direction, expressed by the angle α with refer-
ence to the location-dependent coordinate of um, is derived as
the four-quadrant arctangent of (um, vm). Note that α ranges
between −180 and 180°. Sea ice drift direction bias is repre-
sented by the MAE of α between the modeled and observed
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Figure 6. Monthly patterns of sea ice edge forecasts at a lead time of 24 h with respect to the OSI SAF data. Panels (a)–(l) denote Octo-
ber 2021–September 2022. The blue lines denote the DA_Forecast run. The red lines denote the OSI SAF data. The gold contours denote the
mismatch between these two data.

sea ice drift. Sea ice drift magnitude is independent of se-
lected coordinates.

Validation results (Fig. 9) show that the MAEs of sea ice
drift magnitude between the DA_Forecast run and observa-
tions increase during November–February and decrease dur-
ing March–May. In contrast, the MAEs of sea ice drift direc-

tion between the DA_Forecast run and observations decrease
during October–February and increase during March–July.
Comparison between the DA_Forecast and NoDA_Forecast
runs shows that the DA_Forecast run performs better than the
NoDA_Forecast run, in both magnitude and direction of sea
ice drift forecasts. The improvement in sea ice drift forecasts
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Figure 7. Time series of the mean sea ice thickness and uncertainties in the ICESat-2 observations (black and green lines), the sea ice
thickness forecasts at a lead time of 24 h in the DA_Forecast and NoDA_Forecast runs (solid red and blue lines), and the mean absolute
errors between the forecasts and observations (dashed red and blue lines).

originates in principle from the enhancement of the SOIPS
forecasts for sea ice concentration and thickness, induced by
the data assimilation of the observed sea ice concentration,
since sea ice drift is impacted by both sea ice concentration
and thickness (Leppäranta, 2011).

As the forecast lead time increases, the MAEs of the sea
ice drift magnitude do not exhibit significant amplification,
but those of direction grow significantly at a lead time of
168 h in October–November and June–September. Statisti-
cal analysis (Table 1) shows that in the DA_Forecast run, the
annual mean forecasting errors in sea ice drift magnitude at
lead times of 24, 72, 120, and 168 h are 2.14, 2.09, 2.17, and
2.22 cm s−1, respectively. As a reference, the derived NSIDC
sea ice drift magnitudes are 10.22 cm s−1 during October–
December, 4.78 cm s−1 during January–March, 10.55 cm s−1

during April–June, and 13.26 cm s−1 during July–September.
The annual mean forecasting errors in sea ice drift magnitude
at a lead time of 168 h account for 23 % of the observed mag-
nitude. The annual mean forecasting errors in sea ice drift di-
rection at lead times of 24, 72, 120, and 168 h are 2.13, 2.08,
2.42, and 2.81°, respectively. These results suggest that the
SOIPS has a reliable performance in forecasting sea ice drift
direction, although with a systematic positive bias in the sea
ice drift magnitude. A previous study conducted for the Arc-
tic region has also found that the numerical overestimation
of sea ice drift speed is a common feature in CMIP6 models
(Wang et al., 2023).

Spatially, the DA_Forecast run at a lead time of 24 h pro-
duces larger sea ice drift magnitude in the north marginal
sea ice zone and the coastal areas, while in between the
DA_Forecast run produces smaller sea ice drift magnitude
(Fig. 10). During January–March, the Antarctic sea ice zone
shrinks to its annual minima, and sea ice drift magnitude bias
appears to be relatively small compared to the other months.
In other months, large biases in sea ice drift direction fore-
casts also occur in the densely packed sea ice zone, especially
in the Bellingshausen–Amundsen–Ross seas and the south-

eastern Antarctic Ocean sector (Fig. 11); thus the MAEs in
sea ice drift direction forecasts are large.

3.5 Sea ice convergence rate

Sea ice convergence rate (SICR), defined as SICR=
−(∂um/∂x+∂vm/∂y) (negative value represents sea ice dis-
persion; positive value represents sea ice accumulation), is a
useful metric for guiding ship navigation in the sea ice zone.
The Chinese Zhongshan Station in Antarctica is located at
69°22′24.76′′ S, 76°22′14.28′′ E in Prydz Bay (Fig. 12). In
southern Prydz Bay, there is a large area of landfast ice. Drift-
ing sea ice occupies the area north of the landfast ice zone.
Under the forces of wind and tide, the drifting sea ice zone
sometimes closely adheres to the landfast ice zone and some-
times remains separated from it, creating an open water band
between them.

The Chinese icebreaker MV Xue Long has navigated to the
Chinese Zhongshan Station in Antarctica to unload supplies
almost every year for the past 4 decades. In some years, the
icebreaker navigated southward to arrive at area A through
the relatively loose-drifting sea ice zone in eastern Prydz Bay.
However, owing to the indurative ice condition with many ice
ridges and neaped icebergs in the landfast ice zone south of
area A, the icebreaker had to navigate to area B and then turn
southward, heading toward the Chinese Zhongshan Station
in Antarctica. The landfast ice condition in the areas south of
area B is more favorable to the icebreaker. As a consequence,
the timing of the open water band between the drifting sea
ice zone and the landfast ice zone plays a crucial role in the
icebreaker’s navigation from A to B.

Here we show a typical situation of how the sea ice con-
vergence rate guides the navigation from A to B. Forecasting
initialized on 18 November 2021, and the DA_forecast run
at lead times of 24, 48, and 72 h suggested a weak sea ice
dispersion on 19 November 2021, a strong sea ice dispersion
on 20 November 2021, and a strong sea ice accumulation on
21 November 2021. The ice convergence rate forecasts indi-
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Figure 8. Seasonal patterns of the Antarctic sea ice thickness. The columns from left to right denote the DA_Forecast run at a lead time of
24 h, the ICESat-2 observations and their deviations, and the uncertainties in the ICESat-2 observations, respectively. The panels from top to
bottom denote October–December, January–March, April–June, and July–September, respectively.

cated the open water band between the drifting sea ice zone
and the landfast ice zone may occur on 19 November 2021,
is very likely to occur on 20 November 2021, and may dis-
appear on 21 November 2021. The NASA MODIS images
taken on these 3 d clearly validate the usability of the sea
ice convergence rate forecasts during this opening–closing
process of the open water band. Further analysis shows that
the forecasting skill of sea ice convergence largely originates

from the precise atmosphere forcing rather than the effects of
the sea ice concentration data assimilation (not shown).

4 Conclusion and discussion

In this work we introduce an operational synoptic-scale
sea ice forecasting system for the Southern Ocean, i.e., the
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Table 1. The seasonal mean MAEs in the magnitude and direction of the DA_Forecast run at different lead times with respect to the NSIDC
data.

Forecast lead time

24 h 72 h 120 h 168 h

MAEs in magnitude of sea ice drift (cm s−1)

OND 1.42 1.35 1.45 1.61
JFM 3.36 3.09 3.17 3.29
AMJ 1.86 1.97 2.02 2.10
JAS 1.95 1.95 2.02 1.86
Average 2.14 2.09 2.17 2.22

MAEs in direction of sea ice drift (°)

OND 2.59 2.40 2.57 3.38
JFM 0.79 0.85 0.93 1.11
AMJ 2.06 2.15 2.28 2.58
JAS 3.07 2.91 3.89 4.16
Average 2.13 2.08 2.42 2.81

Figure 9. Time series of the monthly mean MAEs of the (a) magni-
tude and (b) direction of the sea ice drift forecasts at different lead
times with respect to the NSIDC data. The blue, green, yellow, and
red lines denote the sea ice drift forecasts at lead times of 24, 72,
120, and 168 h, respectively. The solid and dashed lines denote the
DA_Forecast and NoDA_Forecast runs, respectively.

Southern Ocean Ice Prediction System (SOIPS). The sys-
tem was developed to meet the increasing demands for
synoptic-scale Antarctic sea ice forecasts both at present
and in the coming decade. The system is configured on an
Antarctic regional sea ice–ocean–ice shelf coupled model
and an ensemble-based LESTKF data assimilation model
and is driven by operational atmospheric forecasting vari-
ables at the ocean surface from international weather fore-
casting products. Near-real-time satellite sea ice concentra-

tion observations are assimilated into the system on a daily
basis to update sea ice concentration and thickness in the 12
ensemble members of the model state. The SOIPS forecasts
were engaged in sea ice service for the 38th Chinese National
Antarctic Research Expedition for the first time.

By evaluating sea ice forecasts in a complete melt–freeze
cycle between 1 October 2021 and 30 September 2022, this
study finds that the SOIPS has a reliable ability to forecast
sea ice evolution on a synoptic scale. With respect to the OSI
SAF data, the sea ice concentration RMSEs of the SOIPS
forecasts at a lead time of up to 168 h are generally lower
than 0.15 during June–September, while they are close to
0.2 during January–February, and the annual mean RMSEs
are lower than 0.19. Relatively large RMSEs are mainly lo-
cated in the north marginal ice zone surrounding Antarctica.
The AMSR2 sea ice concentration data are assimilated into
the ensemble of model restart fields on a daily basis, and
an analyzed (updated) ensemble of model restart fields com-
bining the modeled and observational sea ice states is gen-
erated, which is further integrated for 168 h and driven by
atmospheric forcing. The forecasts include not only the ob-
servational information, but also the sea ice changes gener-
ated by the model’s physics. This causes the smaller sea ice
concentration RMSEs of the SOIPS forecasts in comparison
with those of the AMSR2 data, especially at lead times of
24 and 72 h in January–early March and May–September.
On the other hand, large sea ice concentration RMSEs ap-
pear in most areas of the sea ice zone around Antarctica in
March–April, suggesting that the model has a relatively low
capacity to correctly simulate the sea ice growth rate during
this onset-to-rapid-freezing period. This probably originates
from the fact that the sea ice model in the SOIPS uses the
zero-layer ice/snow thermodynamics, which is simple com-
pared to sophisticated multi-layer ice/snow thermodynamics.
Additionally, as a reference, the sea ice concentration RMSE
of the GIOPS forecasts at a lead time of 168 h maintains be-
low 0.35 in the year 2011 with respect to the Interactive Mul-
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Figure 10. Monthly patterns of the magnitude bias in sea ice drift between the DA_Forecast run at a lead time of 24 h and the NSIDC data.
Panels (a)–(l) denote October 2021–September 2022.

tisensor Snow and Ice Mapping System ice extent product
(Helfrich et al., 2007). With respect to the OSI SAF data, the
sea ice concentration RMSE of the SOIPS forecasts at a lead
time of 24 h is larger than that of the MOI product. It should

be mentioned that the MOI product assimilated the OSI SAF
sea ice concentration data, which leads to a lower RMSE in
comparison to the SOIPS forecasts (Fig. S4 in the Supple-
ment).
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Figure 11. Monthly patterns of the direction bias in sea ice drift between the DA_Forecast run at a lead time of 24 h and the NSIDC data.
Panels (a)–(l) denote October 2021–September 2022.

The IIEEs of the SOIPS forecasts in most freezing months
at lead times of 24 and 72 h maintain around 0.5× 106 km2

and below 1.0× 106 km2, respectively. In comparison with
July–December, the sea ice zone is smaller during January–

June, so the IIEE grows moderately in response to prolonged
forecast lead times. Moreover, the sea ice edge is located fur-
ther north during July–December, and the marginal ice zone
is closer to the ACC-impacting areas where active oceanic
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Figure 12. Sea ice convergence rate in the DA_Forecast run (a, c, e) and MODIS satellite images (b, d, f). The top, middle, and bottom
panels denote forecasts/observations on 19, 20, and 21 November 2021, respectively. The forecast was initialized on 18 November 2021. The
black arrows in the left column denote sea ice drift vectors, while the red and blue contours indicate that sea ice drift in the corresponding
area tends to be convergent and divergent, respectively. The red dot in each panel marks the Chinese Zhongshan Station in Antarctica. The
two boxes in (b) denote two areas where the icebreaker MV Xue Long has arrived in some years.
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and atmospheric dynamical processes promote the amplifi-
cation of the IIEE along with the prolonging of forecast lead
time. It should be mentioned that the mismatch in sea ice
edges in some nearshore areas originates from the divergence
of coastlines, ice shelf fronts, or unrealistic landfast ice zones
in the model domain and the OSI SAF data.

The sea ice thickness MAEs of the SOIPS forecasts at a
lead time of 24 h and the ICESat-2 observations are lower
than 0.3 m, which is in the range of the ICESat-2 uncer-
tainties. The SOIPS also performs well in forecasting sea
ice drift, in both magnitude and direction. Statistical anal-
ysis suggests that annual mean forecasting errors in sea ice
drift at a lead time of 168 h with respect to the NSIDC sea ice
motion data are 2.22 cm s−1 in magnitude and 2.81° in direc-
tion. Furthermore, the sea ice convergence rate, which can
be derived from sea ice velocity forecasts, has great potential
for supporting ship navigation on a fine local scale. A typical
application of how sea ice convergence rate forecasts benefit
the icebreaker navigation in Prydz Bay is illustrated. We real-
ize that an improvement in sea ice convergence rate forecasts
may be achieved if we introduce a landfast ice parameteriza-
tion into the SOIPS, which is considered a key area for future
model development. Since the included ice shelf model does
not simulate collapse of ice shelf (Ochwat et al., 2024), and
the ice shelf topography remains unchanged in the SOIPS,
replacing the simple static ice shelf modular by a sophisti-
cated thermodynamic–dynamic ice shelf model may further
improve the performance of the SOIPS in sea ice forecasts.

Satellite observations of sea ice concentration, thickness,
and drift have been used to estimate sea ice production and
transport in the Antarctic coastal polynyas (Drucker et al.,
2011; Nihashi et al., 2017; Tian et al., 2020). However, due to
the relatively scarce coverage of satellite observations in the
Antarctic, especially in sea ice thickness, the evaluation of
the SOIPS sea ice forecasts in this work still has considerable
uncertainties. Part of the evaluation uncertainties comes from
the observational uncertainties themselves, and part comes
from the differences in spatial–temporal resolutions, as well
as the coastline, between the SOIPS and the observations.
Accurate short-term sea ice forecasts rely on optimized ini-
tial conditions at the forecasting onset, precise atmospheric
forcing data (Pascual-Ahuir and Wang, 2023) if using an ice–
ocean coupled model, and model physics in representing the
sea ice melt–freeze process and its heat and momentum ex-
changes with the underlying ocean. Specifically, the com-
plex interactions among the atmosphere, sea ice, ocean, ice
shelf, and ice sheet in the Antarctic region make the Antarc-
tic sea ice forecasts more difficult. Moreover, in Antarctic
regional sea ice–ocean modeling, how to deal with oceanic
open boundary conditions is a big challenge since the broad
mid-latitude ocean surrounding Antarctica can impact the
Antarctic ocean and sea ice from all directions, i.e. the south-
ern Pacific Ocean, southern Atlantic Ocean, and southern In-
dian Ocean. Utilizing climatological monthly mean oceanic
boundary conditions from ECCO2 data results in the lack of

interannual variance at the model open boundary originat-
ing from ocean variability in lower latitudes. Although the
Antarctic sea ice forecasts based on global models (Blockley
et al., 2014; Posey et al., 2015; Smith et al., 2016; Lellouche
et al., 2018; Johnson et al., 2019) and carried out by interna-
tional weather forecasting centers avoid the problem of deal-
ing with oceanic boundary conditions, this newly developed
regional sea ice forecasting system can operationally pro-
vide available sea ice forecasting information for the South-
ern Ocean at a moderate resolution and a high computational
efficiency.

We have successfully applied synchronized assimilation
of satellite-observed sea ice concentration, sea ice thickness,
and sea surface temperature in our sea ice forecasting sys-
tem for the Arctic, i.e. the Arctic Ice Ocean Prediction Sys-
tem (Mu et al., 2019; Liang et al., 2019). Owing to the rarity
of operational satellite sea ice thickness observations with
high spatial–temporal coverage in the Antarctic, the current
version of the SOIPS only assimilates the AMSR2 sea ice
concentration observations. In future, along with the eleva-
tion of satellite observation capacity, more and more sea ice
and ocean variables are scheduled to be assimilated into the
SOIPS to promote its ability in the Antarctic sea ice fore-
casts. Additionally, more precise atmospheric forcing data,
more advanced model sea ice–ocean physics, and more satel-
lite and in situ observations are urgently needed to support
numerical sea ice forecasts for the Southern Ocean.

Code and data availability. The MODIS images are available
at https://doi.org/10.5067/MODIS/MOD09Q1.006 (Vermote,
2015). The WOA09 data are available at https://www.nodc.
noaa.gov/OC5/WOA09 (Locarnini et al., 2010; Antonov et al.,
2010). The GFS data are available at ftp://ftp.ncep.noaa.gov/pub/
data/nccf/com/gfs/prod (Han et al., 2021). The AMSR-E data
are available at https://doi.org/10.5067/TRUIAL3WPAUP
(Markus et al., 2018). The ICESat data are avail-
able at https://doi.org/10.5067/K2IMI0L24BRJ (Di-
marzio, 2007). The ATLAS/ICESat-2 L3B data are
available at https://doi.org/10.5067/ATLAS/ATL20.004
(Petty et al., 2023). The Polar Pathfinder data are
available at https://doi.org/10.5067/INAWUWO7QH7B
(Tschudi et al., 2019). The JRA55 data are available at
http://search.diasjp.net/en/dataset/JRA55 (Kobayashi et al.,
2015; Harada et al., 2016). The AMSR2 data are available
at https://doi.org/10.1594/PANGAEA.898400 (Melsheimer
and Spreen, 2019). The OSI SAF data are available at
https://doi.org/10.15770/EUM_SAF_OSI_NRT_2004 (EU-
METSAT OSI SAF, 2023). The PDAF software is available
at https://doi.org/10.5281/zenodo.7861829 (Nerger, 2023). The
SOIPS used to produce the results in this paper can be accessed
from https://doi.org/10.5281/zenodo.11381604 (Zhao and Liang,
2024).
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line at: https://doi.org/10.5194/gmd-17-6867-2024-supplement.
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