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Abstract. Sea ice models are essential tools for simulating
the thermodynamic and dynamic processes of sea ice and
the coupling with the polar atmosphere and ocean. Popular
models such as the Community Ice CodE (CICE) are usu-
ally based on non-moving, locally orthogonal Eulerian grids.
However, the various in situ observations, such as those from
ice-tethered buoys and drift stations, are subjected to sea
ice drift and are, hence, by nature Lagrangian. Furthermore,
the statistical analysis of sea ice kinematics requires the La-
grangian perspective. As a result, the offline sea ice tracking
with model output is usually carried out for many scientific
and validational practices. Certain limitations exist, such as
the need for high-frequency model outputs, as well as un-
accountable tracking errors. In order to facilitate Lagrangian
diagnostics in current sea ice models, we design and imple-
ment an online Lagrangian tracking module in CICE under
the coupled model system of CESM (Community Earth Sys-
tem Model). In this work, we introduce its design and im-
plementation in detail, as well as the numerical experiments
for the validation and the analysis of sea ice deformation.
In particular, the sea ice model is forced with historical at-
mospheric reanalysis data, and the Lagrangian tracking re-
sults are compared with the observed buoys’ tracks for the
years from 1979 to 2001. Moreover, high-resolution simula-
tions are carried out with the Lagrangian tracking to study the
multi-scale sea ice deformation modeled by CICE. Through
scaling analysis, we show that CICE simulates multi-fractal
sea ice deformation fields in both the spatial and the temporal

domain, as well as the spatial–temporal coupling character-
istics. The analysis with model output on the Eulerian grid
shows systematic difference with the Lagrangian-tracking-
based results, highlighting the importance of the Lagrangian
perspective for scaling analysis. Related topics, including the
sub-daily sea ice kinematics and the potential application of
the Lagrangian tracking module, are also discussed.

1 Introduction

Sea ice floes are inherently Lagrangian points that undergo
thermodynamic and dynamic changes throughout their life-
time. Under the dynamic forcings from the atmosphere and
the ocean, sea ice drifts, and, as internal stress accumulates,
it deforms and undergoes plastic failures. The drift of sea
ice floes is associated with constant thermodynamic growth
and melt of the sea ice; hence it is fundamental to the energy
and ice–water balance in the polar regions (Haas, 2009). Fur-
thermore, highly nonlinear and anisotropic linear kinematic
features manifest with the sea ice deformation fields, which
prevail from meters to the geophysical scales (Marsan et al.,
2004). The accurate observation and modeling of the sea ice
drift and deformation are key to our scientific understanding
of both the climate system and human activities in the polar
region.

Due to the harsh conditions of the polar environment, the
long-term direct measurements of the sea ice are usually car-
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ried out through in situ deployments of buoys. These au-
tonomous systems, which are usually attached to the sea ice,
relay information about their locations, sea ice conditions,
and associated atmospheric and oceanic conditions. Since
they drift with the sea ice, their locations are also repre-
sentative of the sea ice floe to which they are attached. For
example, the International Arctic Buoy Programme (IABP;
https://iabp.apl.uw.edu, last access: 8 September 2024) com-
piles historical and real-time buoy measurements in the Arc-
tic region. The data are widely used in the study of sea ice
dynamics (Rigor et al., 2002) and thermodynamic processes
(Perovich et al., 2014), as well as the data assimilation for
numerical weather forecasts (Inoue et al., 2009).

The drift and the deformation of sea ice are the result of
its dynamic response to the atmospheric and oceanic forc-
ings. Unlike the Newtonian fluids of air and water, sea ice
patches undergo multi-fractal deformation characterized by
localized plastic faults. This highly localized and anisotropic
deformation typically corresponds to sea ice leads and ridges,
manifesting as linear kinematic features (LKFs; Kwok et al.,
1998). While sea ice ridging is a major way that thick sea ice
is formed, leads serve as important sources of heat and mois-
ture for the polar regions, especially during winter (Rothrock,
1975; Andreas and Cash, 1999). Therefore, sea ice deforma-
tion is crucially important for the coupled climate system
of the polar region. In order to study how the sea ice de-
forms, we usually carry out multi-scale analysis through the
statistics of the deformation rates (i.e., the speed at which
the sea ice deforms). Specifically, the deformation rates, de-
noted ε̇’s, can be computed for individual sea ice patches at
various temporal and spatial scales. Since the sea ice is con-
stantly drifting, the computing of ε̇’s and the related anal-
ysis should also be carried out from a Lagrangian perspec-
tive. Satellite remote-sensing-based datasets such as RGPS
(Lindsay and Stern, 2003) utilize synthetic aperture radar
(SAR) images collected at various times to produce large-
scale, high-resolution maps of the sea ice drift and deforma-
tion. In particular, both the correlation-based and the feature
tracking approaches when processing the SAR images en-
sure that the analysis of the drift/deformation is Lagrangian
by nature. These datasets are widely used for the study of
multi-scale sea ice kinematics (Marsan et al., 2004) and the
validation of numerical simulations (Kwok et al., 2008; Ram-
pal et al., 2019).

For the simulation of sea ice and its kinematics, we
construct numerical models which involve a layered struc-
ture with the following: (1) the mathematical modeling of
the physical processes, (2) the numerical treatments for the
spatial–temporal discretization and the integration, and (3)
the code implementation and the simulation on parallel com-
puters. Popular sea ice models, such as CICE (Community
Ice CodE; https://github.com/CICE-Consortium/CICE, last
access: 8 September 2024) and SI3 (Vancoppenolle et al.,
2023), are usually based on spatial discretization using lo-
cally orthogonal structured grids. Rheology models (Bouchat

et al., 2022; Hutter and Losch, 2020) such as viscous–plastic
(VP; see also elastic–viscous–plastic (Hunke and Lipscomb,
2008)) are capable of reproducing certain statistics of the ob-
served multi-scale sea ice kinematics (Kwok et al., 2008).
However, the model’s output, including the instantaneous
and the average model status at different temporal scales, is
typically defined on the model’s native Eulerian grid. One
notable exception is neXtSIM, which is based on Lagrangian
moving mesh and inherently supports the scaling analy-
sis (Rampal et al., 2019). But for CICE and many widely
adopted sea ice models, the model output is insufficient, es-
pecially for the scaling analysis at large temporal scales,
since it inherently requires a Lagrangian perspective. A typ-
ical practice to overcome this limitation is to reconstruct La-
grangian tracks with the model’s output, such as those de-
rived from daily velocity fields in Bouchat et al. (2022). Cer-
tain limitations are still present, however, especially given the
ever-growing resolution of current models (Xu et al., 2021;
Zhang et al., 2023). High-frequency model output is needed
to reconstruct realistic Lagrangian tracks, entailing substan-
tial data storage and offline computation. Furthermore, the
analysis of small-scale sea ice deformation (i.e., minute scale
as in Oikkonen et al., 2017) requires even finer spatial and
temporal model output and a larger overhead with the of-
fline tracking analysis. Therefore, more flexible Lagrangian
diagnostic tools are needed for the scaling analysis of sea ice
kinematics and future development of sea ice models.

In this paper we introduce the online Lagrangian track-
ing of sea ice and its model integration in the model of
CICE (version 5). The tracking of sea ice is carried out along
with the model’s numerical integration, and it supports very
high frequency tracking (at the model’s time step) and large
numbers of Lagrangian points. The model integration is car-
ried out and further validated through the numerical exper-
iments in the coupled framework of Community Earth Sys-
tem Model (CESM, version 2: https://www.cesm.ucar.edu/
models/cesm2, last access: 8 September 2024). Specifically,
the comparison with observed buoy tracks is carried out with
atmospherically forced historical simulations. Furthermore, a
high-resolution experiment with 7 km resolution in the Arc-
tic region is carried out, and we evaluate the spatial–temporal
scaling of wintertime sea ice deformation. In Sect. 2 we in-
troduce the tracking algorithm and the integration in CICE
in detail. Section 3 includes the numerical experiments and
detailed analysis of simulation results. Finally in Sect. 4, we
summarize the article and discuss related topics, including
potential applications of the sea ice Lagrangian tracking and
the high-resolution simulation of sea ice kinematics.

2 Lagrangian tracking in CICE

The Lagrangian tracking of sea ice is tightly integrated with
the dynamics processes of CICE (version 5). The model grid
of CICE is a two-dimensional, logically rectangular, struc-
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tured grid with the size of (nx_global,ny_global)
and indexed by (i,j). Typical lateral boundary conditions
are supported for global configurations, including the east–
west periodic boundary and the tripolar grid boundary (Mur-
ray, 1996). For the Lagrangian tracking, each active point has
a specific logical location of (x,y) in the two-dimensional
continuous space, satisfying 0≤ x <nx_global and 0≤
y <ny_global. Furthermore, there is a bi-projection be-
tween each point’s logical location and its corresponding ge-
olocation. The Lagrangian tracking is carried out within the
model grid’s domain following the tracking algorithm while
maintaining the grid’s lateral boundary conditions and the
land–ocean distribution.

In this section, the Lagrangian tracking algorithm is intro-
duced in detail in Sect. 2.1, which is based on the existing
advection framework of transport remapping (Dukowicz and
Baumgardner, 2000). Regarding the commonly used func-
tionality of CICE, the Lagrangian tracking also supports par-
allel computing, tripolar grids and a simple logging system
for the record of the tracking results. Detailed implementa-
tion and the integration in CICE are covered in Sect. 2.2.

2.1 Lagrangian tracking algorithm

The Lagrangian tracking algorithm is based on the transport
remapping advection scheme, which is available in CICE
(Dukowicz and Baumgardner, 2000). As a conservative, two-
dimensional, semi-Lagrangian scheme, transport remapping
operates on the Arakawa-B staggered grid. At each dynam-
ics step of CICE, the backward tracking of the corner points
is carried out for the advection of tracers onto the Eulerian
grid cells (corners of the hollow quadrilateral in Fig. 1a). For
the Lagrangian tracking, we utilize the backward tracking
vectors and compute the forward tracking for all four cor-
ner points (filled grey arrows in Fig. 1a), and they form the
new quadrilateral (outlined in blue). Then, based on the pre-
vious location of the Lagrangian point (black circle), we can
compute its new location (blue circle) as follows.

The tracking of the Lagrangian point is based on the lo-
cal, normalized coordinate of the grid cell containing the
point. Under the local coordinate, the cell’s four corners cor-
respond to (0.0,0.0), (0.0,1.0), (1.0,0.0) and (1.0,1.0), re-
spectively. The previous location of the Lagrangian point un-
der this coordinate is (xlocal,ylocal), satisfying 0≤ xlocal < 1
and 0≤ ylocal < 1. Note that given the point’s logical posi-
tion in the model grid as (x,y), the following points hold:
(1) the cell where the point is present has the index of (bxc+
1,byc+1), and (2) xlocal = x−bxc and ylocal = y−byc. Af-
ter the forward tracking, the four corners have the new lo-
cations of (xi,j ,yi,j ) for i ∈ {0,1} and j ∈ {0,1}. Then, the
new location of the Lagrangian point, denoted (x∗local,y

∗

local),
is computed through the bilinear interpolations with xi,j ’s
and yi,j ’s, assuming that its relative location within the new
quadrilateral remains (xlocal,ylocal). In the case that x∗local or
y∗local is larger than 1 or smaller than 0, the Lagrangian point

has drifted out of the current grid cell, which we denote as the
migration of the point. Since CICE utilizes domain decom-
position for parallel computing, the migration potentially is
between blocks (sub-domains after decomposition) and en-
tails communication between parallel processes. The detailed
support is introduced further in Sect. 2.2.

Based on the geolocations of the four cell corners and the
Lagrangian point’s relative location within the cell, we can
compute the geolocation of the Lagrangian point. Specifi-
cally, first, the three-dimensional locations of the cell corners
are computed with their latitudes and longitudes. Through
linear interpolations, we locate the three-dimensional loca-
tion of the Lagrangian point. Finally, the latitude and longi-
tude of the Lagrangian point can then be determined.

2.2 Implementation in CICE

2.2.1 Software implementation

For the Lagrangian tracking in CICE, we define the
data structure as lagr_point in the Fortran module of
ice_transport_driver. It contains necessary fields of
information for the Lagrangian point, including its current
status, lifetime, current location and other essential infor-
mation. Furthermore, each of the parallel CICE processes
maintains a large, pre-allocated pool of available Lagrangian
points (i.e., instances of lagr_point). When a new La-
grangian point is created in the current process or migrated
from another process, an unused slot is claimed from this
pool. Similarly, when the point is dead (i.e., due to melting)
or migrates out of the block, the slot is reclaimed and recy-
cled in the pool.

The life cycle of a Lagrangian point consists of several
stages (Fig. 2) and transitions between the stages, called
events. Upon its creation (type-I event), the Lagrangian point
is assigned to a specific geolocation and, consequently, a spe-
cific block and a specific processor. The Lagrangian point
drifts (type-II event), until the sea ice melts (sea ice con-
centration lower than 5 %, type-V event), or it is automat-
ically deactivated (e.g., exceeding the prescribed maximum
lifetime). When the Lagrangian points migrate outside the
current block, they will be delivered to the corresponding ad-
jacent block (type-III event; see also below). This process
is carried out through the built-in boundary exchange opera-
tions of CICE. A special landing event of Lagrangian points
(type-IV) is supported but not possible in the current imple-
mentation.

2.2.2 Overall model integration

As shown in Fig. 3, the tracking of all Lagrangian
points occurs within each dynamics time step (i.e.,
step_dynamics) after the computation of the prognos-
tic velocities and the advection process (which computes the
backward tracking vectors). To ensure numerically stable in-
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Figure 1. Local Lagrangian tracking scheme. Panel (a) shows the backward tracking (the double-lined quadrilateral) and the forward tracking
(the quadrilateral in blue) of the corners of the current T cell at (i,j) (thick black quadrilateral). In panel (b), the tracking of a Lagrangian
point (black circle) at a normalized relative position (x,y) within the current T cell is based on linear interpolation of the four corner points
(i.e., (xi ,yj ) for i = {0,1} and j = {0,1}).

Figure 2. Typical events for Lagrangian points, including the cre-
ation, the melt (i.e., ice concentration below 5 %), drifting within a
block or between blocks (i.e., migration), and migration onto lands.

tegration for the advection, there is strict limitation over the
time step and hence the backward/forward tracking vectors.
As a consequence, Lagrangian points cannot migrate beyond
one grid cell in either direction. When a specific point mi-
grates beyond the current block’s boundary (i.e., thick rect-
angular boundary in Fig. 2), it will be strictly within the
outer boundary of the block (i.e., within the thin rectangu-
lar boundary in Fig. 2).

The Lagrangian tracking contains four major steps (shown
below). For each Lagrangian point, its status is maintained,
it is tracked with the forward drifting vectors and its loca-
tion information is updated. In the case of the Lagrangian
point migrating outside the current block, it is recorded for
further boundary exchange. Then the Lagrangian points are
exchanged between blocks, with newly migrated Lagrangian
points recorded for the current block.

1. For each active Lagrangian point, the following steps
should be followed:

(a) Check for deactivation (due to melt, lifespan, etc.),
with necessary management of the Lagrangian
point slots.

(b) Increase the ge of the Lagrangian point.

(c) Retrieve the local advection information.

(d) Do Lagrangian tracking, and update the logical and
the geophysical positions.

(e) Check for potential migration out of the current
block.

2. For a migrating point, the following steps should be fol-
lowed:

(a) Record its information for boundary exchange.

(b) Carry out management of the Lagrangian point slot.

(c) Carry out boundary exchanges for Lagrangian
points.

Geosci. Model Dev., 17, 6847–6866, 2024 https://doi.org/10.5194/gmd-17-6847-2024
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(d) Activate newly migrated Lagrangian points.

(e) Deactivate Lagrangian points (due to landing, etc.)
with necessary management steps.

2.2.3 Miscellaneous

Boundary exchanges for migrating Lagrangian points

Each dynamics time step involves a single Fortran func-
tion call to the boundary exchange, carrying out the mi-
gration of Lagrangian points between blocks. The maxi-
mum exchangeable Lagrangian point count per boundary cell
can be changed in the code through the Fortran parameter
LAGR_BNDY_SIZE_PARAM. It is worth noting that the sin-
gle boundary exchange due to the migration of Lagrangian
points only incurs a very small computational overhead.
Within the same dynamics time step, the elastic–viscous–
plastic (EVP) solver usually contains over 100 sub-cycles of
the elastic waves and the corresponding boundary exchanges
(Lemieux et al., 2010; Xu et al., 2021). Furthermore, the La-
grangian tracking utilizes the transport remapping scheme’s
backward tracking. In general, the EVP solver dominates the
overall simulation time of the sea ice dynamics, with the La-
grangian tracking consuming less than 3 % of the time for all
the numerical experiments in Sect. 3.

Support for tripolar grids

Tripolar grids are commonly used in high-resolution global
configurations of CICE and CESM (Small et al., 2014). For
example, the 0.1° grid of TX0.1 is used for the global ocean
mesoscale-resolving simulations of CESM. The commonly
used U-fold tripolar grids are supported for our implementa-
tion of the Lagrangian tracking in CICE, with the schematics
shown in Fig. 4.

When the Lagrangian point drifts beyond the northern
boundary of the blocks on the tripolar folding line, it is
passed to the corresponding block and grid cell through the
boundary exchange process. This corresponds to the case
with y larger than ny_global, where ny_global is the
grid cell count in the j direction. Then, the x and y positions
of the point are modified accordingly to the correct values,
following the topology on the tripolar boundary.

Logging system

A simple text-based logging system is implemented to report
the results of the Lagrangian tracking. Each parallel proces-
sor generates a log file that contains the records of all ac-
tive Lagrangian points on the processor. The records include
the major events, including the creation of the Lagrangian
points, the melt events and the migration events, as well as
the Lagrangian points’ status at regular time intervals. The
time step count for reporting Lagrangian points’ information

is a user-prescribed compile-time parameter (see Appendix C
for details).

3 Numerical experiments and analysis

We carry out numerical experiments of the Lagrangian track-
ing with CICE (version 5) and CESM (version 2). CICE is
configured with five ice thickness categories with multiple
vertical layers, as well as full thermodynamic and dynamic
processes. Key model configurations include the mushy-
layer vertical thermodynamics, the elastic–viscous–plastic
(EVP) rheology model and the delta-Eddington radiation
scheme. Detailed parameterization schemes and major pa-
rameters of CICE are further covered in Appendix A. Two
model resolutions of CICE are used: the nominal 1° grid of
GX1V6, which is built in in CESM, and the nominal 0.15°
grid of TS015 (previously implemented in CESM (Xu et al.,
2021)). Notably, the TS015 grid has a horizontal dimension
of 2400×1680 globally, and the mean grid resolution is about
7 km in the Arctic region. Prominent, multi-fractal sea ice
deformation can be simulated at this resolution (Xu et al.,
2021).

For all the experiments, CICE is coupled to the slab ocean
model (SOM) and forced by the CORE-II dataset through
the coupling framework in CESM. The CORE-II dataset is
based on NCEP atmospheric reanalysis and further used in
the Ocean Model Intercomparison Projects (Griffies et al.,
2016). It contains two separate forcing datasets: the normal
year forcing (NYF), which is annually repeating, and the
inter-annual forcing (IAF), which is for the years between
1948 and 2007. While the NYF dataset is usually used for
the long-term simulations and the spin-up of the ocean–sea
ice coupled model, the IAF dataset can be used for the hind-
cast of the historical states of the ocean and the sea ice (Wang
et al., 2016). Both the NYF and the IAF datasets are used for
the numerical experiments, covered in the rest of this section.

The simulated Arctic sea ice climatology under NYF is
shown in Fig. 5. The seasonality of the sea ice extent at
both 1 and 0.15° (not shown) is consistent with the obser-
vational climatology (NSIDC). The overestimation of sea ice
extent (SIE) during winter months mainly manifests in the
peripheral seas of lower latitudes. In particular, in the At-
lantic Arctic region, the overestimation of SIE may be due to
the absence of ocean heat transport of the SOM. During sum-
mer, SIE agrees well with the observation. In terms of the
sea ice volume, there is general underestimation compared
with PIOMAS (Schweiger et al., 2011). Thick, multi-year
sea ice manifests north to Greenland and the Canadian Arc-
tic Archipelago (CAA), with the clockwise circulation in the
Canadian Basin as controlled by the Beaufort High. With the
generally good agreement of the modeled sea ice states with
the observational datasets, we consider it sufficient for fur-
ther analysis of the Lagrangian tracking. Moreover, further
improvements of the model’s simulation results are planned
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Figure 3. Overall integration of Lagrangian tracking in the time step of CICE.

Figure 4. Support of Lagrangian point migration for tripolar grids. The model’s global grid is of size nx_global by ny_global, with the
northern tripolar boundary shown. U-fold tripolar grids are supported (i.e., sea ice velocities are defined on the corner points of the Arakawa-
B grid and along the northern boundary).

for future work, including the coupling with a dynamic ocean
model and the tuning of parameterization schemes in CICE.

3.1 Climatology of Lagrangian points under NYF

Under the annually repeating NYF dataset, we carry out the
basic test of the Lagrangian tracking with the low-resolution,
1° grid. After the model has reached quasi-equilibrium af-
ter a spin-up of 20 years, we deploy one Lagrangian point
at the center of every grid cell with sea ice (sea ice concen-
tration (SIC)> 5 %) in the Northern Hemisphere. The initial
locations of the points are shown in Fig. 6a. With the sum-
mer melt and the transport to lower latitudes, the count of ac-
tive Lagrangian points decreases with each year. After a full
year since the deployment, the Lagrangian points outside the
Arctic Basin are all lost due to melting (Fig. 6b). In Fig. 7

we show the 2-month tracks of the points for the first whole
winter after deployment. The overall distribution of remain-
ing points after a melt season, as well as their tracks in the
winter, shows (1) the counterclockwise drift in the Beaufort
Gyre at distinctive stages throughout the winter, (2) the con-
vergence of points to the north of Greenland/the CAA, and
(3) the transpolar drift from the eastern part of the basin and
the outflow in the Fram Strait. After 5 years and 10 years
(Fig. 6c and d), the Lagrangian points are generally lost. The
surviving points are mainly retained due to the accumulation
in the Beaufort Gyre. Among all of the 3599 points that are
originally in the basin (80° N and further north), about 2063
(57.3 %) points are lost through melting in the basin within
the first 20 years, while 1083 (30.1 %) are lost due to export
from the Fram Strait (FS). In later years, the surviving points
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Figure 5. March (a) and September (b) sea ice thickness simulated by CESM and the GX1V6 grid. The last 10 years’ results are used to
compute the thickness fields (filled contour) and the ice edge with sea ice concentration (SIC) at 15 % (red line). The climatological sea ice
concentration from NSIDC (based on passive microwave sensors) of the corresponding months is computed for the years between 1979 and
2000, with the sea ice edge shown by the yellow line (SIC= 15 %). The seasonal cycles of Arctic sea ice extent (SIE) and sea ice volume
(SIV) are shown in panel (c) and (d), respectively. The simulation results from both GX1V6 and TS015 are included. For comparison, SIE
is based on the NSIDC dataset, and SIV is computed from the PIOMAS dataset for the same period (i.e., 1979 to 2000).

are mainly lost due to the circulation to the transpolar drift
(hence the FS export) or to the eastern part of the basin with
a more prominent summer melt. The daily locations of the
Lagrangian points are shown by the animation in the Supple-
ment. It is worth noting that the NYF forcing dataset does
not support direct comparison with observations. Hence the
experiment results, including the simulated circulation of the
Lagrangian points and the loss due to melt process, provide
us with a basic test of the Lagrangian tracking functionalities.

3.2 Validation of Lagrangian tracking under IAF

We further evaluate the Lagrangian tracking through the IAF-
based simulation and compare it with the buoy measure-
ments. Based on the 1° grid (GX1V6) and the model’s spin-
up status under NYF, we carry out the historical simulation
for the years between 1979 and 2001. For every day during
the winter (December to March) at 00:00 (UTC), we de-

ploy a Lagrangian point in every grid cell where sea ice is
present. For each Lagrangian point, we track its location for
up to 90 d. The daily instantaneous locations of the points are
recorded and further compared with the observations.

The observational dataset from the International Arctic
Buoy Programme (IABP; Rigor et al., 2008) during the same
years is used for validation (data available at https://iabp.apl.
uw.edu/data.html, last access: 10 May 2023). Since we de-
ploy Lagrangian points to the center of the grid cells, we
use the following criteria to match the physical buoys’ lo-
cations of IABP. In total, 621 buoys with 49 004 hourly lo-
cations are available for comparison. We further split each
buoy’s continuous track into sub-tracks of 14 d for further
comparisons. For each buoy’s (sub-)track, we screen over the
newly deployed Lagrangian points on its starting date. The
Lagrangian point nearest to the track’s starting location is lo-
cated, and the simulated track is then compared against the
observation. Leap years are ignored in the IAF dataset and
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Figure 6. Lagrangian points (dots) in the initial deployment on 1 January (a), after 1 year (b), after 5 years (c) and after 10 years (d). The
previous locations of each point are also shown for up to 2 weeks (lines). One in every two Lagrangian points is shown in (b), (c) and (d).

the simulations; hence the buoys’ tracks starting on 29 Febru-
ary are matched with the Lagrangian points on 1 March.

Figure 8 shows the matching between the buoys’ and the
corresponding Lagrangian points’ locations during the win-
ter of 1993–1994 (December to March). All of the sub-
tracks, each covering 14 d of tracking of the buoy, are shown.
The two major sea ice drift regimes include the clockwise
circulation in the Canadian Basin and the clockwise drift and
export of the sea ice in the region east to 60° W and west
to 130° E. In both regimes, the modeled Lagrangian points’
tracks are highly consistent with the observations.

Furthermore, Fig. 9 shows the distance between the loca-
tions of the buoys and the corresponding Lagrangian points
for all the sub-tracks. In total, there are 2849 sub-tracks for
comparison, each corresponding to a buoy’s drift within 14 d.
For the starting locations of the buoys’ sub-tracks, the av-
erage distances to the matching virtual buoys are all within
50 km. The average grid size within the Arctic Basin is about
50 km, with finer (coarser) resolution in the area near (far
from) Greenland. For over 75 % of the matching buoy pairs,

the initial distance is less than 27 km. After the tracking for
14 d, the distance gradually grows, but for 75 % of all pairs,
the distance is within 60 km. Besides, the median (mean)
distance is 38 km (43 km). On average, the drift distance of
buoys is 87 km at 14 d scale. For fast-moving buoys such as
those entering the Fram Strait, the distances between the La-
grangian points and the matching physical buoys are larger,
but the relative error always remains low within the 2-week
tracking period. In general, based on the Lagrangian track-
ing in CICE, the sea ice drift as simulated by the model
matches buoys’ observations well. The tracking uncertainties
may arise from the limited spatial resolution of the model, the
uncertainty of the atmospheric forcing dataset and the sea ice
model’s dynamics in simulating the observed drifts. Besides,
due to the regular deployment of the Lagrangian points, there
is no exact match of the buoys’ initial locations. Further at-
tribution of the tracking error to the various contributing fac-
tors, including the model and the data’s uncertainty, as well
as the initial location errors, is planned for future study.
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Figure 7. Sea-level pressure (SLP; filled contour) and the tracks of Lagrangian points for two bimonthly periods: November–December
(a) and February–March (b) for the NYF-based simulation with the GX1V6 grid. The tracking results during the first whole winter after
the deployment of the Lagrangian points are shown. One in every five Lagrangian points is indicated by the dark-blue dot, and its track
throughout the two periods is indicated by the thin blue lines.

Figure 8. Simulated Lagrangian points (blue) and those of the cor-
responding IABP buoys (red) during the winter of 1993–1994. The
last location (+) of each record and the track (line) of up to 14 d
are shown for each buoy/Lagrangian point. The wintertime mean
(DJFM) sea ice concentration is also shown in the background.

Figure 9. Distance between the modeled Lagrangian points and the
corresponding buoys. The yellow line is the median, and the lower
and upper edges of the green shading are the 25th and the 75th per-
centiles, respectively. The horizontal bar (dashed grey line) marks
half of the mean grid size (

√
dx · dy/2) of the GX1V6 grid in the

Arctic Basin.
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3.3 Scaling analysis of sea ice kinematics in the 7 km
resolution simulation

We further carry out high-resolution simulations of sea ice
kinematics and related analysis of the sea ice deformation.
In particular, with the 7 km resolution of the TS015 grid in
the Arctic region, the model is capable of simulating the
multi-fractal sea ice deformation (Xu et al., 2021). The ex-
periment is based on the NYF dataset and the model’s quasi-
equilibrium status after the spin-up process. The Lagrangian
tracking is utilized for the diagnostics of the wintertime sea
ice deformation and related statistics over multiple spatial
and temporal scales. We first introduce the basic framework
of scaling analysis and the use of Lagrangian tracking in
Sect. 3.3.1. Furthermore, the detailed analysis of the spatial
scaling (Sect. 3.3.2) and the temporal scaling and the spatial–
temporal coupling (Sect. 3.3.3) are covered.

3.3.1 Lagrangian tracking and scaling analysis

The sea ice deformation rates (ε̇’s) are defined with simu-
lated velocities. Since CICE is based on the locally orthogo-
nal grid and Arakawa-B staggering, the model’s velocity as
well as the derived velocity of Lagrangian points are defined
as fields of u’s and v’s. The grid-invariant deformation rates,
including the divergence rate (ε̇div) and the shear rate (ε̇shear),
are then defined as follows. The total deformation rate (ε̇total),
which is subjected to further scaling analysis, can be further
defined with ε̇div and ε̇shear.

ε̇div = ux + vy (1)

ε̇shear =

√
(ux − vy)2+ (uy + vx)2 (2)

ε̇total =

√
ε̇2

div+ ε̇
2
shear (3)

In these equations, ux , uy , vx and vy are the spatial deriva-
tives of u and v in the two orthogonal directions. The direct
model output of the instantaneous and/or the temporal mean
of the velocity fields, as well as the various deformation rates,
is defined on the Eulerian model grid. In Fig. 10 we show
the maps of the daily-mean ε̇total in the Arctic region for 2
typical days of the experiment with TS015. LKFs manifest
with the highly localized, anisotropic sea ice deformation. It
is worth noting that the daily-mean velocity and the defor-
mation fields (shown in Fig. 10) are inherently Eulerian and
hence not appropriate for the scaling analysis. For example,
the offline tracking (at hourly scale) should be carried out for
further analysis (e.g., Bouchat et al., 2022).

The velocity derivatives at various temporal–spatial scales
(i.e., {u,v}{x,y}’s) are further computed over the various La-
grangian patches. A set of adjacent Lagrangian points form
an enclosed sea ice patch and start with the position on regu-
lar Eulerian grid points. Their locations change with the La-
grangian tracking, due to the sea ice drift and deformation.
At a certain time (delayed by T ), their new locations are

recorded and the displacement from their original locations
are computed as 1x’s and 1y’s. Then the average velocity u
and v for each Lagrangian point can be computed as u= 1x

1t

and v = 1y
1t

, respectively. The spatial velocity derivatives of
the Lagrangian patch are computed with the patch’s area (A)
and the line integral of velocity over its outer boundary, fol-
lowing Kwok et al. (2008) and Rampal et al. (2019). Details
of the computation are further covered in Appendix B.

Given the total deformation rates of all sea ice patches,
we compute the average value of ε̇total’s within the similar
spatial scale (L=

√
A). In particular, the qth order of ε̇total’s,

computed as ε̇qtotal’s, along with their average values, is also
computed for q ∈ {0.5,1,1.5,2,2.5,3}. By the scaling law
(Marsan et al., 2004), under the spatial scale of L and the
temporal scale of T , we have〈
ε̇q (T ,L)

〉
∼ T −α(q) (4)〈

ε̇q (T ,L)
〉
∼ L−β(q), (5)

where α(q) and β(q) are the structure functions of the tem-
poral and the spatial scaling. For a specific value of q, we
carry out the linear fitting of 〈ε̇q (T ,L)〉 with respect to T (or
L) to estimate the value of α (or β). For the observed multi-
fractal deformation of the sea ice (Marsan et al., 2004), we
witness convex structure functions for both α(q) and β(q)
with respect to q. A generalized analysis framework with a
non-fixed degree of multifractality for the sea ice formation is
also available (Weiss, 2008; Bouchat et al., 2022). For com-
parison, the forms in Eqs. (6) and (7) also assume the under-
lying multi-fractal, log-normal multiplicative model. In this
study, they are adopted because their quadratic form is suf-
ficient for capturing the convex shape of the structure func-
tions (Marsan et al., 2004; Rampal et al., 2019). Correspond-
ingly, α(q) and β(q) can be fitted as follows, with the fitted
parameters of a and c both larger than 0.

β(q)= a · q2
+ b · q (6)

α(q)= c · q2
+ d · q (7)

In order to evaluate the simulated sea ice deformation, we
deploy a Lagrangian point at the center of each grid cell
for every model day at the time of 00:00. The maximum al-
lowed lifespan of each Lagrangian point is 30 d. As a con-
sequence, the temporal scaling of up to 30 d can be stud-
ied (i.e., the maximum value of T at 30 d). The model regu-
larly reports the location of every Lagrangian point every 6 h
(i.e., the minimum value of T at 6 h). Both parameters can
be configured at the compile time of the CICE model. The
model grid’s native resolution in the Arctic is about 7.3 km.
Given that the effective resolution is coarser (Xu et al., 2021),
we evaluate the deformation at the spatial scale from 30
to 480 km (4 times to 64 times the grid’s resolution). For
the scaling analysis, we limit the initial locations of all La-
grangian points to be at least 400 km away from land (i.e.,
within the outlined region in Fig. 10). The regions near the
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coast and the continental shelf break, where constant defor-
mation features persist, are therefore excluded from the scal-
ing analysis.

After the model’s spin-up, we output a whole winter’s
Lagrangian tracking results, together with the daily mean
Eulerian fields of the sea ice velocity and the deforma-
tion. Furthermore, we also study the difference between the
Lagrangian-tracking-based scaling analysis and that based
on the temporal–spatial mean fields of the model output at
Eulerian locations.

3.3.2 Spatial scaling

We carry out spatial scaling analysis for two typical periods
during the winter, focusing on four typical temporal scales:
1, 3, 10 and 30 d. Figures 11 and 12 show the results around
20 December and 6 February, respectively. At q = 1 and 1 d
scale, the spatial scalings of sea ice deformation are both
very shallow: β = 0.0623 and 0.121, respectively. This pe-
riod of 2 d corresponds to different strengths and depths of
the Beaufort High and slightly different Arctic Oscillation in-
dices, and consequently the drift and deformation fields are
distinct (see Figs. 6 and 11 of Xu et al., 2021). At different
orders of momentum, the mean deformation rates all follow
the power-law scaling. On higher orders (q > 1), large defor-
mation events are more dominant in the mean deformation
rate, corresponding to steeper scaling (i.e., larger values of
β). Furthermore, the value of β grows nonlinearly with q.
With the increase in the moment order, the deformation rate
decreases faster with respect to the increase in the spatial
scale (L). Correspondingly, the convex shape of β(q) indi-
cates that the model simulates multi-fractal sea ice deforma-
tion.

For the period of study surrounding 20 December, at larger
temporal scales from 1 to 30 d, the average deformation rates
decrease at all spatial scales and moments of order. More im-
portantly, the value and the shape of β(q) also change signifi-
cantly with the temporal scale. At q = 1 and the 1 d temporal
scale, the value of β is 0.0623. For larger temporal scales,
the mean deformation rate gradually decreases, which also
applies to the structure function of β. In particular, the con-
vexity of β(q), indicated by the fitted value of a, decreases
drastically from 0.137 (1 d) to 0.064 (30 d). The change in
a indicates that there is a strong coupling between the spa-
tial and temporal domain for the sea ice deformation. Similar
results hold for the period around 6 February, with the two
following major differences: (1) a more convex β(q) around
6 February than 20 December and (2) a faster decrease in
a with respect to T (i.e., the temporal scale). The most sig-
nificant drop in a occurred from the 3 to the 10 d scale for
6 February (from 0.151 to 0.101). For comparison, that for
20 December is between 10 and 30 d (from 0.093 to 0.064).
Regarding the differences between the two periods, we con-
jecture that the process-dependent deformations are the ma-
jor cause, including the strength of the spatial–temporal cou-

pling. Further analysis is needed for the attribution of these
differences to various factors, including the sea ice status, its
deformation history and the forcings.

For comparison, we also show the results based on Eule-
rian deformation fields in both Figs. 11 and 12, including the
power-law fittings and the structure functions of β(q). The
method details are introduced in Appendix B. For both pe-
riods of study, the scaling analysis using Lagrangian track-
ing results shows steeper β functions with higher convex-
ity across all temporal scales (i.e., larger values of a). For
6 February, the difference between the two is more pro-
nounced. Note that the scaling analysis should be carried
out based on the Lagrangian perspective. The objective of
the comparisons is to demonstrate that there are systematic
differences in the scaling analysis when using the Eulerian
model outputs. The quantitative differences in the deforma-
tion rates may arise from (1) the deformation events being
misaligned between the Eulerian and the Lagrangian per-
spectives and (2) the secondary effect of changing shapes and
scales when the sea ice deforms within the Lagrangian per-
spective, which is not captured by the Eulerian framework.

3.3.3 Temporal scaling and spatial–temporal coupling

For the temporal scaling analysis, we focus on the spatial
scale of the model’s effective resolution (L= 22 km). Fig-
ure 13 shows the results for the outlined region in Fig. 10
in the month of December (left) and February (right). The
analyzed temporal scale is in the range between 1 and 30 d.
Similar to the spatial scaling results, the power-law scaling
is witnessed for the temporal scaling (top panels of Fig. 13).
Also, convex structure functions of α(q) are present for both
months, with the fitted value of c as 0.063 and 0.059, respec-
tively. These results indicate that the model also simulates
multi-fractal sea ice deformation in the temporal domain.

Evidently, the power-law scaling at sub-daily scales is
much shallower than that between 1 and 30 d. Similar behav-
ior of the sea ice is observed in Oikkonen et al. (2017), which
covers the temporal scale from about 10 min. We consider the
shallower scaling in the simulations to be qualitatively con-
sistent with the observation. However, although the model’s
dynamics time step is sufficiently short (see Appendix A), the
temporal resolution of the forcing dataset is much coarser, at
6-hourly. In order to fully study the simulation of the sub-
daily sea ice deformation, we need high-frequency forcing
datasets or the coupled simulation with the high-resolution
interactive atmospheric component (Zhang et al., 2023).

Similar to the analysis in Sect. 3.3.2, we also compute the
temporal-mean Eulerian deformation fields and the equiva-
lent scaling analysis. Since we only output daily model fields,
the analysis is limited to the temporal scale between 1 and
30 d (middle row of Fig. 13). Apparent power-law scaling is
witnessed for both months. However, the structure function
of α(q) with the Lagrangian tracking is systematically less
convex than that based on Eulerian fields, with lower values
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Figure 10. Daily-mean sea ice total deformation on 20 December (a) and 6 February (b) simulated by CESM and TS015. The region
subjected to further scaling analysis is outlined by the dashed blue line in each panel.

Figure 11. Spatial scaling around 20 December. Four temporal scales are evaluated: 1 d (first column), 3 d (second column), 10 d (third
column) and 30 d (last column). Results with Lagrangian tracking (triangles) are compared with those based on temporal mean Eulerian
deformation fields (dots). Black lines in each panel represent the fittings with the spatial scale of 30 km and coarser, and dashed red lines
represent the fittings with the whole resolution range of TS015 (7.3 km and coarser). The fitted parameter of a for the structure function β(q)
is shown in the legend.

Geosci. Model Dev., 17, 6847–6866, 2024 https://doi.org/10.5194/gmd-17-6847-2024



C. Ning et al.: Lagrangian tracking in CICE 6859

Figure 12. Same as Fig. 11 but for 6 February.

of c for both months (bottom row of Fig. 13). This result,
together with that in Sect. 3.3.2, shows that the scaling anal-
ysis should be carried out in the Lagrangian framework. Al-
though the scaling analysis with the model’s Eulerian mean
fields yields apparent multi-fractal sea ice deformation, the
results are systematically different from those based on the
Lagrangian analysis.

Furthermore, we conduct the initial analysis of the spatial–
temporal coupling during the whole winter (December to
March). For the region of study (outlined in Fig. 10), we uti-
lize all of the Lagrangian tracking results by forming and
tracking Lagrangian patches at various spatial and tempo-
ral scales. Specifically, for each combination of the spatial
and the temporal scale (i.e., L and T ), we form Lagrangian
patches that satisfy the following criteria: (1) they start at in-
terleaved Eulerian grid locations separated by L/2 in both
directions, and (2) the time difference between their start-
ing time and 0:00 of 1 December is separated by n · T/2,
where n ∈ {0,1,2,3, . . .}. With these two criteria, we in effect
split the Lagrangian tracking results into sea ice Lagrangian
patches with 50 % temporal and spatial overlapping. As a re-
sult, not only do we attain full coverage of the study area/pe-
riod, but also we avoid potential sampling issues associated
with the changing weather regimes.

The relationship between the curvature parameter of the
spatial (temporal) scaling structure function and the temporal

(spatial) scale is shown in Fig. 14a (b). There is evident cou-
pling between the spatial domain and the temporal domain,
with decreased curvature of the spatial (temporal) structure
function at larger temporal (spatial) scales. In particular, for
the temporal scaling, there is a good fit of the curvature pa-
rameter c to the power law (Fig. 14b), which is consistent
with various estimations based on in situ and satellite-based
remote sensing observations (Rampal et al., 2008; Marsan
and Weiss, 2010). However, for the spatial scaling, the rela-
tionship of a to the temporal scale is much flatter and, in par-
ticular, less convex for a power-law fit (Fig. 14a). We note
that during different periods of the winter, the sea ice drift
and deformation patterns are highly heterogeneous (due to
changing weather), with the sea ice conditions undergoing
significant changes. For example, the spatial scaling expo-
nent shows large temporal variability (Rampal et al., 2019)
and is likely linked to the atmospheric forcing patterns (Xu
et al., 2021). Therefore, we adopt another fitting with the log-
quadratic form: y = p · log(x)2+ q. This new form yields a
much higher fitting to the relationship between the curva-
ture parameter a and the temporal scale T (R2 from 0.882 to
0.989). The efficacy of the power-law fitting, as well as the
full analysis of the spatial–temporal coupling as simulated
by CICE, is beyond the scope of this study. In particular, the
sensitivity to the sea ice rheology model and other dynamic
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Figure 13. Temporal scaling for December (a, c, e) and February
(b, d, f) at the spatial scale of 22 km (i.e., 3× the original grid res-
olution). Similar to Figs. 11 and 12, the results with Lagrangian
tracking and Eulerian mean deformation fields are shown by trian-
gles and dots, respectively. Note that the fittings are only computed
for 1 d or coarser temporal scales (indicated by the abscissa range
of the fitted lines).

processes is planned for both CICE on its own and coupled
experiments with CESM.

4 Summary and discussion

We design and implement the online Lagrangian tracking in
the sea ice model of CICE. It is incorporated in the dynamics
process of CICE and fully supports the domain decompo-
sition and parallel computing in CICE. Compared with the
common practice of offline sea ice tracking (Bouchat et al.,
2022; Sumata et al., 2023), the online tracking has several ad-
vantages. First, the offline tracking usually requires the stor-
age of high-frequency sea ice drift data, which is not needed
for the online tracking. Second, since the online tracking is
carried out per dynamics step, the tracking error is mini-
mal. For offline tracking, the tracking uncertainty arises from
the relatively coarse temporal-mean (e.g., daily) sea ice drift
fields, as well as the variable tracking frequency (see exam-
ples in Bouchat et al., 2022). Moreover, the study of sea ice

dynamics at small temporal scales (such as sub-daily mo-
tions) with offline tracking requires an even finer resolution
of the stored sea ice drift. The study of these processes is
readily supported by the online tracking (see Fig. 13 and
also Oikkonen et al., 2017). Computationally, the Lagrangian
tracking only induces a small overhead to the overall simu-
lation. For example, for the daily deployment of Lagrangian
points in the 7 km experiment in Sect. 3, there are on aver-
age 30 to 35 million active Lagrangian points, and the extra
computational overhead is less than 3 %. Therefore, the cur-
rent implementation is capable of supporting high-resolution
simulations with a large quantity of Lagrangian points.

In Sect. 3.3 we carried out the spatial and the temporal
scaling analysis with the Lagrangian tracking based on high-
resolution simulation during winter. As shown, the CICE
model simulates multi-fractal sea ice deformation fields both
spatially and temporally; it also simulates the tight coupling
between the spatial and the temporal domain. The scaling
properties of the simulations are consistent with observed
statistics based on high-resolution synthetic aperture radar
satellite payloads. In particular, we compare the Lagrangian-
based scaling statistics with the counterparts based on Eule-
rian model outputs. Results highlight the importance of us-
ing Lagrangian-based diagnosis for the scaling analysis: al-
though the analysis based on Eulerian output also yields con-
vex structure functions, the fitted convexity parameters are
significantly different from those based on the Lagrangian
perspective.

In order to compare with the observed sea ice drift and de-
formation (e.g., RGPS) as well as the scaling statistics, we
plan to carry out high-resolution, atmospherically forced his-
torical simulations with the CICE model or CESM assisted
with the Lagrangian tracking. Consequently, fine tuning of
the sea ice model parameters is needed for (1) the optimiza-
tion of the simulation of various sea ice parameters such
as sea ice thickness and (2) improved comparability to the
observed sea ice deformation. In particular, in Bouchat and
Tremblay (2020), the authors proposed a new estimation of
deformation rates regarding their uncertainties. Better con-
sistency with model simulations is attained with further in-
corporation of the model simulation and tracking uncertain-
ties (Bouchat et al., 2022). We plan to incorporate the method
and carry out a systematic evaluation of the model’s capabil-
ity to simulate the observed multi-scale sea ice deformation.
In particular, the sensitivity to the sea ice rheology is a key
aspect of the planned future work (Tsamados et al., 2013;
Bouchat et al., 2022).

In this first version of the Lagrangian tracking in CICE,
virtual buoys are supported, which can be deployed at regu-
lar time intervals and in regular locations. Section 3.2 shows
that with the pairing between the physical buoys and the
respective virtual buoys, the simulated tracks are generally
consistent with observations. For future development, we
plan to support the deployment of physical buoys in the
simulation at prescribed times and locations so that we can
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Figure 14. Temporal–spatial coupling (December–March) analysis of Lagrangian tracking deformation fields: the curvature of the structure
function of the spatial scaling exponent as a function of temporal scale is shown in panel (a), and the curvature of the structure function of the
temporal scaling exponent as a function of spatial scale is shown in (b). The solid and dashed lines represent the logarithm-quadratic fitting
of y = p · (log(x))2+ q and the power-law fitting of y = p · xq , respectively. The red (black) line in the first panel shows the fitting with all
the spatial scales (the scales with the model’s effective resolutions). The R2 values of each fitting are shown at the top of each panel.

make better comparisons with observational datasets such as
IABP. Moreover, key Lagrangian-tracking-related parame-
ters (in Appendix B) are planned to be configured through
a subset of the namelist in the future development plan. Fi-
nally, the current design of Lagrangian tracking is based
on the Arakawa-B grid sea ice dynamics and the transport
remapping scheme. For the compatibility with ongoing de-
velopment in CICE6 (https://github.com/CICE-Consortium/
CICE/releases, last access: 8 September 2024), we also plan
to incorporate flux-form-based Lagrangian tracking, which
is suitable for Arakawa-C grid sea ice dynamics (Lemieux
et al., 2024).

The Lagrangian tracking can be used for a variety of sci-
ence questions and applications related to sea ice. Large-
scale Lagrangian surveys can be carried out in the simu-
lations, complementary to buoys’ measurements, which are
limited in terms of spatial and temporal coverage. For exam-
ple, virtual buoys can be deployed in historical simulations,
which enables the systematic study of the thermodynamic
and dynamic history of the sea ice (Sumata et al., 2023).
Furthermore, CICE is widely adopted for the high-resolution
sea ice operational systems (Smith et al., 2016; Yang et al.,
2020). The online tracking of sea ice in key regions can be
carried out for sea ice forecasts, in order to support opera-
tions and ship navigation in polar waters.

Appendix A: Model configuration and parameters of
CICE

CICE (version 5.0) is configured with five discretized thick-
ness categories for the ice thickness distribution (ITD) and
eight and three layers for sea ice and its snow cover, respec-
tively. The elastic–viscous–plastic (EVP) rheology model
is used for all experiments. The ice strength parameteriza-
tion follows that in Rothrock (1975), which relates the ice
strength to the gain of the potential energy during the ridging
process. The ridging–rafting parameterization uses an expo-
nential distribution form of the ridged ice in the ITD. For
sea ice thermodynamics, the mushy-layer physics parameter-
ization is adopted (Turner et al., 2013). The delta-Eddington
(D-E) scheme is used for the radiation processes (Holland
et al., 2012). Table A1 lists the key parameters of the model.
The parameters are the same across all numerical experi-
ments by default, except the dynamics time step and the EVP
sub-cycling count (NDTE, number of time steps (DT) for the
elastic waves). These two parameters are set differently be-
tween the experiments with GX1V6 and those with TS015.
The shorter time step is adopted for TS015 to ensure numer-
ical stability, and the value of NDTE is further enlarged for
the numerical convergence of the EVP rheology (Lemieux
et al., 2010; Xu et al., 2021).
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Table A1. Major model parameters of CICE.

Parameter Value Notes

Time stepping

DT 3600 s (GX1V6) and 1800 s (TS015) Time step for sea ice dynamics
NDTE 120 (GX1V6) and 960 (TS015) EVP subcycling count

Parameterization: ridging and redistribution

a∗ 0.5 e-folding scale for participation function during ridging
µrdg 4

√
m e-folding scale for redistribution

Ice strength parameterization (R75)

Cf 17 Parameter for potential/frictional energy during ridging

Albedo parameterization (CCSM3, or default)

albicei 0.45 Albedo at infrared spectral band for bare ice
albicev 0.75 Albedo at visible spectral band for bare ice
albsnowi 0.73 Albedo at infrared spectral band for snow surface
albsnowv 0.98 Albedo at visible spectral band for snow surface

Shortwave parameterization (delta-Eddington)

ρs 330 kg m−3 Snow density
Rfresh 100 µm Freshly fallen snow grain radius
Rnonmelt 500 µm Seasoned snow grain radius
Rmelt 1000 µm Melting snow grain radius

Thermodynamics parameterization (mushy layer & MU71)

a_rapid_mode 0.5× 10−3 m Brine channel diameter
aspect_rapid_mode 1 Brine convection aspect ratio
dSdt_slow_mode −1.5× 10−7 m s−1 K−1 Brine drainage strength
phi_c_slow_mode 0.05 Critical liquid fraction
phi_i_mushy 0.85 Solid fraction at ice bottom

Appendix B: Scaling analysis with Lagrangian tracking
and Eulerian fields

We carry out the scaling analysis of the sea ice deformation
at various spatial and temporal scales (Rampal et al., 2019;
Bouchat and Tremblay, 2020). The Lagrangian tracking re-
sults, as well as the model outputs on Eulerian grids, are used
to compute the mean sea ice deformation rates at the corre-
sponding scales. A set of Lagrangian points form an enclosed
Lagrangian patch, for which we compute the spatial deriva-
tives of velocities (i.e., ux , uy , vx and vy) as follows:

ux =
1
A

∮
udy

uy =−
1
A

∮
udx

vx =
1
A

∮
vdy

vy =−
1
A

∮
vdx. (B1)

These derivatives are used to compute the deformation
rates as in Eqs. (2) to (3). The line integral in Eqs. (B1) is
carried out over the Lagrangian patch that originally cov-
ers a regular rectangular domain. Then each point on the
patch’s outer boundary, called a vertex, has its location of
(x
j
i ,y

j
i ) at the time of tj and the new location of (xj+1

i ,y
j+1
i )

at the time of tj+1. Figure B1 shows the schematics for
a Lagrangian patch with four corner points. We can esti-
mate its mean velocity (ui,vi) as the ratios of the displace-
ments to the time difference: (xj+1

i −x
j
i )/(tj+1− tj ) and

(y
j+1
i −y

j
i )/(tj+1−tj ). Furthermore, in order to compute the

line integrals at time t , we compute the mean velocity on each
edge as follows (for the example in Fig. B1):

ux =
1
A

4∑
i=1

1
2
(ui+1+ ui)(yi+1− yi) , (B2)

where A is the area the set of Lagrangian points covers:

A=
1
2

4∑
i=1

(xiyi+1− xi+1yi) . (B3)
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In order to complete the line integral, we set x5 = x1 and,
similarly, the corresponding values of y5, u5 and v5. For
larger spatial scales, we start with a larger set of Lagrangian
points that have their original locations on the Eulerian grid
locations and cover a locally rectangular area. Then, the ve-
locities, their spatial derivatives and the line integrals are
computed, followed by the computation of the deformation
rates. This is equivalent to the aggregation of all the small-
est rectangular units of four Lagrangian points that constitute
the whole rectangular area. Note that at the beginning of each
model day, we deploy the Lagrangian points on all Eulerian
grid locations, so that we attain full spatial and temporal cov-
erage, from the daily scale and above. Additionally, we fur-
ther exclude the cases with the size change by a factor of 2
or larger.

For comparison, we also compute the equivalent defor-
mation rates based on Eulerian fields. We directly obtain
the temporally mean velocities on each Eulerian grid lo-
cation and compute the velocity gradients correspondingly
(Fig. B1b). Different spatial scales correspond to the various
areas that are associated with different rectangular grid cells,
which do not change throughout the simulation.

Figure B1. Schematics of the scaling analysis with Lagrangian tracking and the equivalent Eulerian model outputs. The locations of Eulerian
and Lagrangian points at the initial time t0 are shown in panel (a), and those at time t1 are shown in panel (b) and (c), respectively. The
spatial scale L is defined as the square root A, which is the area of the region covered by the four Lagrangian/Eulerian points. Note that
in our analysis, the initial locations of the Lagrangian points are the regular, Eulerian grid points. For comparison, on the same timescale
(i.e., T = t1− t0), we compute the model-output mean velocities on the Eulerian grid points, as well as the displacement-based velocity
estimations for Lagrangian points.

For both Lagrangian statistics and the Eulerian counter-
parts, we only compute the deformation field that is con-
tained by the areas covered at the coarsest spatial scale. This
practice ensures that there is no preferential sampling of the
deformation events.

A wide range of both spatial and temporal scales are
adopted for the computation of the deformation rates. The
statistics of ε̇(T ,L), which is the deformation rate at the spa-
tial scale of L and the temporal scale of T , include its qth or-
der (i.e., ε̇q(T ,L)), and the mean values are computed over
the studied area. It is worth noting that the spatial scale of
L varies within the studied domain, as well as with time for
the Lagrangian tracking. Therefore, both the mean value of
ε̇q(T ,L)’s and that of the spatial scales of L’s are used for
the scaling analysis.
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Appendix C: Major parameters of Lagrangian tracking

Table C1 shows the major user-specified parameters for run-
ning the Lagrangian tracking in CICE. In the current imple-
mentation, they are configured at the compile time of the
model. In the future, we plan to implement certain param-
eters to be configurable through the namelist.

Table C1. User-prescribed parameters of Lagrangian tracking.

Parameter Type Default value Description

LAGR_BUFFER_SIZE_PARAM Integer 100 000 Size of the pool of Lagrangian points
LAGR_BNDY_SIZE_PARAM Integer 400 Per-cell maximum count of migrating Lagrangian

points
lagr_aice_thres Real 0.05 Threshold value of SIC for detecting melt events

LAGR_REPORT_INTERVAL Real 18 000 s The interval of reporting Lagrangian points’ status

LAGR_ACTIVATION_INTERVAL Real 86 400 s Virtual buoy activation interval (in seconds)
LAGR_ACTIVATION_DNSTY Real 1.0 Deployment density of virtual buoys (one per cell)
LAGR_VIRTUAL_BUOY_MAX_LIFE_DURATION Real 2 592 000 s Maximum lifetime of virtual buoys (in seconds)

Code and data availability. The original codebase of CESM (ver-
sion 2, https://www.cesm.ucar.edu/models/cesm2, UCAR, 2024)
and the associated CICE model (version 5) are available
through https://github.com/ESCOMP/CESM/tree/release-cesm2.2.
2 (last access: 20 January 2024). The CESM code is also
archived at https://doi.org/10.5281/zenodo.12616647 (Ning and
Xu, 2024). The sea ice concentration data are available at
NSIDC through https://noaadata.apps.nsidc.org/NOAA/G02135/
(NSIDC, 2024). The sea ice thickness dataset of PIOMAS
was downloaded from https://psc.apl.uw.edu/research/projects/
arctic-sea-ice-volume-anomaly/data/ (Polar Science Center, 2024).
The buoy tracks from the IABP are downloaded from https://iabp.
apl.uw.edu/Data_Products/BUOY_DATA/3HOURLY_DATA/ (In-
ternational Arctic Buoy Programme, 2024).

The Lagrangian tracking in CICE (version 5) and the sample
Lagrangian tracking output are available at https://doi.org/10.5281/
zenodo.12616647 (Ning and Xu, 2024). The CICE namelist used in
the numerical simulations is also included.

The animation produced with the Lagrangian tracking with the
1° grid under NYF dataset is accessible in the Supplement of this
article.

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-6847-2024-supplement.
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