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Abstract. Valid simulation results from global hydrologi-
cal models (GHMs), such as WaterGAP3, are essential for
detecting hotspots or studying patterns in climate change
impacts. However, the lack of worldwide monitoring data
makes it challenging to adapt GHM parameters to enable
such valid simulations globally. Therefore, regionalization
is necessary to estimate parameters in ungauged basins.
This study presents the results of regionalization methods
for the first time applied to the GHM WaterGAP3. It aims
to provide insights into (1) selecting a suitable regional-
ization method for a GHM and (2) evaluating its impact
on runoff simulation. In this study, four new regionaliza-
tion methods have been identified as appropriate for Water-
GAP3. These methods span the full spectrum of methodolo-
gies, i.e., regression-based methods, physical similarity, and
spatial proximity, using traditional and machine-learning-
based approaches. Moreover, the methods differ in the de-
scriptors used to achieve optimal results, although all uti-
lize climatic and physiographic descriptors. This demon-
strates (1) that different methods use descriptor sets with
varying efficiency and (2) that combining climatic and phys-
iographic descriptors is optimal for regionalizing worldwide
basins. Additionally, our research indicates that regionaliza-
tion leads to spatially and temporally varying uncertainty in
ungauged regions. For example, regionalization highly af-
fects southern South America, leading to high uncertainties
in the flood simulation of the Río Deseado. The local im-
pact of regionalization propagates through the water system,
also affecting global estimates, as evidenced by a spread
of 1500 km3 yr−1 across an ensemble of five regionalization
methods in simulated global runoff to the ocean. This dis-
crepancy is even more pronounced when using a regional-

ization method deemed unsuitable for WaterGAP3, resulting
in a spread of 4208 km3 yr−1. This significant increase high-
lights the importance of carefully choosing regionalization
methods. Further research is needed to enhance the predic-
tor selection and the understanding of the robustness of the
methods on a global scale.

1 Introduction

Global hydrological models (GHMs) are developed and ap-
plied worldwide, e.g., to detect hotspots and examine pat-
terns of climate change impacts on the terrestrial water cycle
(Barbarossa et al., 2021; Boulange et al., 2021). Valid model
results are a prerequisite for drawing robust conclusions. For
valid modeling results, it is beneficial to adjust the param-
eter values to adapt the models to different basin processes
(Gupta et al., 1998). This adaptation is usually modified and
evaluated (in a loop) by comparing the simulated model out-
put, often discharge, with the monitored data. However, this
parameter adjustment for GHMs is challenging due to the
lack of global monitoring data. Consequently, parameter ad-
justment for GHMs can be based not only on monitored data
(i.e., calibration) but also on the estimation of parameter val-
ues for ungauged basins (i.e., regionalization).

Regionalization defines the estimation of model parame-
ters for ungauged basins (Oudin et al., 2008), usually based
on information from gauged basins (Oudin et al., 2010). Re-
gionalization methods generally follow the same principle:
basin characteristics (e.g., physiographic and/or climatic) are
linked to hydrological characteristics and can thus be used to
estimate parameter values. Various regionalization methods
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exist, and no overall preferred method has been found (Ayzel
et al., 2017; Pool et al., 2021). In contrast, the optimal region-
alization method may differ, for example, regarding avail-
able information (Pagliero et al., 2019) or model structures
(Golian et al., 2021). Therefore, different methods should be
tested to find an optimal regionalization method for a specific
use case (e.g., Qi et al., 2020).

Evaluation is needed to assess different regionalization
methods. The evaluation of regionalization methods is par-
ticularly challenging because they are usually applied when
there is a lack of monitoring data. Therefore, regionalization
studies often treat gauged basins as ungauged and perform
leave-one-out cross-validation (e.g., Chaney et al., 2016) or
split-sample tests (e.g., Beck et al., 2016; Nijssen et al., 2000;
Yoshida et al., 2022). While at the mesoscale, this evaluation
is already an integral part (e.g., McIntyre et al., 2005; Para-
jka et al., 2005; Oudin et al., 2008; Yang et al., 2020), but
this is sometimes not the case in global or continental stud-
ies (e.g., Müller Schmied et al., 2021; Widén-Nilsson et al.,
2007). Another reasonable evaluation strategy is the concept
of a benchmark to beat (Schaefli and Gupta, 2007; Seibert,
2001). Applying a benchmark to beat supports a comprehen-
sive evaluation of whether a new approach is functional, e.g.,
better than a straightforward and thus transparent method or
better than a predecessor. To the authors’ knowledge, such a
benchmark to beat has never been used to evaluate innova-
tions in regionalization at a global scale.

In general, regionalization methods can be divided into
two categories based on the parameter estimation strategy:
(1) regression based and (2) distance based (He et al., 2011).
Regression-based methods derive the relationship between
basin characteristics and model parameters through fitted re-
gression models. These mathematically defined relationships
are further applied to estimate model parameters of ungauged
basins (e.g., Kaspar, 2004; Müller Schmied et al., 2021). A
significant drawback of regression-based regionalization is
the difficulty of incorporating parameter interdependencies
(Poissant et al., 2017), as regression-based approaches of-
ten assume that the dependent variables, i.e., the model pa-
rameters, are not correlated (Wagener et al., 2004). Distance-
based approaches transfer complete parameter sets from sim-
ilar or nearby donor basins to ungauged basins (e.g., Beck et
al., 2016; Nijssen et al., 2000; Widén-Nilsson et al., 2007).
Using an ensemble of donor basins, e.g., by averaging the
parameter values or model outputs, can improve the perfor-
mance of such methods (e.g., Arsenault and Brissette, 2014).
A significant disadvantage of such methods is the clustering
problem of ungauged basins, i.e., the unequal distribution of
gauging stations worldwide (Krabbenhoft et al., 2022). Thus,
basins exist where distance-based approaches will use non-
comparable basins to transfer parameter values due to the
lack of close basins.

Recent advances have implemented machine-learning-
based techniques in the context of regionalization. For ex-
ample, Chaney et al. (2016) used regression trees as an alter-

native to least-squares regression to estimate parameter val-
ues in ungauged basins. Pagliero et al. (2019) explored su-
pervised and unsupervised clustering methods to define the
similarity of basins to transfer parameter sets. To the authors’
knowledge, no study has compared several traditional region-
alization methods with machine-learning-based methods for
a GHM on a global scale.

Some regionalization methods do not make a clear dis-
tinction between calibration and regionalization. For exam-
ple, Arheimer et al. (2020) applied a basin grouping before-
hand. Then, they jointly calibrated the group members to de-
fine representative parameter sets. Subsequently, the repre-
sentative parameter sets are transferred to other basins based
on grouping rules. Another approach defines so-called trans-
fer functions (Samaniego et al., 2010) and calibrates meta-
parameters instead of the model parameter values (Beck et
al., 2020; Feigl et al., 2022). These methods, where region-
alization is part of the calibration process, often require a
change in the calibration process itself, which is challeng-
ing for GHMs (Schweppe et al., 2022) due to, for example, a
lack of code flexibility (e.g., Cuntz et al., 2016).

This study proposes an improved regionalization method
for the state-of-the-art GHM WaterGAP3 (Eisner, 2016). It
compares traditional regionalization methods with machine-
learning-based methods and uses a benchmark to beat and an
ensemble of split-sample tests to evaluate the applied meth-
ods. Further, global runoff simulations are compared to an-
alyze the impact of regionalization methods. The overall re-
search topic is evaluating and selecting regionalization meth-
ods for a GHM. Specifically, the study has two objectives. It
aims

1. to propose an improved regionalization method for Wa-
terGAP3 and

2. to evaluate the impact of regionalization methods on
global runoff simulations.

2 Data and methods

2.1 The model: WaterGAP3

The GHM WaterGAP3 simulates the terrestrial water cycle,
including the main water storage components and a sim-
ple storage-based routing algorithm. It is a fully distributed
model that operates on a 5 arcmin grid and simulates at a
daily time step. A more detailed description of the model can
be found in Eisner (2016).

In WaterGAP3, most model parameter values are set a pri-
ori, e.g., using lookup tables for albedo or rooting depth.
Only one parameter, γ , is calibrated, which is part of the soil
moisture storage in which runoff generation processes are
present. The model equation for γ , which originates from the
HBV-96 model (Lindström et al., 1997), is given in Eq. (1)
(see ll. 1223–1224 in daily.cpp of the published model from
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Flörke et al., 2024). Generally, higher values of γ lead to
lower runoff volumes, while lower values of γ lead to higher
runoff volumes. The model parameter is calibrated per basin
within the range of 0.1 to 5. The objective function of the
calibration is to minimize the deviation between the mean
annual simulated and observed river discharge; i.e., the cali-
bration aims to reduce the error in discharge volume. Given
the monotonic relationship between the model’s parameter
and the optimization function, a simple search algorithm is
applied: the parameter space is divided into rectangles, which
are subsequently subdivided into smaller rectangles, depend-
ing on the direction γ should be modified to achieve closer
alignment with the optimization target. The calibration re-
sults in one calibrated γ value between 0.1 and 5 per basin.
After the calibration, a correction is applied to account for
high errors in the mass balance, e.g., due to inaccuracies in
global meteorological forcing products. This correction is
only applicable to gauged basins. It is, therefore, neglected
in this study.

R = Pt ·

(
Ss

Ss,max

)γ
, (1)

where R is the daily runoff, Pt is the daily throughfall, Ss
is the actual soil storage, Ss,max is the maximal soil storage
(given as a global map in Appendix A), and γ is the calibra-
tion parameter.

Traditionally, the regionalization process in WaterGAP3 is
a simple multiple linear regression (MLR) approach to esti-
mate the calibration parameter γ for ungauged basins (e.g.,
Döll et al., 2003; Kaspar, 2004). The drawback of MLR re-
garding parameter interaction can be neglected: as there is
only one parameter to estimate, parameter interference does
not exist. Instead, the approach offers the advantage of a
lightweight, transparent application that can be quickly re-
vised and adapted.

2.2 Model data

WaterGAP3 requires various input data, such as soil in-
formation, topography, or information on open freshwater
bodies. This study uses the same input data as Kupzig et
al. (2023). For meteorological forcing, we use the global data
set EartH2Observe, WFDEI, and ERA-Interim data Merged
and Bias-corrected for ISIMIP (EWEMBI; Lange, 2019).
This data product includes daily global forcing data with a
spatial resolution of 0.5 ° (latitude and longitude) that cover
a period from 1979 to 2016. Specifically, WaterGAP3 uses
the following forcing information from the EWEMBI data
set as input:

– daily mean temperature,

– daily precipitation,

– daily shortwave downward radiation, and

– daily longwave downward radiation.

The WaterGAP3 calibration requires observed monthly river
discharge data. These discharge data are subsequently trans-
formed into annual discharge sums and used as a bench-
mark in the calibration procedure. In this study, we used
discharge data from 1861 stations that were manually veri-
fied (Eisner, 2016). To get the best data available, we have
updated all available station data with recent data from The
Global Runoff Data Centre (GRDC, 2020). All stations have
at least 5 years of complete (monthly) station data between
1979 and 2016. For each station, a contribution area, i.e.,
a basin, is defined with the gridded flow direction informa-
tion obtained from WaterGAP3, based on the HydroSHEDS
database (Lehner et al., 2008).

The 1861 basins are calibrated using the above-described
standard calibration approach for WaterGAP3. Following the
standard calibration procedure, some basins still have in-
sufficient model performance. In this context, we define a
monthly Kling–Gupta efficiency (KGE; Gupta et al., 2009)
below 0.4 or more than a 20 % bias in monthly flow as insuf-
ficient model performance. The expression for the KGE is
given in Eq. (2). We underscore the importance of minimiz-
ing the error in discharge volume by defining it as an addi-
tional criterion corresponding to the optimization target dur-
ing calibration. Basins not fulfilling the defined conditions
regarding bias and KGE are neglected in further analysis to
avoid high parameter uncertainty due to errors in input data,
model structure, or discharge data affecting the analysis. Fur-
ther, we have excluded all basins with less than 5000 km2

(inter-)basin size from the next upstream basin. We assume
that this inter-basin size is large enough to assume a certain
degree of interdependency between nested basins. In total,
933 out of 1861 basins are selected for regionalization (626
are neglected due to insufficient model performance, and 302
are neglected due to inadequate basin size).

KGE= 1−

√
(1− r)2+

(
1−

σy

σx

)2

+

(
1−

µy

µx

)2

, (2)

where r is the Pearson correlation coefficient between ob-
served discharge x and simulated discharge y, σ denotes the
corresponding standard deviation, and µ the corresponding
mean of observed and simulated discharge.

Figure 1a depicts the worldwide calibrated basins, high-
lighting gauged and ungauged regions. Whereas most parts
of North and South America are gauged, Africa and Aus-
tralia remain largely ungauged. A cluster of gauged basins
is present in central Europe and in eastern Asia. Gauged re-
gions with insufficient model performance are mainly in the
Mississippi River basin, southern Africa, Australia, and large
parts of Brazil. These regions are known to be challenging for
GHMs (see e.g., Fig. 8b in Stacke and Hagemann, 2021).

Figure 1b shows the calibrated values for γ . It can be
seen that the calibrated values tend to be at the upper and
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lower bounds of the parameter space. This behavior is al-
ready known (see Fig. 4b in Müller Schmied et al., 2021).
A brief sensitivity analysis and discussion of the calibration
parameter are included in Appendix B. The results of this
analysis indicate that the clustering of the calibrated param-
eter value is not related to an inappropriate selection of the
parameter bounds but instead to the absence or insufficient
representation of processes. Thus, the clustering of the cali-
brated values does not indicate an inadequate selection of the
parameter bounds but highlights the necessity of improving
the model structure and the calibration strategy for Water-
GAP3. However, this study focuses solely on analyzing and
implementing regionalization methods. It does not aim to en-
hance the model structure or to change the calibration pro-
cedure of WaterGAP3. Future studies are needed to achieve
the latter, as WaterGAP3 contains many hard-coded param-
eters or parameters defined by lookup tables that need to be
analyzed to identify and adjust sensitive parameters more ac-
curately during calibration. Initial steps in this direction have
already been taken for WaterGAP2 in the form of a multivari-
ate and multi-objective case study in the Mississippi River
basin (Döll et al., 2024).

2.3 Basin descriptors

This study uses basin descriptors as predictors to drive
regression-based or distance-based regionalization ap-
proaches. These basin descriptors are based on data used
within the model simulation (as they are globally available).
They are aggregated to basin values using a simple mean
method to have the same spatial resolution as the calibrated
model parameter. Thus, in the case of nested basins, the inter-
basin area is used to define the basin descriptors. The selec-
tion of the predictors, i.e., basin descriptors that support the
estimation of γ , is crucial for regionalization methods (Ar-
senault and Brissette, 2014). Typically, this selection aims to
obtain the most information with the least number of pre-
dictors to (1) improve the model quality and (2) limit over-
parametrization. In this study, we use 12 basin descriptors to
develop regionalization methods; 9 of these descriptors are
physiographic, while the remaining 3 are climatic (see Ta-
ble 1). Most descriptors are not correlated (see Appendix C);
i.e., we minimize redundant information (Wagener et al.,
2004).

A descriptor subset is selected based on correlation anal-
ysis between basin descriptors and the calibrated γ value
and entropy assessment. Pearson’s correlation coefficient de-
tects linear correlation, and Spearman’s rho and Kendall’s
tau detect a non-linear correlation. Shannon entropy (Shan-
non, 1948) measures the information gain of the predictors
explaining the calibrated γ value. The higher the information
gain, the more valuable the basin descriptor is for explaining
the variation in the calibrated γ value. The analysis directly
evaluates the relationship between the calibrated parameter
and the basin descriptors, as WaterGAP3 uses only one cali-

bration parameter with a clear global optimum within the pa-
rameter space. An alternative would be to use flow character-
istics to define the basis for regionalization (e.g., Pagliero et
al., 2019). We decided to use the calibrated parameter instead
of flow characteristics as it does not need any further assump-
tion on which flow characteristics determine the model’s pa-
rameter.

Statistical information of the evaluated basin descriptors
and the corresponding correlation coefficients and informa-
tion gain are listed in Table 1. The basin descriptors demon-
strate a considerable degree of variability; e.g., the basin
size ranges from 5000 to 3 112 480 km2 with a median of
13 796 km2. The mean temperature varies from−19 to 29 °C,
and the sum of precipitation ranges from 213 to 5716 mm.
Although there is a high degree of variability in the analyzed
basin descriptors, the basin descriptors exhibit low correla-
tion coefficients with the calibrated values. For example, the
permafrost coverage shows the strongest Pearson correlation
of −0.37 (and −0.50 for Spearman’s rho). The information
gain indicates the same results as the correlation analysis;
i.e., the information gain is generally relatively low, and de-
scriptors with a higher correlation tend to have a higher in-
formation gain. For example, the mean temperature exhibits
the maximal information gain of 17.6 % and has the second-
highest correlation coefficient, with a Pearson correlation of
0.34.

In contrast to the findings of Wagener and Wheater (2006),
the correlation coefficients between the basin descriptors and
the calibrated values are relatively low, indicating a weak
relationship. One potential explanation for this discrepancy
is that Wagener and Wheater (2006) used a smaller num-
ber of basins in southeast England, with limited versatility
(e.g., regarding climate and seasonality) compared to the 933
worldwide basins used in this study. Studies using a large
number of basins likely tend to find a lower correlation be-
tween catchment attributes and model parameters (Merz and
Blöschl, 2004). Moreover, the clustered calibrated γ values
at the bounds of the valid parameter space may disturb the re-
sults of this analysis. As the calibrated value masks the effect
of multiple sources of errors, such as uncertainty in the in-
put data, model structure, or varying hydrological processes,
finding a meaningful relationship between catchment charac-
teristics and calibrated values is challenging.

Because the basis for the descriptor selection seems uncer-
tain, given the low correlation and the named constraints, we
additionally run the regionalization methods with all descrip-
tors to evaluate the descriptor selection. Further on, to as-
certain the advantage of integrating climatic descriptors, we
run the regionalization methods using either physiographic
or climatic descriptors. In total, we used four groups of basin
descriptors to implement the regionalization methods:

– “cl” – all 3 climatic descriptors;

– “p” – all 9 physiographic descriptors;
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Figure 1. (a) Map of calibrated basins, highlighting basins not used for regionalization due to insufficient model performance or inadequate
basin size and (b) the histogram of the calibrated γ values for all basins used, showing a cluster of parameter values at the parameter bounds.

Table 1. Basin descriptors – statistical information, correlation, and entropy assessment. Selected physiographic and climatic basin descrip-
tors are written in bold.

Basin descriptor Attribute information Entropy and correlation

Min Max Mean Median IG (%)∗ Pearson Spearman Kendall

Ph
ys

io
gr

ap
hi

c

Soil storage (mm) 12.405 610.469 220.805 195.778 13.07 −0.21 −0.15 −0.11
Open waterbodies (%) 0.000 63.960 5.521 1.812 5.65 −0.01 −0.08 −0.05
Wetlands (%) 0.000 63.466 4.164 0.547 5.01 −0.02 −0.13 −0.09
Size (km2) 5000 3 112 480 37 572 13 796 1.42 −0.04 −0.04 −0.03
Slope class (–) 10.057 67.756 38.668 38.364 16.60 −0.31 −0.37 −0.27
Altitude (m a.s.l.) 30.239 4765.166 591.024 394.870 9.30 −0.18 −0.28 −0.20
Sealed area (%) 0.000 12.3 0.6 0.1 4.49 0.22 0.38 0.29
Forest (%) 0.000 100.000 35.340 24.002 13.82 −0.25 −0.18 −0.14
Permafrost and glacier (%) 0.000 95.000 16.662 0.000 13.12 −0.37 −0.50 −0.40

Mean temperature (°C) −18.848 28.823 7.720 7.707 17.56 0.34 0.41 0.30

C
lim

at
e Yearly precipitation (mm) 213.6 5716.3 996.5 779.5 9.23 0.02 0.21 0.14

Yearly shortwave downward
radiation (W m−2)

1050.6 3043.2 1857.9 1759.7 15.79 0.31 0.33 0.24

∗ Information gain is given in percentage of total information content in γ , after Shannon (1948).

– “p+cl” – all 12 descriptors; and

– “subset” – 2 correlated climatic descriptors (mean tem-
perature, annual shortwave radiation) and 3 correlated
physiographic descriptors (slope class, forest percent-
age, permafrost percentage).

2.4 Regionalization methods

In our study, we test several traditional and machine-
learning-based regionalization methods against each other
and against a defined benchmark to beat to find suitable re-
gionalization methods for WaterGAP3. At the global scale,
regionalization is particularly challenging due to (1) the lack
of high-quality data, (2) the diversity of dominant hydro-
logical processes in basins, and (3) the high computational
demands of the models. Therefore, a robust regionalization
method that applies to a wide variety of basins and is not

computationally demanding should be selected for global ap-
plication.

We test three common traditional approaches and two
machine-learning-based approaches using the concepts of
spatial proximity, physical similarity, and regression-based
methods. As WaterGAP3’s model calibration is very rigid
and has only one parameter, it is not feasible to implement
and test regionalization methods that incorporate regionaliza-
tion into the calibration process, such as transfer functions. In
addition, we avoid high computational demands, as all evalu-
ated methods are applicable after the calibration, i.e., without
running the model.

As the calibration of WaterGAP3 results in a parameter
distribution with a cluster of parameter values at the param-
eter bounds, we implement a so-called “tuning” to intro-
duce information about the parameter space into regionaliza-
tion. In detail, we apply a simple threshold-based approach
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to shift the regionalized parameter values to the extremes,
i.e., γest < γ1→ γreg = 0.1 and γest > γ2→ γreg = 5.0. The
thresholds γ1 and γ2 are defined by applying the k-means al-
gorithm with three centers to the calibrated parameter values.
This clustering results in three clusters: one for low, one for
medium, and one for high γ values. Subsequently, γ1 refers
to the highest γ value of the low cluster, and γ2 refers to the
lowest γ value of a high cluster.

To evaluate the regionalization methods, we implement
an ensemble of split-sample tests. Specifically, we randomly
split the basins into 50 % gauged (for training) and 50 %
pseudo-ungauged (for testing). The split has a relatively high
percentage of pseudo-ungauged basins, accounting for many
missing gauges worldwide and for the high importance of
generalizability. We fit the methods and apply them to the
training and testing data sets. The split-sample test is re-
peated 100 times by randomly splitting the basins to account
for sampling effects.

As there is only one calibration parameter, γ , this param-
eter has a global optimum per basin. Consequently, the qual-
ity of training and testing is directly assessed by the devia-
tion between the regionalized and the calibrated value for γ .
The closer the regionalized values are to the calibrated ones,
the more accurate the prediction. We assess the prediction
accuracy by the logarithmic version of the mean absolute er-
ror (logMAE) shown in Eq. (3) to account for the decreas-
ing sensitivity of γ for higher values (see Appendix B). The
lower the logMAE, the better the prediction; a zero value in
logMAE expresses no error. The regionalization method is
robust if the prediction accuracy is similar in training and
testing. A generally good performance, i.e., small logMAE
values, indicates that the regionalization method suits Wa-
terGAP3. The comparison of γ values enables the applica-
tion of a wide range of regionalization methods and sets of
descriptors, as no computationally intensive model simula-
tion is required. However, it assumes that deviations in γ
lead, in turn, to deviations in discharge, which is only par-
tially true because of varying parameter sensitivity in basins
(e.g., Kupzig et al., 2023). To validate that the logMAE is a
sufficient approximator of the regionalization performance in
WaterGAP3, we use one representative split sample from the
ensemble to compare the accuracies in simulated discharge
for different regionalization methods.

logMAE=
1
n

∑∣∣ln(γx,i + 1)− ln(γy,i + 1)
∣∣ , (3)

where n is the number of basins in the corresponding sample,
γx,i is the calibrated value of γ for the ith basin, and γy,i
is the estimated value of γ for the ith basin. We applied a
Box–Cox-type transformation with λ1 = 0 and λ2 = 1 (Box
and Cox, 1964) to calculate the logMAE, avoiding negatively
transformed values.

2.4.1 Regression-based methods

The traditionally used regionalization approach in Water-
GAP3 is a regression-based MLR. As the benchmark to
beat, we use the regionalization approach from WaterGAP
v2.2d defined in Müller Schmied et al. (2021). We consider
it a suitable benchmark to beat given that WaterGAP2 has
a model structure and calibration process that is very simi-
lar to WaterGAP3. The main difference between these mod-
els is that WaterGAP2 simulates at a 0.5° spatial resolution.
The benchmark to beat consists of “a multiple linear regres-
sion approach that relates the natural logarithm of γ to basin
descriptors (mean annual temperature, mean available soil
water capacity, fraction of local and global lakes and wet-
lands, mean basin land surface slope, fraction of permanent
snow and ice, aquifer-related groundwater recharge factor)”
(Müller Schmied et al., 2021). We fit this regression model to
our data and define the quality of this approach as the bench-
mark to beat. Moreover, we test an independent MLR ap-
proach without using the logarithmical scaling of γ and us-
ing the above-defined sets of basin descriptors. For MLR and
the benchmark to beat, we use the lm() function of the R
package stats (R Core Team, 2020). After applying the re-
gression model, we adjust the estimated parameter values to
ensure that the estimated values range between 0.1 and 5.

Furthermore, a machine-learning-based method, random
forest (RF), is tested for regionalization as an alternative
to MLR. Here, we implement the random forest algorithm
with the randomForest() function from the R package
randomForest (Liam and Wiener, 2002), which is based on
Breimann (2001). The algorithm uses an ensemble of deci-
sion trees, making the decision human-like. It is relatively ro-
bust because it incorporates random effects into the training
process. To implement this randomness, we define the algo-
rithm as one that can choose between two randomly selected
predictors at each node, using an ensemble of 200 trees.

2.4.2 Physical similarity

As the traditional physical similarity approach, we use sim-
ilarity indices (called SIs in the following), applying the
methodology proposed by Beck et al. (2016). The SIs (see
Eq. 4) are derived using the defined basin descriptors sets,
and the parameter of the most similar basin is transferred to
the pseudo-ungauged basin. Additionally, we use an ensem-
ble of basins to control whether an ensemble-based approach
leads to more robust results. The optimal number of donor
basins may vary between research regions and hydrological
models (Guo et al., 2020). Here, we use 10 donor catchments
(noted by ensemble) based on Beck et al. (2016) and McIn-
tyre et al. (2005). Further, we apply a simple mean method
for the ensemble-based prediction to aggregate the ensemble
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of γ values into one predicted parameter value.

Si,j =

n∑
p=1

∣∣Zp,i −Zp,j ∣∣
IQRp

, (4)

where Si,j is the similarity index between basin i and basin
j , Zp,j is the basin descriptor p for basin j , IQRp is the
interquartile range for basin descriptor p among all (gauged)
basins, and n is the number of all basin descriptors used.

As an alternative machine-learning-based approach, we
apply a simple k-means algorithm. We selected the k-means
algorithm because it is one of the most widely used clus-
tering algorithms (Tongal and Sivakumar, 2017). It is easy
to understand and use. The algorithm kmeans() is imple-
mented in the R base package stats. It aims to maximize vari-
ation between groups and minimize variation within groups.
The number of clusters to use is determined by multiple in-
dices calculated with the R package NbClust (Charrad et al.,
2014). For all 933 basins and the defined sets of basin de-
scriptors, most indices defined 3 as the optimal number of
clusters. Accordingly, we use three clusters to generate the
groups of basins. As different scales of the predictor values
can affect the clustering, a rescaling with min–max normal-
ization (see Eq. 5) is performed on the training set and ap-
plied to the testing set. After the grouping, the mean γ value
is assigned as a representative calibrated value to the corre-
sponding basin group. To estimate the corresponding group
for a pseudo-ungauged basin, the k-nearest neighbour (knn)
algorithm is used, and the representative γ value of the group
is assigned to the pseudo-ungauged basin. This algorithm is
implemented by the knn() function of the R package class
(Venables and Ripley, 2002). Since the k-means method is
less flexible than SI, we implement a highly flexible version,
using the knn algorithm directly to define the donor basin
most similar to each ungauged basin. Using the knn algo-
rithm directly, we test how beneficial it is to create groups
of similar basins using the kmeans algorithm and regionalize
the parameter with a representative mean value.

Z′p,j =

Zp,j − min
j→m

(Zp,j )

max
j→m

(Zp,j )− min
j→m

(Zp,j )
, (5)

where Z′p,j is the normalized basin descriptor p for basin j ,
Zp,j is the basin descriptor p for the basin j , and m is the
number of (gauged) basins.

2.4.3 Spatial proximity

The spatial proximity approach is one of the easiest to use
to regionalize parameter values. However, it is also often
criticized because nearby basins do not necessarily have the
same hydrological behavior (Wagener et al., 2004). Further-
more, its performance depends on the density of the net-
work of gauged basins (Lebecherel et al., 2016). The de-
pendency on network density is particularly challenging for

global applications where large parts of the world are un-
gauged (e.g., northern Africa). Nevertheless, the approach
has been successfully applied in other studies (e.g., Oudin
et al., 2008; Qi et al., 2020), even globally (Widén-Nilsson
et al., 2007). Here, we take the distance between the cen-
troids of the basins as the reference for the spatial distance
between basins, as done by others (Oudin et al., 2008; Merz
and Blöschl, 2004). We use the abbreviation SP in the text
below to refer to the spatial proximity approach. Figure 2
provides an overview of the applied regionalization methods
and information used for the experimental setup.

3 Results and discussion

3.1 Evaluating the effect of tuning

First, the impact of the tuning approach on the regionaliza-
tion approaches is evaluated. Therefore, Fig. 3 depicts the
differences in logMAE between the standard and tuned ap-
proaches in testing, i.e., using the pseudo-ungauged basins.
A positive difference in logMAE indicates an increase in ac-
curacy, whereas a negative difference indicates a decrease in
accuracy due to the tuning.

Using the tuning thresholds of about 1.1 and 3.4 for γ1
and γ2, respectively, enhances the predictive accuracy for
kmeans, MLR, RF, and the ensemble approach of SI. The
most remarkable improvement for kmeans, RF, and the SI
ensemble is achieved when all physiographic descriptors are
used as input (mean improvement of 0.077, 0.058, and 0.071,
respectively). MLR shows the most significant improvement
when using all available descriptors (mean improvement of
0.038). In contrast, the tuning decreases the performance for
knn, SI, and SP, with a mean degradation between −0.02
and −0.05. Unlike the enhanced regionalization techniques,
these methods transfer single-basin information to ungauged
regions. Thus, the tuning disturbs the use of single-basin in-
formation yet simultaneously enhances the performance of
methods that transfer multi-basin information. The distur-
bance or improvement is probably related to the capability of
the methods representing the clustering of parameter values
at the extremes: while the multi-basin information transfer
implies a smoothing and thus suffers from a lack of represen-
tation of the extremes, the single-basin information transfer
exhibits no such smoothing.

The exception to the above-defined rule is the benchmark-
to-beat approach. The benchmark to beat is the only approach
that uses logarithmic scaled γ values when fitting the model.
This logarithmic transformation leads to an increase in esti-
mating small values. Thus, when the benchmark to beat is
tuned, more basins with higher calibrated γ values receive
low estimates. The tuning intensifies this effect, leading to a
decrease in the accuracy of the logMAE from the standard
to the tuned version. Thus, for models using logarithmical
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Figure 2. Experimental setup of the study – regionalization methods, modifications and information used, and the general workflow (MLR
is multiple linear regression, SI is similarity indices, SP is spatial proximity, and RF is random forest).

transformed γ values, the defined thresholds for the tuning
are not appropriate.

Applying knowledge of the optimal parameter space en-
hances the quality of regionalization for methods transferring
multi-basin information in cases where the tuning thresholds
are appropriate. This positive effect is not surprising, as in-
corporating a priori information about parameter distribution
strengthens parameter estimation (e.g., described in Tang et
al., 2016 using the Bayes theorem). However, for single-
basin transfer, which already represents the parameter space
well, i.e., the clustering of γ at the extremes, the tuning dis-
turbs the performance. This indicates that such tuning needs
to be cautiously introduced as there is the risk of decreasing
the accuracy of regionalization.

3.2 Evaluating descriptor subsets and algorithm
selection

Different descriptor sets yield different performance in re-
gionalizing γ . Table 2 shows the median of all logMAE val-
ues for the testing. For a complete overview of the results
of the split-sample test ensemble, see Appendix D. Evaluat-
ing Table 2 reveals that the selected subset or all descriptors
consistently yield the best performance across all regional-
ization methods. In both variants of the ensemble approach
of SI, in the tuned version of the no-ensemble approach of SI,
and in the standard version of RF, the selected subset yields
the best results. For all other methods, using all descriptors
yields the best results. Hence, all methods perform best when
combining climatic and physiographic descriptors. This ben-

efit of using climatic and physiographic descriptors is con-
sistent with others that often apply a combination of climatic
and physiographic descriptors, achieving optimal regional-
ization results (e.g., Oudin et al., 2008; Reichl et al., 2009).

The machine-learning-based approaches seem to benefit
most when using more information, displaying an improve-
ment for all methods (knn, kmeans, and RF) and both vari-
ants (standard and tuned) ranging from cl, p, and subset to
p+cl. This is not surprising as machine learning was de-
veloped to deal with big data sets. The traditional methods
of MLR and SI do not exhibit such a distinct pattern. The
(weakly) correlated subset of climatic and physiographic de-
scriptors yields the best results for SI. As utilizing all descrip-
tors decreases the performance slightly, the results indicate
that uncorrelated descriptors may disturb the performance of
this approach. For MLR, the meaning of physiographic in-
formation is highest, resulting in the best (p+cl) and second-
best (p) results. The disparate performance of the regional-
ization methods when using different descriptor sets indi-
cates that different methods use descriptor sets with varying
efficiency. It also emphasizes that the selection of descriptors
impacts the regionalization method’s results, as noted by oth-
ers (Arsenault and Brissette, 2014). Consequently, the anal-
ysis performed above that defines a descriptor subset lacks
universal validity, as methods exist where the defined subset
is outperformed. Instead, the validity of this approach is most
closely aligned with the SI approaches.

Although the algorithms kmeans and knn are similar, they
yield considerably different performance in Table 2. As knn
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Figure 3. Changes in performance between standard and tuned versions for all applied regionalization approaches. Positive values indicate
an improvement related to the tuning.

shows a logMAE of 0.432 at best, the kmeans algorithm
performs poorly, resulting in the best logMAE of 0.472.
This indicates that applying the k-means clustering algorithm
to transfer-averaged parameters is inappropriate for Water-
GAP3. This may be attributed to the reduced flexibility of the
approach, which entails estimating only three γ values due to
the optimal, although limited, number of centers. The ensem-
ble SI approach consistently outperforms the no-ensemble
SI approach in almost all variants. The positive effect of an
ensemble approach for SI has already been noted (Oudin et
al., 2008). Therefore, it is recommended that the number of
donor basins derived from the literature be adopted in future
applications as optimal for WaterGAP3, likely resulting in
higher performance.

Only a few regionalization methods outperform the bench-
mark to beat. The best descriptor sets of the tuned MLR, RF,
and SI ensemble approach have a logMAE of 0.427, 0.403,
and 0.409, respectively. The standard version of knn (p+cl)
and SP yield 0.432 and 0.454 in logMAE, respectively. Ad-
ditionally, two variants of the standard SI approaches outper-
form the benchmark to beat yet exhibit inferior results com-
pared to the selected tuned approach. All other regionaliza-
tion methods show higher logMAE values than the bench-
mark to beat. These methods are considered insufficient in
terms of performance to regionalize γ in WaterGAP3. As the
benchmark to beat outperforms all kmeans approach vari-
ants, it is deemed unsuitable for regionalizing γ for Water-
GAP3 and, therefore, is excluded from further analysis.

The good performance of SP on a global scale is surpris-
ing as the distances between basins are potentially long, and
hydrological processes may strongly vary. It is probably ben-

eficial for the SP approach that γ comprises all kinds of er-
rors, e.g., spatially localized errors in global forcing products
(e.g., Beck et al., 2017, reported errors for arid regions in the
precipitation product), or inaccurately represented processes
for larger regions. Thus, the estimation of γ might be appro-
priate not because of the same hydrological behavior but due
to the same kind of errors.

The RF approach is remarkable, as it shows a massive loss
in performance from training to testing (see Appendix D).
In detail, the logMAE in testing is about twice the logMAE
in training. In comparison, other methods show values of
logMAE in testing ranging from 95.6 % to 101.4 % of log-
MAE in training. This performance loss indicates that RF is
not a robust regionalization method for WaterGAP3. Other
studies that reported the good performance of RF for re-
gionalization have not investigated the stability of the per-
formance from training to testing (Golian et al., 2021; Wu et
al., 2023). Likely, the mathematical problem of predicting the
calibrated parameter for WaterGAP3, with all its challenges
(e.g., tailored parameter space, clustered calibrated parame-
ter, and incorporation of many sources of errors), cannot be
adequately solved by RF. Thus, although RF is known to be
especially robust among other machine-learning-based tech-
niques, it shows symptoms of over-parameterization. This in-
dicates that the algorithm is too flexible and adjusts to noise
in the data, missing the underlying systematic. This lack of
robustness is particularly disadvantageous since, for Water-
GAP3, regionalization is applied globally, requiring region-
alizing large parts of the world. In consequence, the RF ap-
proach is left out from further analysis and is defined as not
suitable to regionalize γ for WaterGAP3.
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Table 2. Median logMAE of 100 split samples for pseudo-ungauged basins, i.e., in testing, for all regionalization methods applying four
sets of descriptors for (a) the standard version and (b) the tuned version. The bold numbers indicate better performance than the benchmark
to beat. Thicker edges mark best-performing variants, which are chosen for further analysis. Gray-shaded cells indicate worst-performing
variants, which were taken to validate the assumption that lower logMAE values result in lower KGE values.

For the tuned MLR approach and the knn approach, the
best-performing and, therefore, selected variant employs all
12 descriptors. This number of predictors for a regionaliza-
tion method is among the highest found in the literature (e.g.,
McIntyre et al., 2005, used 3 predictors; Beck et al., 2016,
used 8 predictors; and Chaney et al., 2016, used 13 pre-
dictors). In general, it is advisable to limit the number of
degrees of freedom in a model to reduce the risk of over-
parametrization, thus increasing the probability of general-
izability (Seibert et al., 2019). As both model variants ex-
hibit stable model performance during training and testing
(see Table D1), using a high proportion of the basins for test-
ing, i.e., 50 %, we consider the two variants robust despite
the relatively high number of predictors used. Therefore, we
consider them appropriate for further model evaluation.

Nevertheless, the chosen basin descriptors for knn and
tuned MLR could be enhanced in future studies. As the de-
scriptor set p+cl was initially considered a control group
to determine the suitability of the selected subset, it is not
optimal. To indicate potential enhancements regarding the
descriptor set for both methods, we calculated a simple
permutation-based feature importance score (see Breiman,
2001) by randomly shuffling each predictor within the test-
ing data set and quantifying the loss in logMAE relative to
the logMAE of the original testing data set. The higher the
loss, the more critical the shuffled predictor for the regional-
ization method. The resulting feature importance scores are
presented in Appendix E, indicating that for the tuned MLR,
the subset of (weakly) correlated descriptors should be ex-
tended by including waterbody information. For the knn ap-
proach, the calculated feature importance scores indicate that

it should be extended by including information about the soil
storage.

3.3 Performance of selected algorithm in
pseudo-ungauged basins

To avoid the high risk of sampling effects when applying
the split-sample test, we conduct an ensemble of 100 split-
sample tests, analyzing the median of logMAE between re-
gionalized and calibrated values as an indicator for perfor-
mance. Directly using the differences in regionalized and cal-
ibrated values is only meaningful when the calibrated value
represents the global optimum. This is often not the case,
e.g., due to equifinality, the performance of regionalization
methods is usually assessed by the accuracy of simulated
discharge (e.g., Samaniego et al., 2010; Arsenault and Bris-
sette, 2014). Because WaterGAP3 requires computationally
intensive simulations, running WaterGAP3 for all 100 split-
sample tests for the selected methods is not feasible. There-
fore, we select a single representative split sample to as-
sess the quality of representing the discharge in the pseudo-
ungauged basins using regionalized γ values. The represen-
tative split sample leads to comparable logMAE values to
the corresponding median of the ensemble for all regional-
ization methods. For the evaluation, WaterGAP3 was run for
the same period used in calibration (from 1979 to 2016), with
the first year simulated 10 times to allow for model warmup.
Using this period ensures the availability of sufficient data for
the evaluation (see Sect. 2.2). Furthermore, the differences
between the monthly simulated and observed discharge are
assessed using the KGE.
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Figure 4. (a) KGE values of pseudo-ungauged basins from the split-sample test grouped by the range of calibrated γ values. (b) Selected
metrics of KGE values from the pseudo-ungauged basins (performance better than or equal to the benchmark to beat is highlighted in gray).
(c) Histogram of the number of pseudo-ungauged basins with a KGE below 0.2 and the corresponding number of methods exhibiting this
performance loss.

To evaluate the KGE, we select the best-performing meth-
ods that outperform the benchmark to beat: tuned MLR p+cl,
knn p+cl, tuned SI ensemble subset, and SP (see Table 2).
For the sake of simplicity, we further mark them with “best”.
Additionally, we select three poorly performing variants to
validate the assumption that methods resulting in higher log-
MAE values tend to result in lower KGE values, i.e., lower
accuracy of simulated discharge. These methods are tuned
SI cl (logMAE = 0.537), tuned knn cl (logMAE = 0.546),
and MLR cl (logMAE = 0.552). Further, we denote these
methods “worst”. Applying the selected methods and the
benchmark-to-beat method results in eight estimates of γ for
the pseudo-ungauged basins, whose performance is further
evaluated in terms of simulated discharge accuracy.

Figure 4a shows the resulting KGE values for the eval-
uated regionalization methods and the calibrated version as
grouped boxplots for different ranges of calibrated γ . The
methods show different performance for different γ ranges,
indicating their strengths and weaknesses. For the smallest γ
range, 0.1–0.2, the selected methods that perform well dur-
ing the split-sample test outperform the benchmark to beat.
The better result for minimal γ ranges is probably partially
related to the advantage of the tuning, which leads to more
predictions of 0.1 within the regionalization. The benchmark
to beat shows the best performance for γ values between 0.2
and 0.5. The good performance for basins with calibrated γ

values between 0.2 and 0.5 is probably related to the benefit
of using the logarithmical version of γ in the benchmark to
beat, leading to more estimates of smaller values. However,
this affects only 12 % of the basins, as calibrated values be-
tween 0.2 and 0.5 are not frequently present in the calibration
result. Generally, the differences in KGE appear higher for
smaller γ values, probably due to the decreasing parameter
sensitivity with higher values (see Appendix B).

Given the variability in the performance of the regionaliza-
tion methods across the depicted γ ranges, it is challenging to
identify an overall-best regionalization method using Fig. 4a.
Therefore, we compare the various metrics of the KGE val-
ues depicted in Fig. 4b. The analyzed metrics are the mini-
mum, maximum, mean, and median. Further, we count the
number of poorly performing basins, defined as basins with
a KGE below 0.2. In Fig. 4b, metrics that exceed the bench-
mark to beat are gray shaded. Comparing the KGE metrics
in Fig. 4b reveals that the methods showing higher logMAE
values in our split-sampling test ensemble also show lower
performance in simulating discharge. For example, all mean
(and median) KGE values of the worst methods are below
the mean KGE of 0.587 from the benchmark to beat, ranging
from 0.545 to 0.578. This indicates that the logMAE used
between regionalized and calibrated values is a valid tool for
a preliminary selection of adequate methods for the regional-
ization of WaterGAP3. However, for a more comprehensive
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analysis, we recommend additionally analyzing the accuracy
of simulated discharge, as the logMAE of calibrated and re-
gionalized parameter values simplifies the inherent complex-
ity between model parameters and model performance.

Moreover, SI (best) outperforms the benchmark to beat in
all listed metrics, reducing poorly performing basins and en-
hancing well-performing basins. MLR (best) performs very
similarly to SI (best), yet it shows a higher number of basins
with KGE values below 0.2. In comparison to the benchmark
to beat, it outperforms four out of five criteria. The remaining
well-performing methods, SP and knn (best), demonstrate
superior or equal performance to the benchmark to beat in
three out of five criteria. SP results in an equal number of
poorly performing basins, and the minimal KGE value is
lower than for the benchmark to beat. The knn (best) ap-
proach has a slightly worse median KGE, i.e., −0.001, and
one additional basin shows a KGE below 0.2.

As SI (best) outperforms the benchmark to beat in all met-
rics, we conduct a statistical test to ascertain whether there
is a statistically significant difference in KGE results be-
tween the methods. To this end, we use a one-sided paired
Wilcoxon rank-sum test to test the null hypothesis of whether
the KGE differs significantly in central tendency. A signifi-
cance level of 0.05 and an adjusted p value are applied to
correct for multiple comparisons (using the correction from
Benjamini and Hochberg, 1995). The results (see Fig. F1c)
demonstrate that SI (best) outperforms all the worst methods
and the benchmark to beat. However, the null hypothesis for
SP and the best options of knn and MLR cannot be rejected.
Consequently, rather than identifying a single alternative to
the benchmark to beat, we have identified four.

Notably, all regionalization methods lead to poorly per-
forming basins, as evidenced by the range of basins with a
KGE below 0.2, varying from 13 to 37. In Fig. 4c, we ex-
amine whether there are basins that all methods cannot re-
gionalize, thereby indicating a general insufficiency of the
regionalization methods for these basins. The histogram in-
dicates that most poorly performing basins belong to a sin-
gle regionalization method. The high number of basins that
cannot be estimated well by a single regionalization method
illustrates the diverse shortcomings of the methods. A single
basin shows poor performance across all methods. This is a
basin of the river El Platanito in Mexico. The calibrated γ
value is about 1.5, and the corresponding KGE value in cali-
bration is 0.466. This basin appears to be highly sensitive to
γ , with an inaccuracy in the estimated γ having a significant
impact on the accuracy of river discharge. For example, the
benchmark to beat estimates γ to 1.0, which is close to the
calibrated value of 1.5. However, the KGE value of the sim-
ulated discharge using the benchmark to beat is −0.158 due
to a high overestimation of the variation and mean of the dis-
charge. This high sensitivity seems remarkable and is likely
attributable to the absence of waterbodies and snow, support-
ing a potentially high impact of γ on the model simulation

(Kupzig et al., 2023) in conjunction with a relatively small
basin size (ca. 6600 km2).

Model evaluation is at least partially subjective (Ritter and
Muñoz-Carpena, 2013), and the choice of evaluation crite-
ria represents a source of uncertainty in model performance
evaluation (Onyutha, 2024). Furthermore, the choice should
reflect the intended model use (Janssen and Heuberger,
1995). As GHMs are often applied to evaluate monthly sim-
ulated discharge (e.g., Herbert and Döll, 2023; Jones et al.,
2024; Tilahun et al., 2024), we assess the model performance
using monthly data. Moreover, GHMs are generalists rather
than expert models; thus, the model evaluation should en-
compass a range of aspects related to streamflow to obtain
an overall metric. Therefore, we applied the monthly KGE,
which comprises information about the streamflow’s vari-
ability, bias, and timing. As we use monthly values, we ex-
pect that outliers, i.e., single flood events, are less influential
than in daily data sets. Consequently, we expect the disad-
vantage in the KGE exhibiting sampling uncertainty to be
less significant (see Clark et al., 2021).

Nevertheless, to reduce the risk that disadvantages of the
evaluation criteria influence the model evaluation, we con-
ducted an additional model evaluation using a modified ver-
sion of the Nash–Sutcliff efficiency (NSE; Nash and Sutcliff,
1970). This modified NSE uses absolute differences instead
of squared terms, leading to a metric that is especially suit-
able as an overall measure (Krause et al., 2005). The results
of the analysis are in Appendix F. The high boxplot similar-
ity between the modified NSE and the KGE confirms that the
monthly KGE represents the overall monthly model quality.
Moreover, the statistical metrics of the modified NSE indi-
cate that MLR (best), in particular, outperforms the bench-
mark to beat. Applying the one-sided paired Wilcoxon rank-
sum test on the modified NSE reveals that knn (best), SI
(best), and the benchmark to beat deliver no statistically sig-
nificant differences in the central tendency from the well-
performing MLR (best). These differences in results illus-
trate that the choice of evaluation criteria can significantly
impact the experimental outcome. Moreover, it underpins the
usefulness of evaluating ensemble approaches to account for
this inherent uncertainty.

3.4 Impacts on runoff simulations

To evaluate the impact of runoff simulations, we apply an en-
semble of regionalization methods generating γ estimates for
the worldwide ungauged regions. Within the ensemble, we
use the four methods, SI (best), knn (best), MLR (best), and
SP, that (1) outperform the benchmark to beat regarding the
logMAE of regionalized and calibrated values and (2) per-
form similarly to each other and better than the benchmark to
beat in KGE for monthly discharge. Additionally, we use the
benchmark to beat as the fifth member of our regionalization
method ensemble, as it shows no significantly weaker perfor-
mance than the well-performing MLR (best) for the modified
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NSE. The entire set of 933 gauged basins is used for region-
alizing γ , resulting in 5 distinct worldwide distributions of
γ . The spatially distributed standard deviation of the region-
alized values is shown in Fig. 5.

In particular, the southern parts of South America, the
northern and southern parts of North America, and central
Asia reveal differences in γ across the ensemble of region-
alization methods (see Fig. 5). In Europe, the highest dif-
ferences in regionalized values are observed in Italy, Great
Britain, and northern Portugal. In Oceania, the highest val-
ues in standard deviation of γ are in Tasmania, New Zealand,
and the southwest of Australia’s coast. In contrast, a minor
variation in γ is apparent in northern Africa, most parts of
Australia, and east of the Dead Sea. Thus, the uncertainty as-
sociated with globally regionalizing γ seems to vary across
different regions.

An example of how these uncertainties in regionalized val-
ues propagate through the water system is presented in Fig. 6.
This figure displays the coefficient of variation in the mean
yearly discharge between 1980 and 2016 based on the five
simulation runs. Moreover, we highlight the effect on rivers
in ungauged regions by showing the resulting seasonal pat-
tern, i.e., the simulated long-term mean of monthly river dis-
charge for three exemplary rivers. These rivers are the Río
Bravo in Mexico, the Tiber River in Italy, and the Tamar
River in Tasmania. Each river is located in an ungauged re-
gion, where the standard deviation in γ is high (see Fig. 5).

Comparing Figs. 5 and 6 reveals that regions showing vari-
ability in γ tend to exhibit variation in mean yearly dis-
charge. However, the impact of variation in γ on the simu-
lated discharge appears to vary spatially. Some regions show-
ing a high degree of variation in γ do not exhibit a corre-
spondingly high degree of variation in discharge. For exam-
ple, 45 % of all ungauged regions showing a low variation in
discharge, i.e., the coefficient of variation is below 0.5, ex-
hibit a standard deviation of more than 1 in γ . In contrast,
about 89 % of the ungauged regions showing a higher dis-
charge variation exhibit a standard deviation of more than 1
in γ . Thus, variation in γ does not necessarily lead to vari-
ation in river discharge, but it increases the likelihood that a
region’s discharge is affected. The spatially varying impact
of γ is likely related to varying sensitivity regarding γ in the
ungauged regions, which depends on numerous aspects, e.g.,
snow occurrence or waterbodies (see Kupzig et al., 2023).

About 11 % of the ungauged area exhibits variations in
yearly river discharge exceeding 50 % of the mean. These
regions are primarily in southern South America and central
Asia. A further 62 % of the ungauged area exhibits varia-
tions in yearly river discharge between 10 % and 50 % of the
mean. These regions are mainly located on the northern coast
of Russia and in northern Canada, Indonesia, and Tasmania.
Other areas, like most ungauged regions of Africa and Aus-
tralia, show almost no impact; i.e., the variation in yearly dis-
charge is less than 10 % of the mean. In northern Africa, one
region exhibits higher values in the coefficients of variation.

These values are attributable to minimal discharge values, re-
sulting in comparatively high coefficients of variation in this
region.

Considering the variation in the seasonality in the selected
ungauged river systems (see Fig. 6b–d), the temporal im-
pact of regionalization varies across the local landscape. For
the Tamar River in Tasmania, as illustrated in Fig. 6d, the
variation is higher at the start and end of the dry periods
in October and November and in April and May, respec-
tively. The spread in monthly mean discharge is about 0.7
to 1 m3 s−1 in these periods. The Tiber River in Italy and the
Río Bravo in Mexico exhibit a similar pattern: using the re-
gionalized γ values of SP leads to much higher discharge
rates than other ensemble members, introducing broad un-
certainty bands. For the Tiber River, this leads to seasonal
estimates varying between 1.2 % (in January) and 11 % (in
October) of the mean yearly sum. The Río Bravo shows vari-
ations in its seasonal pattern, with values ranging from 2.2 %
(in February) to 6.8 % (in October) of the mean yearly sum.
Thus, all rivers display a temporally varying impact. While
the main variation in the discharge of the Río Bravo and the
Tiber River is mainly attributed to the SP regionalization run,
for the Tamar River, all regionalization runs contribute to the
varying long-term monthly mean in discharge.

To gain a deeper understanding of the local impact of re-
gionalization on runoff simulations, we analyze the annual
percentiles from 1980 to 2016 for Río Deseado in Argentina,
Río Bravo, and Tamar River, displaying the mean percentile
of all years (see Fig. 7a–c). As the Tiber River and Río
Bravo display high similarities in the resulting patterns of
percentiles, we demonstrate the impact by showing the per-
centiles from the Río Bravo. Additionally, we compare the
relative differences in the mean for each percentile using
eight ungauged river systems (see Fig. 7d), as was previ-
ously done by Gudmundsson et al. (2012) for nine GHMs.
To calculate the relative difference, we subtract the mean an-
nual percentile of a method from the corresponding mean
annual percentile of the reference and divide the resulting
difference by the mean annual percentile of the reference.
Instead of using observed flow as a reference, we use the an-
nual percentiles of our benchmark to beat. As river discharge
is already spatially aggregated information, it is unnecessary
to spatially aggregate grid cells to create results compara-
ble to those of Gudmundsson et al. (2012), who used cell
runoff. The evaluated river systems are the Río Chubut, Río
Deseado, Río Negro, Río Bravo, Tamar River, Tiber River,
Pescara River, and Ebro River.

Fig. 7a shows that the Río Deseado is highly affected
by uncertainties in simulated discharge due to the differ-
ent regionalization methods; all segments of the percentiles
show high variations where the absolute spread is increas-
ing with increasing percentiles. For SP and knn (best), the
discharge is highest, e.g., estimating a median discharge of
13.7 and 19.7 m3 s−1, respectively. For the other methods,
the simulated discharge is low; e.g., SI and MLR result in an
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Figure 5. Standard deviation in regionalized γ values using the best approaches of MLR (best), SI (best), SP, knn (best), and the benchmark
to beat. Note that dry regions without discharge are set to zero.

Figure 6. (a) Global map of the coefficient of variation in mean yearly discharge for the applied regionalization methods. Resulting dif-
ferences in the regionalization ensemble regarding the long-term mean of monthly discharge are depicted for (b) the Río Bravo in Mexico,
(c) the Tiber River in Italy, and (d) the Tamar River in Tasmania. The gray-shaded area indicates the range of the long-term mean of monthly
discharge, and the black line indicates the mean of all simulation runs.

equal median discharge of 3.6 m3 s−1. The Tamar River in
Fig. 7b also shows increasing absolute differences between
the methods for higher percentiles, with the benchmark-to-
beat approach leading to the highest discharge. For the Río

Bravo, the absolute differences between the highest result of
SP and the other methods remain almost constant until the
75th percentile. For the 95th percentile, the absolute differ-
ences increase rapidly from about 40 m3 s−1 (75th percentile)
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Figure 7. Mean annual percentiles between 1980 and 2016 of simulated discharge using an ensemble of regionalization methods. The rivers
are the (a) Río Deseado, (b) Tamar River, and (c) Río Bravo. In (d), the relative differences in mean annual percentiles from the benchmark
to beat of eight ungauged river systems are presented. Negative values indicate smaller mean annual percentiles than the benchmark to beat.
Note that all data points from Río Deseado for knn and SP are excluded as the values are above 2.0.

to nearly 200 m3 s−1 (95th percentile). The exemplary re-
sults of Río Deseado and Río Bravo indicate a potentially
high degree of uncertainty regarding the high percentiles in
discharge simulation. These uncertainties put the results of
global flood frequency analysis (e.g., Ward et al., 2013) in
ungauged regions at risk, as the time series of annual maxima
might be even more uncertain. Thus, the results of flood fre-
quency analysis should be carefully interpreted in ungauged
regions as the impact of parameter regionalization may be
significant.

Upon examination of the relative differences from the
benchmark to beat for eight ungauged river systems, it be-
comes evident that the impact of regionalization methods
varies between ungauged river systems (e.g., Río Negro ex-
hibits almost no variation, but Ebro does). Moreover, it be-
comes apparent that some regionalization methods contribute
more to the variation in estimated discharge than others.
The methods contributing most are knn (best) and SP. For

knn (best), 10 of the 40 relative differences are higher than
|0.3|. For SP, even 29 out of the 40 relative differences are
higher than |0.3|. The results of SI (best) and MLR (best)
are very similar, indicating high similarity in performance.
This is consistent with the KGE evaluation (see Sect. 3.3), in
which they performed similarly. The observation in Fig. 7d
that higher relative differences in discharge simulations oc-
cur in drier percentiles is also reported in Gudmundsson et
al. (2012). Moreover, the relative differences between the five
regionalization runs seem comparable to the inter-model dif-
ferences depicted in Gudmundsson et al. (2012), indicating
the high impact of regionalization methods on the evaluated
ungauged river systems.

Finally, Table 3 presents the estimated yearly mean runoff
to the ocean for all five ensemble members. All estimates of
global “runoff to ocean” range from 45 622 m3 yr−1 for SI
(best) to 47 069 m3 yr−1 (SP). Thus, the differences are on
the scale of smaller inter-model differences (see Table 2 in
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Widen-Nilsson et al., 2007). The impact of regionalization
becomes even more evident using an unsuitable regionaliza-
tion method for WaterGAP3. For instance, the tuned kmeans
(subset) approach results in 42 862 km3 yr−1 runoff to ocean,
increasing the spread between the methods to 4208 km3 yr−1,
which is on the scale of inter-model differences. This high
impact of regionalization on global runoff to ocean is sur-
prising, given that only 27 % of the world is ungauged, us-
ing the GRDC database. From this 27 %, most regions are
in Australia and Africa, where minimal runoff is produced.
In studies employing disparate models, e.g., for inter-model
comparison, all regions are simulated in disparate ways.

The most significant deviations in the continental sums of
runoff to ocean in Table 3 are due to SP. Only for Europe is
the highest deviation related to MLR (best), not SP. Interest-
ingly, the estimated sums of SP occasionally define the low-
est and occasionally the highest extremes for the continents,
lacking a systematic pattern. The remarkable role of SP is
consistent with previous evaluations in this section, where
SP frequently contributes most to the variation in discharge.
This suggests that SP may not be suitable for the global
scale. Nevertheless, the pseudo-ungauged basins in the split-
sample tests may also exhibit considerable distances from the
observed basins. Given that SP achieved satisfactory results
in both evaluations, using either the logMAE or the KGE,
the evaluation indicates the method’s suitability on a global
scale. Thus, in the future, the split-sample test must be ex-
tended to gain deeper insights into the method’s robustness
and to make a definitive statement about the method’s suit-
ability on a global scale. For example, the so-called HDes
approach recommended by Lebecherel et al. (2016) could be
applied for this purpose. In this approach, the closest basin to
the corresponding (pseudo-)ungauged basin is excluded from
the regionalization process, thereby enabling an assessment
of the method’s robustness.

3.5 Challenges and future directions

Regionalization is an inevitable step when parameterizing
GHMs. However, only a few studies exist that conduct re-
gionalization experiments with GHMs, often focusing on
a single or on two distinct regionalization strategies (e.g.,
Beck et al., 2016, 2020; Yoshida et al., 2022). A signifi-
cant challenge in developing and testing different regional-
ization methods for GHMs is the time-consuming runtime of
these models. This extensive runtime impedes comprehen-
sive testing of different regionalization methods, as evaluat-
ing the regionalization methods, e.g., using streamflow, de-
mands a considerable number of simulation runs. This study
addressed this challenge using the differences between cali-
brated and regionalized parameter values as an approximator
for the suitability of the regionalization methods. Thus, we
considered the varying sensitivity of the parameter within the
parameter space using the logMAE as the evaluation crite-
rion. Using the differences between calibrated and estimated

values is the most straightforward approach, given that Wa-
terGAP3 uses a single calibration parameter, leading to a
clear global optimum. However, this approach might not ap-
ply to GHMs using multiple calibration parameters due to
equifinality. For example, Ayzel et al. (2017) found varying
estimated parameter values when regionalizing 11 parame-
ters of the SWAP model using different regionalization meth-
ods. They concluded that the difference between regionalized
and calibrated values cannot be regarded as a performance
measure due to parameter compensation. Thus, further re-
search is required to tackle the challenge of time-consuming
GHM run times to enable comprehensive testing of region-
alization methods, especially for GHMs using multiple cali-
bration parameters.

Another challenge in regionalizing hydrological models
is the optimal selection of predictors for the regionaliza-
tion methods. Various approaches exist regarding the pre-
dictor selection for the regionalization methods (Razavi and
Coulibaly, 2013), resulting in a lack of consensus. This study
used a predictor selection based on correlation coefficients
and an entropy assessment. The results indicate that the ap-
proach is particularly well-suited to the similarity indices.
However, further research on predictor selection is needed to
find the optimal descriptor set per method, as regionalization
methods use predictors with varying efficiency. For example,
future studies might integrate feature importance bars, e.g.,
using permutation, to identify the most critical descriptors
per method.

Moreover, future research should explicitly account for
the issue of multicollinearity. Multicollinearity can affect
MLR (and potentially other techniques), resulting in un-
generalizable predictions. This phenomenon is more likely
to occur when the number of predictor variables is large rela-
tive to the number of observation units and when the predic-
tor variables are highly collinear (Kiers and Smilde, 2007).
To account for the high importance of the generalizability of
regionalization methods for GHMs, we used a high propor-
tion of the basins for testing, i.e., 50 %. Moreover, we used
a large sample size (50 % of 933 basins) relative to the num-
ber of predictors (maximum 12), lowering the risk of multi-
collinearity interfering with the results. However, future stud-
ies might use methods such as principal component analy-
sis (PCA) or partial least squares (PLS), explicitly account-
ing for the issue of multicollinearity (e.g., Kroll and Song,
2013). An alternative approach to using PCA or PLS is ex-
plicitly testing for multicollinearity in predictor sets using the
variance inflation factor and avoiding using predictors with
values exceeding a pre-defined threshold (e.g., Kroll et al.,
2004).

4 Conclusion

Valid simulation results from GHMs, such as WaterGAP3,
are crucial for detecting hotspots or studying patterns in cli-
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Table 3. Mean outflow to the ocean and endorheic basins (in km3 yr−1) between 1980 and 2016. The highest continental deviation from the
benchmark to beat is indicated in bold.

Runoff to ocean∗ B2B SI (best) knn (best) MLR (best) SP

Oceania 1127 −1.80 % −2.20 % −3.40 % −6.60%
Europe 3098 −2.30 % −0.10 % −2.60% 0.20 %
Asia 16 676 3.50 % 0.30 % 1.60 % 5.50 %
Africa 5203 −1.00 % 0.70 % −0.30 % −3.60%
North America 7517 0.30 % 1.00 % −1.70 % 2.20 %
South America 12 032 1.30 % 1.40 % −0.20 % 4.90 %

Global 45 653 46 273 45 953 45 622 47 069

∗ including endorheic basins

mate change impacts. However, the lack of worldwide mon-
itoring data makes adapting the GHM parameters for valid
global simulations challenging. Therefore, regionalization is
necessary to estimate parameters in ungauged basins. This
study applies regionalization methods for the first time to
WaterGAP3, aiming to provide insights into selecting suit-
able regionalization methods and evaluating their impact on
the runoff simulations. Traditional and machine-learning-
based methods are tested to assess the application of several
regionalization techniques on a global scale. The concept of
benchmark to beat and an ensemble of split-sampling tests
are employed for a comprehensive evaluation. Moreover, the
impact on runoff simulation is assessed using a wide range of
temporal and spatial scales, i.e., from the daily to the yearly
and from the local to the global scale.

In this study, four regionalization methods outperform the
benchmark to beat in monthly KGE and are thus considered
appropriate for WaterGAP3. These methods span the com-
plete range of methodologies, i.e., regression-based methods
and methods using the concept of physical similarity and spa-
tial proximity. Moreover, the methods vary in the descrip-
tors used to achieve the highest accuracy. This highlights
the fact that different methods use descriptor sets with vary-
ing efficiency. All methods perform best when using climatic
and physiographic descriptors, indicating that combining cli-
matic and physiographic descriptors is optimal for region-
alizing worldwide basins. Mainly for two selected region-
alization methods (tuned MLR and knn), the suggested de-
scriptor selection based on correlation coefficients and en-
tropy assessment is not optimal. Further research might in-
tegrate variable importance scores or PCA to enhance the
predictor selection. Although random forest is known to be
especially robust among other machine-learning-based tech-
niques, it shows symptoms of over-parameterization, indicat-
ing that the algorithm is too flexible and adjusts to noise in
the data, missing the underlying systematic pattern.

Our results demonstrate that variation in the regionalized
parameter value does not necessarily lead to variation in river
discharge. However, it increases the likelihood that a region’s
runoff is affected. This spatially varying impact of γ is likely

related to the varying sensitivity in ungauged regions regard-
ing γ . Southern South America is a region identified as be-
ing especially sensitive to variation in γ . Furthermore, local
effects on runoff simulations indicate a temporally varying
impact. For example, some impacted rivers indicate a high
degree of uncertainty regarding the high percentiles in dis-
charge simulation. These uncertainties potentially lead to a
significant impact on flood frequency analysis on a global
scale, where the lack of gauging stations in certain regions
calls for regionalization. The global impact of regionaliza-
tion methods that perform well for WaterGAP3 appear to be
on the order of minor inter-model differences. This impact
rigorously increases when using a poorly performing method
for WaterGAP3, underscoring the importance of carefully se-
lecting regionalization methods.

The spatial proximity approach contributes most to the
variation in estimated runoff. The remarkable role of this
approach suggests that it may not be suitable for the global
scale. However, as the pseudo-ungauged basins in the split-
sample tests may be located considerably far from the ob-
served basins and the method achieves satisfactory results in
all executed evaluations, it is not possible to make a definite
statement about the method’s suitability for the global scale.
Further research is required to gain deeper insights into the
methods’ robustness, e.g., by extending the analysis by ap-
plying the recommended HDes approach (Lebecherel et al.,
2016).
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Appendix A: Global map of derived global soil moisture
storage

Figure A1. Global map of the size of soil storage based on Batjes (2012) and land use information (derived from Friedl and Sulla-Menashe,
2019).

Appendix B: Further analysis regarding the clustering
of parameter values at the extremes

The clustered calibrated parameter values at the extremes of
the valid parameter space (see Fig. 1b) are a known prob-
lem within the calibration. As the parameter space, i.e., the
parameter bounds, is crucial for calibration and, in conse-
quence, for regionalization, we address this issue by a brief
sensitivity analysis to demonstrate that the clustering of the
calibrated parameter values is more an issue of missing pro-
cesses (or using additional parameter values) than an issue of
inappropriate parameter space. As the lower limit of the cal-
ibrated parameter (0.1) is sufficiently small in comparison to
other studies using a similar HBV-based approach for runoff
generation processes (e.g., see the beta in Table A2 in Jansen
et al., 2022), we focus the sensitivity analysis on the upper
limit of γ (5.0).

In the sensitivity analysis regarding the upper limit of γ ,
we applied the model formula (see Eq. B1) containing the
model’s parameter γ and modified it within the bounds of 0.1
and 10. Additionally, we modified the soil saturation varying
from 1 % to 95 %.

outflow= precipitationeffective · soil saturationgamma (B1)

The calculated outflow and its relationship to the soil satu-
ration and γ are depicted in Fig. B1. The incoming effec-
tive precipitation is defined as constant. As it is a factor in
Eq. (B1), the results regarding incoming effective precipita-
tion are linearly scalable.

In the depicted Fig. B1, the runoff generation process
differences between differing γ values become more linear
when soil saturation increases. Thus, the non-linear model
parameter becomes less critical for high soil moisture. Gen-
erally, the runoff generation process differences for higher
γ values are more pronounced for higher soil moisture. For
lower soil moisture, the smaller values have higher effects
on the generated runoff. For example, for 70 % soil moisture,
the differences for γ values ranging from 5 to 10 are between
3 % and 16 %. For the same soil moisture, the range in runoff
generation varies from 16 % to 70 % for γ values between 1
and 5.

High γ values usually occur in dry regions (see Fig. 4b in
Müller Schmied et al., 2021). In dry regions, high soil mois-
ture values are not expected to occur frequently (see e.g.,
Khosa et al., 2020; Oloruntoba et al., 2024, for estimated
and measured soil moisture in Africa and Draper et al., 2008,
for estimated and measured soil moisture in Australia). It is,
therefore, unlikely that higher γ values will significantly en-
hance the calibration result or decrease the issue of clustered
calibrated parameter values at the higher end of the parame-
ter space. More likely, the clustering of calibrated parameter
values will be resolved in dry regions by incorporating addi-
tional (missing) model processes, such as evaporation from
rivers or inaccurate representation of groundwater processes
(Eisner, 2016, p. 49). Thus, the parameter bounds of γ (e.g.,
also used in Eisner, 2016, p. 16; Müller Schmied et al., 2021,
2023) are not changed in this study.
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Figure B1. (a) Runoff generation in the soil layer (neglecting overflow and evapotranspiration) using different values for the calibration
parameter and increasing the soil moisture. (b) Runoff generation for varying soil moisture grouped in bins of size 1.

Appendix C: Basin descriptors

Overview of basins descriptors used in this study. All basin
descriptors are derived from the original model input and ag-
gregated with a simple mean method to basin values to pro-
duce the same spatial resolution as the calibrated model pa-
rameter.

– Soil storage. The size of the soil storage is, i.e., the max-
imal water content in the soil reachable for plants (in
mm). The information is the product of rooting depth
(defined in a lookup table) and the total available water
content derived from Batjes (2012).

– Open waterbodies. The fraction of the area covered with
open waterbodies in the basin is given as a percentage.
The model input is based on the Global Lakes and Wet-
lands Database (GLWD; Lehner and Döll, 2004).

– Wetlands. The fraction of area covered with wetlands in
a basin is given in percentage. The model input is based
on the GLWD (Lehner and Döll, 2004).

– Size. This is the size of a basin (in km2).

– Slope. The mean slope class is calculated as described
in Döll and Fiedler (2008) and is based on the Global
30 Arc-Second Elevation (GTOPO30; Earth Resources
Observation and Science Center, U.S. Geological Sur-
vey, U.S. Department of the Interior, 1997).

– Altitude. The mean altitude of a basin is given in me-
ters above sea level and is based on GTOPO30 (Earth

Resources Observation and Science Center, U.S. Geo-
logical Survey, U.S. Department of the Interior, 1997).

– Forest. The mean fraction of the area covered with for-
est is given in percentage and derived from MODIS data
(Friedl and Sulla-Menashe, 2019), where 2001 is used
as a reference. All grid cells having a dominant Inter-
national Geosphere–Biosphere Program (IGBP) classi-
fication between one and five are defined as forest.

– Sealed area. The mean fraction of sealed area is given in
percentage and is derived from MODIS data (Friedl and
Sulla-Menashe, 2019), where 2001 is used as a refer-
ence. All grid cells having an IGBP classification equal
to 13 are defined as containing 60 % of the sealed area.
Note that the different treatment of forest and sealed
area is based on the required model input; while the land
cover is a classified value, the sealed area is a floating-
point value.

– Permafrost and glacier. The mean coverage of per-
mafrost and glacier in a basin is given in percentage. It
is based on the World Glacier Inventory and the Circum-
Arctic Map of Permafrost and Ground-Ice Conditions.

– Mean temperature. The mean air temperature is based
on the meteorological forcing used to drive the model
(Lange, 2019), covering the period 1979 to 2016 and
given in degrees Celsius.

– Yearly precipitation. The yearly precipitation sum is
based on the meteorological forcing used to drive the
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model (Lange, 2019), covering the period 1979 to 2016
and given (in mm).

– Yearly shortwave downward radiation. The yearly
shortwave downward radiation is based on the meteoro-
logical forcing used to drive the model (Lange, 2019),
covering the period 1979 to 2016 (in W m−2).

The correlation between the defined basin descriptors is
shown in Fig. C1. The variation within each basin descrip-
tor for basins used for regionalization is shown in Fig. C2.

Figure C1. Correlation (using Pearson’s correlation) between basin descriptors.

Geosci. Model Dev., 17, 6819–6846, 2024 https://doi.org/10.5194/gmd-17-6819-2024



J. Kupzig et al.: Regionalization in global hydrological models and its impact on runoff simulations 6839

Figure C2. Distribution of basin descriptors within all basins used for regionalization (n= 933).
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Appendix D: Results of the ensemble of the split-sample
tests

Figure D1. The logMAE values for all 100 split-sampling tests using all variants of (a) MLR, RF, and benchmark to beat; (b) SI; and
(c) kmeans, knn, and SP. Note that the asterisk (*) indicates the tuned version of the method.
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Table D1. Performance loss in median logMAE of the ensemble of split-sample tests from training to testing expressed in percentage of
logMAE in training.

Appendix E: Feature importance bars for MLR (best)
and knn (best) using the descriptor set p+cl

Figure E1. Decrease in logMAE for testing using one representative split sample when randomly shuffling each predictor for (a) MLR (best)
and (b) knn (best). Note that the asterisk (*) indicates the basin descriptors used in the (weakly) correlated subset.
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Appendix F: Model performance for pseudo-ungauged
basins using a modified version of the NSE

Krause et al. (2005) suggested a modified version of the NSE
that is especially suitable as an overall metric, leading to re-
sults between NSE versions focusing on low and high flows.
The applied equation for the modified version is given below
(see Eq. F1).

Modified NSE= 1−
∑
|yk − xk|∑∣∣yk −µy∣∣ , (F1)

where xk is the simulated monthly discharge for the time step
k, yk is the observed discharge for the time step k, and µy is
the mean of the discharge for the evaluated period.

The evaluation of the modified NSE for all pseudo-
ungauged basins of a representative split sample are summa-
rized in Fig. F1. Note that the figure includes also the results
of the applied one-sided paired Wilcoxon rank-sum test for
the KGE values mentioned in Sect. 3.3.

Figure F1. (a) Modified NSE values of pseudo-ungauged basins from the split-sample test grouped by the range of calibrated γ values.
(b) Selected metrics of modified NSE values from the pseudo-ungauged basins (performance better than or equal to the benchmark to beat
is highlighted in gray). (c) The p values of the one-sided paired Wilcoxon rank-sum test, testing the best-performing methods MLR (best)
and SI (best) against all other regionalization methods. Note that p values greater than 0.05 are highlighted in bold, indicating that the null
hypothesis cannot be rejected; thus the difference in central tendency is not statistically significant. Cases where the results of modified NSE
and KGE indicate the same are shaded gray.
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Code and data availability. The data and supporting R
code to reproduce this study’s findings are available at
https://doi.org/10.5281/zenodo.13122859 (Kupzig, 2024).
The data provided in Kupzig (2024) is mainly based
on model output from WaterGAP3 (Flörke et al., 2024,
https://doi.org/10.5281/zenodo.10940380) using the EWEMBI
data set (Lange, 2019, https://doi.org/10.5880/pik.2019.004) and
comparing it with the GRDC data set (GRDC, 2020). Appendix C
describes the basin characteristics used.
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