
Geosci. Model Dev., 17, 6745–6760, 2024
https://doi.org/10.5194/gmd-17-6745-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odeldescription

paperThe Measurement Error Proxy System Model: MEPSM v0.2
Matt J. Fischer
Environment Research & Technology Group, ANSTO, Lucas Heights, Australia

Correspondence: Matt J. Fischer (mjf@ansto.gov.au)

Received: 3 April 2023 – Discussion started: 6 April 2023
Revised: 6 July 2024 – Accepted: 15 July 2024 – Published: 12 September 2024

Abstract. Proxy system models (PSMs) are an essential
component of paleoclimate data assimilation and for testing
climate field reconstruction methods. Generally, current sta-
tistical PSMs consider the noise in the output (proxy) vari-
able only and ignore the noise in the input (environmen-
tal) variables. This problem is exacerbated when there are
several input variables. Here we develop a new PSM, the
Measurement Error Proxy System Model (MEPSM), which
includes noise in all variables, including noise auto- and
cross-correlation. The MEPSM is calibrated using a quasi-
Bayesian solution, which leverages Gaussian conjugacy to
produce a fast solution. Another advantage of MEPSM is that
the prior can be used to stabilize the solution between an in-
formative prior (e.g., with a non-zero mean) and the maxi-
mum likelihood solution. MEPSM is illustrated by calibrat-
ing a proxy model for δ18Ocoral with multiple inputs (marine
temperature and salinity), including noise in all variables.
MEPSM is applicable to many different climate proxies and
will improve our understanding of the effects of predictor
noise on PSMs, data assimilation, and climate reconstruc-
tion.

1 Introduction

Proxy system models (PSMs) describe how biological, geo-
logical, or chemical archives are imprinted with environmen-
tal signals (Evans et al., 2013; Dee, 2015). They are an es-
sential component of paleoclimate data assimilation (Steiger
et al., 2018; Tardif et al., 2019; Sanchez et al., 2021; King
et al., 2023) and of pseudoproxy experiments, e.g., testing
the fidelity of climate reconstruction methods (Loope et al.,
2020a, b). For PSMs, input variables include one or more en-
vironmental variables (e.g., temperature, water salinity, rain-
fall), and output variables include variables which can be

read from natural archives, e.g., the abundance of trace el-
ements or isotopes in carbonate archives. The processes be-
tween input and output may be linear or nonlinear fitted re-
lationships (statistical PSMs) or more detailed physiochemi-
cal models (physiochemical PSMs). Statistical PSMs can be
frequentist (i.e., the PSM is calibrated using ordinary least
squares, OLS) or Bayesian (PSMs that make use of Bayes’
rule). Current paleoclimate data assimilation projects often
use frequentist PSMs (e.g., Steiger et al., 2018; Tardif et al.,
2019) (see also example 1 in King et al., 2023), but some
paleodata assimilation projects have begun to incorporate
Bayesian PSMs (King et al., 2023). Current Bayesian PSMs
(e.g., Tierney and Tingley, 2014, 2018; Tierney et al., 2019;
Malevich et al., 2019) typically have the following form:

ζ ∼N (b0+ f (x, θ), σ
2
ζ ), (1)

where ζ is sampled from the normal distribution N (µ,σ 2),
where b0 is the regression intercept, x and ζ are the input and
output variables respectively (note x is a row vector of pre-
dictor matrix X), and θ is a set of parameters. These Bayesian
models are based on Bayesian OLS rather than Bayesian TLS
(total least squares). In comparison, an errors-in-variables
(EIV) model (containing error in both x and y) may have
the following form:

y ∼N (b0+ f (x, B
∗), df (x, B∗)′6aadf (x, B∗) + ε2

y), (2)

where b0 is the regression intercept, df (x,B∗) is the deriva-
tive of f (x,B∗) for each observation vector [y x], and the
prime symbol (′) is the transpose operator. Appendix A con-
tains further information about Eq. (2). The covariance ma-
trix 6aa is the covariance of the noise a associated with
x = x∗+ a, where x∗ denotes the true but unobservable part
of x (so x∗ is unobservable because it cannot be measured
without noise). See Table 1 for notation information (in-
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cluding B∗ explained under B). The term measurement er-
ror is used here generally to describe any uncertainty as-
sociated with the value of the predictors and the response
variable, which could include both measurement uncertainty
(e.g., from a thermometer) and methodological uncertainty
(from the method used to “combine” several measurements,
which may be spatially and temporally apart). The model in
Eq. (2) is not identifiable, meaning the parameters cannot be
uniquely determined without additional information, such as
information about 6aa . A full Bayesian solution to the prob-
lem may also require reformulating the model in terms of a
subspace of [Y X]; see, e.g., Florens et al. (1974). The fo-
cus of this paper is on a quasi-Bayesian solution to Eq. (2),
which leverages Gaussian conjugacy instead of a Markov
chain Monte Carlo (MCMC) solution.

In this paper, EIV and WLS (weighted least squares) re-
fer to general approaches. York (1966, 1968) introduced a
root-finding solution for one-predictor WLS regression. Lud-
wig and Titterington (1994) presented a maximum likelihood
(ML) solution for a straight line in 3-dimensional space, with
heterogenous noise in all variables. Schneider (2001) briefly
discussed the multivariate method of total least squares,
which assumes homogenous and identically distributed noise
for both predictor and response fields. Hannart et al. (2014)
introduced a ML algorithm for weighted TLS (WTLS) that
accounts for heterogeneity and temporal autocorrelation in
the predictor noise and the response noise but lacks noise
cross-correlation. Also ML solutions, by their very nature,
do not incorporate prior information about the regression co-
efficients. This study expands the model of Hannart et al.
(2014), to include both prior information and generalized
noise (auto- and cross-correlation within and between the
noise series), in the Measurement Error Proxy System Model
(MEPSM). The general EIV model is discussed in Sect. 2.1,
MEPSM is formulated in Sect. 2.2, and steps for practical
implementation are given in Sect. 2.3. MEPSM is applied to
a real example in Sect. 3. Further, Sect. 3.3 investigates the
differences that PSM calibration using MEPSM can make to
paleodata assimilation.

2 Methods

2.1 The EIV model

The general EIV model can be expressed as

zt = z
∗
t + q t (3a)

z∗t =
[
y∗t x

∗
t

]
(3b)

q t = [vt at ] (3c)
y∗t = b0+ x

∗
t B
∗
+ εt . (3d)

Note that, for X∗ and B∗, the superscript star also has a sec-
ond use: it denotes that these entities do not include an in-
tercept term, e.g., B =

[
b0 B∗′

]′. From Eq. (3), the relevant

covariance matrices are

6z∗z∗ =

[
σ 2
Y ∗Y ∗ 6Y ∗X∗

6X∗Y ∗ 6X∗X∗

]
,6Q =

[
�V 0
0 6A

]
, (4)

and

6A =


�A1 �A1A2 . . . �A1Ap

�A2A1 �A2 . . . �A2Ap
...

...
. . .

...

�ApA1 �ApA2 . . . �Ap

 . (5)

See Appendix B for further information on covariance nota-
tion. These matrices describe a statistical stationary model.
For example, the covariance matrix 6A fully specifies the
lag autocovariance and lag cross-covariances of the noise
variables in A, but (6A)t =6A. Note this does not mean
within 6A that 6aiai =6aj aj or �Ai =�Aj (those are spe-
cific cases of 6A). Also note that in this paper �V =6V .
More will be said about 6Q in Sect. 3.1.

Table 2 summarizes the main differences between previ-
ous solutions of the EIV model. First, these methods all as-
sume that the equation noise εt (Eq. 3d) is either zero or not
separate from vt . Earlier work by Fuller (1987) shows a way
of including the equation noise separate from the response
noise, but the predictor noise is limited to the p×p matri-
ces 6atat . The solutions in Table 2 relate to generalized least
squares (GLS), weighted total least squares (WTLS), max-
imum likelihood (ML), and maximum a posteriori (MAP)
methods. A general estimator is of the following form:

6ZZ = (Z−µZ)′J′n
[
6Y 6YX
6XY 6X

]−1

Jn(Z−µZ) (6a)

6Z∗Z∗ = 6ZZ −6QQ =

[
σ 2
Y ∗Y ∗ 6Y ∗X∗

6X∗Y ∗ 6X∗X∗

]
(6b)

B∗ = 6−1
X∗X∗6X∗Y ∗ (6c)

b0 = µZ ·
[
1 −B∗′

]′
, (6d)

where µZ is the GLS mean, 6Y =6Y ∗ +�V , and 6X =
6X∗ +6A. The covariance matrix 6X∗X∗ is a weighted ma-
trix, e.g., X∗′6−1X∗, but different ways of solving for B al-
low for different weightings. The assumption is then made
that 6B∗ =6−1

X∗X∗ (e.g., Amiri-Simkooei and Jazaeri, 2012;
Fang et al., 2017), despite the fact that different possible
weightings exist. The ML method can be used to obtain a the-
oretically better estimation of 6B , but it is computationally
expensive if 6A is not constrained. For example, in Hannart
et al. (2014) 6A is a block diagonal matrix: 6A =⊕

p

i=1�Ai ,
where ⊕ is the direct sum operator for matrices (see Table 2
footnotes). The aim of the present study is to provide a so-
lution for the EIV model that includes a fast theory-derived
approximation of 6B , a prior for 6B , and a full 6A, includ-
ing a way to estimate 6A with limited initial information.

Geosci. Model Dev., 17, 6745–6760, 2024 https://doi.org/10.5194/gmd-17-6745-2024



M. J. Fischer: Measurement error PSMs 6747

Table 1. Notation used.

Symbol Definition

0n, 1n n-length vectors of zeros or ones (or 0 for undefined size)
A n×p matrix of predictor noise, p predictors with n time points, A= X−X∗
a or at 1×p vector, a row of A
B (p+ 1)-length vector of regression weights, B ′ =

[
b0 B∗′

]
dB ∂

∂εθ
εB , where, e.g., εθ is the noise associated with parameters θ

e n-length vector of noise, Y −XB
ε Equation noise
Id Identity matrix of rank d
Jn

[
In 0n×np

]′
L(·), `(·), p(·) Likelihood, log-likelihood, and probability density function
N (µ, 6) Normal distribution with mean µ and covariance 6
Q n× (p+ 1) matrix of noise for all variables, Q= [V A]
R n× n auto- or cross-correlation matrix
V n-length vector of response noise, V = Y −Y ∗

W n× n weight matrix
X n× (p or p+ 1) matrix, p predictors with n time points, may include an intercept term
X∗ n×p matrix of unobserved values underlying X, no intercept term
Y n-length response vector
Z n× (p+ 1) matrix, Z= [Y X]
6 General covariance matrix
60 Prior covariance matrix for 6B
6A np× np covariance matrix of vec(A)a
6aa p×p covariance matrix of noise vector a
6ZZ (p+ 1)× (p+ 1) covariance matrix of Z
� n× n general lag-covariance matrix of noise
�Ai n× n lag-covariance matrix of error variable Ai
�AiAj n× n lag cross-covariance matrix of error variables Ai and Aj
9
(i)
zz 6−1

zizi is a (p+ 1)× (p+ 1) inverse covariance matrixb

8 p2
× (

p
2 (p+ 1)) duplication matrixc

θ, 2 Generic parameter vector and parameter space

a The operator vec(A) means to column stack the matrix A (Henderson and Searle, 1979). b Superscript (i) refers to an index, rather than
subscripting (e.g., zi zi ).

c For the duplication matrix, see Magnus and Neudecker (1986).

Table 2. Solutions for the EIV model. 6A and 6B are given in my notation.

Study 6A 6B Sol. method

Fuller (1990) ⊕
n
i=16aiai

a,b n · dB ′
[∑

9
(i)
zz 0

0 1
2
∑
8′(9

(i)
zz ⊗9

(i)
zz )8

]−1
dB GLS

Amiri-Simkooei and Jazaeri (2012) Fullc e′W−1e
n−p

(
X∗
′

W−1X∗
)−1

WTLS

Hannart et al. (2014) ⊕
p
i=1�Ai max

θ−i∈2−i |θi
`(θi , θ−i) ML

Fang et al. (2017) Full
(

X∗
′

�−1
V

X∗ + 6−1
0

)−1
MAP

This study Full, can also be estimated
(
6wtls
B

−1
+ 6−1

0

)−1
MEPSM

a The matrix direct sum operator ⊕ is notation to build a block diagonal matrix, e.g., Diag([6a1a1 , . . .,6anan ]).
b Note though that technically ⊕i6ai ai =6A′ , not

6A, so ⊕ is used abstractly in this case. c Full: 6A is not constrained to a particular type.
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2.2 MEPSM

As in previous studies, I also ignore the equation error, so the
model in Eq. (3) can be re-expressed:
Z11
Z21
...
Zn1

=


1 x1
1 x2
...

...
1 xn

[ b0
B∗

]
+
[
In −(B∗′⊗ In)

][ V
vec(A)

]
,

(7)

where V ∼N (0n, �V ), and vec(A)∼N (0n·p, 6A) (see
Table 1 footnotes for the operator vec). The response variable
is the first column of Z, denoted as Z1 or more generally as
Y . Note also the two possible definitions of response noise
for the model: V = Y−b0−X∗B∗ and e = Y−XB (where X
includes an intercept term, to match with B). The difference
is that

V = Y −XB +AB∗ = e+AB∗. (8)

From e = V −AB∗, the covariance matrix of model predic-
tion can be expressed as

W=�V + (B∗′⊗ In)6A(B∗⊗ In). (9)

Bayes’ rule states that the posterior density function p(θ |D)
is proportional to the product of the likelihood function L(θ)
and the prior density function p(θ):

p(θ |D) ∝ L(θ)×p(θ). (10)

Note that it does not matter if the likelihood function is a
scaled distribution, e.g., a normal density function multiplied
by a scalar (so it integrates to a number other than unity).

Assuming that the right-side distributions are Gaussian (or
scaled Gaussian), then

N (B, 6B) ∝ N (Bml, 6
ml
B )×N (B0, 60), (11)

where ml refers to the maximum likelihood solution. The
posterior N (B, 6B) integrates to unity, as expected. First
I show an example by using the GLS likelihood. Let the GLS
likelihood be

N (Bml, 6
ml
B )=N

(
(X′6−1X)−1X′6−1Y , (X′6−1X)−1

)
. (12)

Now apply the Gaussian multiplication identity:

N (C(6ml−1
B Bml+6

−1
0 B0), C)∝ N (Bml, 6

ml
B )

×N (B0, 60), (13)

where C=
(
6ml −1
B + 6−1

0

)−1
. Thus the mean and vari-

ance of p(θ |D) are

B = (X′6−1X + 6−1
0 )−1(X′6−1Y + 6−1

0 B0) (14a)

6B = (X′6−1X + 6−1
0 )−1. (14b)

The above solution is a simple example using the GLS
likelihood. To obtain the solution for the EIV problem,

the GLS likelihood is replaced with the WTLS likelihood
N (Bwtls, 6

wtls
B ), where Bwtls and 6wtls

B are derived in Ap-
pendix C and D. Using the WTLS likelihood, simplifying
the product 6ml −1

B Bml (from Eq. 13) is no longer feasible,
so instead we write the mean and variance of p(θ |D) simply
as

B =
(
6wtls
B

−1
+6−1

0

)−1(
6wtls
B

−1
Bwtls+6

−1
0 B0

)
(15)

6B =
(
6wtls
B

−1
+6−1

0

)−1
. (16)

2.3 Implementation

An application to calibrate a real PSM is provided in Sect. 3.
Here general aspects of the solution and implementation are
discussed.

The predictor noise and response noise, A and V , can be
estimated as

A=−(B∗
′

⊗ In)6A(Ip⊗W−1e) (17)

V =�VW−1e. (18)

Matrix A is needed for the calculation of both Bwtls and
6wtls
B , while V is needed to re-estimate �V if relevant (see

next paragraph).
The n× n covariance matrices �Ai (or �AiAj ) and �V

ideally need information about the cross-correlation within
A and autocorrelation of A and V . If the ACF (autocorrela-
tion function) and CCF (cross-correlation function) are not
available, these can potentially be estimated using an itera-
tive procedure. The procedure begins with vectors σ 2

A and
σ 2
V , which are the heteroscedastic error variances (the diago-

nals of 6A and �V ).

1. Initialize 6A = Diag(σA� σA) and �V = Diag(σV �
σV ), where � denotes the Hadamard product.

2. Estimate the first posterior, N (B, 6B), and the predic-
tor and response noise, A and V (Eqs. 15–18).

3. Calculate the ACF (for A and V ) and the CCF (for A).

4. Estimate 6A and �V as in Appendix E, and recalculate
the posterior distribution.

3 Application

3.1 A proxy system model, uncertainties, and the prior

A bivariate (i.e., two-predictor) PSM for coral δ18O is

δ18Ocoral = b0+ b1SST+ b2SSS, (19)

where SST is sea surface temperature and SSS is sea sur-
face salinity. Note that in the coral literature, the coefficients
b1 and b2 are commonly referred to as a1 and a2, but here
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I use the former symbols for generality. This bivariate PSM
has been used in data assimilation (Sanchez et al., 2021) and
Monte Carlo experiments (Thompson et al., 2022). The bi-
variate PSM can be extended by rewriting it in the form of
Eq. (7). The MEPSM requires estimates of the time-varying
uncertainty of all variables and a prior distribution for B (see
below). Here the time-varying uncertainties for the predictors
are obtained from recent SST and SSS products that provide
the complete uncertainty field ε2(long, lat, t), i.e., the uncer-
tainty variance for each grid cell, at each time point.

For ERSSTv5, for each grid cell and time point, the SST
total uncertainty ε2

T (long, lat, t) is the sum of the paramet-
ric uncertainty and reconstruction uncertainty. These uncer-
tainties are derived from a large reconstruction ensemble
(Huang et al., 2020). The parametric uncertainty is based on
the difference between the ensemble average and each en-
semble member, given various internal parameters which af-
fect SST uncertainty (including the uncertainty of the ship,
buoy, or float measurement). The reconstruction uncertainty
is based on the difference between each ensemble member
and a pseudo-observation dataset on which the reconstruc-
tion method is trained, e.g., OISST (optimally interpolated
SST). Note that the calculation of reconstruction uncertainty
includes grid cells that have observational or no observa-
tional data, while the calculation of parametric uncertainty
includes only grid cells that have observational data.

For HadEN4, the SSS total uncertainty ε2
S(long, lat, t)

is a combination of background uncertainty and observa-
tional uncertainty (Good et al., 2013). The observational
uncertainty is obtained from previous studies, while the
background uncertainty is the uncertainty associated with a
persistent-based forecast.

For δ18Ocoral, the main known uncertainty is the analytical
uncertainty, which is ∼ 0.05 ‰ for δ18Ocoral (Osborne et al.,
2013). Time variation could be included by expressing the
analytical uncertainty as a relative standard deviation of the
mean δ18O (the effect of this will be tested elsewhere). Other
uncertainties, which are unknown at many sites, include the
intra- and inter-colony noise (Sayani et al., 2019). Note also
that detrending adds time-varying uncertainty, because the
trend uncertainty is larger at the ends of the time series (this
is applicable to all detrended variables).

For MEPSM, the matrix 6A can be initially
constructed using Diag(σA� σA), where σ ′A =

[εT (site, ·), εS(site, ·)], “site” refers to the grid cell of
a particular site, and the (site, ·) notation means over all time
points. In the SST and SSS products, no information is given
on the noise serial correlation, and no information exists on
the noise cross-correlation between SST and SSS products.
Seasonal peaks in the autocorrelation function (ACF) of
SST noise could arise from, for example, seasonal changes
in shipping tracks, which would affect the parametric
uncertainty. Cross-correlation between SST and SSS noise
might arise from sampling these variables at the same points
within a particular grid cell (i.e., from the same ship) or due

to seasonal variation in shipping tracks. Future work should
investigate the ACF and CCF (cross-correlation function)
for the SST and SSS ensembles (this is beyond the scope
of the current paper). Finally, since the uncertainties in the
predictors and response are fundamentally different, then
6Q is assumed to be a block diagonal matrix, with �V and
6A on the block diagonal and zero-filled blocks on the block
anti-diagonal (Eq. 4).

For Bayesian methods, informative prior distributions
are thought to be more useful than noninformative priors
(Lemoine, 2019). For example, when using a fully nonin-
formative prior distribution, the posterior distribution will be
close to the maximum likelihood distribution, which would
make using the fully noninformative prior somewhat obso-
lete.

The prior distribution for B is obtained from previous
values that were used in Monte Carlo PSM experiments
(Thompson et al., 2022; Watanbe and Pfeiffer, 2022). Those
previous studies did not seek to calculate Bayesian posterior
distributions, but the values in those studies represent current
beliefs about the coefficients and their uncertainty and can
be used as a prior. The prior distribution obtained from those
studies is

p(B)=N (B0, 60)

=N

 b0
−0.22
0.27s

 ,
σ 2

b0
0 0

0 0.022 0
0 0 0.152

  ,
(20)

where s = 0.97 is a scaling factor between δ18Oseawater (in
VSMOW) and δ18Ocoral (in VPDB). The values of b1 =

−0.22 and σ 2
b1
= 0.022 are from Thompson et al. (2022)

and Watanbe and Pfeiffer (2022) respectively. The value
of s−1b2 = 0.27 ‰ psu−1 originates from LeGrande and
Schmidt (2006) and is an average ‰ per salinity value for
the tropical Pacific Ocean. Regional variations in this value
will probably be revealed by new datasets (DeLong et al.,
2022), but for the purpose of this example of MEPSM, the
value of 0.27 ‰ psu−1 is used. Thompson et al. (2022) con-
sidered two values for σ 2

b2
(i.e., σ 2

b2
= {0.12, 0.22

}), so for
this example an ”average” value is used (0.152). The value
of the intercept b0 and its uncertainty σ 2

b0
are unknown in the

sense that they are site-dependent values. A prior for these
unknown values can be estimated by using the other prior
coefficients and SST and SSS data for a particular site. For a
particular site, the prior value of b0 can be calculated as

b0 = µy −µX

[
−0.22
0.27s

]
, (21)

where µX = [µX1 µX2 ] and µy are the mean values of the
predictors and response. From ordinary least squares theory,
the diagonal elements of the covariance of B are typically

https://doi.org/10.5194/gmd-17-6745-2024 Geosci. Model Dev., 17, 6745–6760, 2024
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given as

σ 2
bj
= σ 2

e /RSSj , (22)

where σ 2
e is the error variance, and RSSj is the residual sum

of squares after regressing Xj on X−j , where X−j is the ma-
trix X omitting column j . So for σ 2

b0
,

RSS0 = n− n
2µ′X(X

′

−0X−0)
−1µX, (23)

where X−0 is the observed part of X not including an inter-
cept term (different than X∗, which is the unobserved part of
X). Preliminary analysis showed that the prior value for σ 2

b0
had a large influence on the posterior distribution of B, so
σ 2
b0

only was scaled to be uninformative, i.e., 103σ 2
b0

.

3.2 Coral example

Rock Islands (7.27° N, 134.38° E) is a site on the western
barrier reef of Palau, western Pacific Ocean. A number of
coral cores were sampled from Rock Islands (RI) and the
surrounding area, but the focus here is on one core labeled
RI6, which is a monthly resolved record spanning 1899–
2008. The core was sampled from a narrow-entrance lagoon,
in shallow water (∼ 2 m depth). Osborne et al. (2013) com-
pared the coral δ18O record with temperature data from the
NCEP/NCAR Reanalysis (Kalnay et al., 1996) and salinity
data from LEGOS (Delcroix et al., 2011). Using the raw (not
detrended or deseasonalized) RI record from 1970–2008 and
ordinary least squares, Osborne et al. (2013) regressed the
coral δ18O against surface temperature and salinity, produc-
ing the following equation:

δ18Ocoral =−0.06SST+ 0.43SSS− 18.70; (24)

see Table A4 in Osborne et al. (2013). Osborne et al. (2013)
attributed the small SST coefficient to the small seasonal SST
range at Palau (∼ 1.5 °C), presumably because the small SST
range makes the data scatter with δ18O more spherical than
ellipsoid. They did not directly compare their raw SSS co-
efficient with any other data. Hence the RI δ18O record was
chosen for this example, in order to further investigate the
SST and SSS effects on coral δ18O at this site. In the fol-
lowing analysis the main differences with the analysis of Os-
borne et al. (2013) are that here the SST and SSS data are
extracted from ERSSTv5 and HadEN4, because these prod-
ucts provide the uncertainty fields (Sect. 3.1). Secondly, the
time period examined is from 1950–2008. Thirdly, for this
study, all variables were detrended (using linear detrending
and without removing the intercept), in order to ensure sta-
tionarity in the mean. For all variables, the trends at this site
were weak. For example, for δ18Ocoral the trend from 1950–
2008 was−0.00135±0.004 ‰ per year. A Jupyter Notebook
with these preprocessing steps is available in the Supplement.
Using this updated (and detrended) data, the OLS regression
was recalculated as

δ18Ocoral =−0.13SST+ 0.42SSS− 16.25. (25)

Figure 1. The prior and posterior distributions for the SST (b1)
and SSS (b2) coefficients. The final posterior is wider than the first
posterior, because the final posterior accounts for auto- and cross-
correlation in 6A. In Figs. 1–3 the first posterior is the dashed line.

Next MEPSM was applied to the same data, following the
steps in Sect. 2.3. Except, for the application presented
here, only 6A was updated in step 4. �V was set as �V =
Diag(σV � σV ) throughout, because here σV is thought to
be mostly analytical noise, which should be approximately
white (the uncertainty due to detrending is time-varying as
well as white). For 6A, for the auto- and cross-correlation
functions of the predictor noise, up to 100 lags (months)
were retained to construct the submatrices RAi and RAiAj
(see Appendix E). Experiments with 50 and 150 lags showed
little difference in the final posterior. In any application of
MEPSM, the user should consider the source of the predic-
tor and response noise in constructing 6A and �V (as in
Sect. 3.1).

Figure 1 shows the prior and the first and final poste-
rior distributions for the SST and SSS coefficients. The first
posterior distribution (dashed line) is obtained after step 2
(Sect. 2.3), while the final posterior is obtained after updat-
ing6A for auto- and cross-correlation. The (final) mean SST
and SSS coefficients are given in Fig. 2: b1 =−0.25 ‰ °C−1

and b2 = 0.49 ‰ psu−1. Figure 2 shows the marginal plots
of the 3-dimensional scatter plot (SST, SSS, δ18O), together
with the prior and posterior regression lines. For Rock Is-
land, the SST and SSS coefficients are both steeper for the
final posterior, compared to the OLS equation (Eq. 25).

Another advantage of Bayesian analysis is that attaching
a ridge parameter λ to the prior variances means that the
method can be used to regularize the solution, in a way that
is different than traditional methods of regularization, such
as principal component analysis, where components are re-
tained by hard thresholding. Here, the ridge parameter λ is
attached to the prior and allowed to vary over the range 10−4

to 102:

p(B)=N

[ b0
−0.22
0.27s

]
,

103σ 2
b0

0 0
0 λ0.022 0
0 0 λ0.152

  . (26)
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Figure 2. The regression lines of the prior and posterior distributions. In 3 dimensions, these regression lines are the sides of a plane. Each
shaded point corresponds to a monthly value from 1950–2008.

Figure 3. The effect of the regularization parameter λ on the SST
(b1, top) and SSS (b2, bottom) coefficients. The left and right side
of the plots correspond to the prior distribution p(B) and likelihood
distribution L(B) respectively.

Figure 3 shows the effect of λ for both the first and final pos-
terior. As λ increases, B moves from the prior distribution to
the likelihood distribution. The difference between the solid
and dashed lines (for each coefficient) is because of the ef-
fect of adjusting 6A for auto- and cross-correlation, which
becomes less relevant for small λ (λ < 10−2). More will be
said about serial dependence in A below. This type of prior
regularization will likely be useful for sites where the (p+1)-

dimensional scatter of data (predictors plus response) is more
spherical than ellipsoid. For example, a more spherical scat-
ter of data could occur at sites where the SST range is small.
In practice, the value of λ could be estimated using cross-
validation methods.

Table 3 compares the regression coefficients (and vari-
ance) from four different solutions: a ML solution (Ap-
pendix F), the WTLS method (Appendix C and D), and the
MEPSM solution for the first and final posterior. The maxi-
mum likelihood estimate (MLE) and WTLS solution are ba-
sic implementations, i.e., no prior and no adjustment for au-
tocorrelation or cross-correlation. The MLE and WTLS solu-
tions are similar, with the variance being generally more con-
servative for WTLS, owing either to assumptions in the two
methods or differences in method implementation, e.g., opti-
mization for MLE versus analytical solution (with Gaussian
assumptions) for WTLS. For the first posterior of MEPSM,
both the mean and the variance move away from the WTLS
solution and towards a tight prior: in Fig. 3 the MEPSM first
posterior (on the dashed line) is the same as the λ= 100 so-
lution, and the basic WTLS solution is the same as λ≥ 102.
For the final posterior (Table 3), the SST and SSS coefficients
change steepness: b1 becomes steeper, while b2 becomes a
little less steep compared to the WTLS solution and the first
posterior (also seen in Fig. 3 as the difference between the
solid and dashed lines). For both coefficients (Table 3), the
variance increases for the final posterior (relative to the first
posterior), because the final posterior adjusts for the auto-
and cross-correlation in 6A.

Figure 4 shows the autocorrelation of the noise in each
variable (A1 is the SST noise, and A2 is the SSS noise), for
the first and final posterior distribution. For the first posterior
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Table 3. Regression parameters and their standard deviation, from four different solutions.

Method b0 b1 b2 Equations

MLE −24.6± 1.2 −0.169± 0.014 0.696± 0.027 Eq. (F3)
WTLS −24.6± 1.8 −0.169± 0.014 0.696± 0.046 Eq. (C8) & (D3)
First posterior −22.0± 1.6 −0.189± 0.011 0.635± 0.042 Eqs. (15) & (16)
Final posterior −15.4± 2.2 −0.248± 0.017 0.492± 0.061 Eqs. (15) & (16)

Figure 4. The autocorrelation function of the response noise (V ),
the SST noise A1, and the SSS noise A2, for the first posterior (left
column) and the final posterior (right column). The predictor and
response noise were calculated using Eqs. (17)–(18).

solution, the noise covariance in 6A and �V is assumed to
be heteroscedastic but white. This assumption is clearly not
true, because all variables appear to have seasonally vary-
ing noise as shown by their autocorrelation functions (Fig. 4,
left column). However, when this seasonally varying noise is
included in 6A (but not in �V ), the response noise V essen-
tially becomes white, as all the seasonal dependence moves
into the predictor noise (Fig. 4, right column). Whether or
not the response noise V should have seasonal variation (see
Sect. 3.1) requires expert knowledge. This example is simply
to illustrate the effect of including serially correlated noise in
a multipredictor model. The implications of seasonally vary-
ing noise for coral PSMs will be addressed in another pa-
per, with the application of MEPSM to a large coral database
(Walter et al., 2023).

3.3 Data assimilation experiments

Two data assimilation (DA) experiments were performed us-
ing the Palau coral example. The purpose of these experi-

ments is to investigate the effect of different H on data as-
similation (Appendix G introduces DA and describes poten-
tial biases caused by misspecified H). For the experiments,
the model prior covariance 6εε was obtained from iCESM1
(Brady et al., 2019), using a preindustrial run, and data from
the last 400 years (1450–1850 CE, which is “closer” to the
coral example period 1950–2007). Model SST and SSS data
were extracted from a line of five grid cells, centered on the
RI6 location. Although there is only one observational coral
record, for these experiments, the same observational record
is repeated for the five grid cells (Yo in DA). All data were
deseasonalized but kept at monthly resolution. A line of grid
cells was used, so the covariance 6εε includes some spa-
tial correlation. The reasons for using covariance matrices
in these experiments will become apparent. The covariances
6εε and 6rr were the same for both experiments and were
constructed as follows:

– 6εε = Var(X− ŨkDkV′k), where X= UDV′ is the sin-
gular value decomposition of X, k =1:3 (means the
three leading eigencomponents), and Ũ denotes compo-
nents filtered with a bandpass filter (2–20 years). Here
interannual variability (as in Uk) is considered to be the
state of interest. Filtering U better separates signal and
noise.

– 6rr = FH6εεH′F, where F= Diag(
[
σV
σh1
, . . .,

σV
σhp

]
)

and Diag(H6εεH′)= [σ 2
h1
, . . ., σ 2

hp
]. This means that

6rr is a covariance matrix with the same correlation
structure as H6εεH′ but with variance scaling provided
by σ 2

V = Var(V ), where V is from Eq. (18) (for DA,
Var(V ) is just the total variance of V ). Also here H=
B∗
′

post2⊗ Ip, where Bpost2 denotes the values of B for
the final posterior in Table 3. In the experiments below,
keeping 6rr constant simplifies the comparisons.

To understand the experiment results, it is useful to cast data
assimilation into observation space:

ya = Hxa =HKyo
+ (Ip −HK)Hxb

=
(H6εεH′)yo

+ 6rry
b

(H6εεH′ + 6rr)
, (27)

where K=6εεH′(H6εεH′ + 6rr)
−1, and xb, yo, and yb

are treated like column vectors (to simplify the syntax). As
expected, the analysis ya is a weighting between the prior
N (yb, H6εεH′) and some likelihood N (yo, 6rr).
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Table 4. Notation for Sect. 3.3 (unless otherwise stated in text).

Symbol Definition

C Generic real symmetric square matrix
D2, V Matrices of eigenvalues and eigenvectors
U Left singular vectors
3(·) Eigenvalue function, e.g., 3(C)= [d2

1 , . . ., d
2
p]

F Diagonal scaling matrix
H p×m proxy model matrix∗, H= B∗′⊗ Ip
K m×p Kalman gain matrix
X= [SST SSS] n×m matrix with n time points
Y b An n-length column vector of Yb

xa, xb m-length vectors, the analysis and background state
ya, yb, yo Similarly, the p-length vectors for y (and the observation vector)

Also, e.g., xb yb are row vectors of Xb, Yb
λ6εε m×m (prior) covariance matrix of state noise,

with scaling parameter λ
6rr p×p covariance matrix of observation noise

∗ In the experiments, p = 5 and m= 10 because there are two state variables and five grid points.

In both experiments that follow, the value of H in Eq. (27)
changes (but not the value of 6rr , as defined above). Three
different H= B∗′⊗ Ip are tested, which are constructed
from three values of B∗: B∗ols = [−0.13, 0.42], B∗post1 =

[−0.189, 0.635], and B∗post2 = [−0.248, 0.492] (see Eq. 25
and Table 3). The difference between the two experiments is
the value of yb =Hxb.

The data assimilation was implemented using a reduced-
rank Kalman filter (Elbern et al., 2014) (rank reduction of
6εε is only used in Experiment 2). A notebook and code
module for the experiments is available (Fischer, 2024). Note
in the following subsections that V only refers to eigenvec-
tors (see Table 4) and not the noise from MEPSM.

3.3.1 Experiment 1

In Experiment 1, xb (and thus yb) is set to zero. This mim-
ics an offline DA situation where the model prior might be
centered (i.e., zero mean) and constant. In addition, a scaling
parameter λ is added to the prior, i.e., N (yb, H(λ6εε)H′). If
the prior covariance is large, then the prior is noninformative,
and ya ≈ yo. Here a tighter prior is of interest, so λ is set to
λ= 0.1. Henceforth 6εε refers to a scaled prior covariance
matrix, but the λ term is dropped.

The DA posterior time series Y a is shown for the three
different values of H in Fig. 5a, and the eigenvalue shrinkage
(explained below) is shown in Fig. 5b. For λ= 0.1, the Y a

resulting from Hols shows the most shrinkage towards the
zero-mean prior (Fig. 5a).

To understand the results from theory, two pieces of infor-
mation are needed (see Table 4 for notation):

– 3(6C)=3(60.5C60.5), where6 and C are real sym-
metric square matrices.

– H6εεH′ and 6rr have similar eigenvectors (because
here Diag(F) is near constant) but different eigenvalues.

Setting yb to zero removes the 6rryb term in Eq. (27), leav-
ing ya = (H6εεH′)

(H6εεH′ + 6rr )y
o. The eigenvalues of the p×p pro-

jection matrix (H6εεH′)
(H6εεH′ + 6rr ) are of interest here. It follows

(from the points above) that the projection matrix has the
same eigenvalues as

(H6εεH′)0.5(H6εεH′ + 6rr)
−1(H6εεH′)0.5

= VDV′(VD2V′ + VS2V′)−1VDV′

= VD(D2
+S2)−1DV′, (28)

where D2 and S2 are the eigenvalue matrices of H6εεH′ and
6rr respectively. So in this example, the shrinkage factors
of the projection matrix can be expressed as d2

j /(d
2
j + s

2
j ).

Figure 5b shows that using Hols shrinks the eigenvalues more
than for H from MEPSM. In this introductory experiment,
the results have been examined in observation space; the next
experiment will consider both xa and ya .

3.3.2 Experiment 2

In Experiment 2, model SST and SSS data were obtained
for 1950–2005 from the iCESM historical run (which ended
in 2005), for xb. The model data were deseasonalized and
filtered using a low-pass (> 2-year) filter (so here xb is a
smooth prior, not a zero vector). This setup mimics data as-
similation with a transient prior, e.g., offline data assimilation
with time windows (windows are a type of prior smoothing).
Note, for this experiment, that the model trajectory does not
need to strongly match the observed historic trajectory. Fur-
ther, 6εε is not a full rank matrix (the first three eigenvalues
span 98% of the total variance), so for Experiment 2 only
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.

Figure 5. For Experiment 1 (λ= 0.1,yb = 0p), (a) the time series Y a (solid lines, color key as in b) and (b) the eigenvalue shrinkage of
the projection matrix (see text), for three different values of H. These experiments used five model grid points, but here Y a is plotted for the
central grid point. In (a) the dashed line is Y o.

the first three leading components of 6εε are used (which
helps to regularize Xa). Figure 6 shows, for λ= 0.1, the
three time series Y o, Y b, and Y a for each different H (named
Hols, Hpost1, Hpost2, where the latter two refer to the first and
final posterior for MEPSM). Figure 6 shows the advantage
of H from MEPSM is that, for example, yb =Hpost1x

b has a
greater range and thus allows ya to better capture the peaks
and troughs in yo than can yb =Holsxb. To further compare
the results for the different H, (Xa, Y a) was calculated for
λ= [10−2, . . ., 102

] and compared with (X∗, Y ∗) using the
mean absolute error metric:

mae(Y a,Y ∗)= n−1
n∑
i=1
|yai − y

∗

i |. (29)

This was done similarly for mae(Xa,X∗). Note that
(X∗, Y ∗), the estimated state from MEPSM, has no direct
part in the DA.

Figure 7 shows that for this site, for Hpost2 (and Hpost1)
the analysis Xasst and Y a typically have a smaller mae com-
pared to Hols. Also, mae decreases as λ increases. For
mae(Y a,Y ∗), the decrease flattens when ya ≈ yo (for λ > 1,
Fig. 7b), but note that Y o is not Y ∗. So in this example, it
seems that a solution (Xa) better than the likelihood (yo

=

Hxa) cannot be achieved, which means that H from MEPSM
wins (lower mae for Xasst), because Hols biases Xasst (Fig. 7a).
For Hols, there is less bias for Xasss, perhaps owing to the rel-
ative difference between OLS and MEPSM with respect to
b2 (the SSS coefficient). Performing similar data assimila-
tion experiments on global climate proxy datasets will better
inform such issues and regional variation.

4 Conclusions

MEPSM is a new type of proxy system model which incor-
porates both prior information and generalized noise in all
variables, such as cross-correlated noise within the predic-
tor variables. DA theory and two experiments suggest that,
in data assimilation, the MEPSM should have an advan-
tage over conventional OLS-calibrated PSMs (the latter are
widely employed in current paleo-DA projects). In the work
presented here for MEPSM, the response noise is assumed
to be independent of the predictor noise (the zero matrices
in 6Q), but cross-correlation between the predictor and re-
sponse noise is possible (if needed), by complete quadratic
multiplication of 6Q, rather than treating �V and 6A sep-
arately, in Eq. (9). However, for many PSMs the predictor
and response noise are fundamentally different and therefore
should be independent. The next step is to apply MEPSM
to calibrate multiple-input proxy system models for differ-
ent climate proxies (e.g., isotopes in corals, tree rings, and
speleothems) and to incorporate MEPSM into current data
assimilation projects.

Appendix A: Basis of Eq. (2)

Let

y = f (x1− a1, . . ., xp − ap). (A1)

A first-order Taylor expansion gives

y ≈ f (x1, . . ., xp)−

p∑
k=1

[
∂f (x1, . . ., xp)

∂xk
ak

]
(A2)
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Figure 6. For Experiment 2 (λ= 0.1, yb =Hxb), the time series of Y o, Y b, and Y a (color key right) for three different H (on left axis).
As in Fig. 5 Y a and Y b refer to the central grid point. In the panels, Y o is the same, but Y b and Y a depend on H. Note how ya is always
between yb and yo.

Figure 7. For Experiment 2 (yb =Hxb), the mean absolute error for different λ for (a) Xa and (b) Y a (using the central grid point series)
and for the three different H (color key as in b). Panel (a) shows the mae for Xasst (solid lines) and Xasss (long dashed lines), while panel (b)
is the mae for Y a (see Eq. 29). Small values of λ mean ya ≈ yb, while large λ values mean ya ≈ yo.

such that the variance of f (x) is Var(f (x))≈
df (x)′6aadf (x). The first-order Taylor expansion will
be exact when f (x) is a linear function.

Appendix B: Notation for covariance

Covariance can be given in plain or scaled format, e.g.,

6 = σ 2S. (B1)

So, just as an example, a naive covariance matrix forB could
be written as follows:

6B = (X∗′6−1X∗)−1
= σ 2(X∗′S−1X∗)−1. (B2)
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In this paper I use the plain format because it simplifies many
expressions.

Appendix C: The WTLS likelihood and its mean Bwtls

The target function for WTLS essentially consists of the
quadratic component of the log-likelihood function:

φwtls(
[
B, X∗

]
)=

(
vec(Z)−

[
Y ∗

vec(X∗)

] )′
·6−1

Q

(
vec(Z)−

[
Y ∗

vec(X∗)

] )
, (C1)

where Y ∗ =
[
1n X∗

]
B. For ∂φ/∂B, Eq. (C1) reduces to

∂φwtls

∂B
=
∂[(Y − b0−X∗B∗)′�−1

V (Y − b0−X∗B∗)]
∂B

(C2a)

= 2X̃′�−1
V V , (C2b)

where X̃=
[
1n X∗

]
. Next substitute V with Eq. (18):

∂φwtls

∂B
= 2X̃′W−1e. (C3)

The residual vector e can be written as

e = (Y − b0−AB∗)−X∗B∗ (C4)

or

e = Y −XB. (C5)

Then setting Eq. (C3) to zero, substituting for e, and rear-
ranging gives

Bwtls =
[
(X−A)′W−1(X−A)

]−1

·

[
(X−A)′W−1(Y −AB)

]
(C6)

or

Bwtls =
[
(X−A)′W−1X

]−1 [
(X−A)W−1Y

]
, (C7)

where A now may include a column of zeros (corresponding
to noiseless predictors in X).

Equation (C7) expands to

Bwtls =
[
X′W−1X−A′W−1X

]−1 [
X′W−1Y −A′W−1Y

]
, (C8)

where (A′W−1X) is the weighted covariance between A and
the predictors, and (A′W−1Y ) is the weighted covariance be-
tween A and the response vector. This shows that WTLS can
be expressed as an adjusted least squares problem. Hence, it
can also be expressed as an augmented linear regression:

Y −AB = (X−A)B + (V −AB), (C9)

which is equivalent to Eq. (7).

Appendix D: Covariance of Bwtls

One approximation for 6B is as follows. Let

B =KY =K(XB + e). (D1)

If KX= I, then

6B =K6K′, (D2)

where 6 = Diag(e⊗ e). For Bwtls, from Eqs. (D1) and (C7)
it follows that K=

[
(X−A)′W−1X

]−1
(X−A)′W−1.

Therefore,

6wtls
B =

[
(X−A)′W−1X

]−1
M
[
(X−A)′W−1X

]−1′
, (D3)

where M= (X−A)′W−16W−1(X−A).

Appendix E: Construction of 6A and �V

For two predictors, 6A is

6A =

[
�A1 �A1A2

�A2A1 �A2

]
. (E1)

6A can be constructed as

6A = Diag(σA)′
[

RA1 RA1A2

RA2A1 RA2

]
Diag(σA), (E2)

where Diag(·) is a diagonal matrix, and σA is a (n ·p)-length
vector containing the heteroscedastic “variance” of the pre-
dictor noise for each predictor (stacked vertically). The cen-
tral block matrix, made up of submatrices R, will be labeled
R̃. The submatrices of R̃ are n×n correlation matrices, con-
taining the autocorrelation or cross-correlation information
for the predictor noise A:

R=



ρ0 ρ1 ρ2 ρ3 . . . ρn−1
ρ1 ρ0 ρ1 ρ2 . . . ρn−2
ρ2 ρ1 ρ0 ρ1 . . . ρn−3
ρ3 ρ2 ρ1 ρ0 . . . ρn−3
...

...
...

...
. . .

...

ρn−1 ρn−2 ρn−3 ρn−4 . . . ρ0


, (E3)

where (ρ0, ρ1, . . ., ρn−1) is the auto- or cross-correlation
function.

If R is an autocorrelation matrix, then ρ0 = 1. Also, be-
cause the auto- or cross-correlation may become ∼ 0 at long
lags, then ρ>k may be set to 0, for a chosen lag k. To en-
sure that R̃ is positive definite, the algorithm of Rebonato
and Jaeckel (1999) is computationally fast.
�V can be similarly constructed:

�V = Diag(σV )′RVDiag(σV ). (E4)
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Appendix F: Maximum likelihood solution of Hannart
et al. (2014)

Hannart et al. (2014) defined the log-likelihood of the EIV
model as (here written using the notation in this paper, rather
than the notation of Hannart et al., 2014)

`(
[
B∗, X∗

]
)= (Y − b0−X∗B∗)′�−1

V (Y − b0−X∗B∗)

+

∑
i

(Xi −X∗i )
′�−1
Ai
(Xi −X∗i ), (F1)

which is a reduced form of Eq. (C1), because the off-diagonal
matrices�AiAj in 6A are not included. Hannart et al. (2014)
wrote an iterative (fixed-point) solution in terms of X∗ and
B∗.

X∗i = (�
−1
Ai
+ b2

i�
−1
V )−1(bi�

−1
V ȳi +�

−1
Ai

Xi) (F2a)

B∗ = (X∗
′

�−1
V X∗)−1X∗

′

�−1
V (Y − b0), (F2b)

where here B∗ = [b1 b2]
′, and ȳi = Y − b0 − X∗

−iB
∗

−i . (I
have included the intercept b0 explicitly.) Confidence inter-
vals for each bi were calculated from the likelihood profiles
(see Sect. 3 in Hannart et al., 2014).

The ML solution I provide here differs from Hannart et al.
(2014), but I adopt a similar form (what follows is only for
the ML estimate in the first row of Table 3). I express the
log-likelihood in Eq. (F1) as a function of V and A:

`(B)= V ′�−1
V V +

∑
i

Ai�−1
Ai

Ai, (F3)

where A and V are calculated using Eqs. (17)–(18). The dif-
ference with Hannart et al. (2014) is that the likelihood here
is rewritten with respect to e = Y−XB (through Eqs. 17–18),
whereas the procedure of Hannart et al. (2014) is expressed
with respect to Y −X∗B∗, i.e., the main difference being X
or X∗. The point here is merely to provide a basic ML solu-
tion in Table 3, in order to compare with the other solutions.
Equation (F3) should work with many standard ML pack-
ages, because there is no iterative dependence on X∗.

The first row in Table 3 was calculated using Eq. (F3),
and the Julia package ProfileLikelihoods.jl (VandenHeuvel,
2022).

Appendix G: MEPSM and paleodata assimilation

This appendix explores the potential advantages of MEPSM
for paleodata assimilation (PDA). This is a stand-alone ap-
pendix, and notation may differ from the main text. The fol-
lowing notation is used for the data assimilation components:

– xb is the climate model data, at m grid points.

– y is the proxy data, at p grid points.

– θ is the unobserved state vector, with m grid points.

– H is the operator which converts model space to proxy
space.

Matrix H is p×m. (Note that if a proxy system model
has multiple inputs, then H can be formed by concate-
nation, e.g., H= [Hsst Hsss] in which casem above be-
comes 2m.).

Data assimilation can be expressed in GLS format:

y = Hθ + r (G1a)

xb = θ + ε, (G1b)

where r ∼N (0,6rr) and ε ∼N (0,6εε). In the typical of-
fline PDA, 6εε is an m×m background covariance matrix.
In MEPSM, the predictor noise matrix is 6A. Out of in-
terest, a time-constant noise matrix could be specified as
6A =6aa ⊗ In. Note the difference between 6εε and 6aa :
6εε is estimated from climate model ensembles, whereas
6aa is from ensemble climate data reconstructions (e.g., an
ensemble SST product). Also, PDA is about estimating θ ,
whereas MEPSM is about calibrating H (in MEPSM B con-
tains the non-zero elements of H). Note that H is typically
calibrated using observed modern climate data and proxies,
over a coeval period (e.g., the 20th century). I will say more
about H below.

Next concatenate the two equations above into one:

z=

[
y

xb

]
= H̃θ + q, (G2)

where H̃=
[

H
Im

]
, and let 6qq =

[
6rr 0

0 6εε

]
. The GLS

solution for θ is

θa =
(

H̃′6−1
qq H̃

)−1
H̃′6−1

qq z

=

(
H′6−1

rr H+6−1
εε

)−1(
H′6−1

rr y + 6−1
εε x

b
)
. (G3)

For the analysis error covariance 6a , it is

6a =
(

H′6−1
rr H + 6−1

εε

)−1
. (G4)

Equation (G4) can also be expanded as

6a = 6a(6a)−16a =6a
(

H′6−1
rr H + 6−1

εε

)
6a

= K6rrK′ + 6a6−1
εε 6

a, (G5)

where K=6aH′6−1
rr . The question here is what happens

if H is calibrated using a biased method (e.g., OLS). Equa-
tion (G4) suggests that 6a will also be biased. Ensemble
filtering methods are used for their computational advan-
tage: replacing a large m×m 6εε with a smaller ensemble
of model xb vectors. But the model xb vectors are filtered in
a way that ensures the resulting ensemble of δθa (i.e., devi-
ation from θ̄a) agrees with Eq. (G5). So ensemble filtering
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methods do not help if H is biased. Equation (G1) shows that
the operator H is applied to the unobserved state θ , not to
the “observed” xb, so using OLS for calibrating H seems
flawed. OLS calibrates a PSM on observed (but not true)
data, whereas MEPSM calibrates a PSM on the unobserved
state x∗.

Code and data availability. Intuitive Julia code for MEPSM
is available on GitHub (https://github.com/Mattriks/
MeasurementErrorModels.jl, last access: 2 April 2023)
and Zenodo (https://doi.org/10.5281/zenodo.7793741, Fis-
cher, 2023a). A manual for MEPSM is available at
https://mattriks.github.io/MeasurementErrorModels.jl/dev/ (Fis-
cher, 2023b). The manual contains three examples which reproduce
results from this paper.

The ERSSTv5 sea surface temperature data are avail-
able at https://psl.noaa.gov/data/gridded/data.noaa.ersst.
v5.html (last access: 16 December 2019) (metadata:
https://doi.org/10.7289/V5T72FNM, Huang et al., 2017). The
ERSSTv5 uncertainty data were obtained from Boyin Huang,
NOAA (22 October 2020).

The HadEN4 ocean salinity data (and uncertainty) are avail-
able at https://apdrc.soest.hawaii.edu/las/v6/dataset?catitem=16652
(Gouretski and Reseghetti, 2020). These data are from version
EN.4.2.1 and are the G10 analyses, i.e., with the corrections of
Gouretski and Reseghetti (2010).

The coral δ18O data from core RI6 were extracted from the
CoralHydro2k database (Walter et al., 2023). A Jupyter Notebook
(as a PDF) showing the preprocessing of these data is available in
the Supplement. The dataset stored for the code examples in the
GitHub repository contains all three detrended variables (detrended
without removing the intercept).

Some input variables for PSMs, from the iCESM1 last millen-
nium simulation (Brady et al., 2019), are available at the University
of Washington (https://atmos.washington.edu/~rtardif/LMR/prior,
Tardif, 2024). The variables ocean surface temperature (tos_sfc) and
ocean surface salinity (sos_sfc) are used in Sect. 3.3.

A notebook and code module for Sect. 3.3 are available on Zen-
odo (https://doi.org/10.5281/zenodo.12660485, Fischer, 2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-6745-2024-supplement.
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