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Abstract. This article presents the C-grid implementation of
the CICE sea ice model, including the C-grid discretization
of the momentum equation, the boundary conditions (BCs),
and the modifications to the code required to use the in-
cremental remapping transport scheme. To validate the new
C-grid implementation, many numerical experiments were
conducted and compared to the B-grid solutions. In ideal-
ized experiments, the standard advection method (incremen-
tal remapping with C-grid velocities interpolated to the cell
corners) leads to a checkerboard pattern. A modal analysis
demonstrates that this computational noise originates from
the spatial averaging of C-grid velocities at corners. The
checkerboard pattern can be eliminated by adjusting the de-
parture regions to match the divergence obtained from the
solution of the momentum equation. We refer to this novel
approach as the edge flux adjustment (EFA) method. The C-
grid discretization with edge flux adjustment allows for trans-
port in channels that are one grid cell wide – a capability that
is not possible with the B-grid discretization nor with the C-
grid and standard remapping advection. Simulation results
match the predicted values of a novel analytical solution for
one-grid-cell-wide channels.

1 Introduction

CICE (Hunke et al., 2023) is a dynamic and thermody-
namic sea ice model used for a variety of applications, such
as climate modeling (e.g., DeRepentigny et al., 2020), sub-
seasonal sea ice forecasting (e.g., Barton et al., 2021), and
short-term sea ice forecasting (e.g., Smith et al., 2021). Since
2017, the model has been developed by the CICE Consor-
tium, a group of institutions from the USA, Canada, Den-
mark, and Poland.

Earlier versions of CICE used the Arakawa B-grid
(Arakawa and Lamb, 1977, i.e., the horizontal velocity com-
ponents u and v are co-located at cell corners) for the spa-
tial discretization. This co-location of u and v simplifies the
treatment of the Coriolis term and of the off-diagonal part
of the water stress term. Another interesting characteristic of
the B-grid is the straightforward implementation of no-slip
and no-outflow boundary conditions.

Recently, many CICE users have requested a C-grid capa-
bility, in which the u component is defined on east and west
cell edges and the v component on north and south edges.
The C-grid also has appealing characteristics. First, it allows
for straightforward coupling with C-grid ocean models (e.g.,
NEMO and HYCOM; Madec and the NEMO System Team,
2008; Metzger et al., 2014) and atmospheric models (e.g.,
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GEM; McTaggart-Cowan et al., 2019). Second, as opposed
to a B-grid, it can represent transport along channels that
are only one grid cell wide. Finally, the C-grid discretization
better represents inertial–plastic compressive waves (Bouil-
lon et al., 2009). For these reasons, members of the CICE
Consortium decided to implement a finite-difference C-grid
capability in CICE, which is presented here.

Other widely used continuum-based sea ice models with
a C-grid discretization include the Sea Ice modelling Inte-
grated Initiative (SI3; Vancoppenolle et al., 2023), the sea
ice component of the Massachusetts Institute of Technol-
ogy general circulation model (MITgcm; Losch et al., 2010),
and the Sea Ice Simulator version 2 (SIS2; Adcroft et al.,
2019). In terms of dynamics, these sea ice models have
many similarities (e.g., they include the elastic–viscous–
plastic scheme) but differ in the way sea ice (and snow)
transport is implemented. SI3 uses the Prather (1986) trans-
port scheme, which is based on the conservation of second-
order moments. The default approach for transport in the
MITgcm is a second-order scheme with a superbee flux lim-
iter. Other options for transport in the MITgcm include up-
wind schemes and a fifth-order scheme with weighted essen-
tially non-oscillatory (WENO) limiters. The default transport
method for sea ice and snow in SIS2 is a non-directionally
split first-order upwind scheme, and SIS2 also includes op-
tions for directionally split piecewise parabolic, directionally
split piecewise linear, and directionally split piecewise con-
stant methods.

When we started working on the C-grid discretiza-
tion, CICE already included a first-order upwind transport
scheme. Upwind transport is naturally suited for a C-grid dis-
cretization since edge velocities can be directly used to cal-
culate fluxes on the four sides of a quadrilateral grid cell. Al-
though upwind transport has some desirable characteristics
(e.g., it is conservative, stable, computationally efficient, and
sign-preserving), it is very diffusive. Sharp features such as
the ice edge are quickly smeared out when simulating trans-
port with an upwind scheme.

The default advection algorithm for the B-grid in CICE is
the remapping transport scheme (Dukowicz and Baumgard-
ner, 2000; Lipscomb and Hunke, 2004). Although remapping
is fundamentally a B-grid transport scheme, we decided to
adapt it for the C-grid discretization. An important reason
for doing this is to be able to reuse a significant part of the
code and therefore speed up the implementation. The attrac-
tive properties of remapping also motivated our choice. Like
upwind, incremental remapping is conservative, stable, and
sign-preserving. Although the geometric calculations (com-
puting departure regions for each cell edge) are relatively ex-
pensive, the method scales well when there are many tracers,
as is the case in CICE. Also, with a linear reconstruction of
scalar fields, remapping is much less diffusive than the up-
wind scheme and therefore better preserves sharp features
(Lipscomb and Hunke, 2004).

In our first implementation of remapping for the C-grid,
the C-grid velocities on cell edges were interpolated to the
corners, and remapping was then applied the same way as
for the B-grid. This approach, however, does not simulate
transport in one-grid-cell-wide channels. Also, some ideal-
ized tests showed the presence of numerical noise (a checker-
board pattern) in fields such as sea ice concentration.

We therefore introduce a novel method for adapting the
remapping transport scheme for the C-grid discretization. We
refer to this approach as the edge flux adjustment (EFA)
method. The EFA method is necessary to eliminate the
checkerboard numerical noise. Another crucial advantage of
the EFA method is that it allows for transport in one-grid-
cell-wide channels – a capability that is not possible with the
B-grid discretization. As such, our implementation of remap-
ping with the EFA method should be seen as a hybrid B- and
C-grid transport scheme.

The main contribution of this work is (1) the introduc-
tion of the novel EFA method for the remapping trans-
port scheme. Other contributions include (2) a detailed de-
scription and validation of the CICE C-grid spatial dis-
cretization, including the formulation of boundary condi-
tions, (3) the derivation of analytical solutions for one-grid-
cell-wide channels, and (4) the interpretation of the checker-
board pattern associated with the interpolation of C-grid ve-
locities when using the standard remapping scheme.

This article is structured as follows. Section 2 introduces
the momentum and stress equations (Sect. 2.1) and the equa-
tions for transport (Sect. 2.2). Section 3 briefly introduces the
C-grid spatial and temporal discretizations; more details can
be found in Appendix A. Section 4 describes our initial im-
plementation of incremental remapping for the C-grid along
with its weaknesses. These weaknesses are corrected with the
edge flux adjustment method, which is explained in Sect. 5.
Section 6 gives an overview of the different tests used to
validate the new C-grid discretization. Concluding remarks
and future work are given in Sect. 7. Appendix B presents a
modal analysis of the remapping checkerboard pattern. Ap-
pendix C describes some modifications to improve the ro-
bustness of the remapping method. Finally, Appendix D in-
troduces a novel analytical solution for one-grid-cell-wide
channels.

2 Model equations

2.1 Momentum equation and rheology

The two-dimensional sea ice momentum equation is given by

m
Du

Dt
=−k×mfu+τ a+τw+τ b+∇ ·σ −mge∇H0, (1)

where m is the combined mass per square meter of sea ice
and snow; u= ui+ vj is the horizontal velocity vector with
components u and v; i, j , and k are unit vectors, respectively,
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aligned with the x, y, and z axes of the coordinate system; f
is the Coriolis parameter; τ a is the air stress; τw is the water
(or ocean) stress; τ b is a seabed stress which represents the
effect of grounded pressure ridges; ∇ ·σ is the rheology term
with horizontal stress components σ11 = σxx , σ22 = σyy , and
σ12 = σxy ; ge is the Earth’s gravitational acceleration; and
∇H0 is the sea surface tilt.

When using the B-grid discretization in CICE, there are
different approaches for representing sea ice rheology and
for solving the momentum equation: the viscous–plastic (VP;
Hibler, 1979) rheology, which involves an implicit solution;
the elastic–viscous–plastic framework (EVP; Hunke, 2001),
which is based on the VP rheology but relies on an ex-
plicit method; the revised EVP approach (rEVP; Lemieux
et al., 2012; Bouillon et al., 2013; Kimmritz et al., 2015), and
the elastic–anisotropic–plastic model (EAP; Tsamados et al.,
2013). In the current C-grid implementation, only the EVP
and rEVP approaches are available. The EVP implementa-
tion is presented below.

Before describing the EVP equations for the internal
stresses, we list a few modifications that were made re-
cently to improve the flexibility of the VP (B-grid only)
and (r)EVP (B-grid and C-grid) approaches. First, follow-
ing König Beatty and Holland (2010), the yield curve can
include tensile strength (see Lemieux et al., 2016, for de-
tails about the implementation in CICE). Tensile strength
improves the simulation of landfast ice in regions of deep
water (Lemieux et al., 2016). Second, the stresses are formu-
lated in terms of viscosities, as introduced by Hibler (1979).
Although only the elliptical yield curve is currently avail-
able, the formulation with viscosities offers more flexibility
for defining other yield curves (e.g., Zhang and Rothrock,
2005). Finally, the current implementation includes the plas-
tic potential approach of Ringeisen et al. (2021). Due to the
normal flow rule, the standard VP rheology tends to simulate
fracture angles that are too wide compared to observations
(Ringeisen et al., 2019; Hutter et al., 2022). This problem can
be remedied with the use of the plastic potential, which de-
fines post-fracture deformations (or flow rule) independently
from the yield curve. Following Ringeisen et al. (2021), the
plastic potential is also defined by an elliptical curve.

Given these latest innovations, the EVP equations for the
internal stresses are given by

∂σ1

∂t
+
σ1

2Td
+

p

2Td
=
ζ

Td
Dd, (2)

∂σ2

∂t
+
σ2

2Td
=
η

Td
Dt, (3)

∂σ12

∂t
+
σ12

2Td
=

η

2Td
Ds, (4)

where σ1 = σ11+ σ22; σ2 = σ11− σ22; p is the replacement
pressure (defined below); ζ and η = e−2

G ζ are, respectively,
the bulk and shear viscosities; eG is the plastic potential’s
ellipse ratio of major to minor axes; and Td is a damping

timescale for elastic waves (Hunke, 2001). Td is defined
as Td = E01t , where 0<E0 < 1 is a parameter and 1t is
the advective time step. Dd = ε̇11+ ε̇22, Dt = ε̇11− ε̇22, and
Ds = 2ε̇12 are the divergence, the horizontal tension, and the
shearing strain rate defined from the components of a sym-
metric strain rate tensor. To improve the damping of elastic
waves, Eqs. (3) and (4) follow the formulation proposed by
Bouillon et al. (2013) (see also Koldunov et al., 2019, for
details).

The bulk viscosity, ζ , is given by

ζ =
P(1+ kt)

21
, (5)

where P is the ice strength, kt is a parameter between 0
and 1 that determines tensile strength (König Beatty and
Holland, 2010) and 1 is a deformation (i.e., strain rate)
associated with the elliptical yield curve and expressed as

1=

[
D2
d +

e2
F

e4
G

(D2
t +D

2
s )

]1/2

, with eF being the elliptical

yield curve axis ratio. When1 tends toward zero, ζ tends to-
ward infinity. To prevent this singularity, the denominator 1
in Eq. (5) is replaced by1∗. There are two approaches in the
code to define 1∗. By default, the capping approach of Hi-
bler (1979) is used. In this case, 1∗ =max[1,1min], where
1min is a small deformation. A second approach with 1∗ =
(1+1min) allows for a smoother formulation (Kreyscher
et al., 2000). Finally, the replacement pressure, p, ensures
that stresses are zero in the absence of deformations:

p =
P(1− kt)1

1∗
. (6)

The ice strength can be calculated with the approach of Hi-
bler (1979) (referred to as H79) or with the Rothrock (1975)
parameterization (referred to as R75). With H79, P is given
by

P = P ∗he−C
∗(1−a), (7)

where P ∗ and C∗ are parameters, a is the sea ice concen-
tration, and h is the mean thickness. Details about the more
complicated R75 approach can be found in Rothrock (1975)
and Lipscomb et al. (2007).

2.2 Transport equation

Roach et al. (2018) recently introduced a joint probability
distribution, f (h,r), of sea ice thickness, h, and floe size, r ,
in CICE. For simplicity, the transport equation is introduced
here by only considering the sea ice thickness distribution,
g(h). Further information about horizontal transport in CICE
can be found in Lipscomb and Hunke (2004).

The evolution of g(h) is given by

∂g

∂t
=−∇ · (gu)−

∂(gft)

∂h
+ψ, (8)
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where ft is the rate of thermodynamic ice growth and ψ is
a mechanical redistribution term. CICE solves this equation
using an operator-splitting approach; the change in g(h) from
one time level to the next is computed in three steps, where
only one term on the right hand side is non-zero at each step.
The last two terms in Eq. (8) are handled by the column
physics model in CICE called Icepack. Here, we only con-
sider the change in g(h) due to the horizontal transport term
−∇ · (gu).

3 Spatial and temporal discretizations of the
momentum equation

The spatial discretization of the new C-grid implementation
is based on finite differences using curvilinear coordinates
on a fixed Eulerian mesh. It differs from the B-grid imple-
mentation in the way the stresses, strain rates, and other
terms in Eqs. (1)–(4) are discretized. Our implementation
mostly follows the work of Bouillon et al. (2009), Bouil-
lon et al. (2013), and Kimmritz et al. (2016). In this section,
we give a brief overview of the C-grid spatial and tempo-
ral discretizations of the momentum equation. Appendix A
describes in detail the C-grid spatial discretization of the air
stress (Sect. A1), the seabed stress (Sect. A2), and the rheol-
ogy term, as well as the time-stepping of the internal stresses
(Sect. A3); Sect. A4 presents the time-stepping of the mo-
mentum equation. For both B- and C-grid implementations,
the momentum equation is first advanced in time (with the
ice thickness distribution held fixed), which is followed by
the transport equation using the newly calculated sea ice ve-
locity field.

Figure 1 shows where variables are defined for the C-grid
discretization. Scalar variables such as ice thickness and ice
concentration are defined at the tracer point, T . Unlike the
B-grid, where both velocity components are co-located at the
corners (the U points), the C-grid u component is at the mid-
point of the east (E) edge, while the v component is at the
midpoint of the north (N ) edge. In the derivations below, a
variable such as uE refers to the u component of velocity
evaluated on the east edge (Fig. 1), and the same idea applies
for variables with subscript N , U , or T , which are, respec-
tively, evaluated at the north edge, the northeast corner, or
the tracer point. The land–ocean mask is originally defined
at the T point and referred to as MT , with MT = 1 for ocean
cells and MT = 0 for land cells. Other masks (MU , ME , and
MN ) are defined based onMT . For example,MU = 1 only if
the four surrounding cells are ocean cells in the MT mask.

For the momentum equation, the most complex part of the
C-grid implementation is the spatial discretization of the rhe-
ology term (Sect. A3). This involves the calculations of strain
rates at the U (Sect. A3.1) and T (Sect. A3.2) points; of ζ ,
η, and the replacement pressure at the T points (Sect. A3.3);
and of η at the U points (Sect. A3.5). No-slip and no-outflow
boundary conditions are applied at the land–ocean bound-

Figure 1. Schematic of a grid cell (i,j) used for the spatial dis-
cretization. The indices i and j define the positions of variables,
respectively, along the x and y axes. Scalars such as the ice con-
centration, a, are defined at the T point, while the C-grid velocity
components, uE(i,j) and vN (i,j), are, respectively, defined at the
E and N points. The U point, where both B-grid velocity compo-
nents are located, is used for some C-grid variables, such as the
shear stress, σ12.

aries using ghost velocities (see Sect. A3.1 for details). Fol-
lowing Bouillon et al. (2013), D2

s at a T point is obtained
from a spatial average of D2

s from the four neighboring U
points. This is done to enhance numerical stability. Follow-
ing Kimmritz et al. (2016), the code includes two methods for
calculating η at the U points; the default method averages ηT
from the neighboring ocean cells while the other approach is
based on an averaging of the ice strength. Section A3.4 and
A3.6 describe the time-stepping of the stresses at the T and
U points. The calculation of the x and y components of ∇ ·σ
(Sect. A3.7) at the E points (F1E) and the N points (F2N )
requires σ1T , σ2T , and σ12U . Also, σ12T is calculated in or-
der to diagnose normalized internal stresses (Lemieux and
Dupont, 2020) at the T points.

4 Initial approach for remapping using C-grid velocity
components

Considering only the horizontal transport term, we discretize
Eq. (8) in terms of partial ice concentration. The transport
equation for thickness category n is given by

∂an

∂t
+∇ · (anu)= 0, (9)

where an is the partial ice concentration for category n. Snow
volume, ice volume, snow enthalpy, and ice enthalpy also
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need to be transported using equations of the form

∂(anhn)

∂t
+∇ · (anhnu)= 0, (10)

∂(anhnqn)

∂t
+∇ · (anhnqnu)= 0, (11)

where hn is the snow or ice thickness for category n and qn
is the enthalpy.

The incremental remapping scheme solves Eqs. (9)–(11)
in a unified way. Given the velocity field u, departure regions
are computed for each grid cell. Then the quantities an, anhn,
and anhnqn are integrated over each departure region so that
volume and internal energy are transferred conservatively be-
tween cells.

Our initial implementation of remapping for the C-grid
discretization mostly followed that in Lipscomb and Hunke
(2004). The differences are related to the interpolation of C-
grid velocity components to the U points, as described in
Sect. 4.1 below.

4.1 Interpolation of C-grid velocity components and
computation of departure regions

Departure regions in the remapping transport scheme are de-
fined by approximating backward trajectories using corner
velocities (U points). In our first implementation of remap-
ping for the C-grid, C-grid velocities were interpolated to the
corners, and remapping was used in the same way as for the
B-grid. The velocity components uE and vN are interpolated
to the U points as

uU (i,j)=MU (i,j)

×

[
uE(i,j)AE(i,j)+ uE(i,j + 1)AE(i,j + 1)

AE(i,j)+AE(i,j + 1)

]
, (12)

vU (i,j)=MU (i,j)

×

[
vN (i,j)AN (i,j)+ vN (i+ 1,j)AN (i+ 1,j)

AN (i,j)+AN (i+ 1,j)

]
, (13)

where AE and AN are grid cell areas evaluated at the E and
N points, respectively, and the multiplication by MU (i,j)

ensures that the no-slip and no-outflow boundary conditions
(BCs) are respected.

To improve the accuracy of the estimated departure re-
gions, the midpoints of the backward trajectories are com-
puted first. Then, velocity components are bilinearly interpo-
lated to these midpoints. Finally, these interpolated velocities
are used to calculate the departure points defining the depar-
ture regions (Lipscomb and Hunke, 2004).

Panel (a) in Fig. 2 shows an example of a departure re-
gion on the north edge of cell (i,j). The departure region is
a quadrilateral defined by the left (cl) and right (cr) corner
points and the left (dl) and right (dr) departure points.

Figure 2. Schematic of departure regions (in green) on the north
edge of grid cell (i,j) (in blue) with the standard remapping (a)
and the edge flux adjustment method (b). The departure regions are
defined by the left corner point (cl), the right corner point (cr), the
left departure point (dl), and the right departure point (dr). With the
edge flux adjustment method, an additional triangle (in orange) is
created by shifting the middle departure point, dm, based on the
edge flux associated with vN (i,j).

4.2 Weaknesses of the initial approach for remapping
using C-grid velocity components

We identified two notable weaknesses with this initial C-grid
discretization and remapping implementation. First, a C-grid
discretization offers the possibility of representing transport
in one-grid-cell-wide channels, but our initial implementa-
tion did not do so. Because of the no-slip and no-outflow
BCs, the U velocities are zero on both sides of such a chan-
nel, in which case the departure regions have zero area. Sec-
ond, we found a numerical problem: in some idealized tests,
we observed a checkerboard pattern in fields such as sea ice
concentration. Panel (a) in Fig. 3 shows an example of this
pattern, which indicates the presence of a spurious numerical
mode (or modes). This numerical noise is not present when
using the upwind scheme (not shown).

Appendix B presents a modal analysis of a simplified set
of perturbed equations (momentum and transport). We show
that a stationary wave explains the formation of the checker-
board pattern. This stationary wave is a consequence of the
spatial averaging used to obtain uU and vU (Eqs. 12 and 13)
for the remapping scheme.

5 The edge flux adjustment method

5.1 Description of the method

To eliminate the checkerboard pattern, we introduce a novel
approach, which we refer to as the edge flux adjustment
(EFA) method. With this method, the remapping scheme
still calculates departure regions using the U -point veloci-
ties. However, the C-grid velocity components are then used
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Figure 3. Sea ice concentration field after 15 d for a C-grid simu-
lation with standard remapping (a) or with remapping and the edge
flux adjustment method (b). The domain has 80× 80 grid cells, with
1x =1y = 16 km. The simulation is initialized with a block of ice
with a = 0.8 and h= 0.8 m. The wind blows from the west with a
magnitude of 5 m s−1, the Coriolis parameter f set to zero, and the
ocean is at rest. The displayed range is 0.95 to 1 in order to better
visualize the checkerboard pattern. This experiment is referred to as
Exp1. Some information (i.e., physical and numerical parameters)
about this experiment is given in Table 1.

to adjust the edge fluxes (or departure regions.) Following
the example in Fig. 2, the departure region is adjusted so that
the total flux area Atot is equal to vN1xN1t , where 1t is
the advective time step and vN < 0 in the example shown in
Fig. 2. (Note that Atot has the same sign as vn). This is done
by shifting the midpoint, dm, of the line segment connecting
the departure points, dl and dr. Geometrically speaking, this
creates an additional departure triangle (the orange triangle
in Fig. 2b).

The code computes the coordinates of the shifted dm in a
non-dimensional coordinate system. In this coordinate sys-
tem, the points cl and cr have the coordinates (−0.5,0) and
(0.5,0). The non-dimensional flux area, denoted as Ãtot, is
equal to Atot/AN , where AN is the grid cell area evaluated at
theN point. Given the non-dimensional coordinates (xdl,ydl)

and (xdr,ydr) for the departure points, the non-dimensional
coordinates (x∗dm,y

∗

dm) for the shifted departure midpoint are
obtained as follows:

x∗dm = xdm+α(ydr− ydl), (14)
y∗dm = ydm−α(xdr− xdl), (15)

where xdm = (xdl+xdr)/2 and ydm = (ydl+ydr)/2 are the ini-
tial departure midpoint coordinates and α is given by

α =
2Ãtot+ (xdr− xcl)ydl+ (xcr− xdl)ydr

(xdr− xdl)2+ (ydr− ydl)2
. (16)

The adjusted area flux can finally be computed using
the points cl= (xcl,ycl), dl= (xdl,ydl), cr= (xcr,ycr), dr=
(xdr,ydr), and dm∗ = (x∗dm,y

∗

dm).

Figure 4. Schematic of departure regions on the north edge of grid
cell (i,j) (in blue) with the standard remapping (a) and the edge
flux adjustment method (b). The departure region in (a) is defined
by the green triangle (with vertices cl, dl, and ip) and the yellow tri-
angle (with vertices cr, dr, and ip). With the EFA method in (b), the
departure region has an additional triangle (orange, with vertices ip
and dl and shifted middle departure point dm∗). The orange triangle
is calculated based on the edge flux associated with vN (i,j). The
yellow triangle is referred to as the “lone triangle”.

The initial departure region shown in Fig. 2a is confined
to the central region (i.e., cell (i,j) and/or cell (i,j + 1)).
When part of the departure region (i.e., a triangle) is lo-
cated, for example, in a corner cell (e.g., the northwestern
cell (i−1,j +1), not shown), the area of this corner triangle
is subtracted from Atot before adjusting the central portion of
the departure region (the part lying in cell (i,j + 1)). In this
case, we identify the point (0,yi) where the segment joining
dl and dr intersects the left edge of cell (i,j + 1). The de-
parture point dl is reset to (0,yi) before finding the shifted
midpoint, dm∗. Thus, the new triangle with vertices dl, dr,
dm∗ is always located within the central region.

The calculation of (x∗dm,y
∗

dm) as described above is the
most common case, with both initial departure points on the
same side of the edge (i.e., ydrydl ≥ 0). We give another less
common example in which ydr and ydl have opposite signs.
Then, there are two departure triangles: one on the left, with
vertices cl, dl, ip, and one on the right, with vertices cr, dr,
ip, where ip denotes the point (xi,0) at which the departure
segment intersects the x axis.

In the case shown (Fig. 4), the non-dimensional coordinate
xi of the intersection point is greater than zero. There is a
similar case not discussed here, with xi < 0.

The strategy is to fix the right-hand triangle (the “lone tri-
angle”) while modifying the left-hand triangle. Given the re-
quired total area flux, Atot = vN1xN1t , and the area Ar4 of
the right-hand triangle (in yellow), the EFA method first cal-
culates the remaining area flux, Al = Atot−Ar4. The middle
departure point is reset to ( xdl+xi

2 ,
ydl
2 ), and then dm is shifted

so that the non-dimensional area of the green and orange tri-
angles is equal to Ãl = Al/AN . The shifted middle departure
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point has non-dimensional coordinates

x∗dm = xdm−αydl, (17)
y∗dm = ydm−α(xi − xdl), (18)

where in this case α is given by

α =
2Ãl + (xi − xcl)ydl

(xi − xdl)2+ y
2
dl
. (19)

When a part of the departure region is a corner triangle lying
outside cells (i,j) and (i,j + 1), it is treated as described
above for the most common case.

The EFA method ensures that the divergence (associated
with edge fluxes) implied by the remapping is consistent with
the divergence calculated by the dynamical solver (i.e., the
EVP solver; see Eq. A24). Figure 3b shows that the EFA
method prevents the formation of the checkerboard pattern.
This pattern originates from an interaction between the solu-
tion of the momentum equation and the standard remapping
scheme. To support this conclusion, we conducted the fol-
lowing experiment: velocity fields obtained with the C-grid
discretization and the use of the EFA method in the remap-
ping scheme were first stored. In a second simulation, both
the dynamics (i.e., EVP) and EFA method are turned off and
the stored velocity fields are used for transport in the remap-
ping scheme. In this case, no checkerboard pattern develops,
and the concentration field is very similar to the one shown
in Fig. 3b.

The EFA code was added to the standard CICE remap-
ping algorithm described in Lipscomb and Hunke (2004). Al-
though the remapping algorithm for the B-grid is very robust,
we found that some approximations in the computation of de-
parture regions can be problematic with the new EFA method
for the C-grid discretization. Long-term C-grid simulations
with the EFA method exhibited rare failures on non-uniform
grids. The remapping code in CICE includes many consis-
tency checks to ensure that the solution is physically sound –
for example, that transport does not lead to negative area or
mass. The code failed on rare occasions with negative area
and mass values close to land or the ice edge. These nega-
tive values were a result of approximations in the area of the
departure region. Appendix C describes the changes in the
remapping algorithm that were required to fix this robustness
issue. Note that many of these modifications slightly alter
the departure areas for both the B-grid and the C-grid (with
the EFA method) discretizations. With these changes to the
remapping, the algorithm is now robust for both B-grid and
C-grid simulations on non-uniform grids.

5.2 Transport through one-grid-cell-wide channels

Interestingly, the EFA method also remedies the other weak-
ness of our initial implementation: the absence of transport
in one-grid-cell-wide channels. Although the initial depar-
ture regions have zero area (because the U -point velocities

Figure 5. Simulated thickness after 30 d along a one-grid-cell-wide
channel for the C-grid with remapping (blue) and upwind (orange).
These simulations were initialized with a = 0.5 and h= 1 m over a
region that is five grid cells long (gray). The wind blows from the
west at 5 m s−1, 1x =1y = 16 km, and the ocean is at rest. This
experiment is referred to as Exp2 in Table 1.

are zero along the channel edges), the departure regions are
adjusted based on C-grid velocity components (e.g., the vN
component would be non-zero for a north–south channel). In
this case, the departure region is simply defined by (xcl,ycl),
(xcr,ycr), and (x∗dm,y

∗

dm), with x∗dm = 0.
A minor code modification was required nevertheless. Be-

fore this modification, the edge fluxes were calculated only
when at least one of the two departure points was dis-
placed from its corner. Given the non-displaced departure
points for the north edge (i.e., uU (i−1,j)= vU (i−1,j)= 0
and uU (i,j)= vU (i,j)= 0), edge fluxes are now computed
whenever |vN1xN1t |> 0. Similarly for the east edge (i.e.,
uU (i,j)= vU (i,j)= 0 and uU (i,j−1)= vU (i,j−1)= 0),
edge fluxes are now computed whenever |uE1yE1t |> 0.
Given that the remapping with the EFA method uses velocity
components at the U point and at the E and N points and
that it allows for transport in one-grid-cell-wide channels, it
should be viewed as a hybrid B-and-C-grid approach.

To test the new capability for transport, we implemented
an idealized configuration with a long one-grid-cell-wide
channel. The initial ice conditions are a = 0.5 and h= 1 m
over a length of five grid cells (80 km), with a = 0 and h=
0 m elsewhere. The wind blows from the west, and the fields
are analyzed after 30 d of simulation. As expected, there is
no transport with the B-grid discretization (not shown). Us-
ing the C-grid discretization, both the upwind method and
the remapping with the EFA method lead to transport in the
channel (Fig. 5). As shown by Lipscomb and Hunke (2004)
for more complex configurations, remapping is much less
diffusive than upwind.
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6 Validation of the C-grid implementation

We validated the new C-grid implementation with the EFA
method using several approaches, including (1) symmetry
tests, (2) thorough comparison of C-grid simulations with the
default B-grid simulations, (3) comparison of C-grid simula-
tions with analytical solutions, and (4) diagnostics of simu-
lated stress states. This section gives an overview of the dif-
ferent tests. For all the simulations presented here, we used
version 6.5.0 of CICE, which includes our C-grid modifica-
tions. Unless otherwise specified, we used default values for
most physical and numerical parameters. In the experiments
described below, we mostly modified the strength parameter-
ization, P ∗, 1min, the number of EVP subcycles (nevp), and
E0, in order to broaden the variety of tests (e.g., ice strength
parameterization) and in some cases to improve the numeri-
cal convergence of the EVP method (nevp and E0). See Ta-
ble 1 for experiment details.

We conducted many idealized tests to verify the symmetry
of simulated fields. Figure 6 shows an example. The thick-
ness fields after 14 d are perfectly (bit-for-bit) symmetrical
for the four oblique (i.e., northeast, southeast, southwest, and
northwest) wind directions. Similar tests with the wind blow-
ing from the west, east, north, and south also give symmet-
rical results, but with small differences (the maximum dif-
ference is 4× 10−4 m). Changing the capping method to the
smoother formulation (i.e., capping_method= ’sum’) leads
to bit-for-bit symmetrical results.

We also evaluated more realistic simulations with B-grid
runs as references. We compared C-grid runs on 1 and 3°
global grids to B-grid runs initialized and forced by the same
fields. The Japanese 55-year Reanalysis (JRA-55; Kobayashi
et al., 2015) is used for the atmospheric forcing fields, while
the ocean forcing was derived from a Community Earth Sys-
tem Model (CESM) simulation (Kay et al., 2015). Panels (a)
and (b), respectively, in Fig. 7 show the total simulated sea
ice volume for the Northern and Southern hemispheres for
a 1° B-grid simulation with remapping transport (reference,
orange), a 1° B-grid simulation with upwind transport (blue),
and a 1° C-grid simulation with remapping transport (dashed
violet). Only the C-grid simulation uses the EFA method.
Compared to the reference B-grid simulation, changing the
grid discretization has a smaller impact on the total volume
than changing the advection scheme. This is particularly ev-
ident in the Southern Hemisphere.

This conclusion is further supported by spatial maps of sea
ice thickness. The monthly mean ice thickness in Decem-
ber 2009 for a 1° C-grid simulation with remapping is qual-
itatively correct, with the thickest ice found north of Green-
land and in the Canadian Arctic Archipelago (Fig. 8). When
compared to the reference simulation (B-grid with remap-
ping), the ice is thinner in the regions of thick ice (Fig. 9a), al-
though these differences are generally less pronounced than
those for a B-grid with upwind compared to the reference

Figure 6. Simulated sea ice thickness after 14 d for winds blowing
toward the northwest (a), northeast (b), southwest (c), and southeast
(d). The domain has 80× 80 grid cells, with 1x =1y = 16 km.
The simulation is initialized with uniform ice conditions, with a =
0.8 and h= 0.8 m. The wind components have values of ±5 m s−1.
The ocean is at rest and f = 0. This experiment is referred to as
Exp3 in Table 1.

(Fig. 9b). The same is true for the Southern Hemisphere (not
shown).

The checkerboard pattern was not visible in our initial 1
and 3° C-grid simulations without EFA. Instead, the error
manifested as much thicker ice in convergent regions. We
speculate this was due to a feedback between excessive ridg-
ing associated with the checkerboard pattern in velocities
(and hence divergence and convergence) and ice growth in
open water formed through the ridging process.

The most complex part of the discretization of the momen-
tum equation is the rheology term. A crucial test is to verify
whether the simulated internal stresses are inside (viscous) or
on (plastic) the elliptical yield curve. To improve the numeri-
cal convergence of the EVP solver, the number of subcycling
iterations, nevp, was increased from 240 (default) to 1200
and the elastic damping parameter, E0, was reduced from
0.36 (default) to 0.09 (Exp5 in Table 1). Following the ap-
proach of Lemieux and Dupont (2020), we plotted the states
of stress in stress-invariant coordinates of a snapshot after 5 d
of a 1° C-grid simulation. Figure 10 confirms that the solu-
tion is viscous–plastic.

Analytical solutions are useful tools for verifying a numer-
ical implementation. We derived novel analytical solutions
for a one-grid-cell-wide channel with cyclic boundary con-
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Table 1. Table of some physical and numerical parameters used for the experiments.

Strength P ∗ 1min nevp E0

Exp1 H79 10 kN m−2 2× 10−9 s−1 1200 0.12
Exp2 H79 27.5 kN m−2 1× 10−11 s−1 240 0.36
Exp3 H79 10 kN m−2 2× 10−9 s−1 1200 0.12
Exp4 R75 – 1× 10−11 s−1 240 0.36
Exp5 R75 – 2× 10−9 s−1 1200 0.09
Exp6 H79 27.5 kN m−2 2× 10−9 s−1 1200 0.12

Figure 7. Simulated sea ice volume in the Northern Hemisphere
(a) and the Southern Hemisphere (b) as a function of time for the
B-grid with remapping transport (orange), the B-grid with upwind
transport (blue), and the C-grid with remapping transport (dashed
violet). These are 5-year simulations on a 1° global grid initialized
from a long simulation. This experiment is referred to as Exp4 in
Table 1.

Figure 8. Monthly mean sea ice thickness (m) after 5 years (Decem-
ber 2009) for a 1° C-grid simulation with the remapping transport
scheme. This experiment is referred to as Exp4 in Table 1.

ditions; see Appendix D for the derivation. As sea ice condi-
tions are assumed constant in space and time, these solutions
cannot be used to verify the simulated transport. Neverthe-
less, they provide steady-state analytical velocity values. Fol-
lowing the assumptions of this analytical solution with a =
0.8 and h= 0.8 m for an east–west channel, the ice should be
in the plastic (viscous) regime for wind speeds higher (lower)
than ua∗ = 3.176 m s−1. For ua = 4 m s−1 (i.e., ua > ua∗),
the steady-state analytical solution, uE , calculated indepen-
dently using a Python code is 0.04095 m s−1. The steady-
state solution, uE , obtained with the new C-grid implemen-
tation matches the analytical solution up to the 12th digit.
Similarly, for ua = 1.5 m s−1 (i.e., ua < ua∗), the steady-
state analytical solution uE is much smaller and is equal to
7.135× 10−6 m s−1. The new C-grid steady-state solution,
uE , matches the analytical solution up to the ninth digit (a
difference of less than 10−16 m s−1). The same results are
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Figure 9. Difference in the monthly mean sea ice thickness (m) after 5 years (December 2009) between a 1° C-grid simulation with remapping
and a 1° B-grid simulation with remapping (reference) (a). Difference in the monthly mean sea ice thickness after 5 years (December 2009)
between a 1° B-grid simulation with upwind and a 1° B-grid simulation with remapping (reference) (b). This experiment is referred to as
Exp4 in Table 1.

Figure 10. Stress invariants, σI and σII, normalized by the ice
strength, P . These are obtained from a snapshot after 5 d of a 1°
C-grid simulation. This experiment is referred to as Exp5 in Table 1.

found when using a north–south channel. This experiment is
referred to as Exp6 in Table 1.

7 Conclusions

We have designed and implemented a C-grid version of the
CICE sea ice model. The C-grid spatial discretization is
based on a finite-difference approach and follows the work

of Bouillon et al. (2009, 2013) and Kimmritz et al. (2016).
This article describes the finite-difference spatial discretiza-
tion of the momentum equation, the implementation of no-
slip and no-outflow boundary conditions, and the use of the
remapping transport scheme with C-grid velocities.

The most notable contribution of this work is a novel
method for the remapping referred to as the edge flux adjust-
ment (EFA) method. Preliminary results from idealized ex-
periments showed that the new C-grid discretization for the
momentum equation and the use of the standard remapping
transport scheme could produce checkerboard patterns in
fields such as ice concentration. This numerical noise is not
present when using the upwind transport scheme. A modal
analysis of a simplified set of perturbed equations (i.e., mo-
mentum and transport with spatial discretization) shows that
a stationary wave is responsible for the checkerboard pattern.
This stationary wave results from the interpolation of C-grid
velocity components to the U points for use with remap-
ping, which is fundamentally a B-grid scheme (Dukowicz
and Baumgardner, 2000; Lipscomb and Hunke, 2004). This
interpolation can be viewed as a spatial averaging. Many au-
thors (e.g., Batteen and Han, 1981) have demonstrated that
spatial averaging can lead to checkerboard patterns when
solving the shallow-water equations, which are similar to our
simplified set of equations. The checkerboard pattern is elim-
inated by the EFA method.

The EFA method uses C-grid velocity components at their
natural locations to modify the departure regions calculated
by the remapping so that the implied divergence in the
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remapping is consistent with the divergence calculated by the
dynamical solver. We also introduced some modifications to
the calculation of the area of departure regions to increase
the robustness of remapping with the EFA method on non-
uniform grids.

A C-grid discretization offers the possibility of represent-
ing transport in one-grid-cell-wide channels. Because of the
no-slip and no-outflow boundary conditions, the U -point ve-
locities at the channel edges are zero, and there is therefore
no transport when using the standard remapping. The EFA
method, however, allows for transport in these channels by
creating departure regions with non-zero area based on the C-
grid velocities. As such, the remapping with the EFA method
should be seen as a hybrid B-and-C-grid transport scheme.
Moreover, remapping with the EFA method is much less dif-
fusive than the upwind method for idealized channel tests.

For VP sea ice models, there are few existing analyti-
cal solutions due to the complexity of the rheology. We de-
rived novel analytical solutions for one-grid-cell-wide chan-
nels and showed that with several simplifications (uniform
ice conditions, constant wind, cyclic boundary conditions,
and transport turned off), the sea ice velocity can be obtained
analytically for both plastic and viscous regimes. The steady-
state values simulated by CICE match the analytical ones.

We also conducted multiyear 1° global simulations to
compare the C-grid solution (using the EFA method) to the
reference B-grid solution (with standard remapping). We ran
an additional B-grid simulation with upwind transport. Com-
pared to the reference B-grid run, the C-grid discretization
has a smaller impact on the total volume (and spatial differ-
ences) than changing the advection scheme from remapping
to upwind, especially in the Southern Hemisphere.

Ongoing work within CICE Consortium modeling cen-
ters includes coupling this new CICE C-grid implementa-
tion to ocean models, such as the Modular Ocean Model
(MOM6) and the Nucleus for European Modelling of the
Ocean (NEMO), and to atmospheric models, such as the
Global Environmental Multiscale Model (GEM).

Appendix A: Spatial and temporal discretization of the
momentum equation

The spatial discretization is presented below in the same or-
der as in the code.

A1 Air stress at the E and N points

For both B-grid and C-grid implementations, the air stress is
calculated at the T point and then interpolated to the required
locations. For the C-grid, τax at the E point and τay at the N
point are weighted averages of the values at the neighboring

T points and are given by

τaxE(i,j)=
1

2AE(i,j)

[
τaxT (i,j)AT (i,j)

+τaxT (i+ 1,j)AT (i+ 1,j)
]
, (A1)

τayN (i,j)=
1

2AN (i,j)

[
τayT (i,j)AT (i,j)

+τayT (i,j + 1)AT (i,j + 1)
]
, (A2)

where AE , AN , and AT are cell areas evaluated at the E, N ,
and T points.

A2 Seabed stress at the E and N points

The seabed stress components are τbxE =−CbEuE and
τbyN =−CbNvN , where the Cb coefficients are calculated
as in Lemieux et al. (2016) or following the probabilistic ap-
proach of Dupont et al. (2022). For both approaches, CbE
and CbN are written as

CbE(i,j)=
TbE(i,j)(√

u2
E(i,j)+ v

2
E(i,j)+ u0

) , (A3)

CbN (i,j)=
TbN (i,j)(√

u2
N (i,j)+ v

2
N (i,j)+ u0

) , (A4)

where TbE and TbN are factors that characterize the maxi-
mum possible seabed stress and u0 is a small velocity pa-
rameter that ensures a smooth transition between the static
and dynamic regimes of the seabed stress. Velocity vE is ob-
tained by interpolating vN to the E point, and uN is found
similarly by interpolating uE to the N point. These interpo-
lations are currently different than in the C-grid implementa-
tion of Lemieux et al. (2015) but will be made consistent in
a subsequent version of CICE.

As opposed to the denominators in Eqs. (A3) and (A4),
factors TbE and TbN do not vary during the EVP subcycling.
They are therefore calculated before the subcycling. Follow-
ing the approach of Lemieux et al. (2016), TbE and TbN are

TbE(i,j)= k2max[0, (hE −hcE)]e−αb(1−aE), (A5)

TbN (i,j)= k2max[0, (hN −hcN )]e−αb(1−aN ), (A6)

where hE =max[hT (i,j),hT (i+ 1,j)]; aE =

max[aT (i,j),aT (i+ 1,j)]; hcE = aEhwE/k1, hwE =

min[hwT (i,j),hwT (i+1,j)]; hN =max[hT (i,j),hT (i,j +
1)]; aN =max[aT (i,j),aT (i,j+1)]; and hcN = aNhwN/k1,
hwN =min[hwT (i,j),hwT (i,j + 1)]. hE (hN ), hcE (hcN ),
and hwE (hwN ) are the mean ice thickness (or ice volume),
the critical thickness, and the water depth at the E (N )
point calculated using values at the T point. k1, k2, and αb
are three parameters of the seabed stress parameterization
(Lemieux et al., 2016). The Tb factors are set to zero when
the water depth is greater than 30 m.
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When the seabed stress is computed based on the prob-
abilistic approach, the calculation of the Tb factors is more
complicated than with the method of Lemieux et al. (2016).
Details can be found in Dupont et al. (2022). With the prob-
abilistic approach, the Tb factor is first calculated at the T
points, and TbE and TbN are then given by

TbE(i,j)=max[TbT (i,j),TbT (i+ 1,j)], (A7)
TbN (i,j)=max[TbT (i,j),TbT (i,j + 1)]. (A8)

A3 Discretization of rheology

As opposed to the variational method used for the B-grid
(Hunke and Dukowicz, 1997, 2002), our C-grid spatial dis-
cretization is based on finite differences. With this approach,
the discretization of ∇ · σ requires the calculation of σ1 and
σ2 at the T points and of σ12 at the U points. The stresses
are calculated in three steps: the computation of strain rates,
the computation of viscosities and replacement pressure, and
finally the time-stepping of the stresses from subcycle k to
k+1. The subsections below explain how this is done for the
T and U points. The sequence of computations follows that
in the code.

The spatial discretization requires the computation of
strain rates and components of the rheology term in curvi-
linear coordinates. The strain rates are given by

Dd = ε̇11+ ε̇22 =
1

h1h2

[
∂

∂ξ1
(h2u)+

∂

∂ξ2
(h1v)

]
, (A9)

Dt = ε̇11− ε̇22 =
h2

h1

∂

∂ξ1

(
u

h2

)
−
h1

h2

∂

∂ξ2

(
v

h1

)
, (A10)

Ds = 2ε̇12 =
h1

h2

∂

∂ξ2

(
u

h1

)
+
h2

h1

∂

∂ξ1

(
v

h2

)
, (A11)

whereDd is the divergence,Dt is the tension,Ds is the shear
strain rate, ξ1 and ξ2 are the non-dimensional coordinates,
and h1 and h2 are scale factors, referred to as 1x and 1y.

In curvilinear coordinates, the x and y components of the
divergence of the stress tensor are, respectively, as follows:

F1 =
1
2

[
1
h1

∂σ1

∂ξ1
+

1
h1h

2
2

∂(h2
2σ2)

∂ξ1
+

2
h2

1h2

∂(h2
1σ12)

∂ξ2

]
, (A12)

F2 =
1
2

[
1
h2

∂σ1

∂ξ2
−

1
h2

1h2

∂(h2
1σ2)

∂ξ2
+

2
h1h

2
2

∂(h2
2σ12)

∂ξ1

]
, (A13)

which are Eqs. (20) and (21) in Hunke and Dukowicz (2002).

A3.1 Strain rates at the U points

To solve the momentum equation, shear stress, σ12, is needed
at theU points, including at land–ocean boundaries. This im-
plies that strain rates and shear viscosities must be computed
at these locations. In the code, strain rates at the U points are
first calculated. The reason for doing this is to follow what
is suggested in Bouillon et al. (2013); to enhance numerical

stability,D2
sT in1T is a weighted average of theD2

sU around
it.

As described in Sect. A3.5, there are two methods for cal-
culating η at the U points. Following Kimmritz et al. (2016),
we refer to these methods as C1 and C2. The C1 method re-
quires only DsU , while the C2 method requires DdU , DtU ,
and DsU . C1 is the default method, but for completeness, we
explain here how DdU , DtU , and DsU are computed.

To ease the implementation of the boundary conditions
(BCs) in the code, strain rates at the U points are calculated
differently than at the T points. To do so, the derivatives in
Eqs. (A9), (A10), and (A11) are expanded. First, for the di-
vergence, Eq. (A9), we expand the derivatives and write

Dd =
1

h1h2

[
h2
∂u

∂ξ1
+ u

∂h2

∂ξ1
+h1

∂v

∂ξ2
+ v

∂h1

∂ξ2

]
. (A14)

The discretized form of divergence at the U point (i,j) is
therefore

DdU (i,j)=
1

h1U (i,j)h2U (i,j)

×[h2U (i,j)(u
∗

N (i+ 1,j)− u∗N (i,j))
+ uU (i,j)(h2N (i+ 1,j)−h2N (i,j))

+h1U (i,j)(v
∗

E(i,j + 1)− v∗E(i,j))
+ vU (i,j)(h1E(i,j + 1)−h1E(i,j))], (A15)

where u∗N (i+ 1,j), u∗N (i,j), v
∗

E(i,j + 1), and v∗E(i,j) are
modified versions of uN (i+1,j), uN (i,j), vE(i,j +1), and
vE(i,j) to take the BCs into account. This is explained be-
low. The velocity components interpolated to the U points
follow Eqs. (12) and (13), while (the unmodified) vE and uN
are calculated as

vE(i,j)=
1

AN tot

1∑
k=0

0∑
l=−1

vN (i+ k,j + l)AN (i+ k,j + l), (A16)

uN (i,j)=
1

AEtot

0∑
k=−1

1∑
l=0

uE(i+ k,j + l)AE(i+ k,j + l), (A17)

where AN tot =
∑1
k=0

∑0
l=−1AN (i+ k,j + l) and AEtot =∑0

k=−1
∑1
l=0AE(i+ k,j + l). For example, to clarify the

notation, AN tot =
∑1
k=0

∑0
l=−1AN (i+k,j+ l)= AN (i,j−

1)+AN (i,j)+AN (i+ 1,j − 1)+AN (i+ 1,j).
Similarly, to calculate Dt at the U points, we expand the

derivatives in Eq. (A10) and write the tension as

Dt =
1

h1h2

[
h2
∂u

∂ξ1
− u

∂h2

∂ξ1
−h1

∂v

∂ξ2
+ v

∂h1

∂ξ2

]
. (A18)

The discretized form of this equation is

DtU (i,j)=
1

h1U (i,j)h2U (i,j)

×[h2U (i,j)(u
∗

N (i+ 1,j)− u∗N (i,j))
− uU (i,j)(h2N (i+ 1,j)−h2N (i,j))

−h1U (i,j)(v
∗

E(i,j + 1)− v∗E(i,j))
+ vU (i,j)(h1E(i,j + 1)−h1E(i,j))]. (A19)
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Finally, for the shear strain rate, we write Eq. (A11) as

Ds =
1

h1h2

[
h1
∂u

∂ξ2
− u

∂h1

∂ξ2
+h2

∂v

∂ξ1
− v

∂h2

∂ξ1

]
, (A20)

with the following discretized form:

DsU (i,j)=
1

h1U (i,j)h2U (i,j)

×[h1U (i,j)(u
∗

E(i,j + 1)− u∗E(i,j))
− uU (i,j)(h1E(i,j + 1)−h1E(i,j))

+h2U (i,j)(v
∗

N (i+ 1,j)− v∗N (i,j))
− vU (i,j)(h2N (i+ 1,j)−h2N (i,j))]. (A21)

Away from the land–ocean boundaries, u∗E(i,j)=

uE(i,j), u∗E(i,j+1)= uE(i,j+1), v∗N (i,j)= vN (i,j), etc.
However, at ocean–land boundaries, no-slip and no-outflow
BCs are implemented by setting uU (i,j)= vU (i,j)= 0 and
using ghost values for the other terms. As an example, con-
sider vN (i,j) and vN (i+ 1,j) when the T cells at (i+ 1,j)
and (i+1,j+1) are land cells. We need vN (i,j) and vN (i+
1,j) to calculate the ∂v/∂ξ1 term in DsU . As vN (i,j) is in
the ocean, v∗N (i,j)= vN (i,j). However, as vN (i+ 1,j) is
on land, it is not defined and must be formulated using the
BCs. We assume that vN varies linearly at the ocean–land
boundary. We therefore write vN =mx+ b, where m is the
slope and b is the value of vN at x = 0, which is defined
at the ocean–land boundary. Using the no-outflow condition
implies that b = 0. Given that h1N (i,j)/2 (the distance be-
tween the ocean–land boundary and the N(i,j) point) and
h1N (i+1,j)/2 (the distance between the ocean–land bound-
ary and the N(i+ 1,j) point), it is easy to show that

v∗N (i+ 1,j)=−vN (i,j)
h1N (i+ 1,j)
h1N (i,j)

, (A22)

where in the case of a uniform Cartesian grid, v∗N (i+ 1,j)
is simply vN (i,j) multiplied by −1. To take into account all
the possible cases, the mask at the N point (MN ) is used for
the final formulation of v∗N (i+ 1,j):

v∗N (i+ 1,j)= vN (i+ 1,j)MN (i+ 1,j)

−
[
MN (i,j)−MN (i+ 1,j)

]
MN (i,j)

×
h1N (i+ 1,j)
h1N (i,j)

vN (i,j), (A23)

which reduces to v∗N (i+ 1,j)= vN (i+ 1,j) away from the
ocean–land boundary (i.e., all four T cells are ocean cells).

A3.2 Strain rates at the T points

Using Eq. (A9), a finite-difference approximation of the di-
vergence at the T point is given by

DdT (i,j)=
1

h1T (i,j)h2T (i,j)

×
[
h2E(i,j)uE(i,j)−h2E(i− 1,j)uE(i− 1,j)

+h1N (i,j)vN (i,j)−h1N (i,j − 1)vN (i,j − 1)
]
. (A24)

Similarly, using Eq. (A10), the tension at the T point is given
by

DtT (i,j)=
h2T (i,j)

h1T (i,j)

[
uE(i,j)

h2E(i,j)
−
uE(i− 1,j)
h2E(i− 1,j)

]
−
h1T (i,j)

h2T (i,j)

[
vN (i,j)

h1N (i,j)
−
vN (i,j − 1)
h1N (i,j − 1)

]
. (A25)

Following Bouillon et al. (2013), D2
sT is obtained as a

weighted average of the neighboring D2
sU :

D2
sT (i,j)=

1
AU tot

0∑
k=−1

0∑
l=−1

D2
sU (i+ k,j + l)AU (i+ k,j + l), (A26)

where AU (i,j) is the cell area evaluated at the U point and
AU tot =

∑0
k=−1

∑0
l=−1AU (i+ k,j + l). At the T point, the

strain rate, 1T , for the viscosities is then calculated as

1T (i,j)=

[
D2

dT (i,j)+
e2
F

e4
G

(D2
tT (i,j)+D

2
sT (i,j))

]1/2

. (A27)

A3.3 Viscosities and replacement pressure at the T
points

Using 1T (i,j) as calculated in Eq. (A27), ζT (i,j), with the
capping approach of Hibler (1979), is obtained as follows:

ζT (i,j)=
(1+ kt)PT (i,j)

2max[1T (i,j),1min]
, (A28)

where the ice strength, PT , is also evaluated at the T point.
Similarly, the replacement pressure at the T point is

pT (i,j)=
(1− kt)PT (i,j)

max[1T (i,j),1min]
1T (i,j). (A29)

If ζT and pT are regularized with the smoother ap-
proach as in Kreyscher et al. (2000), the denominator
max[1T (i,j),1min] in Eqs. (A28) and (A29) is replaced
by (1T (i,j)+1min). The approach of Hibler (1979) can
be used by setting capping_method= ’max’ in the namelist,
while the smoother formulation is used by setting cap-
ping_method= ’sum’. Finally, the shear viscosity at the T
point is simply ηT (i,j)= e−2

G ζT (i,j).

A3.4 Time-stepping of the stresses at the T points

For our C-grid implementation, only σ1 and σ2 are required
at the T points for time-stepping the velocity components
using the momentum equation. Nevertheless, σ12 is also
computed at the T points in order to calculate normalized
stresses (Lemieux and Dupont, 2020) as diagnostics. Follow-
ing Eqs. (2)–(4), the stresses at the T points are time-stepped
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from subcycle k to k+ 1 as follows:

σ k+1
1T (i,j)− σ k1T (i,j)

1te
+
σ k+1

1T (i,j)

2Td
+
pT (i,j)

2Td

=
ζT (i,j)DdT (i,j)

Td
, (A30)

σ k+1
2T (i,j)− σ k2T (i,j)

1te
+
σ k+1

2T (i,j)

2Td

=
ηT (i,j)DtT (i,j)

Td
, (A31)

σ k+1
12T (i,j)− σ

k
12T (i,j)

1te
+
σ k+1

12T (i,j)

2Td

=
ηT (i,j)DsT (i,j)

2Td
, (A32)

where 1te is the subcycling time step.
It is straightforward to solve the equations above for

σ k+1
1T (i,j), σ k+1

2T (i,j), and σ k+1
12T (i,j). Note that ζT , ηT , pT ,

and strain rates in the equations above are calculated with a
velocity field at iteration k.

A3.5 Viscosities at the U points

With our C-grid implementation, only the shear viscos-
ity, η, is needed at the U points. Two methods in the
code can be used to calculate ηU . The default method
(visc_method= ’avg_zeta’ in the namelist) is a weighted
spatial average of the values at the T points. This is the C1
method of Kimmritz et al. (2016) and the same method used
in Bouillon et al. (2013). With the C1 method, ηU is ob-
tained from a weighted average of the ηT values in ocean
cells around the U points. This can be concisely written as

ηU (i,j)=
1

AT tot

1∑
k=0

1∑
l=0

ηT (i+ k,j + l)

×AT (i+ k,j + l)MT (i+ k,j + l), (A33)

where AT tot =
∑1
k=0

∑1
l=0AT (i+ k,j + l)MT (i+ k,j + l).

The second method (visc_method= ’avg_strength’ in the
namelist) relies on a weighted spatial average of the ice
strength values at the surrounding ocean T points. This is
the C2 method of Kimmritz et al. (2016) and also the method
used in Bouillon et al. (2009). The ice strength at the U point
is given by

PU (i,j)=
1

AT tot

1∑
k=0

1∑
l=0

PT (i+ k,j + l)

×AT (i+ k,j + l)MT (i+ k,j + l), (A34)

where AT tot is the same as for Eq. (A33) above.
Given that 1U (i,j)=[
D2

dU (i,j)+ e
2
F e
−4
G (D2

tU (i,j)+D
2
sU (i,j))

]1/2
, the shear

viscosity at the U point with capping_method= ’max’ is
given by

ηU (i,j)= e
−2
G

(1+ kt)PU (i,j)

2max[1U (i,j),1min]
. (A35)

With capping_method= ’sum’, it is given by

ηU (i,j)= e
−2
G

(1+ kt)PU (i,j)

2(1U (i,j)+1min)
. (A36)

A3.6 Time-stepping of the stresses at the U points

Using ηU andDsU , the shear stress at theU point is advanced
in time from subcycle k to subcycle k+ 1 according to the
following equation:

σ k+1
12U (i,j)− σ

k
12U (i,j)

1te
+
σ k+1

12U (i,j)

2Td

=
ηU (i,j)DsU (i,j)

2Td
, (A37)

which can easily be solved for σ k+1
12U (i,j). Note that ηU and

DsU in the equation above are calculated with a velocity field
at iteration k.

A3.7 Divergence of the stress tensor

Once the stresses at the T and U points have been advanced
in time from k to k+1, the components of the rheology term
can be calculated. Equations (A12) and (A13) introduced
earlier can be rewritten as

F1 =
1

h1h2

[
h2

2
∂σ1

∂ξ1
+

1
2h2

∂(h2
2σ2)

∂ξ1
+

1
h1

∂(h2
1σ12)

∂ξ2

]
, (A38)

F2 =
1

h1h2

[
h1

2
∂σ1

∂ξ2
−

1
2h1

∂(h2
1σ2)

∂ξ2
+

1
h2

∂(h2
2σ12)

∂ξ1

]
. (A39)

Using finite differences, the discretized formulation of F1 at
the E points is

F1E(i,j)=
1

h1E(i,j)h2E(i,j)

×

[
h2E(i,j)

2
[σ1T (i+ 1,j)− σ1T (i,j)]

+
1

2h2E(i,j)

[
h2

2T (i+ 1,j)σ2T (i+ 1,j)

−h2
2T (i,j)σ2T (i,j)

]
+

1
h1E(i,j)

×

[
h2

1U (i,j)σ12U (i,j)

−h2
1U (i,j − 1)σ12U (i,j − 1)

]]
, (A40)
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while the discretized formulation of F2 at the N points is

F2N (i,j)=
1

h1N (i,j)h2N (i,j)

×

[
h1N (i,j)

2
[σ1T (i,j + 1)− σ1T (i,j)]

−
1

2h1N (i,j)

[
h2

1T (i,j + 1)σ2T (i,j + 1)

−h2
1T (i,j)σ2T (i,j)

]
+

1
h2N (i,j)

×

[
h2

2U (i,j)σ12U (i,j)

−h2
2U (i− 1,j)σ12U (i− 1,j)

]]
. (A41)

A4 Time-stepping of the momentum equation

When using the B-grid discretization, the sea ice momen-
tum equation in CICE can be solved either explicitly with the
EVP (or revised EVP or EAP) approach or implicitly with a
Picard solver (similar to the one described in Lemieux et al.,
2008). For now, only the EVP and revised EVP approaches
are implemented for the C-grid discretization.

As this subsection describes the time-stepping, the grid in-
dices (i,j) are omitted to simplify the description. Hence,
uE(i,j) and vN (i,j) are here referred to as uE and vN .
Neglecting the advection of momentum and introducing the
EVP time-stepping, the momentum equations for the uE and
vN components are

mEu
k+1
E

1te
=
mEu

k
E

1te
+mEfEv

k
E + τaxE + τwxE

+ τbxE +F1E −mEge
∂H0

∂x
, (A42)

mNv
k+1
N

1te
=
mNv

k
N

1te
−mNfNu

k
N + τayN + τwyN

+ τbyN +F2N −mNge
∂H0

∂y
, (A43)

where the interpolated quantities, vE and uN , are calculated
using Eqs. (A16) and (A17). The terms mE and mN are

mE =
mT (i,j)AT (i,j)+mT (i+ 1,j)AT (i+ 1,j)

AT (i,j)+AT (i+ 1,j)
, (A44)

mN =
mT (i,j)AT (i,j)+mT (i,j + 1)AT (i,j + 1)

AT (i,j)+AT (i,j + 1)
. (A45)

All the terms in Eq. (A42) are evaluated at the E points,
while all the terms in Eq. (A43) are evaluated at theN points.
The seabed stress components are τbxE =−CbEuk+1

E and
τbyN =−CbNv

k+1
N , where the Cb coefficients are calculated

as in Lemieux et al. (2016) or following the probabilistic ap-
proach of Dupont et al. (2022). Decomposing the water stress

term, Eqs. (A42) and (A43) can be written as(
mE

1te
+CwE cosθw+CbE

)
uk+1
E

= (mEfE ±CwE sinθw)v
k
E + cx, (A46)(

mN

1te
+CwN cosθw+CbN

)
vk+1
N

=−(mNfN ±CwN sinθw)u
k
N + cy, (A47)

with

cx =mEu
k
E/1te+ τaxE

+CwE (uwE cosθw∓ vwE sinθw)+F1E

−mEge∂H0/∂x,

cy =mNv
k
N/1te+ τayN

+CwN (±uwN sinθw+ vwN cosθw)+F2N

−mNge∂H0/∂y,

CwE = aEρwCdw[(uwE − u
k
E)

2
+ (vwE − v

k
E)

2
]

1
2 ,

CwN = aNρwCdw[(uwN − u
k
N )

2
+ (vwN − v

k
N )

2
]

1
2 , (A48)

where ρw is the water density, Cdw is the ocean drag coeffi-
cient, θw is the turning angle, sinθw terms have a hemisphere-
dependent sign, uw and vw are the near-surface water veloc-
ity components (evaluated at either theE orN point), and aE
and aN (the concentration at the E and N points) are given
by

aE(i,j)=
aT (i,j)AT (i,j)+ aT (i+ 1,j)AT (i+ 1,j)

AT (i,j)+AT (i+ 1,j)
, (A49)

aN (i,j)=
aT (i,j)AT (i,j)+ aT (i,j + 1)AT (i,j + 1)

AT (i,j)+AT (i,j + 1)
. (A50)

In a coupled framework, for example, uwE , vwE , uwN , and
vwN could come from a C-grid ocean model.

As opposed to what is done for the B-grid, the Coriolis
term and part of the water stress are explicit (i.e., at iteration
k) because uE and vN are not co-located. After introducing
lE =

mE
1te
+CwE cosθw+CbE , lN = mN

1te
+CwN cosθw+CbN ,

rE =mEfE ±CwE sinθw, and rN =mNfN ±CwN sinθw,
Eqs. (A46) and (A47) become

lEu
k+1
E = rEv

k
E + cx, (A51)

lNv
k+1
N =−rNu

k
N + cy, (A52)

which can be easily solved for uk+1
E and vk+1

N .
The explicit approach for the off-diagonal C-grid terms (as

described above) is the same as that used by Kimmritz et al.
(2016). Note that for the C-grid, the semi-implicit approach
of Bouillon et al. (2009) could be used to solve for uk+1 and
vk+1 (see their Eqs. 34 and 35).
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Appendix B: Modal analysis of the remapping
checkerboard pattern

We conducted many numerical experiments to understand
and simplify the conditions that lead to the checkerboard pat-
tern. The goal of this simplification is to allow us to perform a
modal analysis and identify the cause of this spurious mode.
From the original experiment, with results shown in Fig. 3a,
we further simplify the problem by forcing the v compo-
nent of velocity and the shear viscosity, η, to be zero. Having
η = 0 is equivalent to setting eG to infinity. The ice strength
is parameterized according to Hibler (1979). We neglect the
snow. We also assume that the concentration is close to 1 and
that the ice is in a single thickness category. In experiments
for which the wind pushes the ice against a wall, the checker-
board starts to develop close to the wall. This was verified in
a few idealized numerical experiments (not shown). We fur-
ther noticed that when the checkerboard develops close to
the wall, there is convergence and the ice is in the plastic
regime. Considering the plastic regime and the absence of
shear stress, the stress, σ = σ11, is expressed as

σ =
P

21
Dd−

P

2
, (B1)

which becomes σ =−P because 1= |Dd| and Dd < 0
(convergence).

We write the momentum and transport equations as

ρh
∂u

∂t
= τa+ τw−P

∗
∂h

∂x
, (B2)

∂h

∂t
+
∂(hu)

∂x
= 0, (B3)

where P = P ∗h as we assume that the concentration is close
to 1.

We linearize these equations around h0 and u0. That is,
h= h0+h

′ and u= u0+ u
′, where h′ and u′ are small

perturbations. As |u0| � |u
′
|, we write the water stress as

ρwCdw|u0|(u0+ u
′). Because Eqs. (B2) and (B3) are valid

for the base state, h0 and u0, and if we neglect h′u′ terms, we
have

ρh0
∂u′

∂t
+ ρh′

∂u0

∂t
+ ρwCdw|u0|u

′
+P ∗

∂h′

∂x
= 0, (B4)

∂h′

∂t
+
∂(h0u

′)

∂x
+
∂(h′u0)

∂x
= 0. (B5)

Because the ice is compact and subject to a no-outflow
boundary condition, it is reasonable to assume that the base
state, u0, is small close to the wall and that we can neglect
products of u0 with h′ and with u′. Hence, we neglect the
terms ρh′∂u0/∂t , ρwCdw|u0|u

′, and ∂(h′u0)/∂x and finally

have

ρh0
∂u′

∂t
+P ∗

∂h′

∂x
= 0, (B6)

∂h′

∂t
+h0

∂u′

∂x
= 0. (B7)

Equations (B6) and (B7) are similar to the one-
dimensional shallow-water equations. Many authors have
studied these equations and described the checkerboard pat-
terns that depend on the spatial discretization (Schoenstadt,
1980; Batteen and Han, 1981; Walters and Carey, 1983; Le
Roux et al., 2005).

We assume solutions of the form u′ = ûe−iωt and h′ =
ĥe−iωt , where i is the unit imaginary number and ω is the
frequency. Following Batteen and Han (1981), we adopt a
semi-discrete approach; we only analyze the impact of the
spatial discretization and do not consider the time discretiza-
tion. We first obtain

−iωρh0û+P
∗
∂ĥ

∂x
= 0, (B8)

−iωĥ+h0
∂û

∂x
= 0. (B9)

We write û= ũei(kx+ly) and ĥ= h̃ei(kx+ly), where ũ and h̃
define the amplitudes and k and l the wavenumbers, and we
conduct the analysis for a uniform Cartesian grid with grid
cells of size 1x×1y. The origin of our x and y coordinate
system is at the T point of a grid cell – that is, the T point is at
(0,0), while the E and U points are, respectively, at (1x2 ,0)
and (1x2 ,

1y
2 ). Evaluating Eq. (B8) at the E point, we obtain

−iωρh0ũe
ik1x

2 +
P ∗h̃

1x
[eik1x − 1] = 0, (B10)

which can be rearranged as

ωρh0ũ−
2P ∗h̃
1x

sin
(
k1x

2

)
= 0. (B11)

If the standard remapping (our initial implementation) is
used, the departure regions are defined by trapezoids in our
simple one-dimensional problem. The shape of these trape-
zoids depends on the U -point velocities, which are cal-
culated from the average C-grid velocities as uU (i,j)=
[uE(i,j)+uE(i,j+1)]

2 . The area of the trapezoid on the east edge
is therefore proportional to [uE(i,j−1)+2uE(i,j)+uE(i,j+1)]

4 . In
this case, considering the (perturbed) fluxes for both edges in
our simple one-dimensional problem, Eq. (B9) can be written
as

−iωh̃+
h0ũ

41x
[ei(

1
2 k1x+l1y)+ 2ei(

k1x
2 )
+ ei(

1
2 k1x−l1y)

− ei(−
1
2 k1x+l1y)− 2ei(

−k1x
2 )
− ei(−

1
2 k1x−l1y)] = 0, (B12)

which becomes

ωh̃−
h0ũ

1x
sin
(
k1x

2

)
(1+ cos(l1y))= 0. (B13)
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Using Eq. (B11) to replace h0ũ in Eq. (B13), we obtain the
dispersion relation:

ω2
=

2P ∗

ρ(1x)2
sin2

(
k1x

2

)
[1+ cos(l1y)]. (B14)

Considering the smallest possible wavelength in the y di-
rection (λ= 21y), wavenumber l is then l = π/1y. With
that value of l, we have ω = 0 in Eq. (B14), which means
that this wave does not propagate: it is a stationary wave,
which explains the presence of the checkerboard pattern.
This [1+ cos(l1y)] term characterizes the spurious diver-
gence associated with the interpolation of velocities to the
U points. Note that the smallest wavelength in the other
direction, λ= 21x, is not a problem because sin2 ( k1x

2

)
=

sin2 (π
2

)
= 1.

On the other hand, if the EFA method is used, the fluxes
are based on rectangles defined by the uE velocity compo-
nents. Given the fluxes on the west and east edges, Eq. (B9)
can be written as

−iωh̃+
h0ũ

1x

[
e
ik1x

2 − e
−ik1x

2

]
= 0, (B15)

which can be rearranged as follows:

ωh̃−
2h0ũ

1x
sin
(
k1x

2

)
= 0. (B16)

Using Eq. (B11) to replace h0ũ in Eq. (B16), we find the
dispersion relation

ω2
=

4P ∗

ρ(1x)2
sin2

(
k1x

2

)
. (B17)

Compared to Eq. (B14), the dispersion relation associ-
ated with the EFA method (Eq. B17) does not have the
[1+cos(l1y)] term. As for the sin2( k1x2 ) term in Eq. (B14),
the smallest wavelength, λ= 21x, does not create a station-
ary wave.

Appendix C: Improved robustness of remapping

Long-term C-grid simulations showed that the novel EFA
method with the original remapping algorithm (Lipscomb
and Hunke, 2004) sometimes failed on non-uniform grids.
These rare failures were due to negative area and mass val-
ues close to land or the ice edge.

These negative values were a result of approximations in
the area of the departure regions. As explained in Sect. 5.1,
the points that define the departure triangles and the shifted
departure midpoints are calculated in non-dimensional coor-
dinates. Once the triangles have been found, their areas are
scaled to the true grid dimensions, with an area factor, Af,
assigned to each triangle. This factor is simply an approx-
imation of the grid cell area at a certain location. Triangle

Figure C1. Schematic of departure regions on the south (a) and the
east (b) edges of grid cell (i,j) (in light blue). The same code is
used to calculate the departure region for both edges. To do so, the
non-dimensional coordinate system is rotated by 90° for the east
edge. This is why the corners for the east edge are also labeled as
left (cl) and right (cr). The same convention applies to the departure
points (dr). The orange triangles on both edges are defined by the
EFA method by shifting the middle departure point to dm∗. The
intersection point, ipy , on the y axis for the south edge has non-
dimensional coordinates (0,yi), while ipx for the east edge (on the
rotated x axis) has non-dimensional coordinates (xi ,0).

areas A4 are calculated as follows:

A4 =
Af

2

[
(x2− x1)(y3− y1)− (y2− y1)(x3− x1)

]
, (C1)

where (x1,y1), (x2,y2), and (x3,y3) are the non-dimensional
coordinates of the three triangle vertices.

To enhance the robustness of the remapping, the new code
modifies some of the area factors. We show two examples
to summarize the problems and solutions. In the first exam-
ple (Fig. C1), we assume that the ocean cell (i,j) has no
ice in category n before the transport step. We examine the
transport calculation for that category. We assume that cells
(i− 1,j) and (i,j + 1) are land cells, while cells (i+ 1,j)
and (i,j − 1) are ocean cells. This means that cell (i,j) can
have fluxes only across its east and south edges. We finally
assume that cell (i+1,j) has ice in category n. On the south
edge (Fig. C1a), the shifted middle departure point (dm∗) is
in the same cell (i,j) as the initial middle departure point.
This reflects the fact that vN (i,j − 1) has the same sign
as vU (i,j − 1) (i.e., vN (i,j − 1) < 0 and vU (i,j − 1) < 0).
Less commonly, the departure region on the east edge is as
shown in Fig. C1b, with uE(i,j) > 0, uU (i,j − 1) < 0, and
|uE(i,j)|> |uU (i,j−1)|. In that case, the initial middle de-
parture point, dm (not shown), in cell (i+ 1,j) is shifted to
dm∗ in cell (i,j).

On the east edge of cell (i,j), the orange triangle repre-
sents an area flux out of the cell, while the yellow triangle
is an incoming flux. On the south edge, all three triangles
represent outgoing fluxes. As an = 0 in cell (i,j), the fluxes
associated with the orange and the dark blue triangle are zero.
The only triangles that matter are the yellow triangles asso-
ciated with the south and the east edges. The triangle asso-
ciated with the south edge has vertices cr, dr, ipy , while the
one associated with the east edge has vertices cr, dr, ipx . In
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non-dimensional coordinates, the incoming area flux across
the east edge is larger than the outgoing flux across the south
edge. This should not lead to a negative net flux for cell (i,j).
However, if the area factor,Af, is different for the two yellow
triangles, the outgoing area can exceed the incoming area,
leading to negative ice area in cell (i,j).

As described in Sect. 5.1, the EFA method uses the cell
area evaluated at the midpoint of the edge to calculate the
non-dimensional area of the departure region. Both yel-
low and orange triangles in Fig. C1b therefore have Af =

AE(i,j), where AE(i,j) is the cell area evaluated at the E
point. For the south edge, the dark blue and orange trian-
gles have Af = AN (i,j − 1) (Fig. C1a). Because the yellow
triangle is not in the central region of the south edge, it is
not part of the adjustment process. In the previous version of
the remapping, the area factor assigned to this triangle was
Af = AU (i,j − 1). On highly deformed grids, AU (i,j − 1)
can be larger than AE(i,j), resulting in negative fluxes.

To improve the robustness of the remapping for C-grid
simulations, we modified the code by assigning the area fac-
tor AE(i,j) to the yellow triangle associated with the south
edge. Similar modifications are required for triangles referred
to as TL (top-left), BL (bottom-left), TR (top-right), and BR
(bottom-right) in the code. These modifications apply with or
without the EFA method.

Differing area factors are less of an issue for the B-grid.
Considering the same example, the departure region for the
east edge would be defined by points cr, dr, and cl (Fig. C1b).
The area flux into cell (i,j) would be much larger than the
area flux out of the cell (yellow triangle in Fig. C1a), and
there would be no negative fluxes.

We omit the details here, but a similar problem can arise
with lone triangles (e.g., the yellow triangle in Fig. 4). This
triangle is now assignedAf = AN (i,j) instead ofAU (i,j) as
was done before, in the original code. All the lone triangles
now use Af at the center of the edge that they border.

As a result of the code modifications described above, an-
other change was required to prevent negative areas. For sim-
plicity, we omit the EFA triangles in this explanation; see
Fig. C2. Here, we assume that the ocean cells (i,j), (i−1,j),
and (i+ 1,j) do not have ice in category n. Moreover, there
are ocean cells to the north, with an > 0, while the southern
boundary is a coastline (i.e., land cells). We look at the fluxes
for category n.

In rare situations, the segment joining dl and dr crosses
two edges to form two corner triangles on the north edge of
cell (i,j), as shown in Fig. C2a. Since an = 0 in this cell,
the departure region inside this cell associated with the north
edge does not contribute to the total flux. This region, de-
fined by the points cl, dl, ipy , and cr, is shown in dark blue in
Fig. C2a. Similarly, since an = 0 in cell (i+ 1,j), the green
triangle for the north edge (Fig. C2a) and the green triangle
for the east edge (Fig. C2b) do not contribute to the total flux.
The two triangles that matter are the yellow ones. The one for
the north edge, defined by cr, dr, ipx , represents a flux out of

Figure C2. Schematic of departure regions on the north (a) and the
east (b) edges of grid cell (i,j) (in light blue). The same code is
used to calculate the departure region for both edges. To do so, the
non-dimensional coordinate system is rotated by 90° for the east
edge. The corners are labeled as left (cl) and right (cr). The depar-
ture points are dl and dr, and ipx and ipy are intersecting points on
the x and y axes.

cell (i,j), while the one for the east edge defined by cl, dl,
ipy corresponds to an incoming flux. In non-dimensional co-
ordinates, the incoming area flux is greater than the outgoing
flux. But if the two triangles have different area factors as
described above, the net flux can be negative.

With the code changes described above, the yellow trian-
gle for the east edge uses Af = AN (i+ 1,j). To ensure ro-
bustness (i.e., positive areas) with these changes, the code
now usesAf = AN (i+1,j) for the yellow triangle associated
with the north edge (Fig. C2a). This triangle is referred to as
TR1 in the code. The green triangle, known as BR1, uses the
area factor AE(i,j). Similar modifications are required for
the analogous TL1, BL2, and BR2 triangles.

Appendix D: C-grid analytical solution for a
one-grid-cell-wide channel

We consider a uniform Cartesian grid with an east–west ori-
ented one-grid-cell-wide channel by applying cyclic bound-
ary conditions. The wind is constant and blows from the
west. We further simplify the problem by assuming that the
ocean is at rest and that the sea surface tilt term, the turning
angle, and the Coriolis parameter are zero. The ice conditions
are considered constant along the channel, with a being the
concentration and h the mean thickness. For this test, these
fields do not change in time since transport, redistribution,
and thermodynamics are turned off. Finally, we do not con-
sider the plastic potential and simply set eG = eF = e. With
these simplifications, v = 0 and the u momentum equation
becomes

m
∂u

∂t
= τa+ τw+

∂σ11

∂x
+
∂σ12

∂y
. (D1)
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Because of the cyclic boundary conditions, ∂σ11
∂x
= 0. At

steady state, the u momentum equation therefore becomes

τa+ τw+
∂σ12

∂y
= 0. (D2)

Discretizing Eq. (D2) at the E point, we obtain

τaE(i,j)+τwE(i,j)+
σ12U (i,j)− σ12U (i,j − 1)

1y
= 0. (D3)

At steady state, the shear stresses are given by

σ12 = ηDs, (D4)

where DS = ∂u/∂y because v is zero. Given the ellipse pa-
rameter e, η is expressed as

η =
e−2P

24∗
, (D5)

where the capping formulation 4∗ =max[4,4min] is used.
Because ε̇11 and ε̇22 are zero, 4= e−1

|DS |.
With τaE(i,j)= aρaCdau

2
a and τwE(i,j)=

−aρwCdwu
2
E(i,j), Eq. (D3) can be written as

aρaCdau
2
a − aρwCdwu

2
E(i,j)

+
ηU (i,j)DsU (i,j)− ηU (i,j − 1)DsU (i,j − 1)

1y
= 0, (D6)

where ρa is the air density, Cda the air drag coefficient, and
ua the surface wind velocity.

With the no-slip boundary condition, we can approximate
the shear strain rate:

DsU (i,j)=
0− uE(i,j)
1y/2

, (D7)

DsU (i,j − 1)=
uE(i,j)− 0
1y/2

, (D8)

which means that DsU (i,j) < 0 and DsU (i,j − 1)=
−DsU (i,j).

We want to solve Eq. (D6) for uE(i,j). For simplicity, we
drop (i,j) – that is, uE(i,j)= uE . With strong winds, the
ice is in the plastic regime – that is, 4∗ =4= e−1

|Ds|. We
can write Eq. (D6) as

aρaCdau
2
a − aρwCdwu

2
E −

P

e1y
= 0. (D9)

The transition between the plastic and viscous regimes oc-
curs for a wind velocity ua = ua∗. At this transition, 4=
4min, which leads to a sea ice velocity of e4min1y/2. Re-
placing uE in Eq. (D9) by that expression gives

aρaCdau
2
a∗− aρwCdw

[
e4min1y

2

]2

−
P

e1y
= 0. (D10)

Solving for ua∗, we get

ua∗ =

[
ρwCdw

ρaCda

(
e4min1y

2

)2

+
P

aρaCdae1y

]1/2

. (D11)

If ua > ua∗, the ice is in the plastic regime and uE can be
found by solving Eq. (D9):

uE =

[
ρaCdau

2
a

ρwCdw
−

P

aρwCdwe1y

]1/2

, (D12)

where the first term is the free-drift velocity and the second
term, which is there due to the rheology, slows down the
ice. In the plastic regime, the shear stresses σ12U (i,j) and
σ12U (i,j − 1) are, respectively, −e−1P/2 and e−1P/2.

On the other hand, if the wind is weak (i.e, ua < ua∗), the
ice is in the viscous regime. In this case, 4∗ =4min and
Eq. (D6) becomes

aρaCdau
2
a − aρwCdwu

2
E −

2PuE
e24min1y2 = 0, (D13)

which can be rewritten as

u2
E +

2P
aρwCdwe24min1y2 uE −

ρaCdau
2
a

ρwCdw
= 0. (D14)

The solution of Eq. (D14) is thus

uE =−
P

aρwCdwe24min1y2

+

√(
P

aρwCdwe24min1y2

)2

+
ρaCdau

2
a

ρwCdw
. (D15)

Code and data availability. The CICE code is available on
GitHub at https://github.com/CICE-Consortium/CICE (last ac-
cess: 4 September 2024). The simulations for this article were
done using release 6.5.0 which can be obtained at https:
//github.com/CICE-Consortium/CICE/releases/tag/CICE6.5.0 (last
access: 4 September 2024) and on Zenodo at https://doi.org/10.
5281/zenodo.10056499 (Hunke et al., 2023). Release 6.5.0 in-
cludes Icepack 1.4.0. The atmospheric forcing fields (JRA55)
and CESM oceanic forcing fields used for the global simula-
tions can be found on Zenodo at https://doi.org/10.5281/zenodo.
8118239 (CICE-Consortium, 2020) and https://doi.org/10.5281/
zenodo.4660188 (CICE-Consortium, 2021).
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