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Abstract. Vegetation phenology plays a key role in control-
ling the seasonality of ecosystem processes that modulate
carbon, water and energy fluxes between the biosphere and
atmosphere. Accurate modelling of vegetation phenology in
the interplay of Earth’s surface and the atmosphere is thus
crucial to understand how the coupled system will respond
to and shape climatic changes. Phenology is controlled by
meteorological conditions at different timescales: on the one
hand, changes in key meteorological variables (temperature,
water, radiation) can have immediate effects on the vegeta-
tion development; on the other hand, phenological changes
can be driven by past environmental conditions, known as
memory effects. However, the processes governing meteoro-
logical memory effects on phenology are not completely un-
derstood, resulting in their limited performance of vegetation
phenology represented in land surface models. A deep learn-
ing model, specifically a long short-term memory network
(LSTM), has the potential to capture and model the meteo-
rological memory effects on vegetation phenology. Here, we
apply the LSTM to model the vegetation phenology using
meteorological drivers and high-temporal-resolution canopy
greenness observations through digital repeat photography
by the PhenoCam network. We compare a multiple linear

regression model, a no-memory-effect LSTM model and a
full-memory-effect LSTM model to predict the whole sea-
sonal greenness trajectory and the corresponding phenolog-
ical transition dates across 50 sites and 317 site years dur-
ing 2009–2018, covering deciduous broadleaf forests, ever-
green needleleaf forests and grasslands. Results show that
the deep learning model outperforms the multiple linear re-
gression model, and the full-memory-effect LSTM model
performs better than the no-memory-effect model for all
three plant function types (median R2 of 0.878, 0.957 and
0.955 for broadleaf forests, evergreen needleleaf forests and
grasslands). We also find that the full-memory-effect LSTM
model is capable of predicting the seasonal dynamic varia-
tions of canopy greenness and reproducing trends in shifting
phenological transition dates. We also performed a sensitiv-
ity analysis of the full-memory-effect LSTM model to as-
sess its plausibility, revealing its coherence with established
knowledge of vegetation phenology sensitivity to meteoro-
logical conditions, particularly changes in temperature. Our
study highlights that (1) multi-variate meteorological mem-
ory effects play a crucial role in vegetation phenology, and
(2) deep learning opens up new avenues for improving the
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representation of vegetation phenological processes in land
surface models via a hybrid modelling approach.

1 Introduction

Vegetation phenology characterizing key plant development
stages such as leaf unfolding and leaf senescence plays a
pivotal role as a primary regulator of ecosystem processes
and land–atmosphere interactions (Peñuelas et al., 2009;
Richardson et al., 2013; Piao et al., 2019). In response to
global change, vegetation phenology has shown divergent
shifts in diverse biomes (Menzel et al., 2006; Cleland et al.,
2007; Wolkovich et al., 2012; Fu et al., 2015; Zhang et al.,
2022), whilst at the same time exerting a substantial influence
on ecosystem productivity and functions through the impact
on biogeochemical processes, especially photosynthesis and
carbon sequestration (e.g. Richardson et al., 2010) as well
as ecosystem respiration (e.g. Migliavacca et al., 2015). Ad-
ditionally, as green leaves are the primary interface for the
exchange of energy, mass and momentum between the ter-
restrial surface and planetary layer (Richardson et al., 2012),
vegetation phenology plays a fundamental role in controlling
seasonal dynamics of water and heat fluxes between the land
and the atmosphere (Peñuelas et al., 2009; Richardson et al.,
2009; Puma et al., 2013; Jin et al., 2017; Buermann et al.,
2018; Koebsch et al., 2020; Wu et al., 2022). Given the sig-
nificance of vegetation phenology within the Earth system,
an accurate representation of vegetation phenology in land
surface models (LSMs) is crucial to enhance our understand-
ing of ecosystem processes and their dynamics in response
to climate change.

Over decades, many modelling efforts have been made to
improve the development of accurate phenological models at
the species-specific and plant-functional-type scale (White
et al., 1997; Chuine, 2000; Jolly et al., 2005; Delpierre et
al., 2009), including understanding the physiological mecha-
nisms and environmental driving factors controlling phenol-
ogy (Chen and Xu, 2012; Fu et al., 2020). Currently, veg-
etation phenological models mainly include statistical mod-
els and process-based models. These models are developed
to simulate phenological events by integrating meteorolog-
ical variables which are supposed to drive the processes of
vegetation phenology, utilizing ground observations or phe-
nological proxies derived from remote sensing vegetation in-
dex data. The most popular approach to represent phenol-
ogy in land surface models is based on the accumulated
growing degree days (GDD) (Lawrence et al., 2019; Asse
et al., 2020; Pollard et al., 2020). The GDD model assumes
that vegetation phenological events occur when the accu-
mulated growing-degree-day sum fulfils a given requirement
(i.e. a threshold of accumulated temperature over a certain
time period). Considering the physiological processes, plants
experience dormancy before entering the growing season,

and thus chilling is considered to be essential to break dor-
mancy in phenological models (Chuine, 2000; Menzel et al.,
2011; Zhang et al., 2022). Besides temperature, the pho-
toperiod and soil water availability have also been shown to
be important drivers for vegetation phenology (Adole et al.,
2019; Borchert et al., 2005; Chuine et al., 2010; Flynn and
Wolkovich, 2018; Luo et al., 2020). Consequently, models
based on GDD models have been improved by incorporating
photoperiod and soil water availability effects, which have
been applied in many LSMs, such as the Biome-BGC (Bio-
Geochemical Cycles) model (Thornton et al., 2002; Thorn-
ton and Rosenbloom, 2005), JSBACH (Jena Scheme for
Biosphere–Atmosphere Coupling in Hamburg; Mauritsen et
al., 2019) and ORCHIDEE (ORganising Carbon and Hydrol-
ogy In Dynamic Ecosystems; Krinner et al., 2005). Large
uncertainties and biases in modelling phenology following
these ad hoc concepts have been identified within LSMs and
Earth system models (ESMs; Richardson et al., 2012; Jeong
et al., 2012; Murray-Tortarolo et al., 2013; Lawrence et al.,
2019; Peano et al., 2021), resulting in inaccurate estimations
of primary productivity and the terrestrial ecosystem carbon
and water cycle (Migliavacca et al., 2012).

To improve such phenology model performance, one has
to consider more complex interactions of meteorological
conditions that drive the vegetation phenological develop-
ment. Phenology is triggered by meteorological conditions
at various timescales. Instantaneous meteorological condi-
tions like day-to-day variations in temperature, water, radi-
ation can directly impact vegetation development. Addition-
ally, longer-term and past meteorological conditions from the
previous month or year have legacy effects on phenological
changes. For example, a plant might face delays in budburst
if the chilling requirements are not fulfilled (Ren et al., 2021).
These lasting or delayed impacts are often referred to as
memory effects, representing the impact of previous climate
conditions on the present or future vegetation development.
Studies have revealed that besides the well-known memory
effect from temperature like GDD or chilling, other mete-
orological variables like precipitation or drought also have
memory effects on vegetation growth and subsequent phe-
nological appearance (Walter et al., 2011; Ogle et al., 2015;
Ettinger et al., 2018; L. Liu et al., 2018; Lian et al., 2021).
Due to the complexity and the interplay of various meteoro-
logical factors, current modelling efforts face a challenge in
incorporating these multi-variate memory effects (which re-
fer to the different memory effects that can be associated to
different meteorological drivers) in a mechanistic manner.

Recently, data-driven methods including deep learning
techniques have been used to investigate the influence of cli-
matic factors on land surface processes (Forkel et al., 2017;
Reichstein et al., 2019; Besnard et al., 2019; Kraft et al.,
2019; Chen et al., 2021; Callaghan et al., 2021; Zhou et
al., 2021), demonstrating their potential in capturing long-
term temporal dependencies (Sutskever et al., 2014; Bah-
danau et al., 2015). Deep learning models aim to consider
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the full spectrum of meteorological inputs making predic-
tions and thus hold promise in capturing long-term tem-
poral dependencies from multiple variables (Besnard et al.,
2019; Kraft et al., 2019). A recent study has already indi-
cated that the deep learning technique is capable of improv-
ing the predictability skill of vegetation phenology with re-
spect to conventional methods (Zhou et al., 2021). The long
short-term memory network (LSTM), a type of deep learn-
ing neural network, is designed specifically for sequence pre-
diction problems that deal with the memory effect (Hochre-
iter and Schmidhuber, 1997). Also, time series of consis-
tent and widely distributed phenological near-surface obser-
vations are now long enough so that they reflect short- and
long-term sensitivities to meteorological conditions. Specifi-
cally, the continuous daily dataset from the PhenoCam initia-
tive (Richardson et al., 2018), obtained from images of near-
surface digital cameras, offers opportunities to apply deep
learning methods for developing vegetation phenology mod-
els that account for the memory effects of multiple meteoro-
logical variables (Richardson et al., 2018; Seyednasrollah et
al., 2019).

We propose to use the PhenoCam data and the LSTM
framework to develop a deep learning model that is capa-
ble of not only predicting specific transition dates but also
forecasting the state of the canopy greenness throughout the
entire year. Most current phenology modelling studies fo-
cus on phenological transition dates only, such as the on-
set of budburst, flowering or leaf senescence (Chuine, 2000;
Delpierre et al., 2009; Fu et al., 2020). These phenological
models effectively capture the processes that lead to individ-
ual phenological events but fail to overlook the dynamical
nature characterizing the continuous phenological develop-
ment throughout the entire annual cycle, where the pheno-
logical state itself could influence the subsequent phenologi-
cal development (Fu et al., 2014). Conversely, models target-
ing the whole seasonal trajectory (White et al., 1997) possess
the capability to provide continuous predictions of the phe-
nological development state that decisively influences other
biogeochemical and biophysical processes at the land sur-
face.

More specifically, in this study, we focus on the modelling
of the whole seasonal trajectory of canopy greenness but
also the prediction of transition dates in the annual cycle of
canopy greenness. Overall, our key objective is to develop a
robust deep learning vegetation phenology model on the ba-
sis of a LSTM to characterize the memory effects of multiple
meteorological variables on canopy greenness using the Phe-
noCam observations. We also build a statistical model as the
baseline to evaluate the performance of our machine learn-
ing model. Our study focuses on addressing the following
research questions: (1) can deep learning models perform
better than statistical models? And can deep learning mod-
els accounting for memory effects of multiple meteorologi-
cal variables outperform models that do not account for such
memory effects? (2) Do deep learning models successfully

capture temporal variations on different timescales of canopy
greenness and vegetation phenology? (3) Can deep learning
models provide meaningful interpretations of the underly-
ing physical and biological relationships between vegetation
greenness, phenology and a changing climate?

2 Materials and methods

2.1 PhenoCam data

The phenological data used in this study are acquired
from the PhenoCam dataset v2.0 (https://daac.ornl.gov/
VEGETATION/guides/PhenoCam_V2.html, last access: 29
August 2024, Seyednasrollah et al., 2019). The dataset is de-
rived from digital images photographed by automated and
high-frequency digital cameras at half-hour intervals. These
images are analysed to calculate the green chromatic coordi-
nate (GCC), which is the ratio of the green channel digital
numbers to the total digital values of the digital RGB im-
ages within a predefined region of interest. GCC serves as
an indicator of canopy greenness, with variations primarily
due to changes in photoprotective pigments, which cause the
variation in canopy greenness. For example, the changes in
photoprotective pigments cause the canopy to appear more
“red” in winter (indicating low GCC) compared to summer.

To construct a daily GCC time series, we use the 90th
percentile of daily GCC values, reducing the impact of at-
mospheric conditions on illumination. This daily GCC time
series is used in this study to represent the canopy green-
ness development and senescence. Specifically, we select the
GCC time series from Type I observation sites that follow
a standard protocol to ensure data quality and continuity
(Richardson et al., 2018). To ensure robust data, we exclude
yearly GCC data for years with more than 20 d of missing
digital images. We further select sites with continuous obser-
vations available for more than 5 years. Missing data in the
GCC time series are interpolated using a cubic spline inter-
polation method (Hall and Meyer, 1976). Additionally, we
apply a locally weighted scatter plot smoothing method to
reduce noise in the GCC time series (Cleveland, 1979). Our
study focuses on three main plant functional types (PFTs):
deciduous broadleaf forest (DB), evergreen needleleaf for-
est (EN) and grassland (GR), with observed GCC ranges of
0.30–0.46 for DB, 0.32–0.43 for EN and 0.30–0.43 for GR.
Ultimately, a total of 50 sites and 317 site-year observations
during 2009–2018 are used in the analysis. Of these, 28 sites
with 178 site-year observations are DB sites, 13 sites with 82
site-year observations are EN sites and 9 sites with 57 site-
year observations are GR sites. The spatial distribution of the
study sites and test sites for each PFT is shown in Fig. 1.

2.2 Explanatory variables

The daily meteorological variables were obtained from the
station-level Daymet dataset (https://daymet.ornl.gov/, last
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Figure 1. Geographical distribution of study sites for deciduous broadleaf forest (orange circles), evergreen needleleaf (blue triangles) and
grassland (green squares). The test sites are specifically highlighted within a red border.

access: 29 August 2024). These variables include daily
minimum temperature (Tmin), daily maximum temperature
(Tmax), daily day length (DL), daily precipitation (P ), daily
water vapour pressure of the air (ea) and daily shortwave ra-
diation (R). We extract time series of these meteorological
variables for each studied PhenoCam site. Given that the soil
moisture might have memory effects on vegetation canopy
greenness development, it should be included as a driver in
the model. In our study, six dynamic variables are used, in-
cluding Tmin, Tmax, DL, R, vapour pressure deficit (VPD)
and soil moisture index (SMI). The daily VPD is the differ-
ence between the saturation pressure of water (es, calculated
from the daily mean temperature) and the actual water vapour
pressure of the air (ea), calculated following Eqs. (1) and
(2) (Alduchov and Eskridge, 1997). Due to the lack of mea-
sured soil moisture data, we have utilized a 30 d backward
running mean of precipitation, applying decreasing weights
(from 0 to 1) to days in the past 1 month, as a proxy for soil
moisture. This index has been demonstrated to serve effec-
tively as a proxy for soil moisture where direct soil moisture
measurements are unavailable (Migliavacca et al., 2011). The
daily SMI is computed using a proxy of the sum of precipita-
tion over the previous month (Eq. 3). Additionally, two static
variables, mean annual temperature (Tmean) and mean annual
precipitation (Pmean), are derived from the records of these

two variables in PhenoCam dataset.

VPD= es− ea (1)

es = 0.61094 × e
17.625T

T+243.04 , (2)

where es and ea are saturated and actual vapour pressure, re-
spectively (kPa). T is the mean daily air temperature (°C).

SMIt =

∑30
i=0(Pt−i ×

30−i
30 )

31
, (3)

where SMIt is the soil moisture index on day t , Pt−i is the
precipitation on day (t − i) and i is the number of days away
from the day of t .

2.3 LSTM modelling approach

Our goal is to predict the whole seasonal trajectory of the
canopy’s green chromatic coordinate (GCC) from the time
series of the eight predictor variables using one model per
PFT for multiple sites. To make this task feasible, we subtract
the winter baseline value (the mean of the minimum GCC
values in available years) of GCC at each site and PFT, mak-
ing the measurements more comparable across sites. Further,
the predictor variables and targets (GCC) are globally nor-
malized using a min–max transformation for each PFT.

To ensure that our models learn relationships that can be
generalized, we evaluate them on unseen data in space and
time. For the spatial generalization, we hold out 10 % of all
studied sites as unseen test sites. Furthermore, we use all
data from the year of 2018 for each PFT as our temporal
test dataset. The division of the data is illustrated in Fig. S1.
Additionally, we divide the dataset into samples consisting of
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2 years of input predictor variables (accounting for potential
memory effects of meteorological variables from previous 1
year to the current year), along with 1 year of GCC observa-
tions corresponding to the second year of input.

To capture the relationship between the meteorologi-
cal variables and the GCC, we employ a LSTM network
(Hochreiter and Schmidhuber, 1997). We choose this method
for several reasons. Firstly, we expect a highly non-linear
relationship between the meteorological variables and ob-
served canopy greenness, necessitating a flexible, nonpara-
metric model such as a neural network (Hornik et al.,
1989). Secondly, the representation of dynamic meteorolog-
ical memory effects on canopy greenness requires a model
that can represent temporal interactions across scales. For
this purpose, we utilize a recurrent neural network (RNN),
specifically the LSTM, which has demonstrated strong per-
formance in prediction-related problems involving time-
series data (Wu et al., 2017; Besnard et al., 2019; Kraft et
al., 2019, 2022).

In our study, we employ a single-layer LSTM with 128
nodes, followed by one fully connected (output) layer and
preceded by one fully connected (input) layer. The mean
squared error between the predicted and the observed GCC
is optimized using the gradient-based AdamW (Loshchilov
and Hutter, 2019), an algorithm that adds decoupled weight
decay to the Adam (Kingma and Ba, 2015) optimizer. We
train an ensemble of models to reach a more stable predic-
tion. During the model development phase, we utilized a
leave-one-site-out cross-validation strategy, applied 25-fold
for the DB, 12-fold for the EN and 8-fold for the GR datasets.
This approach was integral to identifying the most effective
model architectures and hyperparameters, ensuring robust-
ness across various sites. Additionally, we employed these
validation datasets for early stopping to prevent overfitting.
Specifically, we stop the training when the performance no
longer improves on the left-out validation set of 150 epochs
(an epoch refers to one complete pass through the entire
training dataset). Furthermore, we decay the learning rate (a
hyperparameter that determines the size of the steps taken
during the optimization of a model) of, initially, 0.01 by a
factor of 0.9 after each epoch. For testing we use the mean of
the ensemble of LSTMs as the prediction for the GCC.

To quantify the importance of the memory effects in the
model, we additionally train our model on the same dataset,
with all data being randomly shuffled in the time dimen-
sion (Besnard et al., 2019; Kraft et al., 2019). In this dataset
the “instantaneous” relation between the inputs and outputs
of the current day is unimpaired, but the effects of previ-
ous days cannot be learned, as these days are random. This
LSTM model does not consider the memory effects, referred
to as the no-memory-effect LSTM model, M0. In contrast,
the original model, which has access to the full history of
the input variables, is referred to as the full-memory-effect
LSTM model, Mfull. The framework of our LSTM model in

predicting canopy greenness GCC using six dynamic and two
static predictors is illustrated in Fig. 2.

2.4 Model evaluation

To assess the modelling ability of deep learning models,
we develop a baseline model using multiple linear regres-
sion (MLR) between the eight predictor variables and GCC
(Eq. 4). The MLR model is trained and tested in the same
training and testing dataset as the LSTM models.

GCC= a× Tmin+ b× Tmax+ c×DL+ d ×R+ e

×VPD+ f ×SW+ g× Tmean+ k×Pmean+ res, (4)

where GCC is our target; Tmin, Tmax, DL, R, VPD, SW, Tmean
and Pmean are predictor variables; and res is the residual.

For model evaluation, we primarily use the root mean
square error (RMSE) and the coefficient of determination
(R2) for model evaluation. These metrics are calculated
based on the predicted and observed GCC at each site for
each PFT. We compare the model performance of all mod-
els in the testing dataset and select the best model for each
PFT by R2. For the best models, we evaluate their perfor-
mance in simulating (1) GCC observations, (2) GCC tempo-
ral variation and (3) phenological transition dates in testing
datasets. GCC temporal variation includes variation on three
timescales: daily variation, monthly mean GCC variation and
interannual variation of the anomalies of median GCC. For
daily variation, we also calculate the daily anomalies for ob-
servations and LSTM models. For the monthly GCC varia-
tion, we further compare the mean monthly canopy develop-
ment rate (VGCC) during studied years between observed and
predicted GCC time series. The rate of canopy development
for each month (from February to December) is calculated at
the monthly scale from the GCC time series using Eq. (5).

VGCC(t) = GCCt −GCCt−1, (5)

where t is time (month), and GCCt and GCCt−1 are the mean
GCC values for a given year at month t and t−1, respectively.

The phenological transition dates are estimated intending
to define the start of season (SOS) and the end of season
(EOS) for 1 year. We choose the dates corresponding to 30 %
of the seasonal amplitude (from the 5th percentile to the 95th
percentile) through greening rising and falling to represent
the SOS and EOS. SOS and EOS transition dates are esti-
mated from both the predicted and observed GCC time se-
ries.

2.5 Model sensitivity analysis

In order to gain insights into the physical implications of
deep learning models, we conduct two simple experiments to
assess the model sensitivity to meteorological drivers. First,
we increase (warming) and decrease (cooling) temperature
(Tmin and Tmax) by 4 °C throughout the year while keeping
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Figure 2. The framework of canopy greenness modelling using LSTM. The LSTM is composed of a forget gate, an input gate, an
output gate, and a candidate and hidden state. The LSTM networks are adapted from Christopher Olah, http://colah.github.io/posts/
2015-08-Understanding-LSTMs/ (last access: 29 August 2024).

all other predictors unchanged. Another experiment involves
the same temperature adjustments for Tmin and Tmax but with
the VPD varying based on mean temperature while keep-
ing other predictors constant. We then compare the annual
canopy greenness cycles under warming and cooling con-
ditions with the actual observations. Furthermore, to better
understand how vegetation phenology shifts in response to a
warming environment according to the LSTM models, we es-
timate the SOS and EOS in these two experiments. We eval-
uate the differences between the treatment of 1 °C warming
and the observations for SOS and EOS.

3 Results

3.1 Model performance

A comparison of the model performance is conducted be-
tween the statistical MLR model and the LSTM models (in-
cluding the no-memory-effect LSTM model M0 and the full-
memory-effect LSTM model Mfull) on the test dataset for
deciduous broadleaf (DB), evergreen needleleaf (EN) and
grassland (GR) (Table 1). The LSTM models achieve a better
performance for predicting the GCCs than the MLR model
for all PFTs (Table 1). The coefficient of determination R2

between modelled and observed canopy greenness GCC is
much higher in LSTM models than MLR, with the me-
dian R2 increased from MLR to LSTM from 0.779 to more

than 0.806 for DB, from 0.777 to more than 0.830 for EN
and from 0.646 to more than 0.914 for GR. Similarly, the
root mean square error (RMSE) values corroborated the R2

findings, demonstrating that LSTM models generally exhibit
lower prediction errors than the MLR model. In conclusion,
LSTM models significantly enhance the accuracy of GCC
predictions across all three PFTs when compared to the base-
line MLR model.

Furthermore, comparing the two different LSTM models,
the full-memory-effect model Mfull exhibits superior per-
formance in simulating GCC compared to the no-memory-
effect model M0 across all three PFTs (Fig. 3). The median
R2 of all studied sites in the full-memory-effect model ex-
ceeds 0.85, specifically 0.878 for DB, 0.957 for EN and 0.955
for GR. This represents an improvement in model perfor-
mance of 8.9 % for DB, 15.3 % for EN and 4.5 % for GR,
compared to the no-memory-effect model, with R2 of around
0.806 (DB), 0.830 (EN) and 0.914 (GR). Similarly, there is a
reduction in bias of 12.5 % (RMSE decreased from 0.036 in
M0 to 0.032 in Mfull) for DB, 15.4 % (RMSE decreased from
0.015 in M0 to 0.013 in Mfull) for EN and 37.5 % (RMSE
decreased from 0.011 in M0 to 0.008 in Mfull) for GR in full-
memory-effect models. These findings suggest that consid-
ering memory effects from multiple meteorological factors
can enhance the model performance in simulating GCC com-
pared to models without considering memory effects.
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Table 1. Coefficient of determination (R2) and root mean square error (RMSE) comparisons (ensemble median ±SD estimate of all study
sites) for the multiple linear regression model (MLR), no-memory-effect LSTM model (M0) and full-memory-effect LSTM model (Mfull)
on the test dataset for deciduous broadleaf (DB), evergreen needleleaf (EN) and grassland (GR).

Metric Model DB EN GR

R2 MLR 0.779 (±0.052) 0.777 (±0.115) 0.646 (±0.110)
M0 0.806 (±0.073) 0.830 (±0.155) 0.914 (±0.033)
Mfull 0.878 (±0.107) 0.957 (±0.071) 0.955 (±0.030)

RMSE MLR 0.021 (±0.005) 0.019 (±0.008) 0.018 (±0.003)
M0 0.030 (±0.015) 0.017 (±0.006) 0.012 (±0.003)
Mfull 0.028 (±0.016) 0.012 (±0.006) 0.009 (±0.002)

Figure 3. Model performance of GCC time-series estimation using the no-memory-effect model (M0; a, b and c) and the full-memory-effect
model (Mfull; d, e and f) in all test datasets for deciduous broadleaf (DB), evergreen needleleaf (EN) and grassland (GR). The colour indicates
the density of points (light blue is lower density, and dark blue is higher density). The solid grey lines denote the 1 : 1 line.

The performance of LSTM models on unseen test sets,
both spatially and temporally, shows that the full-memory-
effect LSTM model Mfull outperforms the no-memory-effect
LSTM model M0 in predicting GCC for unseen site(s) and
unseen years across all three studied PFTs (Fig. 4). Specif-
ically, when evaluating performance on unseen sites, Mfull
consistently exhibits higher median R2 values compared to
M0, with improvements of 9.3 %, 13.5 % and 3.5 % for DB,
EN and GR, respectively. Similarly, for predictions across
unseen years, Mfull demonstrates substantial enhancement in
predictive accuracy, with median R2 values increasing from
0.805 to 0.874 (an 8.6 % improvement) for DB, from 0.824 to

0.956 (a 16 % improvement) for EN and from 0.914 to 0.964
(a 5.5 % improvement) for GR. The t test comparing M0 and
Mfull across all test sets and PFTs indicates a significant dif-
ference (P<0.05), confirming Mfull’s superior performance.
These findings underscore the robustness of the model in ac-
curately forecasting GCC time series, even when faced with
previously unobserved spatial and temporal contexts.

3.2 Modelling temporal variability of GCC at unseen
sites: daily to interannual timescales

LSTM models can capture the GCC canopy greenness tem-
poral dynamics, with an initial increase followed by a de-
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Figure 4. Coefficient of determination (R2) comparisons between the no-memory-effect model (M0: blue box) and the full-memory-effect
model (Mfull: red box) in all test sets, for unseen sites and unseen years for deciduous broadleaf (DB; a), evergreen needleleaf (EN; b) and
grassland (GR; c). The rhombus in the figure represents the outliers, which are defined as the points beyond 1.5 times the interquartile range
(the difference between the 75th and 25th percentiles).

crease during the growing season. This is illustrated in Fig. 4,
which displays the observed and predicted daily variability
of GCC, the daily GCC anomaly, the seasonal variability of
GCC and its development rate, and the interannual variabil-
ity of GCC anomalies at unseen sites from 2009 to 2018 us-
ing LSTM models. The predicted daily variability of GCC
shows a strong correlation with observations across multiple
years, with a significant correlation coefficient (r) above 0.9
(Fig. 5a–c) in Mfull. Conversely, M0 shows increased noise in
daily GCC variability, displaying larger biases in predicting
both GCC peaks and minimum values, particularly evident
for DB (Fig. 5a). From the predictions of daily GCC anoma-
lies which remove the mean seasonal cycle (Fig. 5d–f), we
further find that Mfull performs better than M0 in capturing
the daily fluctuation, though it is still not as good at predict-
ing the daily GCC anomalies as we expected. The R2 be-
tween observed and predicted GCC anomalies is higher in
Mfull than in M0 for DB (M0: 0.0007, Mfull: 0.02), EN (M0:
0.03, Mfull: 0.22) and GR (M0: 0.07, Mfull: 0.32). However,
a discrepancy between observed and predicted absolute GCC
at the daily scale is observed for EN in the unseen site, where
the predicted GCC is overestimated compared to the obser-
vation in both Mfull and M0 (Fig. 5b).

The overall seasonal cycle of monthly GCC shows a good
match between the observation and prediction by LSTM
models. The observed GCC typically starts to increase in
March (GR) or April (DB and EN), peaks in June (DB and
GR) or July (EN), and gradually decreases until November
(DB and GR) or December (EN) (Fig. 5g–i). Both Mfull and
M0 can effectively capture this seasonal pattern for EN and
GR. However, for DB, the Mfull model predicts a similar
seasonal dynamic pattern of GCC to observations, depicting
greening up before June or July followed by greening down
until November or December, while M0 predicts a peak in

greenness occurring in July which diverges from observation
(Fig. 5g). Similarly, the development rate of monthly GCC
shows similar performance to the seasonal cycle of monthly
GCC. The largest increase in observed GCC occurs in May
during the greening-up period for all three vegetation types,
while the speed of greenness decreases significantly accel-
erates around October (grey box in Fig. 5g–i). The LSTMs
predict that developed rates in greening up and down exhibit
a similar pattern to the observations for EN and GR (red box
in Fig. 5g–i). However, for DB, both Mfull and M0 predict the
highest development rate in June during the green-up period
and in September during the green-down period, in contrast
to observations which indicate peak rates in May and Octo-
ber, respectively.

The predicted interannual variability of maximum GCC
anomalies shows that LSTM models with both full memory
effects and no memory effects can generally forecast trends
of interannual variability of maximum GCC for EN and GR
(Fig. 5k–l). However, an increasing trend (0.026 per decade)
in greenness is observed in maximum GCC anomalies from
harvardbarn2 for DB during the period from 2012 to 2018
(see Fig. 5j), and this trend is well predicted by the Mfull
model (0.015 per decade) but failed in the M0 model (−0.004
per decade). Specifically, from 2012 to 2015, the observed
maximum GCC exhibits a continual increase, whereas M0
indicates a continual declining maximum GCC (see Fig. 5j).
Furthermore, a larger bias is found in M0 compared to Mfull
in predicting the annual maximum GCC for DB.

3.3 Modelling the vegetation canopy phenological
transition dates in unseen sites

Figure 6 illustrates that Mfull can capture the interannual vari-
ability of phenological transition dates, outperforming M0.
Regarding the start of season (SOS) (Fig. 6a, b, c), Mfull
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Figure 5. Observed (obs; grey) and predicted (M0: blue, Mfull: red) daily (a, b, c), seasonal (g, h, i) and interannual (j, k, l) variability of
canopy greenness (GCC) and daily GCC anomaly (d, e, f) for deciduous broadleaf (DB), evergreen needleleaf (EN) and grassland (GR) in
unseen sites (DB: harvardbarn2, EN: howland1, GR: bullshoals). In panel (d)–(f), the solid grey lines denote the 1 : 1 line. In panel (g)–(i),
the development rate of monthly GCC (VGCC) is represented by bar plots (right y axis; red bar: observed VGCC; red bar: predicted VGCC).
In panel (j)–(l), the interannual variability of annual maximum GCC anomalies is shown.
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consistently exhibits the same shift direction (sign of the
anomaly) as observations in the majority of years. Specifi-
cally, we observe concordance in the direction of advance or
delay between prediction and observation in 5 out of 7 years
(71 % of the years) for DB. Similarly, the predicted SOS
shifts agreed well with the observations in more than 80 %
years for EN (89 % of the years) and GR (80 % of the years).
Moreover, a high correlation is evident between the Mfull-
predicted interannual variability of SOS anomaly and the ob-
served interannual variability of SOS anomaly. The correla-
tion coefficient between observed and predicted interannual
variability of SOS anomaly reaches up to more than 0.9 for
EN and GR. Further, the observed delay of SOS with the
trend of 2.1 d yr−1 is also reproduced well by the Mfull (pre-
dicted trend is 1.2 d yr−1) in howland1 for EN during 2010
to 2018 (Fig. 6b). Conversely, compared to Mfull, M0 ex-
hibits poor performance in capturing the shift direction and
lower correlation between the predicted interannual variabil-
ity of SOS anomaly and the observed interannual variability
of SOS anomaly.

As for EOS, good agreements between the predicted in-
terannual dynamics of EOS anomalies by Mfull and the ob-
served ones are found in DB and EN, although not in GR
(Fig. 6d–f). Firstly, Mfull-predicted shift directions of EOS in
most years (over 80 %) are consistent with the observed shifts
for each PFT. For DB, 86 % of years are showing the same
shift direction of advance or delay between observed and pre-
dicted EOS. For EN and GR, the percentages are 89 % and
80 %, respectively. On the other hand, we find a positive cor-
relation between observed and Mfull-predicted EOS anoma-
lies for DB and EN. The observed delayed trend (2.7 d yr−1)
for DB in harvardbarn2 is also well predicted (1.6 d yr−1)
by the Mfull. Interestingly, Mfull also captures the larger ad-
vancement of EOS observed in 2018 compared to the mean
EOS for EN, indicating its capability to capture extreme in-
terannual anomalies. Compared to Mfull, M0 shows a rela-
tively poor performance, displaying larger bias in its predic-
tions.

3.4 The model sensitivity analysis

The model sensitivity analysis indicates that the full-
memory-effect model Mfull can simulate the GCC response
to temperature well. Figure 7 illustrates the temperature sen-
sitivity of GCC in the LSTM model Mfull for all three PFTs
studied here. Comparison of experiments with warming (red
line, Fig. 7a, b, c) and cooling (blue line, Fig. 7a, b, c) alone
(increasing or decreasing 4 °C) to the unchanged temperature
(±0 °C) control (grey line, Fig. 7a, b, c) reveals that warm-
ing led to a greener and longer greenness season, while cool-
ing caused a less green and shorter vegetation season for the
three PFTs studied (Fig. 7a, b, c). When VPD varies with
temperature, high temperature along with the high VPD does
not have a significant effect on the greenness and length of
vegetation period. During the greenness rising and falling pe-

riod, the canopy greenness is very similar to the actual GCC
cycle (the control) for the three PFTs, but the peak green-
ness is lower than the actual GCC peak values, especially for
DB and GR (Fig. 7d, e, f). In the cooling and lower VPD
treatment, it shows similar trends with the cooling condition
but unchanged VPD. Cooling and a lower VPD result in de-
clining canopy greenness and shortened vegetation periods
during the growing season.

Furthermore, we also examine the temperature sensitivity
of phenological events (SOS and EOS) (Fig. 8). A 1 °C in-
crease in temperature throughout the year resulted in an ear-
lier start of the season (Fig. 8a) and delayed end of the season
(Fig. 8b), regardless of low or high VPD. Under warm con-
ditions alone, SOS appears to be 1 d earlier on average, while
under warm and high VPD conditions, it shifts to 2 d earlier.
The 1 °C temperature increase has a similar effect on EOS
compared to the 1 °C increase accompanied by varied VPD.
Through Student t tests on the means of the two distributions,
no statistically significant (p = 0.12 (SOS), p = 0.69 (EOS))
differences in the means are found, indicating that tempera-
ture is the most influential meteorological factor affecting the
start and end of the season.

4 Discussion

4.1 Meteorological memory effects on vegetation
canopy greenness

In our study, we have presented a new way to simulate
canopy greenness dynamics by applying a data-driven LSTM
model accounting for multi-variate meteorological memory.
We find that multi-variate meteorological memory is of im-
portance in developing vegetation phenological models. The
impact of meteorological factors on vegetation phenological
development encompasses both instantaneous and memory
effects. Through a comparison of models accounting solely
for instantaneous effects (MLR and M0) with those consider-
ing both instantaneous and memory effects of multiple mete-
orological variables (Mfull), we have demonstrated that mod-
els involving memory effects do outperform models without
memory effects (Table 1 and Fig. 3). This suggests that con-
sidering both instantaneous and memory effects provides a
more comprehensive explanation for vegetation development
compared to solely instantaneous effects.

But what specific advantages does the full-memory-effect
model offer over the no-memory-effect model? We will ex-
plore this question from several perspectives. Firstly, the
full-memory-effect model exhibits good performance in spa-
tial and temporal extrapolation of canopy greenness. By
comparing the model performance of Mfull and M0 in un-
seen site(s) and unseen years (Fig. 4), it becomes clear that
the full-memory-effect model outperforms the no-memory-
effect model in both unseen site(s) and unseen years for all
three PFTs. This indicates that incorporating memory effects
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Figure 6. Observed (obs; black line) and predicted (M0: blue, Mfull: red) the interannual variability in anomaly of start of season (SOS; a,
b, c) and end of season (EOS; d, e, f) for deciduous broadleaf, evergreen needleleaf and grassland in unseen sites (DB: harvardbarn2, EN:
howland1, GR: bullshoals).

into the model enhances performance in unseen sites and
years, a challenging task in modelling, especially for unseen
sites.

Secondly, the inclusion of memory effects in models im-
proves performance in predicting variabilities across dif-
ferent timescales for unseen sites. At the daily scale, the
full-memory-effect model reduces noise each day and pre-
dicts daily anomalies more accurately than the no-memory-
effect model (Fig. 5). This underscores the finding that daily
changes in canopy greenness are influenced not only by in-
stantaneous climate but also by the memory effects of pre-
vious climate on the canopy. Our results align with previ-
ous studies indicating that temperature memory (cumula-
tive thermal summation), rather than daily temperature alone,
determines vegetation phenology (Hänninen, 1990; Chuine,
2000). In addition, for the challenges in simulating daily
anomalies, our findings reveal that the full-memory-effect
model performs better in predicting daily anomalies com-
pared to the no-memory-effect model (Fig. 3). This finding
indicates the significance of memory effects in enhancing
the model’s capability to simulate daily anomalies. Regard-
ing seasonal dynamics and interannual variability, our study
finds that memory effects vary among PFTs. For decidu-
ous broadleaf trees, the full-memory-effect model demon-
strates a significant advantage in predicting seasonal and

interannual dynamics (Fig. 5g–l). It can capture the sea-
sonal dynamic pattern and the greening trend well, which
the no-memory-effect model fails to predict. This suggests
that changes in canopy greenness over long timescales for de-
ciduous broadleaf trees are sensitive to relatively long-term
meteorological changes. This may be attributed to lagged ef-
fects of precipitation (Joshi et al., 2022), drought (Peng et
al., 2019) and other factors (Gömöry et al., 2015; Ding et al.,
2020; Joshi et al., 2022; Zhou et al., 2022; G. Liu et al., 2018)
from previous months on canopy greenness. However, for ev-
ergreen and grasslands, both the full-memory-effect model
and the no-memory-effect model show similar performance
in predicting seasonal dynamics and interannual variability.
It is noteworthy that the memory effect of precipitation in
our study is already included in the no-memory-effect model,
as the meteorological variable of soil moisture is calculated
based on the weighted mean of precipitation in the previous
month (due to unavailable soil moisture data). This implies
that such memory effects may offset the performance dif-
ference between the full-memory-effect model and the no-
memory-effect model.

Lastly, incorporating multi-variate meteorological mem-
ory effects into the LSTM model improves performance in
predicting vegetation phenology (Fig. 6). Our results sug-
gest that phenological shifts are influenced by meteorolog-
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Figure 7. The sensitivity of canopy greenness (GCC) to temperature change only and both temperature and VPD change under 4 °C warm-
ing/cooling (red line/blue line) throughout the year using Mfull for deciduous broadleaf (in howland2), evergreen needleleaf (in laurentides)
and grassland (in bullshoals).

Figure 8. Temperature sensitivity of start of season (SOS; Fig. 8a)
and end of season (EOS; Fig. 8b) under warm conditions alone (red)
and warm and high VPD conditions (blue) over all three PFTs.

ical memory effects, consistent with the notion that vegeta-
tion phenology is highly variable and responsive to long-term
variation in climate (Sparks and Carey, 1995). Specifically,
winter chilling (Chuine et al., 2016; Ettinger et al., 2020;
Zhang et al., 2022) and the growing season temperature (Liu
et al., 2018) can impact the spring phenology and autumn de-
velopment. However, unlike models primarily accounting for
temperature memory effects alone, such as GDD (Hänninen,
1990; Chuine, 2000), our full-memory-effect LSTM model

shows promise in the incorporation of multiple memory ef-
fects from different meteorological variables.

It should be noted that although our study emphasizes
the importance of memory effects of multiple meteorologi-
cal variables, the specific contributions of different meteoro-
logical factors to memory effects on vegetation development
remain unclear. Further in-depth studies of memory effects
are still needed to discern the relative importance of mem-
ory for each meteorological factor and their memory length
across various developmental stages.

4.2 Machine learning modelling of vegetation
phenology

In our study, we explore the potential of a deep learning ap-
proach using LSTM to predict vegetation phenology based
on canopy greenness, specifically GCC annual cycles, us-
ing only meteorological variables as inputs. The results in-
dicate the superior performance of our deep learning model
compared to a multiple linear regression model (Table 1),
highlighting that deep learning models are capable of captur-
ing non-linear relationships between inputs and targets. This
holds promise for improving the performance of current veg-
etation phenology models and a significant step toward a bet-
ter representation of phenology in Earth system models us-
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ing deep learning approaches. However, comparing our deep
learning models with process-based models is still challeng-
ing, as their modelling targets are different in many cases.
Our deep learning models focus on the whole annual cycle of
canopy greenness, whereas most process-based models con-
centrate on specific phenological events.

The deep learning model performance across PFTs (Ta-
ble 1, Fig. 3) shows that the model performs better for EN
compared to DB. The superior performance in estimating
GCC for EN compared to DB might be attributed to two main
factors:

1. Spring and autumn variability in GCC. EN exhibits
more gradual changes in GCC during spring and au-
tumn, facilitating more accurate model simulations of
GCC. This contrasts with DB, where abrupt environ-
mental changes lead to more volatile GCC values.

2. Memory effect. EN may have a longer memory effect,
meaning its GCC values are influenced by past condi-
tions over a longer period. In contrast, the GCCs for
DB respond more immediately to current environmental
factors.

Our findings demonstrate that full-memory-effect LSTM
model can generally explain daily-scale variations and sea-
sonal dynamic changes, as evidenced by the high correla-
tions between predicted and observed GCC (Fig. 5). This is
likely because the full-memory-effect LSTM model can bet-
ter learn the complex relationship between climatic dynamics
and canopy greenness dynamics. However, our deep learning
model has had less success in accurately predicting absolute
GCC values and peak values (Figs. 5, S2). For instance, in
the case of the “howland1” site for evergreen needleleaf, the
full-memory-effect LSTM model can predict the dynamics
of canopy greenness well, but the absolute GCC values are
overestimated (Fig. 5b). Indeed, although the full-memory-
effect model show a good performance, it also overestimates
canopy greenness at some sites (Figs. 5b, 8a and c, S2) and
underestimates at other sites (Figs. 9 b and d, S2). Possi-
ble reasons for this discrepancy could be (1) different cli-
matic drivers for different species among PFTs, (2) incompa-
rable GCC data among sites and (3) inadequate learning of
site-specific characteristics. We aim to build a more general
model in this study, but it should be noted that even within
species, GCC can respond to climate differently to meteo-
rological conditions (Denéchère et al., 2021). Additionally,
the combination of GCC data from all sites for a specific
PFT in building the model may introduce errors and bias, as
GCC data are not consistently calibrated, and the colour sig-
nals can be sensitive to various parameters, such as camera
type, species (foliage colours are different colours of green)
or spectral properties of incoming light (Wingate et al., 2015;
Richardson et al., 2018). Moreover, the use of static vari-
ables (climatological mean temperature and precipitation) to
indicate spatial differences may not sufficiently capture site-

specific information, leading to overestimation or underes-
timation of specific sites. Although the deep learning mod-
els have limitation in simulating absolute GCC values accu-
rately, it is important to note that the bias in absolute values is
less significant compared to the seasonal dynamics of GCC
which is used for detecting phenology. Regarding interan-
nual variability, we find that the predicted changes (increase
or decrease) in peak GCC are consistent with observations in
most years (Fig. 5g–i), indicating that the model’s capability
to reproduce basic response of canopy greenness to climate
changes. Furthermore, our models can also capture the inter-
annual variability in GCC well (Fig. 5k), and the trends of
interannual variability in anomalies of peak GCC were also
generated well by our data-driven models (Fig. 5j). Overall,
these results demonstrate the ability of the LSTM model to
reliably predict temporal variability. In terms of spatial per-
formance, we find that the LSTM model has a good agree-
ment with observations in most studied sites for all three
PFTs (Fig. S3). This means our model is able to capture
spatial variation within each PFT, providing support that the
model might represent a general model for each PFT.

The modelling results of vegetation phenology reveal that
the full-memory-effect LSTM model is also capable of pre-
dicting the shift in phenological transition dates (advance or
delay of start of season (SOS) and end of season (EOS)) in
most years in the unseen dataset (Fig. 7). The ability to pre-
dict the advancement or delay in phenology is crucial for es-
timating other key processes in the ecosystem functioning,
such as ecosystem productivity, as the advancement of spring
phenology and the delay of autumn phenology are typically
associated with higher productivity (Richardson et al., 2010).
Overall, our model’s skill to accurately predict the average
advance or delay in phenology is encouraging, although it
remains challenging to predict the exact phenological dates
given the potential and systematic overestimation or under-
estimation in the GCC cycle (Fig. S4).

4.3 Can the deep learning model of vegetation
phenology learn physically plausible relationships?

The sensitivity analysis of our deep learning model sheds
light on its ability to learn meaningful physical insights. The
model responds to warmer temperatures by predicting an ear-
lier spring onset and later autumn senescence, which is in line
with findings from other studies (Menzel et al., 2006; Jeong,
2020). These results underscore the capability of our deep
learning framework to reproduce the sensitivity of canopy
greenness and phenology to temperature. Our current study
primarily focuses on developing the deep learning model. We
also conduct a basic sensitivity analysis that has the potential
to dismantle the LSTM model and learn from the identified
relationship in the data how the response patterns evolve un-
der different climatic conditions. A more extensive and com-
prehensive sensitivity analyses of the LSTM model, as well
as interventional experiments, could offer insights into un-
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Figure 9. The overestimated and underestimated canopy greenness (GCC) by the LSTM model at some sites (umichbiological2, alligator-
river, caryinstitute, umichbiological) for deciduous broadleaf (DB) and evergreen needleleaf (EN).

derstanding phenology by identifying which predictors are
influential and when. Especially, such approach might help to
uncover the control of autumn phenology and its modelling
– a long-standing challenge faced by process-based models
that may struggle due to inadequate predictors inclusion or
response functions (Delpierre et al., 2009; Liu et al., 2019).
Moreover, the hybrid models by the integration of physic
knowledge into the deep learning models might enhance our
understanding of how climate change impacts phenology and
associated consequences for the ecosystem, another key chal-
lenge in phenology modelling. In numerous Earth system
models, such as CLM 4.5 and LPJ (Peano et al., 2021), phe-
nology is modelled based solely on climatic drivers, employ-
ing PFT-specific thresholds for factors like chilling and grow-
ing degree days. Some models also integrate a more real-
istic connection to the carbon cycle, where leaf growth in-
curs a carbon cost. For the phenology representation strictly
from climate variables in ESMs, our data-driven approach
can serve as a direct replacement for traditional empirical
formulations. However, for ESMs that consider phenology to
be dependent on available carbon resources, it becomes nec-
essary to allow our data-driven method to evolve into a hy-
brid model (e.g. ElGhawi et al., 2023, for land–atmosphere

fluxes) that also accounts for carbon resources in its inputs
and loss function. This entails modelling leaf growth as de-
pleting carbon from the reserve pool and adding dropped
leaves to the humus pool, thereby ensuring carbon mass bal-
ance. Consequently, carbon mass balance serves as a critical
constraint for the data-driven phenology model.

5 Conclusions

In this study, we develop a novel deep learning modelling
framework incorporating multiple meteorological memory
effects to predict the whole seasonal trajectory of canopy
greenness and transition dates for each plant functional type
using LSTM. Our key findings can be summarized as fol-
lows:

1. The general deep learning model, trained for each PFT
using LSTM, demonstrates the ability to generalize to
unseen sites, indicating that the deep learning approach
effectively captures the underlying mechanics of canopy
greenness development.

2. The incorporation of multi-variate meteorological
memory effects proves crucial in canopy greenness
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modelling. The LSTM model, accounting for these
memory effects, can reproduce general temporal dy-
namics of canopy greenness across various timescales,
from daily to interannual variability. Furthermore, it
captures phenological shift directions, enhancing the
model’s comprehensive representation.

3. Our sensitivity analysis demonstrates the LSTM
model’s capability to learn plausible relationships, re-
vealing its proficiency in acquiring fundamental phys-
ical knowledge about vegetation greenness and pheno-
logical development.

Our deep learning model accounting for multi-variate
memory effects holds promise for improving our understand-
ing of vegetation responses to climatic variability. In future,
the integration of deep learning phenology models into cou-
pled land surface and Earth system models may further en-
hance our ability to comprehend and simulate complex inter-
actions and feedback within these systems.
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