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Abstract. The CICERO Simple Climate Model (CICERO-
SCM) is a lightweight, semi-empirical model of global cli-
mate. Here we present a new open-source Python port of the
model for use in climate assessment and research. The new
version of CICERO-SCM has the same scientific logic and
functionality as the original Fortran version, but it is con-
siderably more flexible and also open-source via GitHub.
We describe the basic structure and improvements compared
to the previous Fortran version, together with technical de-
scriptions of the global thermal dynamics and carbon cy-
cle components and the emission module, before present-
ing a range of standard figures demonstrating its applica-
tion. A new parameter calibration tool is demonstrated to
make an example calibrated parameter set to span and fit
a simple target specification. CICERO-SCM is fully open-
source and available through GitHub (https://github.com/
ciceroOslo/ciceroscm, last access: 23 August 2024).

1 Introduction

Simple climate models (SCMs), also termed reduced-
complexity models (RCMs), have an important role in cli-
mate modeling. While Earth system models (ESMs) are
used to resolve climate processes on a resolved grid, they
remain extremely resource-intensive; however, much sim-
pler models can reproduce key globally aggregated outputs
(e.g., globally averaged surface temperature) (Balaji et al.,
2017; Schneider and Thompson, 1981; Wigley and Raper,
1992). Thus, simple models can be used to help understand
and explain physical processes (e.g., Peters et al., 2011) or
to be calibrated to replicate the behavior and uncertainty

across a range of more complex ESMs (Meinshausen et al.,
2011). SCMs can be used to estimate the climate uncertain-
ties across thousands of emission scenarios in a short run-
time (Kikstra et al., 2022), something which remains impos-
sible for ESMs with today’s computing power, and they have
been used to quantify the uncertainty in key climate indica-
tors such as climate sensitivity (Sherwood et al., 2020) and
the remaining carbon budget(Lamboll et al., 2023).

Even though SCMs can be used to emulate more complex
models, there is still value in maintaining a diversity of SCMs
because the reduced-form representation of the climate often
rests on a set of structural assumptions and modeling philoso-
phies which limit the response of the model (Nicholls et al.,
2021, 2020). SCMs can exhibit a wide range of complex-
ity, ranging from simple one- or two-layer energy balance
models which are used in the operational calculation of emis-
sion metrics (Aamaas et al., 2013) up to a more comprehen-
sive representation of the carbon cycle and energy balance
(e.g., Gasser et al., 2020; Meinshausen et al., 2011). There
are also intermediate complexity models sitting somewhere
between a SCM and an ESM, but for the purposes of this ar-
ticle, we consider SCMs to be models which allow the simu-
lation of a scenario on a single CPU in seconds or shorter.

The different complexity levels of SCMs can lead to dif-
ferent outcomes when key physical processes are constrained
from data, such as tradeoffs in climate forcers and carbon–
climate feedbacks on different timescales, such that models
with different structures constrained on the same data can
exhibit different future constrained projection distributions
(Jenkins et al., 2021; Kikstra et al., 2022; Lamboll et al.,
2023). While SCMs can be calibrated to replicate the be-
havior of more complex models, there is also a variety of

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://github.com/ciceroOslo/ciceroscm
https://github.com/ciceroOslo/ciceroscm


6590 M. Sandstad et al.: CICERO-SCM simple climate model

ways to do this. Calibration could be done only on the histor-
ical period using observational-based data (e.g., Aldrin et al.,
2012) or on complex model simulations over longer time pe-
riods using scenarios (e.g., out to 2100; Meinshausen et al.,
2011) or using idealized simulations (e.g., response to abrupt
or gradual changes in CO2 concentration) (Olivié and Stuber,
2010). Furthermore, different variables could be used in the
calibration, such as concentrations, surface temperature, and
ocean heat content (Smith et al., 2021b). Subjective calibra-
tion choices can also lead to differences in climate outcomes
(Sanderson, 2020). Each level of model complexity and cal-
ibration method has advantages and disadvantages, and to
ensure robust and policy relevant results, it is necessary to
maintain and develop a range of SCMs.

The original version of the CICERO (Center for Interna-
tional Climate Research) Simple Climate Model (CICERO-
SCM) was developed in 1999 (Fuglestvedt and Berntsen,
1999) to study the effects of future emissions on global mean
surface temperature and sea level rise. Atmospheric carbon
dioxide (CO2) was estimated using an ocean mixed-layer
pulse response function (Alfsen and Berntsen, 1999; Joos
and Bruno, 1996). The response to other long-lived green-
house gas emissions was estimated using simple first-order
decay equations, and the radiative forcing was estimated us-
ing simple proportionality between concentration and forc-
ing for each gas. Direct and indirect radiative forcing of
aerosols and radiative forcing of tropospheric and strato-
spheric ozone (O3) and stratospheric water vapor were im-
plemented using simplified expressions. The total radiative
forcing provided boundary conditions for an energy balance
upwelling–diffusion ocean model (Schlesinger et al., 1992).
A time-varying lifetime of methane (CH4) was introduced af-
ter the IPCC (Intergovernmental Panel on Climate Change)
Third Assessment Report and based on a linear interpola-
tion of the changes in the hydroxyl radical (OH) concentra-
tion with CH4 concentration, nitrogen oxides (NOx), carbon
monoxide (CO), and non-methane volatile organic carbon
(NMVOC) emissions (Table 4.11, footnote b, in Ehhalt et al.,
2001). Since then, the core structure of the CICERO-SCM
has remained relatively unchanged, though the parameters
have been constantly updated in line with the best-available
science. The model has been used in a range of studies, such
as historical contributions to global warming (den Elzen et
al., 2005, 2013; Höhne et al., 2011; Skeie et al., 2017, 2021),
global warming from different economic sectors (Skeie et al.,
2009; Tronstad Lund et al., 2012), estimates of the climate
sensitivity (Aldrin et al., 2012; Skeie et al., 2014, 2018), sim-
ple model intercomparisons (Nicholls et al., 2021, 2020), and
an assessment of specific mitigation strategies (Myhre et al.,
2011; Torvanger et al., 2012, 2013). The CICERO-SCM was
also used in the IPCC Sixth Assessment Report (AR6) (Guiv-
arch et al., 2022; Kikstra et al., 2022; Smith et al., 2021b).

In this article, we describe and assess an updated ver-
sion of the CICERO-SCM, now written in Python and made
openly accessible to encourage community development and

engagement. The model has also been supplemented with
features for parameter calibration and easier parallel runs.

2 Model structure

Figure 1 shows the overall structure and flow of the CICERO-
SCM. The core of the model consists of one module, concen-
trations_emissions_handler.py (see Sect. 2.1), which calcu-
lates concentrations from emissions and forcing from con-
centrations or directly from emissions, and another mod-
ule, upwelling_diffusion_model.py, which calculates tem-
perature from forcing, using an upwelling diffusion energy
balance model (UDM/EBM) (see Sect. 2.2). A main control
module, ciceroscm.py, calls these two, transfers data from the
emissions to the forcing module and then to the upwelling
diffusion module, loops over years, and takes care of out-
puts. The model can be run directly from input concentra-
tions or forcing time series, in addition to running all the
way from emissions to temperatures. Inputs and outputs are
all global and on a yearly time resolution (with some ex-
ceptions). The upwelling_diffusion_model.py has two hemi-
spheres and does calculations using 12 sub-yearly time steps
to ensure convergence. The forcing input is therefore for two
hemispheres. Volcanic forcing input is on a monthly time res-
olution (see Sect. 2.2 and Appendix C for further details).
The carbon cycle uses 24 sub-yearly time steps to integrate
the carbon response; however, it inputs and outputs only
yearly values (see Sect. 2.1.1). In Sect. 2.3 we describe the
main differences between the new Python port version and
the previous Fortran implementation.

The code also includes various modules and help functions
for handling perturbations (perturbations.py), handling utili-
ties used by multiple modules (pub_utils.py and _utils.py),
handling input in various formats (input_handler.py), and
making default summary plots (make_plots.py). It also ships
with a subpackage for handling parallel runs including a par-
allelization wrapper (cscmparwrapper.py), a module to de-
fine a distribution run (distributionrun.py), and modules to
build and define a distribution and do calibration (_configdis-
tro.py and calibrator.py). All of these tools will be described
in more detail in Sect. 2.4.

A regular run of the code will start by defining a CICERO-
SCM instance that can then be used to run the model for
the same experiment but with various parameter values. Ta-
ble 1 shows the parameters for the creation of such an in-
stance. A default run will lead to output files being generated,
but the outputs can also be held in a dictionary with sepa-
rate keys and corresponding values for outputs from the up-
welling_diffusion_model.py and additional keys for datasets
for the concentration, emissions, and forcing. A run can also
produce automatic plots. Appendix A contains figures show-
ing the automatic plots generated from a default configura-
tion emission to forcing run of the CMIP6 historical experi-
ment (Figs. A1–A11).
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Figure 1. The core model structure. The concentrations_emissions_handler.py module calculates concentrations from emissions using a
carbon cycle model for atmospheric CO2 and first-order decay equations for other components. It then calculates forcing from concentrations
using the Etminan et al. (2016) scheme for CO2, CH4, and N2O and updated proportionality relationships for other gases. Simplified
expressions calculate forcing directly from emissions for aerosols, O3, and stratospheric water vapor. The effective radiative forcing is
passed to the upwelling_diffusion_model.py, where it is used as input to the ocean energy balance model (Schlesinger et al., 1992) to
calculate temperature and ocean heat content. This process is repeated for each time step, and looping and information passing is handled by
the ciceroscm.py control module.

2.1 Emissions to radiative forcing –
concentrations_emissions_handler

The module concentrations_emissions_handler.py calculates
the effective radiative forcing time series. For each time step
this is done by first calculating concentrations from emis-
sions. In a concentration-driven run, this is done by sim-
ply reading the concentrations in. Otherwise, a carbon cy-
cle described in Sect. 2.1.1 is employed to calculate the
CO2 concentrations, and a mass balance equation is used
for the other components as described in Sect. 2.1.2, with
special modifications to account for multiple decay pro-
cesses and natural emission for CH4 (Sect. 2.1.3) and ni-
trous oxide (N2O) (Sect. 2.1.4). When concentrations have
been calculated, forcing is derived. For this, the scheme de-
scribed in Etminan et al. (2016) is first used to calculate
the forcing from CO2, CH4, and N2O (Sect. 2.1.5). Then
looping over all other chemical components, forcing will be
calculated using tabulated concentrations to forcing values
(Sect. 2.1.6) or calculated specifically for various species
(see Sect. 2.1.7 for tropospheric O3, Sect. 2.1.8 for strato-
spheric O3, Sect. 2.1.9 for stratospheric water vapor and for
aerosol forcing, Sect. 2.1.10 for albedo from land use change,
Sect. 2.1.11 for aerosol forcing, and Sect. 2.1.12 for solar and
volcanic forcing).

Inputs to the module (Table 1) are files or datasets of emis-
sion and concentration time series (Table 1), a file or dataset
to define what gases and substances to consider, and op-
tional integers to define the start year, end year, year at which
to start running from emissions, number of sub-yearly time
steps for carbon cycle calculations, and a Boolean option to

make the runs pure concentration runs. Additional optional
parameters giving files or datasets for natural emissions of
CH4 and N2O and custom pulse response functions for the
carbon cycle model can also be passed.

Some concentration data are needed even in the emission-
driven mode for pre-industrial concentrations and to define
concentrations prior to the chosen year of emission start. The
default year of the run start is 1750; the model uses CO2
emissions from the outset, whereas non-CO2 emissions start
in the emission start year, with the default year in 1850, so up
to the year of emission start, all other components have forc-
ing calculated directly from concentrations. After the emis-
sion start, all components will have forcing calculated from
emissions. Alternatively, the model can be configured to use
prescribed concentrations for all gases for the duration of the
run.

When the model is to be run, an array of parameters to
control the properties of calculations can be adjusted. Table 2
shows these parameters, most of which control the forcing
strength of various substances.

The gaspam_file or corresponding dataset defines which
substances the model should consider and includes proper-
ties defining the calculations to be performed for them. Ta-
ble 3 shows the default shipped gaspam_file and its structure.
Information from this file is used in the calculations of both
concentrations from emissions and when mapping concen-
trations to forcing.
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Table 1. Parameters used in defining a ciceroscm model object.

Name Description

Mandatory parameters

gaspam_file List of gases and aerosols to be used in the model. See also Table 3.

Optional parameters

sunvolc Parameter to include solar and volcanic forcing. If set to 1, they will be
included; see Sect. 2.1.12. Datasets for this forcing can be supplied by
the user or taken from defaults that come with the model.

rf_sun_file Path to solar forcing file; see Sect. 2.1.12.

rf_volc_file Path to volcanic forcing file; see Sect. 2.1.12.

perturb_forc_file Forcing time series to be added as a perturbation to the forcing
time series calculated from the concentrations_emissions_handler. See
Sect. 2.1.13 for details.

perturb_em_file Emission time series to be added as a perturbation to emissions from a
predefined emission file. See Sect. 2.1.13 for details.

Parameters for concentrations or emission configurations

concentrations_file File with concentration time series of gases. Used in the concentration-
driven run. For the emission-driven run, the pre-industrial values from
this file are used, and the values from nystart to emstart are used for all
gases except CO2.

emissions_file File with emission time series of gases. (Used even in concentration-
driven runs for short-lived climate forcers.)

nat_ch4_file File with natural emissions of CH4. See Sect. 2.1.3 for details.

nat_n2o_file File with natural emissions of N2O. See Sect. 2.1.4 for details.

idtm Sub-yearly time steps in concentration emission model used to calculate
the CO2 concentrations from emissions.

nystart Start year of the run

nyend End year of the run

emstart Emission start year, with concentrations used between nystart and em-
start if they are different.

rs_function Custom mixed-layer pulse response function. Argument must be a func-
tion that takes in step number and idtm and can be generated from an
array using make_rs_function_from_arrays in pub_utils. See Sect. 2.1.1
for description of default value and use.

rb_function Custom mixed-layer pulse response function. Argument must be a func-
tion that takes in step number and idtm and can be generated from an
array using make_rb_function_from_arrays in pub_utils. See Sect. 2.1.1
for description of default value and use.

conc_run Optional Boolean parameter to specify that the run is meant as a
concentration-driven run.

Parameters for a pure forcing configuration

forc_file Can be a single column of data, contain years as a column, have forcings
per various forcing components, or contain columns for FORC_NH and
FORC_SH for a hemispheric split of forcing.
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Table 2. Parameters for the concentration_emissions_handler.

Parameter Default value Unit Description

qbmb 0.0 W m−2 Biomass burning aerosol forcing in ref_yr. Scaled using the amount of
biomass burning organic carbon (BMB_AEROS_OC).

qo3 0.5 W m−2 Tropospheric O3 forcing in ref_yr; see Sect. 2.1.7.

qdirso2 −0.36 W m−2 Direct forcing sulfate in ref_yr; see Sect. 2.1.10.

qindso2 −0.97 W m−2 Indirect RF sulfate in ref_yr; see Sect. 2.1.10.

qbc 0.16 W m−2 BC (fossil fuel+ biofuel) forcing in ref_yr; see Sect. 2.1.10.

qoc −0.08 W m−2 OC (fossil fuel+ biofuel) forcing in ref_yr; see Sect. 2.1.10.

qh2o_ch4 0.091915 Forcing from CH4 induced changes to stratospheric water vapor; see
Sect. 2.1.9.

ref_yr 2010 Reference year for the forcing values above. To construct a radiative
forcing time series, these forcing values are scaled backwards and for-
wards using emissions. The forcing in ref_yr is equal to the forcing
value above.

beta_f 0.287 Fertilization factor in the Joos and Bruno (1996) scheme carbon cycle;
see Sect. 2.1.1.

just_one Option parameter that allows one to run the upwelling diffusion model
with forcing from just a single component.

lifetime_mode Lifetime mode for CH4; valid options are “TAR” (Table 4.11, footnote
b, of Ehhalt et al., 2001), “CONSTANT_12” (for a constant value of
12 years), or “WIGLEY”, which is a Wigley exponent behavior (Os-
born and Wigley, 1994). “TAR” is the default but using a flat OH life-
time from the gaspam_file is a hidden default if one sends a value for
this option which is not “TAR”, “CONSTANT_12”, or “WIGLEY”. For
details, see Sect. 2.1.3.

2.1.1 CO2 – emissions to concentrations

The carbon cycle in the CICERO-SCM includes one part for
the decay of CO2 into the deep ocean and one part for im-
pacts from the terrestrial ecosystem.

The deep-ocean sink is modeled using a scheme for CO2
from Joos et al. (1996), and an explanation of the CICERO-
SCM implementation can be found in Alfsen and Berntsen
(1999). The CO2 module uses an a diffusive air–sea exchange
model combined with a decay function which represents the
transfer of carbon to the deep ocean (Alfsen and Berntsen,
1999; Siegenthaler and Joos, 1992). Atmospheric CO2 par-
tial pressures δpCO2,a (t) (in ppm) are calculated as follows:

d
dt δpCO2,a (t)=

e(t)−ffer
Cppm_to_PgC

−Aocfa,s, (1)

where e(t) are the total emissions at time t (in PgC yr−1),
ffer is the net carbon uptake of the terrestrial carbon cycle
(PgC yr−1), Cppm_to_PgC = 2.123 PgC ppm−1 is a conversion
factor between the partial atmospheric concentration of CO2
and emitted petagrams of carbon. Aoc is the ocean area (in
m2). fa,s is the transfer rate between the ocean and atmo-

sphere (in ppm yr−1 m−2) represented as a function of the
atmospheric and ocean carbon partial pressures as follows:

fa,s = kg ·
[
δpCO2,a− δpCO2,s

]
, (2)

where kg is the gas exchange coefficient (kg =
1

9.06·Aoc
yr−1),

and δpCO2,s is the partial pressure of the slab ocean, which
is itself calculated as a function of the ocean temperature (T )
and the carbon content of the mixed-layer (δ6CO2 (t)).

δpCO(2,s) = F(δ6CO2 (t) ,T ) (3)

F is the polynomial approximation given in Eq. (6b) in
Joos et al. (1996). Though this equation could include tem-
perature feedback to the carbon cycle, the CICERO-SCM
does not currently include this, implementing instead a static
T = 18.2 °C, giving

F (x)= 1.3021x+ 3.7929× 10−3x2
+ 9.1193× 10−6x3

+ 1.488× 10−8x4
+ 1.2425× 10−10x5. (4)

δ6CO2 is calculated as a historical integral of past air–sea
fluxes, fa,s, modulated by a decay function, rs, which repre-
sents transfer of carbon from the mixed layer to an (infinite)
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Table 3. The structure of the gaspam_file. In it, properties of greenhouse gases and short-lived climate gases or precursors used in calculations
are defined. This is the standard shipped version of the gaspam_file, but the user is free to define their own file that adds or subtracts gases
and adjusts values for lifetimes, forcing strength, and so on as they see fit. The column headers are the names of the gas or substance in
the run (GAS); the emission unit (EM_UNIT); the concentration unit (CONC_UNIT) in parts per million (m), billion (b), or trillion (t);
the conversion unit between concentration and mass (unit is the ratio of the emission unit to the concentration unit) (BETA); the radiative
efficiency (ALPHA) (in W m−2 ppb−1); and the lifetime in years. In the case of CH4, the lifetime is split into the OH lifetime in years (TAU1),
soil lifetime in years (TAU2), and stratospheric lifetime in years (TAU3). Also included are the natural emissions (NATURAL_EMISSIONS),
where the unit should be the same as the emission unit, and a unitless conversion factor from stratospheric adjusted radiative forcing (SARF)
to the effective radiative forcing (ERF) (SARF_TO_ERF). In the current implementation, TAU2 and TAU3 are only used for CH4, and the
ALPHA parameter is unused for CO2, CH4, N2O, and aerosols. Gases with a dash (“–”) in the CONC_UNIT column are not converted from
emissions to concentrations, and concentrations of these are not outputted or used in calculations. Gases with “X” in the emission column
are not read from the emission files, but the forcing is calculated through other means from emissions of other components.

GAS EM_UNIT CONC_UNIT BETA ALPHA TAU1 (years) TAU2 TAU3 NATURAL_EMISSIONS SARF_TO_ERF

CO2 Pg_C ppm 2.123 0 150 0 0 0 1.05
CH4 Tg ppb 2.78 0 9.6 120 160 275 0.877193
N2O Tg_N ppb 4.81 0 121 0 0 9.5 1.07
SO2 Tg_S – 0 0 0 0 0 0 1
CFC-11 Gg ppt 22.6 0.000259 52 0 0 0 1.13
CFC-12 Gg ppt 20.8 0.00032 102 0 0 0 1.12
CFC-113 Gg ppt 32.5 0.000301 93 0 0 0 1
CFC-114 Gg ppt 29.7 0.000314 189 0 0 0 1
CFC-115 Gg ppt 27.1 0.000246 540 0 0 0 1
CH3Br Gg ppt 16.4 0.000004 0.8 0 0 0 1
CCl4 Gg ppt 25.3 0.000166 32 0 0 0 1
CH3CCl3 Gg ppt 22 0.000065 5 0 0 0 1
HCFC-22 Gg ppt 14.9 0.000214 11.9 0 0 0 1
HCFC-141b Gg ppt 26.3 0.000161 9.4 0 0 0 1
HCFC-123 Gg ppt 20.1 0.00016 1.3 0 0 0 1
HCFC-142b Gg ppt 16.8852 0.000193 18 0 0 0 1
H-1211 Gg ppt 28.37 0.0003 16 0 0 0 1
H-1301 Gg ppt 25.55 0.000299 72 0 0 0 1
H-2402 Gg ppt 45.9564 0.000312 28 0 0 0 1
HFC125 Gg ppt 21.27 0.000234 30 0 0 0 1
HFC134a Gg ppt 18.09 0.000167 14 0 0 0 1
HFC143a Gg ppt 14.9 0.000168 51 0 0 0 1
HFC227ea Gg ppt 30.14 0.000273 36 0 0 0 1
HFC23 Gg ppt 12.41 0.000191 228 0 0 0 1
HFC245fa Gg ppt 23.76 0.000245 7.9 0 0 0 1
HFC32 Gg ppt 9.22 0.000111 5.4 0 0 0 1
HFC4310mee Gg ppt 44.68 0.000357 17 0 0 0 1
C2F6 Gg ppt 24.46 0.000261 10 000 0 0 0 1
C6F14 Gg ppt 59.92 0.000449 3100 0 0 0 1
CF4 Gg ppt 15.6 0.000099 50 000 0 0 0 1
SF6 Gg ppt 25.89 0.000567 3200 0 0 0 1
NOx Mt_N – 0 0 0 0 0 0 1
CO Mt – 0 0 0 0 0 0 1
NMVOC Mt – 0 0 0 0 0 0 1
NH3 Mt – 0 0 0 0 0 0 1
SO4_IND X – 0 0 0 0 0 0 1
STRAT_O3 X – 0 0 0 0 0 0 1
STRAT_H2O X – 0 0 0 0 0 0 1
BMB_AEROS_BC Tg – 0 0 0 0 0 0 1
BMB_AEROS_OC Tg – 0 0 0 0 0 0 1
BMB_AEROS X – 0 0 0 0 0 0 1
LANDUSE X – 0 0 0 0 0 0 1
BC Tg – 0 0 0 0 0 0 1
OC Tg – 0 0 0 0 0 0 1
OTHER X – 0 0 0 0 0 0 1
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deep-ocean sink.

δ6CO2 (t)=
cconv

h

∫ t

to

fa,s
(
t ′
)
rs
(
t − t ′

)
dt ′, (5)

where h is the height of the mixing layer in meters, cconv =

1.7221017 µmol m3 ppm−1 kg−1 is a conversion factor from
the flux (from ppm to µmol) and seawater from volume (m3)
to mass (kg). The function rs is defined by two empirical de-
cay functions, with the first for a period shorter than 2 years
and the second empirical formulation for periods of 2 years
or longer:

rs



= 0.12935+ 0.21898 · e−
t

0.034569

+0.17003 · e−
t

0.26936 + 0.24071 · e−
t

0.96083

+0.24093 · e−
t

4.9792 if t < 2.0,
= 0.022936+ 0.24278 · e−

t
1.2679

+0.13963 · e−
t

5.2528 + 0.089318 · e−
t

18.601

+0.03782 · e−
t

68.736 + 0.035549 · e−
t

232.3 if t ≥ 2.0,

(6)

where t is measured in years.
Different versions of both rs and the biotic decay func-

tion rb, described below and with standard form accord-
ing to Eq. (8), can be sent by sending a function as input
when defining the concentrations_emissions_handler object
according to Table 1.

The CICERO-SCM also includes the impacts of the ter-
restrial ecosystem, including CO2 fertilization and the sub-
sequent impact on the decay of biospheric material (Joos
and Bruno, 1996). Net primary productivity is described as a
function of the atmospheric CO2 concentration, which mod-
ifies the emission time series directly, according to Eq. (1).

The carbon uptake of the terrestrial cycle ffer is repre-
sented as

ffer (t)= δfnpp (t)+

∫ t

−∞

δfnpp
(
t ′
)
rb
(
t − t ′

)
dt ′, (7)

where δfnpp(t) is the instantaneous net primary productiv-
ity (NPP) from the current CO2 concentration (in units of
PgC yr−1), and rb is an impulse response function which rep-
resents the decay of the historically fertilized material pro-
duced during previous time steps:

rb = 0.70211 · e−0.35t
+ 13.4141× 10−3

· e−
t

20.0

− 0.71846 · e−
55t

120.0 + 2.9323× 10−3
· e−

t
100.0 . (8)

The various terms represent the decay of ground vegetation,
wood, detritus, and soil organic carbon, and time t is mea-
sured in years. δfnpp (t) is represented as a function of the
atmospheric CO2 concentrations:

δfnpp (t)= fnpp βf ln
(

CO2,a (t)

278ppm

)
, (9)

where fnpp is a measure of global terrestrial NPP (here taken
as 60 PgC yr−1; Atjay et al., 1979; Joos and Bruno, 1996),

and CO2,a (t) is the atmospheric concentration of CO2 (mea-
sured in ppm). βf (beta_f in the model and Table 2) is the
“fertilization factor”.

Figure 2a shows the calculated concentrations of CO2
from the CICERO-SCM using CO2 emissions from Mein-
shausen et al. (2017, 2020). For reference, the CO2 emissions
in 2014 are split into 9.7 Pg carbon of fossil fuel emissions
and 1.1 Pg carbon of land use change emissions.

2.1.2 Non-CO2 component concentration calculations

The atmospheric concentration of non-CO2 gases is deter-
mined by a mass balance equation,

dC
dt
= P −Q ·C =

E

βgas
−C ·

1
τgas

, (10)

where C is the concentration or mixing ratio of the gas (ppm
and ppb), P is the production rate, and Q is the loss rate.
The production, P , is given by the emissions per year, E,
converted to mixing ratio units with βgas, and τgas is the life-
time (in years). βgas (BETA) and τgas (TAU1) are both gas-
specific constants read from the gaspam_file (see Table 3).
The production (emissions) is a function of time t (in years),
E = E(t), while the loss rate (Q) is assumed to be constant,
except for the case of CH4 (see Sect. 2.1.3).

To solve this equation numerically, we use a first-order ex-
ponential integrator method. We first rearrange the equation
as
dC(t)

dt
+C(t) ·

1
τgas
=
E(t)

βgas
, (11)

multiply both sides by exp
(

t
τgas

)
, and combine

d
dt

(
C(t) · exp

(
t

τgas

))
=
E(t)

βgas
· exp

(
t

τgas

)
. (12)

The emission (E) and mixing ratios (C) are annual, and we
assume that they are constant over each 1-year period. This
means that we can solve the equation exactly for each time
step, t to t+1t , where1t = 1 as the data is annualized. First,
integrate both sides of the equation from t to t+1, noting that
E(t) is constant between t + 1 and t :

C (t + 1) · exp
(
t + 1
τgas

)
− C (t) · exp

(
t

τgas

)
=
E(t)τgas

βgas
·

[
exp

(
t + 1
τgas

)
− exp

(
t

τgas

)]
. (13)

Then multiply both sides by exp
(
−
t+1
τgas

)
, noting that

exp
(
−
t+1
τgas

)
· exp

(
t
τgas

)
= exp

(
−

1
τgas

)
, which leads to

C(t + 1)= C(t)exp
(
−

1
τgas

)
+
E(t)τgas

βgas

·

[
1− exp

(
−

1
τgas

)]
. (14)
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Figure 2. Calculated concentration of CO2, CH4, and N2O from the CICERO-SCM from the CMIP6 emission time series (Meinshausen et
al., 2017) compared to the concentrations of these gases prepared for CMIP6 (black line) from the same emission inputs (Meinshausen et
al., 2017). Note that the natural emissions of CH4 and N2O are adjusted so that the calculated concentrations match the observational-based
concentrations prepared for CMIP6.

This implementation is appropriate for discrete input data
only, where the emissions (and concentrations) are assumed
constant throughout the year. For a time step of shorter than
1 year, the emission (E) and mixing ratios (C) would need
to have a resolution of under 1 year to match the time step.
If working with emissions not assumed static over the sub-
yearly timescale, then the original equation would be solved
either analytically or using a numerical solution to the origi-
nal differential equation (Aamaas et al., 2013). This version
of the model only works for yearly data that follow this as-
sumption.

Given this assumption, the method outlined here is an ex-
act solution for each time step, utilizing the fact that emis-
sions are constant in each time step. The solution can also
be interpreted in terms of production and loss. The first term
on the right-hand side represents the mixing ratio at the start
of the time period (Ct), which decays according to the loss
rate over 1 year. The second term on the right-hand side rep-
resents the emissions added in that year (Et), which are as-
sumed constant, and thus accumulate as sustained emissions
over the year (Aamaas et al., 2013). At the end of the time
period, Ct+1, the mixing ratio is thus the contribution from
the material already in the atmosphere (first term) plus the
contribution from material added to the atmosphere over the
year (second term).

Several simplifications can help explain Eq. (14) and the
unique characteristics of different non-CO2 components. For
a long-lived species, where τ � 1, such as N2O, then the ex-

ponential term is close to one, and Ct+1 ≈ Ct+1, where 1
is a small contribution from new emissions. For a short-lived
species, where τ � 1, such as sulfur dioxide (SO2), then
the exponential term is close to zero, and C(t)≈ E(t) · τgas

βgas
,

showing that the mixing ratio is approximately a linear scal-
ing of the emissions. And, in fact, for SO2 and other aerosols,
such a direct emission scaling is used to obtain forcing di-
rectly from emissions with no separate calculation of con-
centrations.

2.1.3 CH4 – emissions to concentrations

The atmospheric concentration of CH4 is determined by the
mass balance equation (Eq. 14), leading to the solution and
treatment as described above in Sect. 2.1.2. But for CH4,
the lifetime τ is not necessarily constant. The total life-
time is a combination of the lifetime with respect to OH
(τOH), stratospheric lifetime (τstrat) representing the chemi-
cal losses in stratosphere, and soil lifetime (τsoil) represent-
ing the soil loss. The total lifetime and the individual life-
times are related by 1

τ
=

1
τOH
+

1
τsoil
+

1
τstrat

. The values of
βCH4 (BETA), τOH (TAU1), τsoil (TAU2), and τstrat (TAU3)
are specified in the gaspam_file (Table 3) with default values
of 2.78 Tg CH4 ppbv−1 over 9.6, 120, and 160 years (Ehhalt
et al., 2001) used. The total lifetime of CH4 is 8.4 years.

The lifetime of CH4 due to OH depends both on the CH4
itself and emissions of NOx , CO, and NMVOCs. CH4 in-
fluences its own lifetime since the reaction between CH4 and
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OH is also a significant loss reaction for OH. Increased emis-
sions and higher atmospheric levels of CH4 thus decrease the
levels of OH. This will increase the chemical lifetime of CH4,
thereby further increasing the atmospheric levels of CH4. CO
and NMVOCs also have OH as a main loss reaction, and in-
creased emissions of these components will decrease the lev-
els of OH and increase the lifetime of CH4. Enhanced levels
of NOx will work in the opposite direction as NOx acts as a
source of OH. Enhanced NOx will increase OH and decrease
the CH4 levels.

Several parameterization options are available in the
CICERO-SCM to deal with these effects on the CH4 life-
time. The “lifetime_mode” can be set to the following in the
pamset_emiconc (Table 2):

– “TAR” (default), where the τOH is adjusted following
Ehhalt et al. (2001) (Table 4.11, footnote b). 1

τ
= q =

q · (d lnCOH+ 1), where

dlnCOH = −0.32 ·
{
ln
[
CCH4 (year)

]
− ln [1751.0]

}
+ 0.0042 ·

[
ENOx (year)− ENOx (2000)

]
+ 0.000105 ·

[
ECO (year)− ECO (2000)

]
− 0.000315 ·

[
ENMVOC (year)− ENMVOC (2000)

]
.

– “WIGLEY”, where τOH = τ
0
OH ·

(
C
C0

)N
and where C is

the CH4 concentration, C0 is a reference CH4 concen-
tration of 1700 ppb, and the exponent N is 0.238 (Os-
born and Wigley, 1994).

– “CONSTANT_12”, where τOH = 12.0.

If some other string is sent for this parameter, a flat lifetime
from the gaspam_file is used. This flexibility in the OH life-
time options can allow the user to explore hypotheses and
also allows the user to add and adapt a new OH lifetime
scheme in a separate fork of the code without much effort.

There are also natural emissions of CH4 which main-
tain a CH4 concentration in the atmosphere in the ab-
sence of anthropogenic emissions (Saunois et al., 2020).
To accurately represent the observed concentration, nat-
ural emissions of CH4 can be precalculated (precalcu-
late_natural_emissions.py in scripts/prescripts subfolder)
with the same setup (lifetime mode and anthropogenic emis-
sions), and these are added to E(t) before the calculation in
Eq. (14). Further details on this can be found in Appendix B
on the natural emissions of CH4 and N2O. Precalculated nat-
ural emission time series can be specified as an input file
or input dataset (see Table 1). The model can also be run
with fixed natural emissions specified in the gaspam_file (Ta-
ble 3), and this is the model behavior when no data or files
with natural emissions are sent and can also be used to pro-
vide constant natural emissions for other chemical compo-
nents.

With the adjusted historical natural emissions of CH4, the
calculated CH4 concentrations, by design, match observa-
tions of the CH4 concentration (Fig. 2b). The model can

also be run with fixed natural emissions specified in the gas-
pam_file (Table 3) and then the calculated concentration will
give rise to discrepancies compared to observations due to
the large uncertainties in the CH4 budget terms (Saunois et
al., 2020).

2.1.4 N2O – emissions to concentrations

The atmospheric concentration of N2O is determined by the
same mass balance equation (Eq. 14) as for CH4 but with a
single constant lifetime of 109 years (Smith et al., 2021b), as
specified in the gaspam_file (Table 3). The parameter βN2O
(BETA) is given as 4.81 Tg[N] ppbv−1, and hence, the emis-
sion input to the model is given in teragrams of nitrogen.

As for CH4, the natural emissions can either be kept fixed
with a value prescribed in the gaspam_file or sent as a pre-
calculated file or dataset so that total (natural and anthro-
pogenic) emission time series and the model setup will re-
produce the historical concentration (Fig. 3c). For more on
how natural emissions are estimated including assumptions
for the future, see Appendix B on the natural emissions of
CH4 and N2O.

2.1.5 CO2, CH4, and N2O – concentrations to forcing

Based on the calculated concentrations, radiative forcing for
CO2, CH4, and N2O is calculated based on the simplified ex-
pressions in Table 1 of Etminan et al. (2016) that account for
the overlap between the three components. The equations in
Etminan et al. (2016) represent the radiative forcing that in-
cludes the adjustment to stratospheric temperatures (SARF).
The initial concentrations of CO2, CH4, and N2O used for the
calculations are the concentration in the nystart year from the
input file.

To include additional tropospheric adjustments, an adjust-
ment factor can be specified in the gaspam_file (Table 3) to
convert from SARF to effective radiative forcing (ERF) for
each of the components. The default values in Table 3 are
taken from the IPCC AR6, and the additional adjustments
will increase the radiative forcing by 5 % for CO2, decrease
it by 14 % for CH4, and increase it by 7 % for N2O (Forster
et al., 2021).

The calculated CO2 ERF is less than the ERF time series
from the IPCC AR6 (Forster et al., 2021), based on observed
concentrations before 1950, and larger after 1950 (Fig. 3a).
The reason for this is the under- and overestimation of the
CO2 concentration (Fig. 2a) and that 2xCO2 ERF that is the
effective forcing strength of a doubling of CO2, based on Et-
minan et al. (2016), is stronger than the 2xCO2 ERF in AR6,
based on Meinshausen et al. (2020). The CH4 ERF in Fig. 3b
shows a reasonably good match. The N2O ERF time series is
in the lower range compared to the time series presented in
IPCC AR6 (Forster et al., 2021). The difference can be ex-
plained by assuming a different pre-industrial concentration
value in the run and by the fact that Forster et al. (2021) use a
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simplified expression, as used in Meinshausen et al. (2020),
rather than the expressions from Etminan et al. (2016) used
in CICERO-SCM.

2.1.6 Effective radiative forcing for other long-lived
greenhouse gases

For the other long-lived or medium-lifetime greenhouse
gases (such as CFCs (chlorofluorocarbons), HFCs (hydroflu-
orocarbons), and HCFCs (hydrochlorofluorocarbons)), the
atmospheric concentrations are calculated based on the mass
balance equation, emission time series, BETA values, and a
single lifetime specified in the gaspam_file (Table 3) and as
described in Sect. 2.1.2. The lifetimes are as in the IPCC AR6
WG1 (Table 7.SM.7 in Smith et al., 2021b).

For these components, radiative forcing is calculated
based on a radiative efficiency (Table 7.SM.7 in Smith et al.,
2021b),

SARF= ALPHA · (C−C0) , (15)

where ALPHA is read from the gaspam_file (Table 3), C is
the concentration, and C0 is the concentration in the nystart
year. As most of these components are of anthropogenic ori-
gin, C0 will be zero when starting from the pre-industrial era.
Some components, however, have natural background con-
centrations. The pre-industrial concentrations are provided in
the concentration file, and natural emissions are expected to
be included for each year in the emission file; otherwise, a
flat natural emission component can be specified in the gas-
pam_file.

Each component also has an option to include a conver-
sion from SARF to ERF (ERF= SARF_TO_ERF · SARF)
to get the ERF that will be output and passed to the up-
welling_diffusion_model.py.

In Forster et al. (2021), CFC11 and CFC12 have SARF to
ERF adjustment factors of 13 % and 12 %, respectively. All
other components have SARF to ERF factors of 1. However,
different SARF to ERF conversion factors can be specified in
the gaspam_file (see Table 3).

The calculated ERFs for the other GHGs compare well
with the IPCC AR6 time series (Fig. 3d).

2.1.7 Tropospheric O3

The tropospheric O3 forcing is specified in the pam-
set_emiconc as qo3 (Table 2), and that is the radiative forcing
in the reference year (ref_year) specified in the same param-
eter set. The default values are 0.5 W m−2 in ref_year 2010,
based on Smith et al. (2021b). The qo3 can include adjust-
ments and be treated as ERF, or a factor converting SARF to
ERF can be included in the gaspam_file (Table 3).

The time series of tropospheric O3 forcing is calculated
by combining the concentrations of CH4 and emissions of
NOx , CO, and NMVOC, following Table 4.11, footnote b, of
Ehhalt et al. (2001).

Assuming a tropospheric O3 burden of 30 DU (Dobson
units) in the reference year, the tropospheric O3 burden is
calculated as

CO3 (t)= 30.0+ 6.7 ·
{
ln
[
CCH4 (t)

]
− ln

[
CCH4 (tref)

]}
+ 0.17 ·

[
ENOx (t)− ENOx (tref)

]
+ 0.0014

· [ECO (t)− ECO (tref)]+ 0.0042
· [ENMVOC (t)− ENMVOC (tref)] , (16)

whereC terms denote concentrations,E terms are emissions,
t is time in years, and tref is the reference year. The default
value for this is 2010.

The radiative forcing is calculated by scaling the qo3 (tro-
pospheric ozone SARF in the reference year in W m−2) by
changes in O3 burden as follows:

SARF= qo3 ·
CO3 (t)−CO3 (temstart)

CO3 (tref)−CO3 (temstart)
, (17)

where temstart is the year when running with everything from
the emission start.

Before the emission start, the forcing is scaled by fossil
fuel CO2 emissions, and t0 is the first year of the run, i.e., nys-
tart.

SARF= qo3 ·
ECO2FF (t)−ECO2FF (t0)

ECO2FF (tref)−ECO2FF (t0)
(18)

Tropospheric O3 is a short-lived component, and the global
forcing is split into hemispheric forcing. The hemispheric
weights for the global forcing is taken from the multi-model
results in Skeie et al. (2020) and is 1.45 for the Northern
Hemisphere and 0.55 for the Southern Hemisphere, as im-
plemented in the routine calculate_hemispheric_forcing. The
total O3 forcing (tropospheric and stratospheric) is shown in
Fig. 3d, and tropospheric O3 ERF alone is shown in Fig. A8.

2.1.8 Stratospheric O3

The loss in stratospheric O3 is calculated from the concentra-
tion of chlorine- and bromine-containing components 3 years
prior to the year in question to account for transport from the
troposphere to the stratosphere and scaled by the number of
chlorine or bromine atoms they contain.

SARF= −
0.287737

1000.0

·

[
0.000552 ·

∑
i

(
NCli ·CCli (t − 3)

)1.7
+3.048 ·

∑
j

NBrj ·CBrj (t − 3)

]
, (19)

where the sums run over the chlorine- and bromine-
containing components, respectively; the C terms are con-
centrations (pptv – parts per trillion by volume) of each of
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Figure 3. Calculated ERF from CICERO-SCM for selected components from 1750 to 2020. For comparison, the ERF time series from the
IPCC and uncertainty ranges from this same dataset are also shown (Smith et al., 2021a, b). (a) CO2, (b) CH4, and (c) N2O. (d) Other
well-mixed greenhouse gases (GHGs) that are the sum of the contribution from CFC-11, CFC-12, CFC-113, CFC-114, CFC-115, CHBr,
CCl4, CH3CCl3, HCFC-22, HCFC-141b, HCFC-142b, C2F6, C6F14, CF4, SF6, HCFC-123, H-1211, H-1301, H-2402, HFC125, HFC134a,
HFC143a, HFC227ea, HFC23, HFC245fa, HFC32, and HFC4310mee. (e) Total O3 this is the sum of tropospheric and stratospheric O3, (f)
stratospheric water vapor, (g) land use (note that the CICERO-SCM uses the IPCC ERF time series as input), (h) total aerosol ERF, and (i)
total anthropogenic forcing. Note the different scales on the y axis. Beyond 2014, the ssp245 future projections have been used as inputs.
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these, the N terms are the numbers of chlorine or bromine
atoms in each of them, and t is the time in years. The func-
tional form is based on Appendix 2 of Harvey et al. (1997),
and the scaling has been updated in line with Forster et
al. (2007). This has been generalized a bit from the Fortran
version, where the exact chlorine and bromine components
considered were hard-coded rather than identified from the
substances contained in the gaspam_file (Table 3).

The total O3 ERF (tropospheric plus stratospheric) is
shown in Fig. 3e and stratospheric O3 separately in Fig. A8.

2.1.9 Stratospheric water vapor

CH4 oxidized in the stratosphere produces water vapor. In
the dry stratosphere, this additional water vapor will cause
additional radiative forcing. The CH4-induced stratospheric
water vapor ERF is calculated by scaling the CH4 ERF by a
factor qh2o_ch4 specified in the pam_emiconc parameter set.
The default value is 0.092, and that is 9.2 % of the CH4 forc-
ing in the reference year (Forster et al., 2021; Winterstein et
al., 2019). The ERF time series for stratospheric water vapor
is shown in Fig. 3f.

2.1.10 Albedo from land use change

The historical surface albedo land use change forcing used
in the model is a prescribed forcing time series. The default
time series used in the model is from IPCC AR6 (Forster et
al., 2021; Smith et al., 2021b) and is extended for RCMIP
(Nicholls et al., 2021, 2020). The ERF time series of this
is shown in Fig. 3g, and beyond 2014, the albedo forcing
projections for ssp245 are used.

The hemispheric split of forcing is based on the multi-
model results from (Smith et al., 2020) and implemented in
the routine calculate_hemispheric_forcing.

2.1.11 Aerosol effective radiative forcing

The ERF for the aerosol radiation interaction (ERFari) of
sulfate, fossil fuel and biofuel (FFBF), black carbon (BC),
organic carbon (OC), and biomass burning (BMB) aerosols
are included in CICERO-SCM, and the aerosol forcing in
ref_year (tref) for each aerosol component is specified in
the pamset_emiconc (Table 2). The ERFari values in ref_yr
are scaled by the corresponding historical emissions of
SO2, BC FFBF, OC FFBF, and biomass burning aerosols
(BMB_AEROS).

The ERFari time series for individual aerosol components
are shown in Fig. 4a. The total aerosol ERFari time series
is shown in Fig. 4b and shows a good match with the IPCC
AR6 time series.

Eref = E(tref)−E(t0) , ERF= qaer
E(t)−E(t0)

Eref
, (20)

where E(t) is the emissions of each aerosol species at time t
in years, and qaer is the forcing for this component in tref and
is the tunable parameter (see Table 2) for each component.

The net ERF from biomass burning aerosols
(BMB_AEROS) is calculated using the input
BMB_AEROS_OC, as biomass burning emissions from OC
and BC are assumed to be correlated and scaled according to
Eq. (20) with the parameter qbmb. The default value of this
parameter is 0, so the user needs to set it to a different value
to include the effects of biomass burning aerosols.

The ERF for aerosol cloud interaction (ERFaci) in
ref_year is linearly scaled with SO2 emissions and calcu-
lated as ERFari, according to Eq. (20), as studies indicate that
the total global effect is linear with SO2 (Kretzschmar et al.,
2017). The aerosol forcing components from a default run
of the CICERO-SCM are shown in Fig. 4a. The split in the
ERFari and ERFaci time series is show in Fig. 4b and com-
pared to the IPCC AR6 results (Forster et al., 2021). ERFari
follows the AR6 results quite closely, while ERFaci is not as
close to the AR6 mean; however, the uncertainty range for
this is very large.

The hemispheric split of aerosol forcing is based on multi-
model results from Smith et al. (2020) and implemented in
the routine calculate_hemispheric_forcing.

2.1.12 Solar and volcanic forcing

Solar forcing and volcanic forcing can be added as input time
series. If the sunvolc parameter is set to 1, the model will ei-
ther use user-defined files or datasets or use default files. The
volcanic forcing series can be defined differently in each of
the hemispheres and even with a monthly time resolution.
Figure 5 shows default input time series of solar and vol-
canic forcing. These defaults are taken from Nicholls et al.
(2021, 2020); however, for values beyond the year 2015, the
following approximation has been made: solar forcing is as-
sumed to be zero, whereas volcanic forcing is set to the mean
forcing value in years 2006–2015.

2.1.13 Perturbing forcing or emission time series

A common application of SCMs is to isolate and quantify
the contributions to global radiative forcing and temperature
change over time from individual anthropogenic emissions
or sources, such as economic sectors. While there are differ-
ent approaches to such an attribution (e.g., Boucher et al.,
2021; Grewe, 2013), a well-established method is to have a
perturbed case for which the emissions of interest are sub-
tracted from a baseline case that includes all emissions. The
attribution is thus the difference between the baseline case
and the perturbed case (den Elzen et al., 2005; Fuglestvedt et
al., 2008).

The CICERO SCM includes built-in options that enable
this type of simulation, baseline, and perturbation. Specifi-
cally, two additional files can be input to the run, namely one
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Figure 4. Panel (a) shows aerosol–radiation interaction forcing per aerosol component, and panel (b) shows the aerosol–cloud interaction
and sum of aerosol–radiation interactions for all the components compared to AR6 results (Forster et al., 2021).

Figure 5. Default natural ERF time series for solar forcing (a) and volcanic forcing (b) used in the CICERO-SCM taken from RCMIP
(Nicholls et al., 2021, 2020) compared to AR6 results (Forster et al., 2021; Smith et al., 2021b).
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that gives emission trajectories to be subtracted and one that
gives the radiative forcing to be subtracted. The former is
used in the case of the well-mixed greenhouse gases, while
the radiative forcing perturbations are applied for the short-
lived climate forcers.

In some cases, a given sector may affect climate through
radiative forcing mechanisms that are not included in the
SCM. A notable example is the formation of contrail cirrus
from aviation emissions. It is possible to also include such
ERF perturbations, which are then grouped in a category la-
beled “OTHER” and subtracted from the total net radiative
forcing (RF) at the end of the concentration-to-forcing step
of the model flow.

The time series of emissions and ERF to be extracted must
be predefined in a specific format (sample files are provided
in the open-source code base). If not directly available from
more complex models, ERF time series are commonly de-
rived by scaling the best-estimate present-day radiative ef-
ficiencies (i.e., ERF per unit emission) from available his-
torical and/or future emission trajectories. For examples of
how this has previously been done, including more chemi-
cally complex climate drivers such as NOx-induced changes
in O3 and CH4, see, e.g., Skeie et al. (2009).

2.2 Upwelling diffusion/energy balance model

To calculate the temperature change and storage of heat
in the ocean as a response to the radiative forcing, an en-
ergy balance/upwelling diffusion model is used. The model
is the hemispheric version (Schlesinger et al., 1992) of the
global energy balance/upwelling diffusion model described
in Schlesinger and Jiang (1990), and the structure of the
model is shown in Fig. 6.

For each hemisphere, the ocean is subdivided into 40 ver-
tical layers, where the uppermost ocean layer is the mixed
layer. The ocean also has a polar region, where heat is trans-
ported from the mixed layer into the deep ocean and repre-
sents deep-water formation, i.e., sinking of cold water masses
with relatively high salinity. Figure 6 shows the schematic
ocean in the model.

The model is forced by hemispheric radiative forcing,
and the climate response is governed by climate sensitivity,
which is an explicit parameter in the model that takes the
feedback processes in the climate system into account. The
climate sensitivity parameter, λ (lambda), is the equilibrium
climate sensitivity (defined as the equilibrium temperature
response following a doubling of the CO2 concentration) di-
vided by the radiative forcing of a doubling of CO2. Based
on the formula in Etminan et al. (2016), SARF is 3.8 W m−2

for a CO2 doubling, and taking into account the adjustments
of 5 % (Forster et al., 2021), the 2xCO2 ERF is 4.0 W m−2.

In each hemisphere, heat is exchanged between the at-
mosphere and the ocean in the upper mixed layer of the
ocean. Heat is exchanged between each layer and the lay-
ers next to it via both diffusion and vertical upwelling ad-

Figure 6. Redrawn from Schlesinger et al. (1992). The difference in
the ocean and land fraction between Northern and Southern hemi-
spheres is considered in the model but not illustrated in the figure.

vection and horizontally through interhemispheric heat ex-
change. Heat is also transported into the polar ocean in the
mixed layer and back into the main ocean in the bottom
most layer. This leads to a set of coupled differential equa-
tions which are solved by a mix of forward and backward
implicit calculations to find the temperature change in each
ocean layer. Equations are taken and implemented according
to Appendix B in Schlesinger et al. (1992), the strengths of
the various processes are defined by the parameters listed in
Table 4, and the equations and their implementations are also
detailed in Appendix C.

In addition to what is included in Schlesinger et al. (1992),
the CICERO-SCM includes a threshtemp parameter, which
changes the upwelling advection velocity depending on tem-
perature, according to Raper et al. (2001). The parameter
threshtemp is the temperature at which the upwelling veloc-
ity is reduced by 30 %. With threshtemp equal to 0,W will be
constant, and this is a way of omitting the upwelling velocity
dependency on temperature. Otherwise, the way that this pa-
rameter is scaled means that when 1T = 10/3· threshtemp,
the advection will stop completely, and if the temperature
surpasses this then that advection speed will become nega-
tive.

The temperature changes in the ocean layer calculated
in the energy balance/upwelling diffusion model are finally
used to calculate values for the ocean heat content (OHC) and
ocean heat content of the uppermost 700 m (OHC700). For
each hemisphere, separately and as a global average of the
two, it is used to calculate the three temperature quantities:
Tair, which is the global surface air temperature (GSAT); Tsea,
which is the global sea surface temperature; and Tblended,
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Table 4. Description of pamset_udm, parameters in the energy balance/upwelling diffusion model with default values, units, and possible
ranges.

Parameter Default value Unit Description and range∗

rlamdo 15.0 W m−2 K−1 Air–sea heat exchange parameter, λao in Fig. 6, range 5–25.

akapa 0.66 cm2 s−1 Vertical heat diffusivity, κ in Fig. 6, range 0.06–0.8.

cpi 0.21 Unitless Polar parameter, scale between polar and non-polar tempera-
tures, range 0.161–0.569.

W 2.2 m yr−1 Vertical velocity, upwelling rate, W in Fig. 6, range 0.55–6
(when threshtemp is not zero, the vertical velocity is effectively
lower than this).

beto 6.9 W m−2 K−1 Oceanic interhemispheric heat exchange coefficient, λo in
Fig. 6, range 0–7.

threshtemp 7.0 Unitless Scales vertical velocity (W ) as a function of mixed-layer tem-
perature (not shown in Fig. 6). Set to 0 if one does not want to
include this parameter. Default is a 30 % drop in vertical veloc-
ity at 7 K increase in mixed-layer temperature.

lambda 0.61 K W−1 m−2 Equilibrium climate sensitivity divided by 2xCO2 radiative
forcing (4.00 W m−2), i.e., λ. Calibration range 0.5–1.25.

mixed 107 m Mixed-layer depth, h in Fig. 6, range 25–125.

foan 0.61 Unitless Fraction of Northern Hemisphere covered by ocean.

foas 0.81 Unitless Fraction of Southern Hemisphere covered by ocean.

ebbeta 0.0 Atmospheric interhemispheric heat exchange that is not nor-
mally used and not shown in Fig. 6, but equations including
this parameter are included in the code.

fnso 0.7531 Unitless Ratio between ocean areas in Northern and Southern hemi-
spheres and should equal foan/foas.

lm 40 Unitless Number of vertical layers of the ocean, including the mixed
layer.

∗ Ranges are taken from Aldrin et al. (2012), except the ranges for W and lambda, which are as used in the calibration run proof of concept in this
article.

which is the combined quantity calculated from the mixed-
layer ocean temperature over the ocean and atmospheric
temperature over land (global mean surface temperature –
GMST). Finally, hemispheric and global averages for the ra-
diative imbalance (RIB) are obtained. All these quantities are
derived from calculations of the temperature Tl in the 40 lay-
ers of the ocean for each month of the year.

The temperature values are calculated from the ocean
mixed-layer temperature Tl according to

Tsea = T l, Tair =
q + focean · λao · Tl

1
λ
+ focean · λao

,

Tblended = focean · Tsea+ (1− focean) · Tair, (21)

where means are taken over 12 sub-yearly time steps; q is the
mean forcing over the preceding year (in W m−2); focean is
the ocean fraction in the area under consideration (Northern

Hemisphere, Southern Hemisphere, or global); λao and λ are
the tunable parameters of rlamdo and lambda, respectively
(see Table 4 for details and units); and Tl is the temperature
in uppermost ocean layer i.e., in the mixed layer.

The radiative imbalance (RIB) and ocean heat content
(OHC) are similarly derived according to

RIB= ERF−
Tblended

λ
, OHC=

maxdepth∑
l=1

ρ · cp

·AEarth · zl · Tl · focean, (22)

where ρ is the density of seawater (assumed here to be con-
stant at 1030 kg m−3), cp is the specific heat capacity of sea-
water (3.997× 103 J kg−1 K−1), AEarth is the surface area of
the Earth (in m2), and zl is the height of the layer in meters.
The sum goes over all the layers of the ocean either down to
700 m, in which case the last layer is only a fractional layer,
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or all the way down, depending on whether the calculation
is for OHC down to 700 m or for total OHC. In practice, the
ocean heat content in each hemisphere is added together for
each layer in the sum; hence, the area used, AEarth, is rather
the area of a hemisphere (2.55× 1014 m2).

2.3 Model differences between new Python version and
old Fortran version

The Python version is overall quite faithful to the previous
Fortran version (at least it is possible to run it quite com-
parably). However, the Python version has more flexibility
in what can be changed using parameters rather than what
is hard-coded. For instance, the addition of SARF_TO_ERF
parameters in the gaspam_file is a new addition, as is
the option to run for different sets of years not start-
ing in 1750, and many new tunable parameters have been
added. In the Fortran version, one could tune the param-
eters lambda, akapa, cpi, W , rlamdo, beto, mixed, qbmb,
qdirso2, qindso2, qbc, qoc, and qo3 using a parameter file
needed for every run. In the Python version, one can also
tune threshtemp, qh2o_ch4, and beta_f. One can also change
parameters like the reference year and the ocean fractions in
each hemisphere (foan and foas). One can also choose and
even tune the functional forms for the carbon mixed-layer
pulse response function (Eq. 5) and the biotic decay func-
tion (Eq. 8). With the Python version, swapping between
emission- or concentration-driven runs or simply accessing
functions from the code is much easier than it was in the For-
tran version, where such changes required producing a new
compiled executable from a modified version of the code.
Since the code is openly available and more readable, a user
can also much more easily change some part of the code to
make even more parameters tunable or even swap out some
of the modules and run the model, for instance, with a sim-
plified energy balance model. In addition, the model can be
run with both file and dataset inputs, and the functionality
for reading from files or handling dataset inputs is separated
from the main code.

The Python code is also fully open and can be included as a
regular Python package using pip. It includes automatic tests,
including a regression test, to make sure the results from the
energy balance model can be directly comparable to the pre-
vious version, and the emission-to-forcing part can be com-
parable enough (this part of the calculation includes quite
a lot of subtractions of nearly equal numbers, which means
the comparison is less direct between the two versions). The
regression tests directly compare the energy balance output
from the Fortran version to check that when given the same
forcing input, temperatures and ocean heat content are the
same up to a relative error of less than 1 % throughout the
run for a few different forcing scenarios (including a single-
year forcing change, a 1 % increase in CO2 per year of the
experiment, and running with and without volcanic and so-
lar forcing). The modeling flow from concentrations from to

forcing and temperature is tested in a similar way, using a
typical historical run, but when going all the way from emis-
sions, the beginning of the run involves small values calcu-
lated by subtracting numbers of very similar size from each
other, meaning that rounding differences become important;
hence, we only require regression up to 1 % for a couple of
years for the test to pass.

The code also includes plotting capabilities and tools for
distribution runs and calibration which we will describe in
further detail below. The automatic plots generated include
time series plots of ocean heat content, radiative imbal-
ance, temperature, and component-separated plots for emis-
sions, concentrations, and radiative forcing. Examples of
these plots for a historical run using all default parameters
are included in Appendix A.

With the publicly available Python version on GitHub,
there are also various example scripts to show usage, as well
as scripts to prepare natural emission files for CH4 and N2O
and perturbation files. Automatically generated documenta-
tion for the code, as well as a descriptive readme file to de-
scribe usage, is also included.

Currently, the code is somewhat slower than the original
Fortran code was. A standard run from 1750 to 2100 from
emissions to concentrations with the Fortran version usually
takes under half a second, whereas the updated code takes
around 3 s to do the same. This is a point for future improve-
ment; however, the readability is considerably improved.

Figure 7 shows how the temperature output from the same
parameter distributions used in the AR6 process results com-
pares when run in the new version and the original Fortran
version. Both the new Python version and the original For-
tran version are included in the openscm runner (Nicholls et
al., 2021). Clearly, the results are not very different between
the two versions.

2.4 New parallel and calibration tools

Additions to the Python version are integrated parallelization
and calibration tools. These include the options to run over
a parameter distribution set defined in a JSON file or over
multiple scenarios in parallel or some combination of both.

The parameter distribution may also be generated using
the calibration tools; these can both simply be used to pro-
duce either Latin hypercubes or Gaussian distributions of a
given size over any subset of the tunable parameters to be
run over directly or saved as a JSON file for later use, or they
can be used to tune parameters over such a prior distribu-
tion to fit the distribution of one or more output parameters,
resulting in a tuned parameter ensemble to be run over and
saved in a JSON file for later use.

The calibrator tool fits a set of n samples to distribution
functions for some subset of the parameters. The priors over
the distribution space can be Gaussian distributions or Latin
hypercubes, and sampling is continued until a distribution
of the required size is found. Samples are generated accord-
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Figure 7. This figure shows the GMST from the ensemble used for the AR6 report (Kikstra et al., 2022; Smith et al., 2021b), as run with
the current updated version and the old Fortran version panel (a) and in the new Python version panel (b), compared to observations from
the observational dataset HadCRUT (Morice et al., 2021). In panel (c), for easier comparison, only the results for ssp245 are shown for
both the Fortran version (in blue) and the Python version (in green). The comparison between the plots mainly shows that the ported Python
version reproduces the old results quite faithfully when given the same parameter set, although there are some changes that generally make
the Fortran version results a bit warmer than the Python version when given exactly the same parameters.

Figure 8. Results from a 100-member ensemble calibrating qindso2, W , and lambda to fit observed temperature from HadCRUT (Morice et
al., 2021) and total ocean heat content from the Global Climate Observing System (GCOS) (von Schuckmann et al., 2023a). Panel (a) shows
the temperature for the 2.5th to the 97.5th percentile compared to the same in the HadCRUT dataset. Panel (b) shows the ocean heat content
for the 5th to 90th percentile compared to the same in GCOS. GMST (surface air temperature change) is shown as the change relative to the
1961–1990 period, while the ocean heat content is shown relative to 1971 ensemble mean values.
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ing to the prior and run in parallel chunks. Samples are then
saved or rejected, according to the calibration distribution
over some outputs. In practice, this is done by comparing its
placement in the distribution for each variable to a random
number and keeping samples that are placed closer to the
mean than the random number. Be aware that the larger the
calibration space, i.e., the dimensionality (number of param-
eters) and range of the prior parameter distribution, and the
higher the number of data points to fit to, the higher the frac-
tion of rejection and the higher the number of chosen samples
needed to get a good fit. There is also a tunable cap on the to-
tal sampling to avoid infinite looping. With non-informative
priors, the calibration might also need to be run for very
many loops to get the required number of samples. Since
quite a few of the parameters are independent, relating to
specific components and diagnostics, a less computationally
intensive calibration workflow might be tuning only a small
subset of parameters separately to various outputs at a time.
For instance, carbon cycle parameters can first be tuned to
reproduce a CO2 concentration time series, before the tuning
forcing and climate sensitivity or other energy balance model
parameters, to get the observed ocean heat content and tem-
perature change distributions. Below, we demonstrate how
the calibration can be used to get a parameter distribution.

As a proof of concept, we have produced 100-member en-
semble of parameter sets, calibrating the parameters W (ver-
tical velocity) and lambda (the climate sensitivity parameter)
from the pamset_udm and qindso2 (ERFaci in ref_year) from
the pamset_emiconc, keeping all other parameters at default
values. Parameter ranges were 0.55–6, 0.5–1.25, and −1.75
to −0.25, respectively. The calibration was made to fit the
observed temperatures from HadCRUT (Morice et al., 2021)
and ocean heat content from GCOS (von Schuckmann et al.,
2023a) time series, including uncertainties. However, in or-
der to not make the fit too difficult for a quick demonstration,
only data from every 30th year of the time series were used.
Other approaches to the calibration could be fitting the over-
all RMSE between data and observations for the whole time
series or fitting the mean difference in time windows. For an
even better fit, more of the data should be used, more param-
eters might need to get fitted, and a larger ensemble should be
constructed. Uncertainties that cannot be modeled with this
setup still include input data uncertainty. The aerosol forc-
ing calibration in this model can also only scale the aerosol
forcing overall and not span uncertainties in its overall time
evolution. Figure 8 shows how the 100-member calibrated
set compares to the observational datasets in practice.

3 Conclusions

In this paper, we have described the CICERO-SCM sim-
ple climate model in its current incarnation as a Python-
implemented open-source model. Though the model has
been improved in terms of readability and user-friendliness,

opportunities for further development abound. There are also
many questions that the model is not currently suited to an-
swer for which it could be adapted to answer.

In terms of technical modifications, the Python version is
still slower than the Fortran model, and opportunities for fur-
ther speed-ups should be explored. A fair bit of time could
likely be shaved off the runtime through using more effi-
cient data structures and calculations. However, such mod-
ifications may also come at the expense of the readability or
easy model adaptation to new usages. Making the calibra-
tion more efficient, flexible, and statistically robust is also
a technical priority. Eventually producing and updating the
calibrated parameter sets that represent good fits to current
available knowledge form the end goal of such an exercise.
Keeping the model up to date with libraries and packages
should also be a part of the development moving forward.

As for the functionality, the current modular structure al-
lows for parts of the model to be used independently and
provides options to change the emissions to a forcing or en-
ergy balance model with different models altogether. This
could allow for testing and updating, for instance, using a
more efficient ocean model with fewer layers or having a
simpler, faster, and less readable emission to forcing module
which can be interchanged with the current more readable
and adaptable, yet slower, version. However, we acknowl-
edge that modularity could be improved further – for exam-
ple, through isolating the carbon cycle module.

Some updates that could open up the exploration of ques-
tions that the model currently does not answer properly in-
clude, but are not limited to, the regionalization of the tem-
perature response; the inclusion of temperature feedbacks
into the carbon uptake; a component breakdown of the car-
bon cycle to keep track of the carbon amounts in the various
pools (representing processes which impact both heat and
carbon transport in the ocean, for example); a more proper
treatment of aerosol–cloud interactions to account for time
delays in cloud formation (Jia and Quaas, 2023); the in-
clusion of nitrate aerosols, updated formulas for O3 ERF,
and updated CH4 lifetime treatments reproducing more re-
cent atmospheric chemistry model results (Skeie et al., 2023;
Stevenson et al., 2020); continuous updates of lifetimes and
forcing strength for various compounds; the inclusion of
more compounds thought to have a climate impact in the fu-
ture such as, for instance, molecular hydrogen (Hauglustaine
et al., 2022; Paulot et al., 2021; Sand et al., 2023; Warwick
et al., 2023) or ammonia (NH3) (Bertagni et al., 2023).

In general, we hope that this open-source and accessible
version of the model will facilitate expanded use and com-
munity development of the model, and we hope to see col-
leagues and users engage with it in whatever way they find
most useful.
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Appendix A: Default plots from a run with all
parameters set to default values

The module includes automatic plotting options. Using these
options, we can plot the time evolution of emissions, con-
centrations, and forcing changes per component, as well as
ocean heat content change, radiative imbalance, and temper-
ature change. Below, such plots from a run with all parameter
values set to default values and run with the historical CMIP6
input data are shown.

Figure A1. Default emission output plot number 1 for a run with default parameters using historical emissions up to 2014 and the ssp245
emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020). The input dataset did not include data for HCFC-123;
hence, the value for this gas is zero throughout.
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Figure A2. Default emission output plot number 2 for a run with default parameters of the historical emissions up to 2014 and the ssp245
emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020).
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Figure A3. Default emission output plot number 3 for a run with default parameters of the historical emissions up to 2014 and the ssp245
emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020).
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Figure A4. Default concentration output plot number 1 for a run with default parameters of the historical emissions up to 2014 and the
ssp245 emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020). The input dataset did not include data for
HCFC-123; hence, the value for this gas is zero throughout.
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Figure A5. Default concentration output plot number 2 for a run with default parameters of the historical emissions up to 2014 and the
ssp245 emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020).
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Figure A6. Default forcing output plot number 1 for a run with default parameters of the historical emissions up to 2014 and the ssp245
emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020). The input dataset did not include data for HCFC-123;
hence, the value for this gas is zero throughout.
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Figure A7. Default forcing output plot number 2 for a run with default parameters of the historical experiment emissions up to 2014 and the
ssp245 emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020).
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Figure A8. Default forcing output plot number 3 for a run with default parameters of the historical emissions up to 2014 and the ssp245
emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020). The default settings for the model have qbmb as
the forcing scaling for biomass burning aerosols set to zero; hence, the BMB_AEROS forcing time series is zero throughout.
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Figure A9. Default temperature change since 1750 output plot for a run with default parameters of the historical emissions up to 2014 and
the ssp245 emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020).

Figure A10. Default output plot of ocean heat content change since 1750 for a run with default parameters of the historical emissions up to
2014 and the ssp245 emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020).
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Figure A11. Default plot of radiative imbalance change since 1750 for a run with default parameters of the historical emissions up to 2014
and the ssp245 emission year 2014 to the end of the year 2020 – all from RCMIP (Nicholls et al., 2020).
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Appendix B: Natural emission estimates for CH4 and
N2O

CH4 and N2O both have considerable natural emission con-
tributions (Saunois et al., 2020; Tian et al., 2020). In the
model, the time series of these can be fed as separate files
or dataset time series to the model instance. If not sent, a
flat natural emission value from the gaspam_file will be sent.
However, using a flat natural emission time series will rarely
give a good match to observed concentrations, so the model
also comes with a preprocessing script to generate a natu-
ral emission time series. Using a precalculated time series
from a different model setup, or input dataset, will lead to
different fits to the concentration time series for both com-
ponents. But a finely tuned input time series will also make
the calculation of the emissions to the concentration for these
species superfluous, as the natural emissions are constructed
to fit whatever is missing from the anthropogenic distribu-
tion, and the run will effectively be concentration-driven for
these components.

In the Fortran version, the method for calculating the nat-
ural emission time series used a calibration-per-time-step
method that iterated and adjusted the natural emissions from
the previous step by 5 % until the concentration matched with
< 5 % discrepancy. As we know that we have an exact solu-
tion for converting emissions to concentrations in each time
step, we can solve the equation exactly for the missing emis-
sions in each time step for a much more efficient, though
somewhat more noisy, solution. Both options are available
as options from the precalculate_natural_emissions.py script
in the scripts/prescripts subfolder. When the historical data
finish, the future value of natural emissions is, however, as-
sumed constant with a value that is the mean of the last 11
values. Figure A1 shows these estimates from CMIP6 (Smith
et al., 2021b) concentration data, as used throughout this arti-
cle, alongside the input anthropogenic emissions and the flat
emissions from the default gaspam_file.

For CH4, the amount of estimated natural emissions will
vary significantly with the choice of lifetime mode, as the
natural emissions are effectively masking over whatever is
needed to make up the expected concentration time series.
For now, this means that when running the model with es-
timated natural emissions, we are effectively only modeling
CH4 and N2O forcing from concentrations in the historical
period. The choice of lifetime mode may play a much larger
part when natural emissions are unknown and estimated us-
ing a flat background value or a flat mean as the script cal-
culates for the future. Figure A2 shows how the lifetime of
CH4 evolves using different lifetime modes. It also displays
how different the natural emission estimates are depending
on which lifetime mode is chosen.
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Figure B1. Time series of the estimated natural emission and anthropogenic input emissions for the historical and the ssp245 scenario for
CH4 and N2O. The old data are data constructed using the method used to make natural emissions for the Fortran model. The ode method is
using a script that is included with the Python version and is reliant on the exact solution. In both cases, the “TAR” lifetime mode for CH4 is
used for the estimates. The flat background is the flat natural emission value from the gaspam_file (Table 3).

Figure B2. CH4 lifetime time series with different lifetime modes in the ssp245 scenario in panel (a). In panel (b), the corresponding
estimated lifetime emissions are made to match the concentration time series throughout the span of the experiment. The time series of the
anthropogenic emissions is also shown.
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Appendix C: Upwelling diffusion model equations

The equations used to describe the how energy is exchanged
through the ocean system can be found in Appendix B in
Schlesinger et al. (1992). They consist of differential equa-
tion sets for each of the layers in the ocean, accounting for
all processes transporting heat in and out of the layer in
each hemisphere. The equation for each hemisphere is com-
pletely symmetrical, so we will state only the equations for
the Northern Hemisphere here for simplicity. The equations
include terms relating to heat transfer between the hemi-
spheres, and these terms are even included in the code and
scaled by the atmospheric interhemispheric heat exchange
parameter βa (ebbeta). However, we will omit these terms
here, as the equations simplify without them, and the param-
eter is mostly not used.

In the mixed (uppermost) ocean layer, the equation reads

γN ρc1z1
δT1
δt
= q − λT1+ 2γNρcpκ

T2− T1
1z2

+ γNρcpW (T1− TP)− γNβo
(
T1− T1,S

)
, (C1)

where γN = σN+
λ
λa,o

, with σN as the Northern Hemisphere
ocean fraction (foan), λa,o (rlamdo) as the air–sea heat ex-
change parameter, and λ as the equilibrium climate sensitiv-
ity divided by 2xCO2 radiative forcing (see Table 4 for de-
tails and units). Both temperature and forcing values denote
changes from the temperature and forcing at the start of the
model run rather than absolute temperatures. Subscript num-
bers denote the ocean layer number, counted from the top, so
layer 1 is the mixed layer. All quantities are the versions of
the quantities in the Northern Hemisphere non-polar ocean
unless otherwise specified. T1,S is the temperature in the
Southern Hemisphere, and TP is the Northern Hemisphere
polar ocean temperature that is assumed to change accord-
ing to B8 in Schlesinger et al. (1992), i.e., just following the
change in the main ocean temperature mixed layer times 5
(the cpi parameter in Table 4).

Tp = 5 · T1 (C2)

q is the Northern Hemisphere forcing (in W m−2), ρ is the
seawater density (1030 kg m3), cp is the specific heat ca-
pacity of seawater (3.997× 103 J kg−1 K−1), and 1zl is the
height of layer l in meters. κ is the vertical heat diffusiv-
ity (akapa), βo is the oceanic interhemispheric heat exchange
rate (beto), and W is the upwelling rate. These three are tun-
able parameters (see Table 4 for details and units). Finally,
when the parameter threshtemp is non-zero, the upwelling
rate W , is not equal to the parameter W in Table 4, but it is
rather given as

W = WTable 4 ·

(
1−

10
3
·
T1

Tthres

)
; (C3)

that is, the threshtemp parameter is the mixed-layer temper-
ature change at which the upwelling velocity decreases by

30 %. This decrease in the upwelling velocity was not in-
cluded in the model described in Schlesinger et al. (1992)
but is an update based on the work of Raper et al. (2001).

To simplify the equations, atmospheric transport between
the hemispheres is assumed to be zero in this derivation,
though it is included in the code, and its strength is controlled
by the parameter ebbeta (βa).

The left-hand side represents the rate of change in the en-
ergy in the mixed layer, where the γN factor accounts for
heat exchange between the ocean and the atmosphere (and
when βa is included also with atmospheric interhemispheric
heat exchange). Examining the terms on the right-hand side,
they represent radiative forcing, then the temperature long-
wave radiation and climate feedback, then the vertical diffu-
sion heat transport to the layer below, then the vertical ad-
vective heat transport into the polar ocean, and, finally, the
interhemispheric heat transport. The polar ocean temperature
is assumed to be 5T1 throughout.

For all internal ocean layers, the equation is

ρcp1zk
δTk

δt
= ρcp

[
2κ

Tk+1− Tk

(1zk +1zk+1)
+W · Tk+1

]
− ρcp

[
2κ

Tk − Tk−1

(δ1zk +1zk−1)
+W

· (δTk + (1− δ)Tk−1)
]
− βo

(
Tk − Tk,S

)
. (C4)

Here, we have the rate of change in the energy per area in the
layer on the left, diffusion and advection with the layer below
first and then diffusion and advection with the layer above,
and, finally, the interhemispheric heat transport across the
horizontal boundary. The δ value in the denominator of the
diffusion term and in the second advection term is zero for
the uppermost of the layers and one otherwise. In the equa-
tion for the Southern Hemisphere, this last term will also be
scaled by the ratio between the two ocean surfaces to en-
sure that an equal amount of heat is accounted for, as seen
from both hemispheres. Note also that in the original formu-
lation in Schlesinger et al. (1992), the advection terms did
not depend on the temperature in the layer from which the
advection came; i.e., they were not dependent on the form
given here of ρcp ·W ·Tk+1 and ρcp ·W ·Tk but rather on the
average temperature between the layer from which the ad-
vection came and the one it advected into, i.e., on the form
ρcp ·W

Tk+1+Tk
2 and ρcp ·W

Tk−1+Tk
2 . The same was true for

the advection out of the bottom layer (see Eq. C5).
For the ocean bottom layer L, the equation reads

ρcp1zL
δTL

δt
= −ρcp

[
2κ

TL− TL−1

(1zL+1zL−1)
+W · TL

]
+ ρcpWTP− βo

(
TL− TL,S

)
, (C5)

where there is no longer any heat transported from the layer
below. As there is none, however, we also account for the
transport of heat from the bottom of the polar ocean and
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transport to the Southern Ocean. In other words, in the
model, heat is transferred into the polar ocean at the top and
transported back from it at the bottom layer.

Now, for the solution of this equation set in the code, the
solution involves a separation of terms. First for the forc-
ing, interhemispheric heat exchange terms, and polar heat
exchange terms, a simple forward Euler solution, δTk (t)≈
Tk (t)− Tk(t − 1), is employed in gathering all these terms
in one and solving for them in all layers first. These are
then added to the equations and can be viewed as constant
terms in the further differentiation. Then the climate feed-
back, diffusion, and advection terms are combined in a back-
ward implicit Euler calculation. That is to say, the equations
are solved, assuming all these terms are given for the current
time step, and we solve the equations for them.

We rewrite the top layer in Eq. (C1) as

γN ρcp1z1
δT1

δt
= q − λT1+ 2γNρcpκ

T2− T1

1z2

+ γNρcpW (T1− TP)

− γNβo
(
T1− T1,S

)
(C6)

γNρcp1z1
T1 (t)− T1 (t − 1)

dt
− 2γNρcpκ

T2− T1

1z2

− γNρcpWT1 = q − λT1− γNρcpW5T1−

γNβo
(
T1− T1,S.

)
(C7)

Unless otherwise stated, the left-hand side (LHS) is time t ,
and the right-hand side (RHS) is time t − 1. Dividing by
γN ρcp1z1

dt ,

T1 (t)− T1 (t − 1)−
2κdt

1z11z2
(T2− T1)−

Wdt
1z1

T1

=
qdt

γN ρcp1z1
−

λdt
γN ρcp1z1

T1−
W5dt
1z1

T1

−
βodt

ρcp1z1

(
T1− T1,S

)
(C8)(

1+
λdt

γN ρcp1z1
+

2κdt
1z11z2

−
Wdt
1z1

)
T1

−
2κdt

1z11z2
T2 =

(
1−

W5dt
1z1

−
βodt

ρcp1z1

)
T1

+
βodt

ρcp1z1
T1,S+

qdt
γN ρcp1z1

. (C9)

Note that, for shorthand, LHS is time t , and RHS is time t−1.
The equation set can, in principle, be written in this way

for the various layers:

b1T1+ c1T2 = d1, akTk−1+ bkTk + ckTk+1 = dk,

aLTL−1+ bLTL = dL. (C10)

In the code, we go through the equations and find the co-
efficients ak , bk , and ck . The dk terms are the results of the
forward-Euler solution for the horizontal transport. This now

defines a banded matrix problem and can be solved using a
suitable banded matrix solver.

Following this approach, the coefficients a1, b1, and d1 are

b1 = 1+
λdt

γN ρc1z1
+

2κ dt
1z11z2

−
W dt
1z1

,

c1 =−
2κ dt
1z11z2

,

d1 =

(
1−

5Wdt
1z1

−
βodt

ρcp1z1

)
T1 (t − 1)

+
βodt

ρcp1z1
T1,S (t − 1)+

q dt
γNρcp1z1

, (C11)

where q is now the mean forcing over the preceding year.
Performing similar transformations to those for the top

layer in Eq. (C4), the coefficients for the internal layers ak ,
bk , ck , and dk become

ak =−
2κ dt

1zk (δ1zk +1zk−1)
+ (1− δ)

W dt
1zk

,

bk = 1+
2κ dt

1zk (1zk−1+ δ1zk)

+
2κ dt

1zk (1zk+1+ 1zk)
+ δ

W dt
1zk

,

ck =−
2κ dt

1zk(1zk+1+ 1zk)
−
W dt
21zk

,

dk =

(
1−

βodt
ρcp1zk

)
Tk (t − 1)

+
βodt

ρcp1zk
Tk,S (t − 1) , (C12)

where δ in the expression for ak , and bk is zero for the second
layer and one otherwise.

And for the bottom layer (from Eq. C5),

aL =−
2κ dt

1zL(1zL+1zL−1)
,

bL = 1+
2κ dt

1zL(1zL+1zL−1)
+
W dt
1zL

, cL = 0,

dL =

(
1−

βodt
ρcp1zL

)
TL (t − 1)

+
βodt

ρcp1zL
TL,S (t − 1)+

5Wdt
1zL

T1 (t − 1) . (C13)

Code availability. The Python code is openly available on GitHub
at https://github.com/ciceroOslo/ciceroscm (last access: 23 August
2024), with a Zenodo DOI for the version used here at https://doi.
org/10.5281/zenodo.10548720 (Sandstad et al., 2024).

The Fortran version of the code is not open-source as such,
but executable versions for various operating systems are avail-
able as part of the openscm runner framework at https://github.com/
openscm/openscm-runner (Nicholls et al., 2024).

Geosci. Model Dev., 17, 6589–6625, 2024 https://doi.org/10.5194/gmd-17-6589-2024

https://github.com/ciceroOslo/ciceroscm
https://doi.org/10.5281/zenodo.10548720
https://doi.org/10.5281/zenodo.10548720
https://github.com/openscm/openscm-runner
https://github.com/openscm/openscm-runner


M. Sandstad et al.: CICERO-SCM simple climate model 6621

Data availability. RCMIP (Nicholls et al., 2020) input data used
for running the models and most plots are available from https:
//gitlab.com/rcmip/rcmip (last access: 27 August 2024), with a Zen-
odo DOI at https://doi.org/10.5281/zenodo.4016613 (Nicholls and
Gieseke, 2019).

The model output has also been compared with forcing and
temperature output from the IPCC AR6 Chapter 7 (https://
doi.org/10.5281/zenodo.5211358, Smith et al., 2021a), together
with HadCRUT temperature data (https://catalogue.ceda.ac.uk/
uuid/b9698c5ecf754b1d981728c37d3a9f02/, Met Office Hadley
Centre et al., 2020; Morice et al., 2021) and GCOS ocean
heat content data (https://doi.org/10.26050/WDCC/GCOS_EHI_
1960-2020_OHC_v2, von Schuckmann et al., 2023b), which are all
openly available datasets.
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