
Geosci. Model Dev., 17, 6529–6544, 2024
https://doi.org/10.5194/gmd-17-6529-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Refactoring the elastic–viscous–plastic solver from the sea ice model
CICE v6.5.1 for improved performance
Till Andreas Soya Rasmussen1, Jacob Poulsen2, Mads Hvid Ribergaard1, Ruchira Sasanka2, Anthony P. Craig4,
Elizabeth C. Hunke3, and Stefan Rethmeier1

1Danish Meteorological Institute, Sankt Kjelds Plads 11, 2100 Copenhagen, Denmark
2Intel Corporation, 2200 Mission College Blvd., Santa Clara, CA, 95054-1549, USA
3MS-B216, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
4Science and Technology Corporation, Seattle, WA, 98105, USA

Correspondence: Till Andreas Soya Rasmussen (tar@dmi.dk)

Received: 6 March 2024 – Discussion started: 9 April 2024
Revised: 7 July 2024 – Accepted: 10 July 2024 – Published: 2 September 2024

Abstract. This study focuses on the performance of the
elastic–viscous–plastic (EVP) dynamical solver within the
sea ice model, CICE v6.5.1. The study has been conducted in
two steps. First, the standard EVP solver was extracted from
CICE for experiments with refactored versions, which are
used for performance testing. Second, one refactored version
was integrated and tested in the full CICE model to demon-
strate that the new algorithms do not significantly impact the
physical results.

The study reveals two dominant bottlenecks, namely
(1) the number of Message Parsing Interface (MPI) and Open
Multi-Processing (OpenMP) synchronization points required
for halo exchanges during each time step combined with the
irregular domain of active sea ice points and (2) the lack of
single-instruction, multiple-data (SIMD) code generation.

The standard EVP solver has been refactored based on two
generic patterns. The first pattern exposes how general finite
differences on masked multi-dimensional arrays can be ex-
pressed in order to produce significantly better code gener-
ation by changing the memory access pattern from random
access to direct access. The second pattern takes an alterna-
tive approach to handle static grid properties.

The measured single-core performance improvement is
more than a factor of 5 compared to the standard implemen-
tation. The refactored implementation of strong scales on the
Intel® Xeon® Scalable Processors series node until the avail-
able bandwidth of the node is used. For the Intel® Xeon®

CPU Max series, there is sufficient bandwidth to allow the
strong scaling to continue for all the cores on the node, re-

sulting in a single-node improvement factor of 35 over the
standard implementation. This study also demonstrates im-
proved performance on GPU processors.

1 Introduction

Numerical models of the Earth system and its components
(e.g., ocean, atmosphere, and sea ice) rely heavily on high-
performance computers (HPCs; Lynch, 2006). When the
first massively parallel computers emerged, steadily increas-
ing CPU speeds improved performance sufficiently to sup-
port a faster time to the solution, higher resolution, and im-
proved physics. However, over the past decade, improved
performance has originated from an ever increasing number
of cores, each supporting an increasing number of single-
instruction, multiple-data (SIMD) lanes. Thus, for codes to
run efficiently on today’s hardware, they need to have excel-
lent support for threads and efficient SIMD code generation.

Earth system model (ESM) implementations often use
static grid properties that are computed once and either car-
ried from one subroutine to the next in data structures or
accessed from global data structures. It makes sense from a
logical perspective to not recompute the same thing over and
over. Historically, floating-point operations have been expen-
sive, and therefore, this also made sense from a compute per-
formance perspective. Modern hardware has changed, and
memory storage, particularly the bandwidth to memory, is
now the scarce resource. Compared with floating-point op-

Published by Copernicus Publications on behalf of the European Geosciences Union.



6530 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

erations, it is not only scarce but also far more energy-
demanding. ESM components must be refactored to adapt
to modern hardware features and limitations.

This study focuses on the dynamical solver of CICE
(Hunke et al., 2024), a sea ice component in ESMs. In gen-
eral, the same sea ice models are used in climate models and
in operational systems with different settings (Hunke et al.,
2020). The dynamics solver in sea ice models is physically
important – it calculates the momentum equation, including
internal sea ice stresses. The dynamics equations are usually
based on the viscous–plastic (VP) model developed by Hi-
bler (1979), which has a singularity that is difficult for nu-
merical solvers to handle. Consequently, the elastic–viscous–
plastic approach was developed by Hunke and Dukowicz
(1997) and designed to solve the nonlinear VP equations us-
ing parallel computing architectures. In order to achieve a
fast and nonsingular solution, elastic waves are added to the
VP solution. The EVP solution ideally converges to the VP
solution via hundreds of iterations, which dampen the elas-
tic waves. Bouillon et al. (2013) and Kimmritz et al. (2016)
showed that the number of iterations to convergence could be
controlled and reduced, but the solver remains computation-
ally expensive. Koldunov et al. (2019) report that 550 itera-
tions are needed in order to reach convergence with the tradi-
tional EVP solver in the finite-element model, FESOM2, at a
resolution of 4.5 km. According to Bouchat et al. (2022), the
models of their intercomparison used a wide range of num-
ber of EVP subcycles from 120 to 900. Thus, while several
approaches have been proposed to reduce the number of it-
erations, some of these model systems likely do not iterate
to convergence. The motivation for using fewer subcycles is
often the performance in terms of the time to the solution.

The number of subcycles needed to converge depends on
the application, the configuration, and the resolution. Un-
fortunately, the dynamics is one of the most computation-
ally burdensome parts of the sea ice model. As an example,
timings measured for standalone sea ice simulations using
the operational model at the Danish Meteorological Insti-
tute (DMI) for 1 March 2020 show that the fraction of total
runtime used by the dynamical core increases from approx-
imately 15 % to approximately 75 % as the number of sub-
cycles increases from 100 to 1000. Similar timings for other
seasons and domains and/or a different strategy for alloca-
tion of memory will change the fractions, but there will still
be a significant increase when the number of subcycles is
increased. This motivates refactoring this part of the model
system.

Another challenge for sea ice components in global Earth
system models is load balancing across the domain, since
sea ice covers only 12 % and 7 % of the ocean’s surface and
Earth’s surface, respectively (Wadhams, 2013). In addition,
the sea ice cover varies significantly in time and space, par-
ticularly with season. This adds additional complexity, es-
pecially for regional setups, as the number of active sea ice
points varies. Craig et al. (2015) discuss the inherent load

imbalance issues and implement some advanced domain de-
compositions to improve the load balance in CICE.

This study demonstrates that the EVP model can be refac-
tored to obtain a significant speedup and that the method is
useful for other parts of the sea ice model and for other ESM
components. Section 2 presents the standard EVP solver,
the refactorization, the standalone test, and the experimental
setup. Section 3 analyzes the results, and Sect. 4 provides a
discussion of the developments and next steps, including fu-
ture work to improve CICE with the refactored EVP solver.
The integration demonstrated in this study focus on correct-
ness alone. Section 5 summarizes the conclusions.

2 The EVP solver

The aim of this study is to optimize the EVP solver of CICE
by refactoring the code. This section analyzes the existing
solver and describes improvements made in this study.

2.1 Standard implementation

The CICE grid is parallelized based on 2D blocks, includ-
ing halos required for the finite-difference calculation within
the EVP solver. Communication between the blocks is based
on the Message Parsing Interface (MPI) and/or Open Multi-
Processing (OpenMP). EVP dynamics is calculated at every
time step, and due to the nature of the finite differences, the
velocities on the halo must be updated at every subcycling
step. Input to the EVP dynamical core consists of external
forcing from the ocean and atmosphere components and in-
ternal sea ice conditions. Stresses and velocities are output
for use elsewhere in the code, such as to calculate advection.

Listing 1 provides a schematic overview of the standard
EVP algorithm, which consists of an outer convergence loop,
two inner stages (stress and stepu), and a halo swap of
the velocities. Each of the inner stages carries an inner loop
with its own trip count based on subsets of the active points.
The two inner stages within the subcycling exchange arrays
are used in the other stage. Therefore, processes or threads
must synchronize after each of the stages.

The inner stages operate on a subset of the grid points in
2D space. The grid points are classified as land points, water
points, or two types of active ice points, namely U cell points
and T cell points, labeled according to the Arakawa defini-
tion of the B grid (Arakawa and Lamb, 1977). T refers to
the cell center, and U refers to the velocity points at corners.
Land and water points are static for a given configuration.
Active points are defined by thresholds of the sea ice concen-
tration and the mass of sea ice plus snow. The result is that
the number and location of active points may change at every
time step, although they remain constant during the subcy-
cling. Most grid cells have both T and U points active, but
there are points that only belong to one of these subgroups.
For instance, there may be ice in the cell center (T ), but the

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024



T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1 6531

U point lies along a coastline and is therefore inactive. The
active sea ice points are always a subset of the water points,
changing in time during the simulation due to the change in
season and external forcing.

From a workload perspective, the arithmetic in the EVP
algorithm confines itself to short-latency operations: add,
mult, div, and sqrt. The computation intensity is 0.3
FLOP (floating-point operations per second) per byte, which
makes the workload highly bandwidth-bound. Achieving a
well-balanced workload is a huge challenge for any paral-
lel algorithm working on these irregular sets, as was rec-
ognized in earlier studies that focus on the performance of
CICE (Craig et al., 2015).

2.2 The refactored implementation

This section describes the refactored EVP solver, which was
done in two steps. The first focused on improving the core
level parallelism, and the second step focused on improving
the node level parallelism. The intention of the first step was
to establish a solid, single-core baseline before diving into
the thread parallelism of the solver.

2.2.1 Single-core refactorization

An important part of the refactorization is changing memory
access patterns to reduce the memory bandwidth pressure
at the cost of additional floating-point operations. Listing 2
shows a snippet of the standard code (v0) before the first
refactorization. The code fragment reveals a classical finite-
difference pattern that is similar to the refactorization pattern
shown in Chap. 3 of Jeffers and Reinders (2015). The chal-
lenge is that compilers see the memory access pattern caused
by indirect addressing as random memory access and will
consequently refrain from using modern vector (SIMD) in-
structions in their code generation.

The refactored EVP code is shown in Listing 3. The new
solver introduces 1D structures in the place of the original
2D structures, with additional indexing overhead to track the
neighboring cells required by the finite-difference scheme.
This change allows the compiler to see the memory access
pattern as mostly direct addressing, with some indirect ad-
dressing required for accessing states in neighboring cells.
The compiler will consequently be able to generate SIMD in-
structions for the loop and will handle the remaining indirect
addressing with SIMD gathering instructions. The ratio of
indirect / direct memory addressing is 10 %–20 %, depend-
ing on which of the two EVP loops is considered. For the
Fortran programmer, the two fragments look almost identi-
cal, but for the Fortran compiler, the two fragments look very
different, and the compiler will be able to convert the latter
fragment straight into an efficient instruction set architecture
(ISA) representation. The change in data structures from 2D
to 1D is the only difference between v0 and v1. The compu-
tational intensity of a loop iteration of v0 and v1 is identical.

CICE utilizes static grid properties which are computed
once during initialization and then re-used in the rest of the
simulation. As discussed in the introduction, a sensible strat-
egy reduces bandwidth pressure by adding more pressure on
the floating-point engines while reducing memory storage.
Our final refactored versions (v2*) have substituted seven
static grid arrays with four static base arrays, together with
some runtime computations of local scalars, thus deriving all
seven original arrays as local scalars; see Listing 4 that shows
how the arrays cxp and cyp are derived. The v2* versions
are further discussed in Sect. 2.2.2.

2.2.2 Single-node refactoring – OpenMP and OpenMP
target

The existing standard parallelization operates on blocks of
active points and elegantly uses the same parallelism for
OpenMP and MPI, providing flexibility to run hybrid. It
allows for a number of different methods to distribute the
blocks onto the computed units to meet the complexity of the
varying sea ice cover. There is no support for GPU offload-
ing in the standard parallelization. The refactored EVP ker-
nel demonstrates support for GPU offloading and showcases
how this can be done in a portable fashion when confined to
open standards. The underlying idea in the OpenMP paral-
lelization is twofold. First, we want to make the OpenMP
synchronization points significantly more lightweight than
the current standard implementation. The OpenMP synchro-
nization points in the existing implementation involve ex-
plicit memory communication of data in the blocks used for
parallelization. The proposed OpenMP synchronization only
requires an OpenMP barrier to ensure cache coherency and
no explicit data movement. Second, we want to increase the
granularity of the parallelization unit from blocks of active
points to single active points, which will allow better work-
load balance and scaling when the number of cores is in-
creased.

Keeping the dependencies between the two stages in mind,
we have two inner loops that can be parallelized. We must
take into account that the T cells and U cells may not be iden-
tical sets, and we cannot even assume that one is included
in the other. However, it is fair to assume that the differ-
ence between the T and U sets of active points is negligible,
and instead of treating the two sets as totally independent,
we take advantage of their large overlap. Treating the two
loops with the same trip count helps the performance tremen-
dously, both in terms of cache and in terms of non-uniform
memory access (NUMA) placement. This requires some ad-
ditional overhead in the code to skip the inactive points in the
T and U loops.

The OpenMP standard published by OpenMP Architec-
ture Review Board (2021) provides several options, and later
Fortran standards (Fortran 2008 and Fortran 2018) also pro-
vide an opportunity to express this parallelism purely within

https://doi.org/10.5194/gmd-17-6529-2024 Geosci. Model Dev., 17, 6529–6544, 2024



6532 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

Listing 1. A schematic view of the subcycling of the EVP algorithm.

Listing 2. Fragment showing finite-difference dependencies in the standard version of EVP (v0).

Fortran. For OpenMP, we can do this either in an outlined
fashion (see Listing 5) or in an inlined fashion (see Listing 6).

An alternative approach avoids explicit OpenMP runtime
scheduling, using OpenMP instead as short-hand notation for
handling the spawning of the threads and then manually do-
ing the loop-splitting, as illustrated in Listing 7. We refer to
this approach as the single-program, multiple-data (SPMD)
approach (Jeffers and Reinders, 2015; Levesque and Vose,
2017). In addition to its simplicity, this approach has the ad-
vantage that we can add balancing logic to the loop decom-
position, accounting for the application itself and its data. For
the sake of completeness, we also parallelize the EVP solver
using the newer taskloop constructs available in OpenMP
(see Listing 8).

A pure Fortran approach is available with the newer
do-concurrent (see Listing 9), and here we may use
compiler options to target either the CPU or GPU offload-
ing.

2.3 Test cases

Figure 1 shows the three domains used to test the refactor-
ized EVP solver. Figure 1a is the operational sea ice model
domain at DMI (Ponsoni et al., 2023), and Fig. 1b is the
Regional Arctic System Model (RASM) domain (Brunke
et al., 2018). Both domains cover the pan-Arctic area. These
two systems are computationally expensive and are there-
fore used to analyze, demonstrate, and test the performance
of the new EVP solver. Tests are based on restart files from
winter (1 March) and summer (1 September), where the ice
extent is close to its maximum and minimum, respectively.
All performance results shown in this work originate from
the RASM domain, which has the most grid points. Neither
of these model systems includes boundary conditions, which
simplifies the problem.

The gx1 (1°) domain shown in Fig. 1c and d is included to
test algorithm correctness and updates to the cyclic boundary

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024



T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1 6533

Listing 3. Fragment showing finite-difference dependencies in the refactored version of EVP (v1-simd).

Listing 4. Fragment showing finite-difference dependencies in the refactored version of EVP (v2).

Listing 5. Fragment showing outlined OpenMP parallelization of
EVP (omp-outline).

conditions. In addition, gx1 is used for testing the numeri-
cal noise level for long runs using optimized flags within the
CICE test suite. It is not used to evaluate the performance
because MPI optimization is beyond the scope of this paper.

The number of grid points and their classification are listed
in Table 1. Figure 1 indicates and Table 1 highlights that most
grid points have both T and U points active, confirming our
assumption about the design of the refactored EVP solver.
However, there are cases in which a grid point can have either
a T or a U grid point active.

It is clear from Fig. 1 that the variation in the active sea
ice points is significant between winter and summer. Table 1
quantifies the variation in the different categories of grid
cells. The number of active grid cells varies for the two pan-
Arctic domains and is approximately half in summer com-
pared to winter. The minimum and maximum sea ice extent
is expected in mid-September and mid-March, respectively.
A sinusoidal variation is expected in the period between the
minimum and the maximum for the two pan-Arctic domains.
The variation is smaller in the global domain, as Antarctica
has the maximum number of active points when Arctic is at
its minimum, and vice versa. These variations can impact the

https://doi.org/10.5194/gmd-17-6529-2024 Geosci. Model Dev., 17, 6529–6544, 2024



6534 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

Listing 6. Fragment showing traditional inlined (and OpenMP offloading) OpenMP parallelization of EVP (omp-inline).

Listing 7. Fragment showing SPMD OpenMP parallelization of EVP (omp-SPMD).

strategy for the allocation of memory, as one goal is to reduce
the memory usage.

Variation in the sea ice cover complicates load balancing
when multiple blocks are used. The new implementation of
the 1D solver automatically removes all land points and also
allows the OpenMP implementation to share memory with-
out synchronization between halos, as opposed to the original
2D OpenMP implementation within CICE.

2.4 Test setup

The performance results in this study are based on a unit test
that only includes the EVP solver and not the rest of CICE.
Inputs are extracted from realistic CICE runs just before the

subcycling of the EVP solver. Validation of the unit test is
based on output extracted just after the EVP subcycling. The
refactorizations have been tested in three stages (v0, v1, and
v2), as described below).

v0 Standard EVP solver.

v1 Single-core refactoring of the memory access patterns
used in the EVP solver.

v2 Single-node refactoring illustrating four different
OpenMP approaches and one pure Fortran 2018
do-concurrent approach, including conversion
from pre-computed grid arrays to scalars recomputed at
every iteration.

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024



T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1 6535

Table 1. Number of points for the four test domains, with the total number of grid points excluding boundaries, the number of water points,
the number of active T and U points (∩), and the number of active T or U points (∪) in winter and summer.

Domain Total Water Ice winter Ice summer

T ∩U T ∪U T ∩U T ∪U

DMI-NAAg 1 662 465 1 000 954 606 797 624 830 290 171 299 148
RASM 14 745 600 9 314 922 2 762 746 2 822 197 1 510 341 1 549 195
gx1 122 880 86 354 10 182 11 479 10 782 11 515

Listing 8. Fragment showing the newer OpenMP taskloop paral-
lelization of EVP (omp-taskloop).

Unit tests were conducted with different compiler flag op-
timizations ranging from very conservative to very aggres-
sive, where v0 is the baseline, and the performance of v1
and v2 has been compared to this. A weak scaling feature
has also been added to the standalone test in order to mea-
sure the performance at different resolutions/numbers of grid
points and to allow for full node performance tests.

The refactorization and its impact on performance has
been tested on four types of architectures (Table 2) to demon-
strate the effect of the bandwidth limitation and the perfor-
mance enhancement on CPUs and GPUs. All CPU executa-
bles were built using the Intel® Classic Fortran compiler,
and all the GPU executables were built with the Intel® For-
tran compiler from the oneAPI HPC toolkit 2023.0. All im-
plementations use only open standards without proprietary
extensions. Therefore, we expect that similar results can be
achieved on hardware from other providers than Intel.

All performance numbers reported are the average time
obtained for 10 test repetitions using omp_get_wtime().
Timings do not include the conversion from 1D to 2D, and
vice versa. For the capacity measurements, eight ensem-
ble members run the same workload simultaneously and are
evenly distributed across the full node, device, or set of de-
vices. The timing of an ensemble run is the time of the slow-
est ensemble member; we repeat the ensemble runs 10 times

and report the average. All performance experiments on the
4th Generation Intel® Xeon® Scalable Processor and Intel®

Xeon® CPU Max series are done in SNC4 mode and with
HBM only on Intel® Xeon® CPU Max series.

The GPU results indicate only the computed part and not
the usually time-consuming data traffic between the CPU and
the GPU. Because the kernel constitutes a single model time
step, most data traffic in this kernel has a one-time initializa-
tion and hence would not contribute to the computing time in
the N − 1 remaining time steps of a full simulation.

Finally, one of the v2 refactored units was integrated back
into CICE (Hunke et al., 2024). This initial integration is fo-
cused solely on correctness. Section 4 presents our proposal
of a performance-focused integration, which can be consid-
ered a refactorization at the cluster level that is on top of the
refactoring at the core and node levels reported here.

The new method does not include any new physics. There-
fore, it is important that the results remain the same. This is
verified by checking that restart output files contain “bit-for-
bit” identical results at the end of two parallel simulations,
which require identical md5sums on non-optimized code. All
tests verify this (not shown). It should be noted that the base-
line v0 cannot be run on a GPU, since the baseline code only
supports building for CPU targets. Therefore, it is not possi-
ble to cross-compare the GPU baseline results with refac-
tored GPU results. The GPU results were compared with the
refactored CPU with no expectation of bit-for-bit identical
results.

When the build of the binary executable uses more aggres-
sive compiler optimization flags, it may use operations that
produce a different final rounding-off error. It may also do
exactly the same calculations in another order, which results
in bit-for-bit differences due to the discrete representation of
real numbers. For instance, a fused multiply–add operation
has one rounding operation, whereas the same calculation
can be represented by one multiplication followed by an ad-
dition that results in two rounding operations. Such a devia-
tion does not originate from differences in the semantics dic-
tated by the source code itself, which expresses exactly the
same set of computations. The difference originates from the
ability of the compiler to choose from a larger set of instruc-
tions. For the optimized, non-bit-for-bit v2 that is integrated
into CICE, it is verified that the numerical noise is at an ac-
ceptable level with a quality control (QC) module (Roberts

https://doi.org/10.5194/gmd-17-6529-2024 Geosci. Model Dev., 17, 6529–6544, 2024



6536 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

Listing 9. Fragment showing the pure Fortran 2018 approach to parallelism (fortran-2018).

Figure 1. Three domains are used to test the new EVP solver and to verify its integration into CICE. The status of grid points from one
restart file for each of the regional domains is shown, and one winter extent and one summer extent are shown for the global domain. (a) The
DMI domain on 1 March 2020. (b) The RASM domain on 1 September 2018. (c) The gx1 domain on 1 March 2005. (d) The gx1 domain
on 1 September 2005. Black is land, blue is ocean, gray points have either active T or U points, and white points have both T and U points
active.

et al., 2018) provided with the CICE software. The CICE
QC test checks that two non-identical ice thickness results
are statistically the same, based on 5-year simulations on the
gx1 domain. The result is shown in Fig. 2. The refactored
code passes the QC test when integrated into CICE because
the noise level is lower than the test’s criterion.

3 Performance results

There are several ways to measure and evaluate computing
performance. This section focuses on evaluating the EVP
standalone kernel performance as measured by the time to
the solution on different computing nodes. The evaluation

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024



T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1 6537

Table 2. Description of the CPUs and the GPU used in this study. Hardware listed with HBM includes high-bandwidth memory. More
information can be found at https://www.intel.com/content/www/us/en/products/overview.html (last access: 27 August 2024).

Name Type

3rd Generation Intel® Xeon® Scalable Processor 72 core CPU and DDR4 memory
4th Generation Intel® Xeon® Scalable Processor 112 core CPU and DDR5 memory
Intel® Xeon® CPU Max series 112 core CPU and HBM memory
Intel® Data Center GPU Max series GPU and HBM memory

Figure 2. (a) Sea ice thickness on the Northern Hemisphere. (b) Sea ice thickness on the Southern Hemisphere. (c) Difference between CICE
using the standard EVP solver (v0) and the refactored EVP solver (v2) implemented into CICE on the Northern Hemisphere. (d) Difference
between CICE using the standard EVP solver (v0) and the refactored EVP solver (v2) implemented into CICE on the Northern Hemisphere.
All results represent 1 January 2009 after 5 years of simulation starting on 1 January 2005 and using the gx1 grid provided by the CICE
Consortium.

is split into two steps, namely single-core performance and
single-node performance.

3.1 Single-core performance

The motivation for the single-core refactorization described
in Sect. 2.2.1 is to allow the compiler to utilize vector in-
structions, also known as single-instruction, multiple-data
(SIMD) instructions, instead of confining the program to x86

https://doi.org/10.5194/gmd-17-6529-2024 Geosci. Model Dev., 17, 6529–6544, 2024

https://www.intel.com/content/www/us/en/products/overview.html


6538 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

scalar instructions for both memory accesses and math oper-
ations. The instruction sets, formally known as AVX-2 (256
bits) and AVX-512 (512 bits), constitute two newer genera-
tions of SIMD to the x86 instruction set architecture for mi-
croprocessors from Intel and AMD. Compiler options can be
used to specify specific versions of SIMD instructions, but
the compiler can only honor this request if the code itself is
SIMD vectorizable. One requirement for SIMD vectorization
is direct memory rather than random memory access.

Figure 3 shows the single-core performance of the differ-
ent EVP implementations described in Listings 2–3 and List-
ings 5–9 for the RASM domain described in Table 1. The
upstream implementation (v0) shows limited improvement
when applying either AVX-2 or AVX-512, as described in
Sect. 2. The improvement factor for the single-core refac-
torization is approximately 1.6 when SIMD instructions are
not used for building v1 and v2*. When SIMD is used,
the improvement factor increases to 3.8 for AVX2 and 5.1
for AVX512 code generation. Moreover, the SIMD improve-
ments are achieved across the different OpenMP versions.
Although all the refactored versions show the same perfor-
mance, this is not given a priori, since the intermediate code
representation given to the compiler back-end is expected to
be different for each of these representations. The refactor-
ization from 2D to 1D changes the memory access from ran-
dom to direct, allowing the compiler to use the SIMD instruc-
tions.

The results from the simulations on the single core show
that the refactorization improves the code generation and as-
sociated performance. In addition, the one-dimensional com-
pressed memory footprint is much more efficient that the
standard two-dimensional block structure, since it reduces
the memory footprint by the ratio of ice points to grid points.
For the RASM case, it amounts to a factor of 5 reduction
in winter and 10 in summer (see Table 1). Importantly, all
points in the 2D arrays used in the standard implementation
must be allocated, whereas the refactored data structure only
needs the active points allocated.

3.2 Single-node performance

Efficient node performance requires that an implementation
has both good single-core performance and good scaling
properties. The main target of this section is to describe the
performance results as measured by the time to the solu-
tion on a given node architecture. The performance diagrams
found in this section show the performance outcome when
all the cores available on the node or device are used. The
refactored code is ported to GPUs using OpenMP target of-
floading. For the capacity scaling study, this allows us to run
on hosts that support multiple GPU devices, but we have con-
fined the strong scaling study to classical OpenMP offload-
ing, which currently only supports single-device offloading
(see Raul Torres and Teruel, 2022).

In addition, single-node performance is measured accord-
ing to the relevant hardware metrics. Because the EVP
implementation is memory-bandwidth-bound, it is relevant
to compare the sustained bandwidth performance of EVP
with the well-established bandwidth benchmark STREAM
Triad (see McCalpin, 1995, and Fig. 4). The STREAM
Triad benchmark delivers a main memory bandwidth num-
ber (measured in Gb s−1) and is considered to be the practical
limit sustainable on the system being measured.

Section 3.2.1 focuses on performance results for a strong
scaling study, whereas Sect. 3.2.2 focuses on capacity scal-
ing. Single-node performance is evaluated on the architec-
tures described in Table 2. The measured performance is
compared to STREAM Triad benchmarks. This indicates
whether the algorithm utilizes the full bandwidth of the hard-
ware. Numbers are compared for usage of the full node.

3.2.1 Strong scaling

Strong scaling is defined as the ability to run the same work-
load faster using more resources. The ability to strong-scale
any workload is described by Amdahl’s law (Amdahl, 1967).

Figure 5a shows the impact of the choice of architec-
ture on the single-node performance results of the refac-
tored EVP code for the four architectures described in Ta-
ble 2. Note that the 3rd Generation Intel® Xeon® Scal-
able Processor only has 72 cores. The improvement fac-
tor between the CPUs with double-data rate (DDR)-based
memory coincides with the improvement factor obtained by
STREAM Triad (Fig. 4), which is considered the practical
achievable limit of the hardware. The improvement factor for
the two bandwidth-optimized architectures (Intel® Xeon®

CPU Max series and Intel® Data Center GPU Max series)
is less than the corresponding improvement factor obtained
by STREAM Triad. This indicates that bandwidth to mem-
ory is no longer the limiting performance factor. This finding
will be discussed further in Sect. 4.

Figure 5b shows the performance at different core counts
for the two hardware types (4th Generation Intel® Xeon®

Scalable Processor and Intel® Xeon® CPU Max series) that
are similar except for their bandwidth. The first observation
is that the performance of the HBM-based CPU is better
than that of the DDR-based CPU. The second observation is
that the DDR-based hardware performance stops improving
at approximately half the number of cores available on the
node, which prevents further scaling on that memory system.
With the HBM hardware, the code scales out to all the cores
on the node. The improvement factor differs because the sus-
tained bandwidth becomes saturated on the 4th Generation
Intel® Xeon® Scalable Processor memory. This underlines
the importance of the code refactorization to reduce the pres-
sure on the bottleneck, which, in this case, is the bandwidth.
It also illustrates that the hardware sets the limits for the po-
tential optimization.

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024



T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1 6539

Figure 3. Single-core 3rd Generation Intel® Xeon® Scalable Processor (8360y) performance for the same algorithm (EVP) implemented via
different approaches and with the build process requesting no SIMD or AVX2 and AVX512 code generation. The prefix versions v0, v1, and
v2 are defined in Sect. 2.4, and the baseline is the original implementation (v0) without SIMD generation. Each bar shows the improvement
factor compared to the baseline.

Figure 4. The figure shows the improvement factor for the STREAM Triad memory bandwidth benchmark on different hardware, indicating
what is achievable at best for solely bandwidth-bound code. From left to right, the bars are the baselines based on the 3rd Generation Intel®

Xeon® Scalable Processor, the 4th Generation Intel® Xeon® Scalable Processor, Intel® Xeon® CPU Max series, and Intel® Data Center
GPU Max series (see Table 2).

Strong scaling performance is also measured for band-
width in absolute numbers in Table 3. The absolute band-
width measurements confirm that the DDR-based memory
obtains the same bandwidth as STREAM Triad, whereas the
HBM-based CPUs do not utilize the full bandwidth.

If both the standard and the new implementations of the
EVP solver strongly scale equally well, then the node im-
provement factor should be the same as the single-core
improvement factor found in Sect. 3.1. The observed im-
provement factors of refactored versus standard EVP on the

https://doi.org/10.5194/gmd-17-6529-2024 Geosci. Model Dev., 17, 6529–6544, 2024



6540 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

Table 3. Absolute measurements of memory bandwidth for strong scaling.

Hardware name Maximum bandwidth Average bandwidth STREAM Triad
[Gb s−1] [Gb s−1] [Gb s−1]

4th Generation Intel® Xeon® Scalable Processor 490 441 493
Intel® Xeon® CPU Max series 1395 1221 1630

Figure 5. Improvement factors for the refactored EVP code (v2).
(a) Strong scaling performance when using all available cores on
one node for each of the four hardware types. Shown from left to
right are the 3rd Generation Intel® Xeon® Scalable Processor, the
4th Generation Intel® Xeon® Scalable Processor, Intel® Xeon®

CPU Max series, and Intel® Data Center GPU Max series (see Ta-
ble 2). (b) Strong scaling performance at three different core counts
for the 4th Generation Intel® Xeon® Scalable Processor and Intel®

Xeon® CPU Max series. The baseline for panels (a) and (b) is the
performance of the 3rd Generation Intel® Xeon® Scalable Proces-
sor when using all cores.

4th Generation Intel® Xeon® Scalable Processor and Intel®

Xeon® CPU Max series are 13 and 35 (not shown), respec-
tively; i.e., the new EVP solver also scales better than the

original EVP implementation on both systems. The standard
EVP code allows for multiple decompositions, which may
affect the result, but the conclusions remain the same.

3.2.2 Capacity scaling

Capacity scaling is defined as the ability to run the same
workload in multiple incarnations (called ensemble mem-
bers) simultaneously on multiple computing resources. Per-
fect capacity scaling is achieved when we can run N ensem-
ble members on N computing resources, with a performance
degradation bounded by the run-to-run variance measured
when running one ensemble member on one computing re-
source and leaving the rest of the computing resources idle.
This performance metric indicates how sensitive the perfor-
mance is to what is being executed on the neighboring com-
puting resources.

Table 4 shows the absolute numbers and the output from
the STREAM Triad test for capacity scaling. The capacity
scaling is perfect on the DDR-based systems; i.e., the vari-
ance of the timings between individual ensemble members is
similar to the variation in timings of repeated single-member
runs.

Figure 6 summarizes the capacity scaling results, high-
lighting how well the different types of hardware perform
compared to the best-known achievable bandwidth estimates,
which are based on STREAM Triad. The improvement factor
between the two DDR-based systems again coincides with
the improvement factor obtained by STREAM Triad, which
means that the performance is bandwidth-bound. The im-
provement factor for the bandwidth-optimized architectures
is somewhat less than the corresponding improvement fac-
tor obtained by STREAM Triad. This is discussed further in
Sect. 4.

HPC systems with GPUs typically host multiple devices
per node, and this is the reason that we have conducted a
multi-device experiment. The experiment shows that the per-
formance continues to increase, but the energy required to
drive a node with four GPU devices is significantly higher
than the energy required to drive the dual-socket CPU with
which we cross-compare. Our intent is not to compare the
CPUs and GPUs directly because other elements such as en-
ergy or price should be considered.

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024



T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1 6541

Table 4. Absolute measurements of memory bandwidth for capacity scaling.

Hardware name Maximum Average STREAM Triad
[Gb s−1] [Gb s−1] [Gb s−1]

4th Generation Intel® Xeon® Scalable Processor 481 477 493
Intel® Xeon® CPU Max series 1421 1280 1630

Figure 6. Capacity scaling performance of the refactored EVP unit test, normalized to the 3rd Generation Intel® Xeon® Scalable Processor
(3rd Generation 8360y) node baseline, which sustains the same bandwidth as STREAM Triad. The figure also illustrates how much using
one, two, or four GPU devices per node matters to the collected node throughput.

4 Discussion

These results demonstrate a refactorization of the EVP solver
within CICE that takes full advantage of modern CPUs and
GPUs. All performance tests are based on an EVP solver unit
test, as described in Sect. 2.4. The new implementation is
easy to adapt to an unstructured grid, although it is imple-
mented here on a structured grid. There were choices both
in the refactorization of the EVP solver and in its integration
into CICE, which are discussed in this section.

The new single-core SIMD parallel performance and the
new single-node OpenMP parallel performance are evalu-
ated in the previous sections. Based on comparisons with
STREAM Triad, the refactored code reaches the peak band-
width performance of the two DDR-based memory systems,
but the peak bandwidth of the HBM-based system is not
reached. On the Intel® Xeon® CPU Max series with HBM
running in HBM-only mode, we reached≈ 80 % of the prac-
tical peak bandwidth. This result is consistent for both ca-
pacity scaling and strong scaling. Although the improvement
factor is the same for both types of scaling, the reasons for
the performance gap are quite different. The strong scaling
gap for the Intel® Xeon® CPU Max series CPU is solely due
to limitations in the algorithm and data set, where there is an
inherent imbalance.

The capacity scaling issue is that the hardware enforces
a lower frequency (both core and uncore) to ensure that it
does not overheat when all NUMA domains operate simul-
taneously. A drop in the core frequency results in a slowing
down of the computations. In addition, the reduction in the
uncore frequency causes higher memory latency. STREAM
Triad does not include the effects enforced by the hardware.
For this reason, the STREAM Triad benchmark is too simple
for the bandwidth-optimized CPU.

The first integration step described in this study uses the
current infrastructure within CICE and focuses solely on cor-
rectness, not on the performance, in order to establish a solid
foundation for future work. For instance, the implementa-
tion utilizes existing gathering/scattering methods to convert
some of the arrays from 1D and 2D global to a 3D block
structure (and vice versa), which is used for parallelization
in the rest of the CICE code. It would be better to convert
the 1D arrays directly to the block structure (1D to 3D). The
number of calls to gathering/scattering methods could also
be reduced. The ideal solution would be for all spatial quan-
tities to only exist as 1D vectors; most EVP loops are already
geared towards this, as they loop in 1D space with pointers to
the two indices used in the array allocation. The halo swaps
could be re-introduced directly on the new 1D data structures
using MPI-3 neighborhood collectives.

https://doi.org/10.5194/gmd-17-6529-2024 Geosci. Model Dev., 17, 6529–6544, 2024



6542 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

A major performance challenge within the standard EVP
solver is the set of halo updates required at every EVP sub-
cycle since each halo update introduces an MPI synchroniza-
tion. Better convergence is achieved when the number of sub-
cycles increases, but this also linearly increases the number
of MPI synchronizations. The goal is to improve the perfor-
mance of the full model; therefore, the number of synchro-
nizations must be reduced.

The initial integration of the refactored EVP code into
CICE only allows MPI synchronizations at the time step
level. This prevents CICE from being split into subcompo-
nents, as suggested below, and it requires the same number
of threads for the refactored EVP as for the rest of CICE.
The refactored EVP will consequently only be able to uti-
lize a single MPI task, leaving the remaining MPI tasks idle.
This is obviously a very inefficient integration that retains the
observed scaling challenge at the cluster level.

To improve the initial integration performance and to
cope with the underlying challenges, an alternative approach
is suggested that leverages multiple-program, multiple-data
(MPMD) parallelization (Mattson et al., 2005). This allows
heterogeneous configurations, where the EVP solver could
run on separate hardware resources and/or utilize different
parallelization strategies (e.g., pure MPI, hybrid OpenMP–
MPI, and hybrid OpenMP–MPI running OpenMP offload-
ing) relative to the rest of the model. If a time lag is imple-
mented between the two components, then they could run
concurrently. This approach is also beneficial for the perfor-
mance of the rest of the model, as it relieves the model from
carrying EVP state variables and prevents flushing the cached
EVP state at every time step. It would also allow runs of sev-
eral EVP ensemble members on a single node, thereby serv-
ing a set of model ensemble members each running on their
own set of nodes. Also, it would be easier to integrate the
new EVP component into other modeling systems because it
will have a pure-MPI interface.

The MPMD pattern is generally used by ESM communi-
ties for load-balancing coupled model systems, e.g., where
the ocean and the sea ice model run on different groups of
the cores or nodes (e.g., Ponsoni et al., 2023; Craig et al.,
2012). Sometimes MPMD is used internally within systems
for input/output (I/O) (e.g., the ocean model, NEMO; Madec
et al., 2023). To the best of our knowledge it is not common
to use the MPMD pattern for model subcomponents beyond
I/O handling, nor is it common for it to support heteroge-
neous systems.

This new implementation of the EVP solver within CICE
includes a strategy involving how to allocate data. The strat-
egy selected for this integration is to allocate all ocean points
and then check whether or not they are active within the cal-
culations. For the domains in this study, this strategy induces
a large overhead, since there are many ocean points that are
never active (see Table 1). However, this behavior is domain-
specific and will be very different for different setups. A sec-
ond strategy could be to reallocate all 1D vectors at every

time step and only allocate the active points. This induces an
overhead for reallocating at every time step, but it reduces the
memory usage. An alternative, intermediate method would
be to only reallocate when the number of active points in-
creases above what has been allocated. We propose this last
strategy for the final MPMD-based MPI refactoring in CICE.

5 Conclusions

This study analyzed the performance of the EVP solver ex-
tracted from the sea ice model (CICE) and found perfor-
mance challenges with the standard parallelization options
at the core, node, and cluster levels. An evaluation of the
refactorized solver demonstrates significant performance and
memory footprint improvements.

The refactored EVP code improved performance by a fac-
tor of 5 compared to the original version when one core is
used on the 3rd Generation Intel® Xeon® Scalable Processor.
This improvement is primarily the result of a change in the
memory access patterns from random to direct, which allows
the compiler to utilize vector instructions such as SIMD.
When using 112 cores (full node), the improvement factor
on the 4th Generation Intel® Xeon® Scalable Processor is
13, and on the Intel® Xeon® CPU Max series it is 35. The
study showed that the limiting performance factor for EVP
on traditional CPUs is the memory bandwidth. This is the
main difference between the two types of hardware and the
main reason for the difference in performance on a full node.

The refactored version is capable of sustaining the
STREAM Triad bandwidth (practical peak performance) on
the CPUs within this study that is based on DDR-based mem-
ory. For strong scaling on the Intel® Xeon® CPU Max series,
only 80 % of the bandwidth was used due to imbalances in
the algorithm and the data sets. Finally, GPUs deliver higher
memory bandwidth than CPUs, so we also ported the new
implementation to nodes with GPU devices. All CPU and
GPU performances were achieved solely using open stan-
dards, OpenMP, and oneAPI in particular.

The single-node improvements were integrated into the
CICE model to check simulation correctness. Our next step
will be to improve the integrated code, focusing on full model
performance for both CPUs and GPUs.

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024



T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1 6543

Appendix A: Abbreviations

CICE The Los Alamos sea ice model
DMI Danish Meteorological Institute
DDR Double-data rate
ESM Earth system model
EVP Elastic–viscous–plastic
HBM High-bandwidth memory
MPMD Multiple program, multiple data
NUMA Non-uniform memory access
QC Quality control
RASM Regional Arctic system model
SIMD Single instruction, multiple data
SPMD Single program, multiple data
VP Viscous–plastic

Code and data availability. The source code for the
standalone EVP units and test can be found at
https://doi.org/10.5281/zenodo.10782548 (Rasmussen
et al., 2024b). Input data for these are found at
https://doi.org/10.5281/zenodo.11248366 (Rasmussen et al.,
2024a). The CICE v6.5.1 code used for the QC test can be
found at https://doi.org/10.5281/zenodo.11223920 (Hunke
et al., 2024). Data sets for the QC runs can be found at https:
//github.com/CICE-Consortium/CICE/wiki/CICE-Input-Data
(last access: 1 July 2024), using the following DOIs:
https://doi.org/10.5281/zenodo.5208241 (CICE Consortium,
2021), https://doi.org/10.5281/zenodo.8118062 (CICE Consor-
tium, 2023), and https://doi.org/10.5281/zenodo.3728599 (CICE
Consortium, 2020).

Author contributions. JP contributed the main idea and effort of
refactoring the EVP code, with input from TASR, MHR, and RS.
APC provided the RASM test configuration. TASR integrated the
refactored EVP with support from JP, MHR, APC, SR, and ECH.
TASR and JP wrote the paper with input from all other co-authors.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We would like to thank the anonymous re-
viewers for their useful comments and input.

Financial support. The study has been funded by the Danish State
through the National Center for Climate Research (NCKF) and the
Nordic council of Ministers through the NOrdic CryOSphere Dig-
ital Twin (NOCOS DT) project (grant no. 102642). Elizabeth C.
Hunke has been supported by the U.S. Department of Energy, Office
of Biological and Environmental Research, Earth System Model
Development program. Anthony P. Craig has been funded through a
National Oceanic and Atmospheric Administration contract in sup-
port of the CICE Consortium.

Review statement. This paper was edited by Xiaomeng Huang and
reviewed by two anonymous referees.

References

Amdahl, G. M.: Validity of the Single Processor Approach to
Achieving Large Scale Computing Capabilities, in: Proceed-
ings of the April 18–20, 1967, Spring Joint Computer Confer-
ence, AFIPS ’67 (Spring), p. 483–485, Association for Com-
puting Machinery, New York, NY, USA, ISBN 9781450378956,
https://doi.org/10.1145/1465482.1465560, 1967.

Arakawa, A. and Lamb, V. R.: Computational Design of the Basic
Dynamical Processes of the UCLA General Circulation Model,
in: General Circulation Models of the Atmosphere, edited by:
Chang, J., vol. 17 of Methods in Computational Physics: Ad-
vances in Research and Applications, pp. 173–265, Elsevier,
https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.

Bouchat, A., Hutter, N., Chanut, J., Dupont, F., Dukhovskoy, D.,
Garric, G., Lee, Y. J., Lemieux, J.-F., Lique, C., Losch, M.,
Maslowski, W., Myers, P. G., Ólason, E., Rampal, P., Rasmussen,
T., Talandier, C., Tremblay, B., and Wang, Q.: Sea Ice Rheol-
ogy Experiment (SIREx): 1. Scaling and Statistical Properties
of Sea-Ice Deformation Fields, J. Geophys. Res.-Oceans, 127,
e2021JC017667, https://doi.org/10.1029/2021JC017667, 2022.

Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic–
viscous–plastic method revisited, Ocean Model., 71, 2–12,
https://doi.org/10.1016/j.ocemod.2013.05.013, 2013.

Brunke, M. A., Cassano, J. J., Dawson, N., DuVivier, A. K.,
Gutowski Jr., W. J., Hamman, J., Maslowski, W., Nijssen, B.,
Reeves Eyre, J. E. J., Renteria, J. C., Roberts, A., and Zeng,
X.: Evaluation of the atmosphere–land–ocean–sea ice inter-
face processes in the Regional Arctic System Model version 1
(RASM1) using local and globally gridded observations, Geosci.
Model Dev., 11, 4817–4841, https://doi.org/10.5194/gmd-11-
4817-2018, 2018.

CICE Consortium: CICE gx1 WOA Forcing Data
– 2020.03.20 (2020.03.20), Zenodo [data set],
https://doi.org/10.5281/zenodo.3728600, 2020.

CICE Consortium: CICE gx1 Grid and Initial Condi-
tion Data – 2021.08.16 (2021.08.16), Zenodo [data set],
https://doi.org/10.5281/zenodo.5208241, 2021.

CICE Consortium: CICE gx1 JRA55do Forcing Data by
year – 2023.07.03 (2023.07.03), Zenodo [data set],
https://doi.org/10.5281/zenodo.8118062, 2023.

Craig, A. P., Vertenstein, M., and Jacob, R.: A new flex-
ible coupler for earth system modeling developed for
CCSM4 and CESM1, The International Journal of

https://doi.org/10.5194/gmd-17-6529-2024 Geosci. Model Dev., 17, 6529–6544, 2024

https://doi.org/10.5281/zenodo.10782548
https://doi.org/10.5281/zenodo.11248366
https://doi.org/10.5281/zenodo.11223920
https://github.com/CICE-Consortium/CICE/wiki/CICE-Input-Data
https://github.com/CICE-Consortium/CICE/wiki/CICE-Input-Data
https://doi.org/10.5281/zenodo.5208241
https://doi.org/10.5281/zenodo.8118062
https://doi.org/10.5281/zenodo.3728599
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1016/B978-0-12-460817-7.50009-4
https://doi.org/10.1029/2021JC017667
https://doi.org/10.1016/j.ocemod.2013.05.013
https://doi.org/10.5194/gmd-11-4817-2018
https://doi.org/10.5194/gmd-11-4817-2018
https://doi.org/10.5281/zenodo.3728600
https://doi.org/10.5281/zenodo.5208241
https://doi.org/10.5281/zenodo.8118062


6544 T. A. S. Rasmussen et al.: Refactoring the EVP solver from the sea ice model CICE v6.5.1

High Performance Computing Applications, 26, 31–42,
https://doi.org/10.1177/1094342011428141, 2012.

Craig, A. P., Mickelson, S. A., Hunke, E. C., and Bailey, D. A.: Im-
proved parallel performance of the CICE model in CESM1, The
International Journal of High Performance Computing Applica-
tions, 29, 154–165, https://doi.org/10.1177/1094342014548771,
2015.

Hibler, W. D. I.: A Dynamic Thermodynamic Sea Ice Model,
J. Phys. Oceanogr., 9, 815–846, https://doi.org/10.1175/1520-
0485(1979)009<0815:ADTSIM>2.0.CO;2, 1979.

Hunke, E., Allard, R., Blain, P., Blockley, E., Feltham, D., Fichefet,
T., Garric, G., Grumbine, R., Lemieux, J.-F., Rasmussen, T.,
Ribergaard, M., Roberts, A., Schweiger, A., Tietsche, S., Trem-
blay, B., Vancoppenolle, M., and Zhang, J.: Should Sea-Ice
Modeling Tools Designed for Climate Research Be Used for
Short-Term Forecasting?, Curr. Clim. Change Rep., 6, 121–136,
https://doi.org/10.1007/s40641-020-00162-y, 2020.

Hunke, E., Allard, R., Bailey, D. A., Blain, P., Craig, A., Dupont, F.,
DuVivier, A., Grumbine, R., Hebert, D., Holland, M., Jeffery, N.,
Lemieux, J.-F., Osinski, R., Poulsen, J., Steketee, A., Rasmussen,
T., Ribergaard, M., Roach, L., Roberts, A., Turner, M., Winton,
M., and Worthen, D.: CICE-Consortium/CICE: CICE Version
6.5.1, Zenodo [code], https://doi.org/10.5281/zenodo.11223920,
2024.

Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model
for sea ice dynamics, J. Phys. Oceanogr., 27, 1849–1867, 1997.

Jeffers, J. and Reinders, J. (Eds.): High performance parallelism
pearls volume two: multicore and many-core programming ap-
proaches, Morgan Kaufmann, ISBN-13 978-0128038192, 2015.

Kimmritz, M., Danilov, S., and Losch, M.: The adap-
tive EVP method for solving the sea ice mo-
mentum equation, Ocean Model., 101, 59–67,
https://doi.org/10.1016/j.ocemod.2016.03.004, 2016.

Koldunov, N. V., Danilov, S., Sidorenko, D., Hutter, N., Losch,
M., Goessling, H., Rakowsky, N., Scholz, P., Sein, D., Wang,
Q., and Jung, T.: Fast EVP Solutions in a High-Resolution
Sea Ice Model, J. Adv. Model. Earth Sy., 11, 1269–1284,
https://doi.org/10.1029/2018MS001485, 2019.

Levesque, J. and Vose, A.: Programming for Hybrid Multi/Many-
core MPP systems, CRC Press, Taylor and Francis Inc, ISBN
978-1-4398-7371-7, 2017.

Lynch, P.: The Emergence of Numerical Weather Prediction, Cam-
bridge University Press, ISBN 0521857295 9780521857291,
2006.

Madec, G., Bell, M., Blaker, A., Bricaud, C., Bruciaferri, D., Cas-
trillo, M., Calvert, D., Chanut, J., Clementi, E., Coward, A., Epic-
oco, I., Éthé, C., Ganderton, J., Harle, J., Hutchinson, K., Iovino,
D., Lea, D., Lovato, T., Martin, M., Martin, N., Mele, F., Martins,
D., Masson, S., Mathiot, P., Mele, F., Mocavero, S., Müller, S.,
Nurser, A. G., Paronuzzi, S., Peltier, M., Person, R., Rousset, C.,
Rynders, S., Samson, G., Téchené, S., Vancoppenolle, M., and
Wilson, C.: NEMO Ocean Engine Reference Manual, Zenodo
[data set], https://doi.org/10.5281/zenodo.8167700, 2023.

Mattson, T. G., Sanders, B. A., and Massingill, B.: Patterns for par-
allel programming, Addison-Wesley, Boston, ISBN 0321228111
9780321228116, 2005.

McCalpin, J. D.: Memory Bandwidth and Machine Balance in
Current High Performance Computers, IEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19–25, 1995.

OpenMP Architecture Review Board: OpenMP Application
Program Interface Version 5.2, https://www.openmp.org/
wp-content/uploads/OpenMP-API-Specification-5-2.pdf (last
access: 27 August 2024), 2021.

Ponsoni, L., Ribergaard, M. H., Nielsen-Englyst, P., Wulf, T.,
Buus-Hinkler, J., Kreiner, M. B., and Rasmussen, T. A. S.:
Greenlandic sea ice products with a focus on an updated
operational forecast system, Front. Marine Sci., 10, 979782,
https://doi.org/10.3389/fmars.2023.979782, 2023.

Rasmussen, T. A. S., Poulsen, J., and Ribergaard, M. H.:
Input data for 1d EVP model, Zenodo [data set],
https://doi.org/10.5281/zenodo.11248366, 2024a.

Rasmussen, T. A. S., Poulsen, J., Ribergaard, M. H.,
and Rethmeier, S.: dmidk/cice-evp1d: Unit test refac-
torization of EVP solver CICE, Zenodo [code],
https://doi.org/10.5281/zenodo.10782548, 2024b.

Raul Torres, R. F. and Teruel, X.: A Novel Set of Direc-
tives for Multi-device Programming with OpenMP, IEEE
International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), Lyon, France, 2022, 401–410,
https://doi.org/10.1109/IPDPSW55747.2022.00075, 2022.

Roberts, A. F., Hunke, E. C., Allard, R., Bailey, D. A., Craig,
A. P., Lemieux, J.-F., and Turner, M. D.: Quality control for
community-based sea-ice model development, Philos. T. Roy.
Soc. A, 376, 20170344, https://doi.org/10.1098/rsta.2017.0344,
2018.

Wadhams, P.: ON SEA ICE. Weeks. 2010, University of Alaska
Press, Fairbanks, 664 pp., ISBN 978-1-60223-079-8, Polar
Record, 49, e6, https://doi.org/10.1017/S0032247412000502,
2013.

Geosci. Model Dev., 17, 6529–6544, 2024 https://doi.org/10.5194/gmd-17-6529-2024

https://doi.org/10.1177/1094342011428141
https://doi.org/10.1177/1094342014548771
https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
https://doi.org/10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
https://doi.org/10.1007/s40641-020-00162-y
https://doi.org/10.5281/zenodo.11223920
https://doi.org/10.1016/j.ocemod.2016.03.004
https://doi.org/10.1029/2018MS001485
https://doi.org/10.5281/zenodo.8167700
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.3389/fmars.2023.979782
https://doi.org/10.5281/zenodo.11248366
https://doi.org/10.5281/zenodo.10782548
https://doi.org/10.1109/IPDPSW55747.2022.00075
https://doi.org/10.1098/rsta.2017.0344
https://doi.org/10.1017/S0032247412000502

	Abstract
	Introduction
	The EVP solver
	Standard implementation
	The refactored implementation
	Single-core refactorization
	Single-node refactoring – OpenMP and OpenMP target

	Test cases
	Test setup

	Performance results
	Single-core performance
	Single-node performance
	Strong scaling
	Capacity scaling


	Discussion
	Conclusions
	Appendix A: Abbreviations
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

