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Abstract. VERT (Vehicular Emissions from Road Traffic)
is an R package developed to estimate traffic emissions of
a wide range of pollutants and greenhouse gases based on
traffic estimates and vehicle fleet composition data, follow-
ing the EMEP/EEA methodology. Compared to other tools
available in the literature, VERT is characterised by its ease
of use and rapid configuration, while it maintains great flex-
ibility in user input. It is capable of estimating exhaust, non-
exhaust, resuspension, and evaporative emissions and is de-
signed to accommodate future updates of available emission
factors. In this paper, case studies conducted at both urban
and regional scales demonstrate VERT’s ability to accurately
assess transport emissions. In an urban setting, VERT is in-
tegrated with the Lagrangian dispersion model GRAMM–
GRAL and provides NOx concentrations in line with ob-
served trends at monitoring stations, especially near traffic
hotspots. On a regional scale, VERT simulations provide
emission estimates that are highly consistent with the ref-
erence inventories for the Emilia-Romagna region (Italy).
These findings make VERT a valuable tool for air quality
management and traffic emission scenario assessment.

1 Introduction

The provision of clean air is recognised as a fundamental ne-
cessity for human health and general well-being. However,
the World Health Organization (WHO) estimates that almost
all of the world’s population (99 %) breathes air that exceeds
the recommendations proposed in the latest air quality guide-
lines (WHO, 2021), with low- and middle-income countries

suffering from the highest exposures. In Europe, for example,
despite significant reductions in emissions and ambient con-
centrations over the past decade, a staggering 97 % of the ur-
ban population is still exposed to particulate matter (PM2.5)
concentrations above 5 µgm−3, a threshold set forth by the
WHO to protect public health (WHO, 2021).

Given the compelling scientific evidence of the severe
health effects associated with ambient air pollution (Fuller
et al., 2022; Song et al., 2022; Yolton et al., 2019; Landrigan
et al., 2018; Costa et al., 2017; Loomis et al., 2013), the accu-
rate estimation of pollutant concentrations and related emis-
sions is essential for developing effective mitigation strate-
gies. To accomplish this task, numerous international agen-
cies, research institutions, and environmental organisations
are collecting data that are used to identify and monitor emis-
sions worldwide. Their objective is to compile specific emis-
sion inventories using a standardised and transparent process
that can be regularly updated over time through a consistent
approach.

Emission inventories are generally classified as either bot-
tom up or top down, depending on the estimation approach
used. While both methods quantify total emissions through
the product of emission factors and activity indicators, the
top-down approach aggregates activity data at a large scale,
such as national or regional, before allocating emissions to
sub-areas based on activity-dependent patterns. Conversely,
the bottom-up approach estimates emissions for individual
activities and then aggregates them at the spatial resolution
required for a specific application. The top-down approach
is generally preferred for large-scale inventories where the
identification of individual activities may be impractical due
to a lack of site-specific data or time-consuming computa-
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tions. Bottom-up inventories, on the other hand, are preferred
when detailed and reliable information on activity indica-
tors is available, despite the more time-consuming nature of
emission estimation. Examples of top-down emission inven-
tories are HTAP_v3 (Crippa et al., 2023), TNO-MACCII and
MACCIII (Kuenen et al., 2014), and E-PRTR and JRC07
(Trombetti et al., 2018), while examples of bottom-up based
inventories are EDGAR (Janssens-Maenhout et al., 2019)
and regional and national emission inventories that gener-
ally cover limited areas, such as INEMAR (Marongiu et al.,
2022; INEMAR, 2019) or the Italian National Emission In-
ventory (ISPRA, 2019). Other catalogues, such as CAMS-
REG (Kuenen et al., 2022) and EMEP (Ullrich et al., 2023),
effectively use the strengths of both top-down and bottom-
up approaches, resulting in hybrid inventories that provide
a comprehensive and reliable representation of emissions at
the continental scale.

Emissions from the transport sector currently stand out as
a significant source of anthropogenic pollutants in many ur-
ban areas of the world (Hooftman et al., 2018; Jonson et al.,
2017; Squires et al., 2020; Degraeuwe et al., 2017; Veratti
et al., 2023; Ghermandi et al., 2020, 2019). Combustion pro-
cesses in vehicle engines contribute to the release of sev-
eral air pollutants, including both primary particulate mat-
ter (PM) and other gaseous compounds, such as nitrogen ox-
ides (NOx), volatile organic compounds (VOCs), ammonia
(NH3), and sulfur dioxide (SO2), which are important pre-
cursors for the formation of secondary particulate matter and
photochemical smog (Moussiopoulos et al., 1995; Nogueira
et al., 2015; Jeong et al., 2019; Karagulian et al., 2015; Hao
et al., 2020). In addition to the exhaust component, traffic-
related non-exhaust emissions, including those from tyres,
roads, and brake wear as well as resuspension, contribute
significantly to the total-PM concentrations measured in ur-
ban environments. Recent estimates from different countries
indicate that the non-exhaust fraction accounts for 60 % to
90 % of PM10 and 25 % to 85 % of PM2.5 from road traffic
emissions (Piscitello et al., 2021). While policymakers in re-
gions such as Europe, the US, and China are making efforts
to promote vehicle electrification, transport remains a signif-
icant source of non-exhaust emissions, which are becoming
increasingly important as vehicle mass increases (Beddows
and Harrison, 2021; Piscitello et al., 2021; Liu et al., 2022).
Therefore, the need for a comprehensive understanding and
accurate estimation of vehicle emissions remains crucial.

Various emission models to evaluate the impact of traffic
on atmospheric emissions have emerged in the past decade.
Examples include the Motor Vehicle Emissions Simulator
(MOVES) from the US Environmental Protection Agency
(Yao et al., 2014); the High-Elective Resolution Modelling
Emission System (HERMES; Guevara et al., 2019, 2020),
developed by the Barcelona Supercomputing Center; TRE-
FIC from ARIANET S.r.l. (Pallavidino et al., 2014; Crosig-
nani et al., 2021; Fabbi et al., 2022); the Vehicular Emissions
INventory (VEIN) from Ibarra-Espinosa et al. (2018); CARS

(Comprehensive Automobile Research System) from Baek
et al. (2022); and Yeti, a traffic emission inventory framework
based on the Handbook Emission Factor for Road Transport
(HBEFA; Chan et al., 2023). However, despite the progress
made, none of these models can fully meet the diverse needs
of environmental experts, modellers, and policymakers due
to their inherent strengths and limitations. These tools are
tailored to specific user needs and use different development
approaches. The characteristics of each model depend on fac-
tors such as the type of traffic activity, the method used to
calculate emissions, the distribution of vehicle speeds, and
the geographical resolution of inputs and outputs. As a re-
sult, each tool has its own level of specificity based on the
different modelling assumptions included in its framework.
The choice of a particular model therefore depends on the
objectives of the study or application.

The major limitations of current transport emissions mod-
els concern their adaptability to scenarios different from
those for which they were developed. An example is
MOVES, which faces complexities when applied beyond US
borders. Accessibility is further hampered by certain mod-
els, like TREFIC, which require a proprietary licence that
limits their use. In addition, alternatives such as VEIN and
HERMES require both time-consuming operational proce-
dures and technical skills to generate new case studies based
on local data, creating practical barriers to their seamless im-
plementation.

In this study, we present VERT (Vehicular Emissions from
Road Traffic), a transport emissions modelling tool devel-
oped in the R programming language. It is specifically de-
signed to estimate traffic emissions using a simple and user-
friendly framework to facilitate its use by individuals with
limited programming skills. Aligned with the EMEP/EEA air
pollutant emission inventory guidebooks (Ntziachristos and
Samaras, 2023; Ntziachristos and Boulter, 2023; Mellios and
Ntziachristos, 2023) and consistent with the 2006 Intergov-
ernmental Panel on Climate Change (IPCC) guidelines for
greenhouse gas emissions, VERT requires two key inputs:
the local fleet composition and an estimate of traffic flows
along the target road network. The model has been structured
to handle traffic information with different levels of detail,
since these depend on the traffic data availability, ensuring
significant adaptability to different case studies while main-
taining user-friendly applicability.

In the first part of the study, VERT is introduced and its
implementation methodology is described. In the second sec-
tion, VERT is coupled with the Lagrangian modelling system
GRAMM–GRAL (Oettl, 2015a, b, c) to assess NOx concen-
trations in an urban hotspot of the Po Valley (Italy). Then, in
the third section, VERT is applied to a broader area cover-
ing the Emilia-Romagna region of the Po Valley to estimate
traffic emissions from a larger road infrastructure compris-
ing approximately 7000 streets. This latter estimate is further
validated by comparing VERT results with the most recent
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and up-to-date regulatory emission inventory for the same
area. Finally, some conclusions are drawn in the last section.

2 VERT description

The main goal of VERT is to estimate transport-related emis-
sions using a bottom-up approach following the EMEP/EEA
methodology (Ntziachristos and Samaras, 2023; Ntziachris-
tos and Boulter, 2023; Mellios and Ntziachristos, 2023). In
this framework, activity data are represented by the number
of vehicles travelling on a given road segment, and the rep-
resentative emission factor is calculated using information
on the local fleet composition, vehicle speed, meteorological
conditions, and topological characteristics of the road seg-
ment, such as length and slope.

VERT is capable of estimating emissions for a wide range
of pollutants and greenhouse gases, including CO, NOx , non-
methane VOCs (NMVOCs), PM, black carbon, organic car-
bon, NH3, SO2, N2O, CO2, and CH4. While the standard
computational framework is structured to evaluate traffic-
related emissions at an hourly time step, VERT provides the
versatility to seamlessly adapt to the specific requirements
and input characteristics of a given study. More specifically,
if the vehicle flow data provided to VERT reflect a longer
time interval, the resulting emissions calculations will be ad-
justed to the temporal resolution corresponding to the in-
put provided to the model. This adaptability ensures that the
analysis remains consistent and can be applied to input data
with time resolutions different from the 1 h standard.

For greater user flexibility, three different types of vehicle
flows can be provided to VERT. These options are consis-
tent with standard estimates derived from well-established
macroscopic traffic models (Helbing, 1995; Johari et al.,
2021; Heyken Soares et al., 2021; Krajzewicz, 2010). Specif-
ically, users can choose to input a single cumulative traffic
flow that includes all vehicle categories. Alternatively, for a
more detailed analysis, users can enter two different flows,
one for light vehicles (such as cars and mopeds or motor-
cycles) and another for commercial vehicles (including both
light and heavy types). A third option allows the user to enter
four separate flows corresponding to cars, mopeds or motor-
cycles, light-duty trucks, and heavy-duty trucks. Finally, the
fleet composition required by VERT must be adjusted ac-
cording to the number of flows selected in the input.

For a general road segment denoted as k, a general parking
lotm, and a specific pollutant denoted as i, the on-road emis-
sion (E) is calculated based on five components, as outlined
in Eq. (1):

Eki = E
k
i hot + Eki cold + Eki non-exhaust

+ Eki resuspensions + E
k,m
i evaporative. (1)

Here, Eki hot represents hot exhaust emissions, while
Eki cold refers to emissions during transient thermal en-

gine operation, commonly known as cold-start emis-
sions. Eki non-exhaust refers to PM emissions resulting
from mechanical-part wear or road and tyre abrasion.
Eki resuspensions quantifies the amount of PM that was de-
posited on the road surface and subsequently resuspended
into the atmosphere due to vehicle movement.Eki evaporative
encompasses emissions of organic gaseous compounds re-
leased into the atmosphere due to tank or running losses. The
following subsections outline the methodologies employed
to estimate each of these components.

2.1 Hot exhaust emissions

The combustion process in a vehicle engine is a complex
series of chemical reactions that occur within the engine’s
cylinders. It involves the mixing of fuel and air followed by
ignition, resulting in the release of energy that propels the ve-
hicle. While the stoichiometric complete combustion of hy-
drocarbon fuels with oxygen ideally produces only CO2 and
H2O, real-world combustion processes inevitably involve the
formation of various pollutants such as carbon monoxide
(CO), hydrocarbons (HC), and PM. These by-products are
not fully controlled by the aftertreatment equipment and are
consequently released into the atmosphere. The abundance
of nitrogen (N2) and oxygen (O2) in the air mix, along with
sulfur compounds in the fuel, creates additional pollutants,
such as NOx and SOx , that pose additional environmental
challenges. Furthermore, while aftertreatment devices are ef-
fective in reducing the emissions of the previously mentioned
pollutants, they may also generate NH3 and N2O due to in-
efficiencies in the conversion processes.

Hot exhaust emissions are influenced by a variety of fac-
tors. These include vehicle characteristics such as fuel type,
engine size, emission standard, vehicle mileage, load, and
mass, but they also depend on road characteristics like pave-
ment condition, slope, and length. All of these aspects are
considered by VERT and integrated into Eq. (2), which is
used to estimate hot exhaust emissions (Ntziachristos and
Samaras, 2023).

Eki hot = EFihot · EFidgr · imp.fueli · n.vehk · Lk (2)

In this formulation, EFihot is the hot emission factor,
while n.vehk and Lk are, respectively, the number of vehicles
travelling on road segment k and the length of road segment
k. Two additional factors, EFidgr and imp.fueli , are included
in the calculation to correct the baseline EFihot for the ve-
hicle mileage and fuel characteristics. More specifically, the
baseline EFihot refers to a fleet with an average mileage be-
tween 30 000 and 60 000 km, so the factor EFidgr is intro-
duced to correct for the increase in hot emissions resulting
from vehicles with higher mileages. As the use of improved
fuels has been mandatory in the EU since 2000, the coeffi-
cient imp.fueli is used to account for the reduced emissions
due to the use of those fuels in vehicles older than that year.
In Eq. (2), it is of the utmost importance to accurately es-
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timate EFihot, as this factor encompasses vehicle and road
characteristics. VERT provides two different methods to es-
timate the baseline EFihot:

1. The speed-dependent EFihot. In this relation, the hot
exhaust EF is directly related to the vehicle speed,
and the corresponding formulation is given in Eq. (3),
where v is the vehicle speed and A, B, C, D, E, F ,
and G are experimental coefficients derived from tests
on real-road driving cycles and laboratory tests. These
tests have been carried out as parts of several scien-
tific projects, including the EUCAR/JRC/CONCAWE
programme, the European Commission’s PARTICU-
LATES project, the European Commission’s ARTEMIS
project, and the COST 319 action, among others. The
experimental coefficients A, B, C, D, E, F , and G are
obtained by regression analysis, resulting in a polyno-
mial curve that fits the observed data and provides a gen-
eral expression valid for each vehicle category (Kouridis
et al., 2010). These coefficients are stored in dedicated
data frames in VERT and are used during model execu-
tion. They depend on vehicle type, fuel, emission stan-
dard, engine size, road characteristics, and duty truck
load. By providing the local fleet composition and vehi-
cle speed, VERT internally calculates an average EFihot
for the given condition. In addition, in order to better re-
flect emissions in traffic jams or very congested condi-
tions, a correction factor has been introduced to take ac-
count of increased emissions at very low speeds. Specif-
ically, when the vehicle speed falls below the threshold
of the validity range of the proposed coefficients, the
time spent on the road is increased by a factor w, calcu-
lated as the ratio between the lower speed threshold and
the specific speed down to a minimum limit of 3 km h−1.
This factor reflects the increased emissions observed
in various studies such as Zamboni et al. (2015), Lejri
et al. (2018), and Lejri and Leclercq (2020). However,
it should be noted that the model is tailored to driving
scenarios, and therefore idling emissions may not be ac-
curately estimated.

EFihot =

(A · v2
+B · v+C+D/v)/(E · v2

+F · v+G) (3)

In the formulation proposed in Eq. (3), it is important
to emphasise that the VERT model is not designed to
estimate vehicle travel speeds; rather, this variable is an
input to the model. When only traffic flows are available
for a given road, various empirical flow-speed relations
can estimate vehicle speeds based on peak-hour traffic
flows and the road’s vehicle capacity. Examples of these
formulations are provided by Brilon and Lohoff (2011),
by Verhoef (2005) for motorways, and by Al-Bahr et al.
(2022) and Juhász et al. (2016) for urban traffic situa-
tions. The outputs of these relations can then be used as
input to VERT.

2. The EF based on fuel and lubricant consumption. Al-
ternatively, users can enter their specific EF values for
fuel and lubricant consumption, expressed as mass of
pollutant per mass of fuel or lubricant consumed. In
this case, VERT uses the fleet composition along with
Eq. (2) to estimate the total fuel and lubricant consump-
tion (EFihot becomes the energy consumption factor),
which are then combined with the user input to estimate
total emissions.

2.2 Cold-start emissions

Cold-start emissions refer to the additional release of pollu-
tants by a vehicle’s engine during the initial phase of oper-
ation, i.e. when the engine itself and the catalytic-converter
system have not yet reached their optimal operating temper-
ature range. This typically occurs during engine startup, such
as when a vehicle starts from a parked location or a residen-
tial area. While cold-start emissions can occur in all driving
conditions, they are more common in urban and rural driving
because highway starts are comparatively limited. In addi-
tion, cold-start events are inherent to all vehicle types, al-
though comprehensive data for accurate estimation are pri-
marily available for petrol, diesel, and liquefied petroleum
gas (LPG) cars, including light-duty trucks. Based on these
considerations, VERT only accounts for cold-start emissions
from passenger cars and light-duty trucks on urban and rural
roads, and it does so using Eq. (4):

Eki cold =

EFihot · ([EFcold/EFhot]i − 1) · β · n.vehk · Lk . (4)

β represents the fraction of the mileage driven with a
cold engine or with the catalyst system operating below
the light-off temperature with respect to the mean trip dis-
tance. EFihot denotes the hot-emission factor, and the ratio
[EFcold/EFhot]i is computed using the general expression
reported in Eq. (5), where H and I are empirical coefficients
that vary according to the emission standard, engine size, and
vehicle speed, while T is the mean air temperature for the pe-
riod of interest. The β parameter (Eq. 6), on the other hand,
depends on the average trip distance (Lt), defined as the trip
segment between a key-on and a key-off event, which can be
set as an input according to the user’s case study.

[EFcold/EFhot]i =H + I · T (5)

β = 0.6474− 0.02545 · Lt

− (0.00974− 0.000385 · Lt) · T (6)

2.3 Non-exhaust emissions and resuspension

Non-exhaust emissions encompass various compounds, such
as black carbon, organic carbon, metals, ions, or, more gen-
erally, PM, which are not directly associated with fuel com-
bustion but instead arise from the wear and tear of vehicle
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components and road abrasion. In addressing these emis-
sions, VERT employs a vehicle-speed-dependent approach
via Eq. (7):

Eki non-exhaust = EFiTSP · Fs · Ss(v) · n.vehk · Lk . (7)

The emission factor EFiTSP represents the emissions of
total suspended particulates (TSP) per unit vehicle, which
varies by vehicle type. EFiTSP can be converted to specific
fractions of particulate matter (e.g. PM10, PM2.5, PM1, and
PM0.1) or black carbon by using different values of Fs, which
acts as a size-scaling factor. In addition, Ss(v) serves as a
coefficient that adjusts the emission estimate to account for
travelling speed. More detailed information on the reference
EFiTSP, Ss(v), and Fs used for tyre and brake emissions can
be found in Ntziachristos and Boulter (2023).

Due to the limited understanding of airborne-particle
emissions resulting from road surface wear, the methodology
for estimating their contribution has not yet reached a level
of detail that allows for a refined approach based on travel-
ling speed. Therefore, VERT sets the parameter Ss(v) equal
to 1 when calculating road surface emissions.

Significant uncertainties also persist when estimating the
contribution of resuspended-dust aerosols from traffic activi-
ties, as reported in several studies (Amato et al., 2016; Harri-
son et al., 2021; Casotti Rienda and Alves, 2021). To address
this challenge, VERT provides the user with the flexibility
to choose between two calculation methods to ensure adapt-
ability to different case studies. The first approach is based
on the EPA-42 methodology published by the US Environ-
mental Protection Agency (EPA, 2011). This formulation in-
cludes variables such as the average mass of the circulating
fleet (W ), the surface silt loading of the road (sL), a size spe-
ciation factor that accounts for the PM mass size distribu-
tion, and the frequency of precipitation during the reference
period of the simulation (perc.wet.days). The calculation fol-
lows Eq. (8).

Eki resuspensions= (sL0.91) · Fs · (W 1.02)

· (1− (1/4 · perc.wet.days)) · Lk (8)

Since the latter approach is sometimes considered to over-
estimate the resuspension component (Pachón et al., 2018;
Venkatram, 2000), an alternative option is provided to the
user. In this alternative, the user has the flexibility to manu-
ally select and enter their own resuspension EF, allowing for
customisation based on the specific types of vehicle flows be-
ing considered in the calculation. For this option, the default
emission factors are in the range of those proposed by Amato
et al. (2012).

2.4 Evaporative emissions

Evaporative emissions from vehicles refer to the release of
volatile gaseous compounds into the atmosphere due to the
vaporisation of liquid fuels or other volatile components in

the vehicle’s fuel system. These emissions consist of three
primary components: running losses, diurnal emissions from
the tank, and soak emissions. Running losses occur during
vehicle operation and involve the evaporation of fuel vapours
from the fuel system and engine under normal driving con-
ditions. Conversely, diurnal and soak emissions occur when
the vehicle is parked with the engine turned off.

Diurnal emissions result from the increase in ambient tem-
perature, which causes the expansion of fuel vapours in the
fuel tank. Despite the presence of emission control canis-
ters in most present-day tanks, the importance of evaporative
VOC leaks remains. To quantify the daily emissions from
fuel tanks, VERT uses the following formulation (Eq. 9),
where EFidiu is the daily emission factor (which depends
on the vehicle category), n.day is the number of days consid-
ered in the simulation, and n.veh is the number of vehicles in
a given parking lot m:

Emi diurnal = EFidiu · n.days · n.vehm . (9)

Soak emissions are quantified using Eq. (10), where
n.trip.day is the average number of trips per day; γ is the
fraction of petrol vehicles equipped with carburettors and/or
fuel return systems; EFhot,carbsoak and EFcold,carbsoak are the
emission factors for petrol vehicles equipped with carburet-
tors for hot and warm and for cold emissions respectively;
and EFhot,injsoak is the mean hot-soak emission factor for
petrol vehicles equipped with fuel injection systems and re-
turnless fuel systems.

Emi soak= n.days · n.vehm · n.trip.days

· [γ · ((1−β) · EFhot,carbsoak
+β · EFcold,carbsoak )+ (1− γ ) · Ehot,injsoak ] (10)

Running losses are expressed as in Eq. (11), where β is
defined as in Eq. (6); EFhot,carbrun and EFcold,carbrun are the
related emission factors for petrol vehicles equipped with
carburettors for hot and warm and for cold emissions respec-
tively; and EFhot,injrun is the related emission factor for petrol
vehicles equipped with fuel injection systems and returnless
fuel systems.

Eki run = Lt−1
· n.vehk · Lk

· [γ · ((1−β) · EFhot,carbrun
+β · EFcold,carbrun )+ (1− γ ) · EFhot,injrun ] (11)

Finally, total evaporative emissions are calculated as the
sum of the diurnal, soak, and running emissions; see Eq. (12):

E
k,m
i evaporative = Emi diurnal +Emi soak +Eki run. (12)

2.5 VERT configuration and design

VERT is an open-source traffic emission model developed
in the R programming language. It acts as a user-friendly
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framework, making it easy for those with basic program-
ming skills to assess emissions from a reference road net-
work. The model is intentionally designed for simplicity and
has no mandatory dependencies on other packages, ensur-
ing seamless out-of-the-box functionality and high portabil-
ity across different operating systems and machines. While
the VERT model is self-contained, it also allows for greater
flexibility in both computation and data processing through
the ability to integrate external packages. This flexibility is
especially beneficial when users want to speed up compu-
tations on large road network datasets. For example, VERT
includes a feature that allows for “embarrassing parallelisa-
tion”, i.e. the separation of the computation into a number of
independent parallel tasks, through the “parallel” package. In
this approach, instead of sequentially looping through each
segment of the road network, the computation of all road seg-
ments is distributed to different cores of the machine, result-
ing in a significant reduction in overall computation time.

For added convenience in data preparation, input manage-
ment, or result visualisation, users can also choose to inte-
grate add-on packages such as “sf”, “dplyr”, and “ggplot2”.
These further enhance the overall user experience by provid-
ing tools for streamlined operations and insightful visual rep-
resentation of the final output, although they are not strictly
necessary for the emissions calculation. Section S1 in the
Supplement provides vignette documentation tailored to as-
sist users in estimating emissions for a specific road network
using sample inputs. This guide also emphasises how the
features of external packages can be used to extend the ca-
pabilities of VERT, covering aspects such as input data ar-
rangement, computation, and result visualisation. User man-
ual documentation is also provided along with each function
and the data implemented in the R package.

Figure 1 shows a schematic representation of the VERT
structure along with the execution workflow. The left side of
the figure shows the primary inputs that are critical to the
model. These include the emission calculation method, the
pollutant of interest, traffic flow data, fleet composition, the
fuel blend composition, and the atmospheric conditions. In
addition, if the user chooses to estimate exhaust or resuspen-
sion emissions using user-defined EFs, these must be pro-
vided as input to VERT.

Although each VERT utility can be called individually, the
simplest and most widely used method is to pass all input pa-
rameters to the main.R function. This streamlined approach
effectively manages the emissions calculation by triggering
the necessary utilities based on user specifications. The out-
put of main.R is then stored directly in the attribute table
of road network spatial features, accurately assigning emis-
sions to each road segment and facilitating post-processing
procedures. This defined structure is also suitable for traffic
emission input files for dispersion models such as GRAMM–
GRAL, for which a dedicated function, emis2gral.R, has
been developed.

As updates of emission factors are periodically made avail-
able, VERT has been designed to include them within its
framework. In the current release, two sets of EFs are avail-
able for calculation, corresponding to the 2020 and 2023 pub-
lications for hot and wear EF, with the latter including up-
dates for Euro 6 light-duty vehicles and Euro VI heavy-duty
vehicles. Additionally, since the estimation of PM speciation
into black carbon and organic carbon from traffic remains
subject to significant uncertainties (Lugon et al., 2021; Flo-
res et al., 2020; Markiewicz et al., 2017; Tian et al., 2021),
VERT also provides the option to generate emission esti-
mates for these two components with the uncertainty de-
fined in the EEA guideline (Ntziachristos and Samaras, 2023;
Ntziachristos and Boulter, 2023). Users can choose to run the
calculation based on the suggested speciation factor or with
the lower or upper uncertainty thresholds, allowing users to
tailor the output of VERT to their specific needs and prefer-
ences.

2.6 Computation performance

The performance of VERT in computing emissions was
tested on different machines, including a two-core laptop
(Intel i7-5500U 2.40 GHz), a 16-core server (AMD EPYC
7313P 3.0 GHz), a 20-core cluster node (Intel Xeon Gold
6230 2.10 GHz), and a 52-core cluster node (Intel Xeon Gold
5320 2.20 GHz). Tests were performed on each machine with
a progressively increasing number of cores, from one up to
the maximum number available, with the number of cores
doubling in each successive run. For each test, a road net-
work consisting of 500 streets in the urban area of Modena
(a sub-sample of the road network shown in Fig. 3) was used.
Hourly emissions for the morning rush hour were calcu-
lated for the following pollutants and greenhouse gases: CO,
VOCs, NOx , CH4, CO2, PM exhaust, black carbon (BC) ex-
haust, organic carbon (OC) exhaust, SO2, NH3, N2O, brake
wear, surface wear, and tyre wear for all three PM sizes (TSP,
PM10, and PM2.5), evaporative VOCs, and resuspension (us-
ing Eq. 8).

Figure 2 shows the computation times for different ma-
chines and core configurations. The results indicate that for
each machine tested, the computation time decreases as the
number of cores increases, with an almost proportional im-
provement; i.e. doubling the number of cores roughly halves
the computation time. For example, on the AMD EPYC
7313P 3.0 GHz machine, processing the same 500-street
sample takes 8256 s with a single core, 4171 s with two cores,
2101 s with four cores, 1122 s with eight cores, and 620 s
with 16 cores. Similar performance improvements were seen
on the other machines tested.

It is important to note that the computational cost of VERT
increases proportionally with the number of segments in-
cluded in the reference road network, regardless of the ge-
ometric complexity and detail of the road network. For ex-
ample, the calculation of emissions for a road segment with
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Figure 1. Schematic representation of the VERT structure.

homogeneous characteristics (such as traffic flow, driving
speed, road gradient, and silt load) will take significantly less
time than that for a segment of the same length and spatial
resolution but with varying characteristics, where any varia-
tion in traffic flow, speed, gradient, and silt load will increase
the computational load.

3 Case study 1: VERT for urban-scale dispersion
modelling

Modena, shown in Fig. 3, is the focus of the first case study.
This city is located in the southern region of the Po Val-
ley at an elevation of approximately 35 m above sea level
and has a population of approximately 180 000 inhabitants.
The Po Valley, in which Modena is located, is a flat plain
bordered by the Alps to the north and the west and by the
Apennines to the south. This topographical arrangement has
a significant impact on the local climate, influencing weather
patterns and potentially trapping low-level air masses within
its natural boundaries. In particular, the valley often suffers
from low-wind conditions, preventing the effective disper-
sion of ground emissions and contributing to the accumula-
tion of pollutants. This is further exacerbated in the winter
months by atmospheric inversion, which reduces the extent
of vertical mixing and thus the part of the atmosphere where
pollutants are diluted and mixed (Bigi et al., 2012, 2023;
Pernigotti et al., 2012). These meteorological characteristics,
together with the high population density and the presence
of busy commercial and industrial activity, places Modena
among the largest European cities that exceed the air quality
limits set by both the European regulation (European Coun-
cil, 2008) and the latest WHO guidelines (WHO, 2021).

The emission inventory for the Emilia-Romagna region
(INEMAR, 2019) estimates that vehicular traffic serves
as the predominant source of NOx emissions in Mod-
ena, contributing 78 % of the total emissions, followed by
domestic heating (12 %), other mobile machinery (3 %),
waste treatment management (3 %), and the industrial sec-
tor (2 %). Previous studies (Bigi et al., 2023; Veratti et al.,
2021, 2020a, b, 2017) have evaluated the impacts of differ-
ent sources on the air quality in the city and its surrounding
areas. This paper, however, focuses specifically on transport
activities within the city and examines the influence of traffic
on urban air quality using an integrated modelling approach.

In the following subsection, the integrated modelling ap-
proach is described, followed by its application to a real-
world case study.

3.1 Description of the integrated modelling approach

In this case study, the VERT emission model was integrated
into a comprehensive modelling suite specifically designed
for the assessment of NOx concentrations over a domain cov-
ering most of the urban area of Modena with a very high hor-
izontal resolution (4 m). While the system is used to assess
the contributions of all the most important urban sources of
NOx , its design makes it particularly well suited to investi-
gating the impact of the transport sector.

The main tools composing the integrated modelling ap-
proach are the following:

1. PTV VISUM, a macroscopic transport model designed
to simulate traffic flows while taking into account fac-
tors such as road capacity, demand patterns, and travel
times (Heyken Soares et al., 2021). In our case study,
this model was run by the municipality of Modena us-
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Figure 2. Computational times (in seconds) from the scalability test performed by applying the VERT package to a road network of 500
streets on four different machines.

ing a predefined road network and including an esti-
mate of the volume of trips between different origin–
destination pairs (origin–destination matrix). The out-
put of the model is the number of vehicles travelling
on the reference road network during the morning rush
hour (from 07:30 to 09:30 local time) – with the ve-
hicles divided into two reference categories: light vehi-
cles (cars, mopeds, and motorcycles) and heavy vehicles
(lorries) – and the corresponding average speed.

2. The VERT emissions model, which directly takes as in-
put the traffic data provided by PTV VISUM together
with the local fleet composition and the road charac-
teristics. This tool estimates the traffic emissions using
the reference EF proposed by EMEP/EEA (Ntziachris-
tos and Samaras, 2023; Ntziachristos and Boulter, 2023;
Mellios and Ntziachristos, 2023).

3. The GRAMM–GRAL Lagrangian dispersion model.
This is an advanced tool tailored to simulate the dis-
persion and deposition of pollutants in urban areas. It
has been designed to take into account the presence of
obstacles such as buildings, bridges, and portals in the
reconstruction of the flow field and is particularly suited
to providing a detailed understanding of the behaviour
of pollutants in complex urban environments. A detailed
description of GRAMM–GRAL can be found in Oettl
(2015a, b, c, 2021), Oettl and Veratti (2021), and Oettl
and Reifeltshammer (2023).

3.2 Setup of the integrated modelling approach

In order to implement a comprehensive modelling approach
for the city of Modena, we collected and processed various

input datasets. To characterise road traffic conditions, we in-
tegrated traffic flow estimates from the PTV VISUM model
with historical traffic counts from induction loop spires at
key intersections. In addition, radar Doppler counts collected
during the winter of 2016 near the traffic air quality station
of the city complemented these data (see Ghermandi et al.,
2020 for further details). The synergy among these datasets
enabled a thorough analysis of the traffic situation, providing
spatially distributed information and tailored traffic modula-
tions. An overview of the road traffic volumes for the morn-
ing rush hour (between 07:30 and 09:30 local time) together
with the locations of radar Doppler sensors used for tailored
modulation is provided in Fig. 3c.

Traffic emissions were calculated using VERT, incorporat-
ing traffic flows and speeds from PTV VISUM and data on
the local fleet composition. The latter was derived from the
national vehicle register (ACI, 2023) and then normalised by
actual kilometres travelled for each vehicle category, as es-
timated by the Italian Institute for Environmental Protection
and Research (ISPRA, 2023). Supplementary data, such as
the average air temperature and an estimate of the mean trip
distance travelled by urban vehicles, were obtained respec-
tively from the meteorological reference station of the city
and from the urban mobility plan (PUMS, 2023). The aver-
age temperature during the simulation period was recorded as
9.5 °C, while the average trip distance was set at 2.5 km. The
emission computations with the VERT package were per-
formed on a 20-core Intel Xeon Gold 6230 2.10 GHz cluster
node and took approximately 920 s of wall clock time.

NOx emissions from domestic heating, industry, waste
treatment, and other mobile machinery were also included in
the simulation. Estimates of these sources were taken from
the regional emission inventory (INEMAR, 2019) and spa-
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Figure 3. (a) Geographical context showing the location of the Po Valley (from Esri, USGS, and NOAA), (b) the location of Modena within
the Po Valley (from Esri, USGS, and NOAA), and (c) an overview of the GRAL domain in Modena. Panel (c) shows simulated traffic flows
generated by PTV VISUM during the morning rush hour of a typical working day along with the marked positions of two urban air quality
monitoring stations, urban meteorological stations, and traffic radar Doppler counters that were used to adjust traffic modulation profiles.

tially distributed to different areas of the city. Emissions from
agricultural machinery (other mobile sources) were repre-
sented as diffuse sources and allocated to rural areas, while
the remaining emissions were integrated as point sources and
distributed using different proxy variables such as building
characteristics and land use classification. A further descrip-
tion of the methodology used to spatially distribute urban
emissions can be found in Veratti et al. (2021), while Fig. C1
in the Appendix shows the daily modulation profiles derived
from the traffic measurements and daily modulation profiles
used for other emission sectors.

The GRAMM–GRAL model was set up over two nested
domains centred in the city of Modena. The outer domain,
with an extension of 30 km× 30 km and a resolution of
200 m, was reserved for the Eulerian non-hydrostatic model
GRAMM. This model solves the conservative equations for

momentum, enthalpy, mass, and humidity to reconstruct the
large-scale wind field conditions, taking into account the
contrasts in land use and the corresponding surface fluxes
of heat, momentum, and humidity. It uses only local me-
teorological measurements and soil parameters without re-
quiring external initial and boundary conditions from large-
scale models to drive the simulations. Topography and land
use data were obtained from Geoportale-Emilia-Romagna
(2023) and the Corine Land Cover database updated to 2018
(CCL, 2018). Hourly meteorological observations of tem-
perature, wind speed, and direction were provided by three
meteorological stations – CMP, DEX, and OSS – located
at altitudes of 10, 40, and 50 m above ground level respec-
tively, as shown in Fig. 3c. Large-scale wind patterns re-
constructed by GRAMM were used as boundary conditions
for GRAL, which was run at the city scale over a domain
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of 7.9 km× 6.5 km (Fig. 3c) with a horizontal resolution of
4 m. GRAL first reconstructed the urban wind speed and di-
rection, taking into account the presence of urban obstacles,
and then performed the Lagrangian dispersion of the pollu-
tant sources provided as input.

To represent transport from sources outside the area of in-
terest, concentrations measured at a rural-background station
40 km north of Modena were used. This station is influenced
only by long-range transport and is not affected by direct lo-
cal sources (Ghermandi et al., 2020). While acknowledging
the possibility of small horizontal and vertical gradients in
the background concentrations, this approach is considered
reliable in view of the considerable homogeneity of concen-
trations and meteorological variables observed within the Po
Valley (Pernigotti et al., 2012; Scotto et al., 2021; Squizzato
et al., 2013). Consequently, the rural-background concentra-
tions were added to the modelled urban concentrations to ob-
tain the final concentrations.

The simulation period spanned from 8 January to
8 March 2020, before the strict lockdown restrictions were
imposed in northern Italy for the COVID-19 pandemic. The
computation was performed at hourly time steps through the
transient-dispersion mode, which was chosen to ensure a
more accurate representation of the concentration fields com-
pared to the steady-state option, albeit at a higher computa-
tional cost. See Oettl (2015a, b, c) for further details about
possible GRAL configurations.

3.3 Results from the application of the integrated
modelling approach

Hourly NOx concentrations simulated by the model were
evaluated at two urban air quality monitoring stations in
Modena. One station is located within a public park on the
western side of the historical city centre, representing urban-
background conditions, while the other is located along a
busy urban road near a major intersection, where traffic is
expected to be the primary source of pollution. Figure 3c
depicts the precise locations of the two monitoring stations
within the study area.

Figure 4 compares the daily averaged NOx concentrations
simulated by the modelling system with the observed val-
ues at the two reference sites. To extend the insights from
the urban modelling tools, the figure also incorporates ob-
served NOx concentrations from the rural-background sta-
tion, which are intended to represent the contribution of
emission sources outside Modena.

The comparison shows that there is generally good agree-
ment between the simulated and observed concentrations,
particularly at the traffic site, where the simulated hourly av-
erage of 128± 106 µgm−3 closely aligns with the observed
average of 112± 89 µgm−3. This agreement is further re-
flected by a low mean bias (MB), equal to −13 µgm−3 and
corresponding to a normalised mean bias (NMB) of −10 %.
Moreover, the Pearson correlation coefficient of 0.72 high-

lights a strong positive correlation between modelled and
measured values. On the other hand, at the urban background
site, where the influence of traffic emissions on the over-
all concentration diminishes, the model’s performance gen-
erally tends to decrease. This is particularly evident on 9,
10, 14, and 23 January, when specific meteorological con-
ditions (wind speeds below 2 m s−1 and recurrent thermal in-
versions) favoured pollutant accumulation. Under these con-
ditions, the model struggles to reproduce the observed signal,
particularly at the urban-background site. Here, modelled av-
erage concentrations are 52± 37 µgm−3, while the observed
average is 95± 83 µgm−3. This discrepancy is reflected in an
MB of−39 µgm−3, corresponding to an NMB of−42 %, al-
though it is associated with a satisfactory Pearson correlation
coefficient of 0.62. Apart from the influence of meteorolog-
ical factors, potential sources of uncertainty may lie in the
estimation of non-traffic emission sources, such as domes-
tic heating and industrial combustion, which characterise the
area surrounding the urban-background monitoring station.
Less detailed estimation methods are used for these sources,
and local proxies may not fully represent the anthropogenic
activity at this location. This highlights the need for improved
estimation methods for non-traffic emission sources to im-
prove the overall performance of the model, a task that falls
beyond the scope of this study.

To complement the statistical analysis, the ability of the
modelling system to reproduced the observed trend is also as-
sessed using a set of indicators recommended by Hanna and
Chang (2012) for the evaluation of urban dispersion models,
including FAC2, NAD, NMSE, and FB, defined as reported
in the Appendix. These benchmarks, which aim to ensure ac-
ceptable model performance, can be summarised as follows:

– FAC2> 0.30; i.e. at least 30 % of the predicted concen-
trations should fall within a factor of 2 of the observed
values.

– NAD< 0.50; i.e. the fractional error area should be less
than 50 %.

– |FB|< 0.67; i.e. the relative mean bias should be less
than a factor of ∼ 2.

– NMSE< 6; i.e. the random scatter should be less than
2.4 times the mean.

While improvements in the estimation of non-traffic
sources would further enhance model performance, the in-
tegrated modelling system consistently meets the acceptance
criteria at both stations (Table 1). This highlights the ability
of the models to capture the spatial and temporal variations in
NOx concentrations, indicating its potential for accurate air
quality modelling in urban environments. The same results
also underline the effectiveness of VERT, coupled with de-
tailed traffic information, in quantifying traffic-related emis-
sions in the urban environment.
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Figure 4. Daily time series showing observed and simulated NOx concentrations at urban-traffic and urban-background sites from 8 January
to 8 March 2020 together with daily measured concentrations at the rural-background station. Note that the simulated concentrations include
the rural-background contribution.

Table 1. Model performance statistics of hourly NOx concentrations computed for the period 8 January to 8 March 2020 at the two urban air
quality monitoring stations.

Station MB NMB FAC2 NAD FB NMSE r

(µgm−3) (%)

Urban background −39 −42 0.63 0.26 0.53 1.07 0.62
Urban traffic −13 −10 0.80 0.05 0.11 0.37 0.72

The second part of the assessment evaluates the modelled
diurnal cycles compared to the measured values. This is im-
portant for determining the ability of a particular model to ac-
curately represent urban daily maxima and the diurnal varia-
tion of predicted concentrations throughout the day. Figure 5
shows a comparison of modelled and observed NOx daily
mean cycles, along with their corresponding 25th and 75th
percentiles, at both urban-traffic and urban-background sta-
tions. In addition, the diurnal trend in NOx concentrations
measured at the rural site is shown on the same plot to com-
plement the information provided at the urban scale.

At the traffic site, modelled and observed NOx concen-
trations are generally very well aligned, and the two diurnal
peaks are effectively captured by the modelling system. In
contrast, at the urban-background station, the model system-
atically underestimates the observed cycle, especially during
the morning and evening peaks. This underestimation may be
due to the inability of the model to accurately represent the
NOx sources in the area surrounding the urban background
station. For example, the locations of wood-burning stoves in

the city and the estimation of the emissions associated with
solid fuels (pellet, wood, etc.) remain highly uncertain.

In this simulation, the burning of wood for domestic heat-
ing was mainly attributed to rural areas, whereas some of
these emissions may actually occur in more central loca-
tions of the city and contribute to local pollution, even dur-
ing nighttime, as noted by Bigi et al. (2023). In addition,
NOx emissions from domestic heating due to the combustion
of compressed natural gas (CNG) have been spatially dis-
tributed using the volume of each building as a spatial proxy,
which may not accurately reflect the actual distribution. All
of these factors may contribute to the underestimation ob-
served at the urban background site, particularly in the early
morning and late evening, when domestic heating activity is
at its highest.

Although some limitations have been identified, the inte-
grated modelling approach demonstrates its value as a tool
for assessing traffic emissions at the kerbside. This strength
opens up the possibility of using VERT, in combination with
a high-resolution dispersion model, to assess different traffic

https://doi.org/10.5194/gmd-17-6465-2024 Geosci. Model Dev., 17, 6465–6487, 2024



6476 G. Veratti et al.: Description and validation of VERT 1.0

Figure 5. Mean daily cycle of observed NOx concentrations at
urban stations (black), at the rural-background station (blue), and
modelled by GRAMM–GRAL plus the rural-background contribu-
tion (red). The solid lines represent the daily mean cycle, while the
shaded area shows the variability between the 25th and 75th per-
centiles.

emission scenarios, including changes in the fleet composi-
tion, the introduction of low-emission zones, and variations
in traffic flows.

Figure 6 presents the spatial distribution of NOx concen-
trations simulated using the integrated modelling approach.
The map clearly shows the concentration gradient along ma-
jor roads, with particularly high levels occurring along the
urban ring road around the city centre and the motorway in
the lower left corner. Additionally, concentration peaks are
also found in more central urban areas characterised by dense
traffic and elevated building density, which trap pollutants
and contribute to local hotspots.

4 Case study 2: application and validation of VERT at
the regional scale

The second case study focuses on the use of VERT to as-
sess transport emissions on a larger scale, encompassing the
entire Emilia-Romagna region, a large area in the Po Val-
ley of approximately 22 000 km2. The main objective of this
section is to quantify transport emissions using traffic esti-
mates provided by the regional authority and to compare the
results obtained from VERT with estimates derived from the
reference emission inventory for the same region (INEMAR,
2019). This application sets the stage for investigating the
performance of VERT and providing insights about its ap-

plicability for estimating transport emissions on a regional
scale.

4.1 Methods

Since 2001, the Emilia-Romagna region has been using a
transport modelling tool to support its extra-urban mobility
system, covering both private and public transport modes and
their potential integration. The PTV VISUM software serves
as the reference modelling tool for these simulations, provid-
ing estimates for the inter-zonal movements within the re-
gion and interactions with neighbouring areas and regional
crossings. The full range of mobility possibilities are allo-
cated to different potential destinations using a comprehen-
sive socio-economic dataset, including population, employ-
ment, and student data, divided into zones. Using origin–
destination matrices and local traffic measurements, the PTV
VISUM model assesses vehicle traffic patterns on a refer-
ence road network of approximately 7000 arcs and 2500
nodes during the typical morning rush hour of a working
day (from 07:00 to 09:00 local time). Vehicles are also cat-
egorised into four different groups: cars, light commercial
vehicles, heavy commercial vehicles, and mopeds or motor-
cycles. Figure 7 gives an overview of the traffic flows as es-
timated by PTV VISUM for the morning rush hour. Urban
traffic flows for each municipality are not included in the sim-
ulation because the granularity required for accurate urban
traffic patterns (complex intersections, varying speed limits,
pedestrian interactions, and more frequent stops) is usually
beyond the scope of regional models. Urban traffic patterns
require highly detailed data, including traffic signals, pedes-
trian crossings, local road layouts, and variations in daily and
weekly traffic flows. Collecting and maintaining this level of
detail for an entire region is complex and resource intensive.
Potential sources for extending regional traffic flows to the
city level include the urban mobility plans of medium and
large cities, which can provide accurate and reliable data on
traffic movements and the vehicle speed distribution at a level
of detail not achievable at the regional level.

To comprehensively represent vehicle flows throughout
the year, 72 distinct scenarios were devised from the estimate
provided by PTV VISUM, each tailored to account for sea-
sonal variations, weekday and weekend dynamics, and daily
load patterns. In addition, the vehicle speed provided by the
PTV VISUM model for the morning rush hour was adjusted
to reflect off-peak scenarios by using measured flow curves
for the reference network. This approach allowed the assign-
ment of realistic vehicle speeds corresponding to the road’s
capacity.

In order to fully assess transport emissions for each of
the 72 traffic scenarios, VERT was run using the reference
road fluxes and the estimated vehicle speeds. In addition,
seasonal-average temperature data for 2019, sourced from
the ERA5 archive (Hersbach et al., 2018), were incorpo-
rated and averaged for the entire region to accurately esti-
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Figure 6. Spatial distribution of average simulated NOx concentrations in the city of Modena from 8 January to 8 March 2020, as modelled
by GRAMM–GRAL. Urban building locations are depicted in black, while NOx concentrations are colour coded from purple to yellow,
illustrating variations across the city.

mate cold-start and evaporative emissions. The fleet compo-
sition for 2019 was used to determine the percentage break-
down of EMEP/EEA classes required by VERT, categorised
by fuel type, Euro emission standard, engine capacity, and
vehicle mass. Fleet information was extracted from the na-
tional vehicle register (ACI, 2023) and adjusted for the ac-
tual mileage in each vehicle category to ensure data accu-
racy (ISPRA, 2023). Emission estimates for extra-urban and
motorway roads were performed on a 52-core Intel Xeon
Gold 5320 2.20 GHz cluster node and took approximately
349 100 s.

Since the PTV VISUM simulations only cover extra-urban
and motorway traffic, the total regional fuel consumption was
used to estimate the share of emissions due to urban traf-
fic. The fuel consumption calculated by VERT for petrol,
diesel, CNG, and liquefied petroleum gas (LPG), based on
PTV VISUM fluxes and velocities, was subtracted from the
total regional fuel consumption for 2019 (MASE, 2019). This
fuel difference was allocated to urban traffic and distributed
among all municipalities, using population as a proxy vari-
able. Then, in an iterative process, VERT was used to esti-
mate the distance required for the urban vehicle fleet to con-
sume the missing fuel, which in turn was used to calculate
the urban transport emissions for each municipality. These

procedures were performed on an Intel i7-5500U 2.40 GHz
single-core laptop and took approximately 730 s.

INEMAR, the software used to compile the regional emis-
sion inventory, follows the EMEP/EEA methodology, similar
to VERT. However, differences include the fleet composition,
the procedures for estimating urban traffic flows and speeds,
the allocation of cold-start emissions between extra-urban
and urban traffic, and the formulation for calculating evapo-
rative running losses. Table 2 summarises the main input data
and methodologies used by both models. INEMAR uses fleet
composition data from ACI (2023) for 2019, while VERT ad-
justs these data based on estimated kilometres travelled per
vehicle class (ISPRA, 2023), reflecting the actual presence
of vehicles on the road. VERT estimates traffic flows iter-
atively, whereas INEMAR uses empirical formulas to esti-
mate the total annual kilometres travelled per vehicle cate-
gory. It combines fuel consumption and traffic flows on extra-
urban roads and motorways to derive the total kilometres
travelled and then estimates urban traffic flows by calculating
the difference between the total estimate and the extra-urban
and motorway calculation. In addition, INEMAR uses data
from various urban mobility plans for reference speeds, while
VERT uses measured data from traffic campaigns in Mod-
ena, which are considered representative for other munici-
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palities in the region. Finally, INEMAR assigns all cold-start
emissions to urban traffic for each municipality, while VERT
distinguishes between extra-urban and urban cold-start emis-
sions.

4.2 Emission evaluation and comparison with the
reference emission inventory

The total annual emissions calculated by VERT and IN-
EMAR are presented categorised by road type (roadways,
extra-urban, and urban) and as annual totals in Table 3. Over-
all, VERT shows good agreement with INEMAR for NOx ,
PM exhaust, SO2, wear PM, and evaporative-NMVOC emis-
sions, with deviations ranging from −24 % to 19 % in terms
of annual totals. This confirms the reliability of VERT and
its ability to provide comparable estimates with the refer-
ence emission inventory. For other pollutants, such as CO,
exhaust NMVOC, and NH3, the difference between VERT
and INEMAR is more pronounced, with absolute deviations
of 49 %, 76 %, and 38 % respectively. These discrepancies,
particularly for CO and NMVOC, are mainly due to urban
traffic (69 % and 83 % respectively), where emissions are cal-
culated on the basis of fuel consumption and are therefore
subject to greater uncertainty. Several factors, including dif-
ferences in the fleet composition, urban vehicle speeds, fuel
blends, and associated calorific values, can lead to signifi-
cant disparities between the two models. In this comparison,
VERT is likely to attribute a higher proportion of kilometres
travelled to petrol vehicles in urban traffic conditions com-
pared to INEMAR, resulting in higher NMVOC and CO es-
timates. Similarly, heterogeneities in fleet composition may
also explain the discrepancy for NH3 emissions.

Despite these factors, the disparities between VERT and
INEMAR are of the same order of magnitude as those found
in similar studies carried out in the Po Valley. For exam-
ple, Pallavidino et al. (2014), who compared the output of
the traffic-emission model TREFIC with INEMAR for the
province of Turin, found differences ranging from 3 % to
92 % for NOx , CO, PM10, NMVOC, and NH3, with larger
gaps observed for NMVOC, as in the present case study. This
highlights the significant uncertainties that still exist in the
estimation of NMVOC emissions from transport sources and
underlines the potential for different methodologies to pro-
duce divergent results.

Other authors in Europe have made comparisons of traffic-
emission estimates between the reference local-emissions in-
ventory, typically compiled using a top-down approach, and
tailored bottom-up methods. For instance, Chan et al. (2023)
compared the output of Yeti with the reported 2015 emissions
at the city level from the Berlin Senate inventory. Employing
various Yeti configurations, the results showed disparities be-
tween the two approaches within the ranges of 11 %–20 %
for CO, 5\%˙–99 % for hydrocarbons, 4 %–48 % for NOx ,
and 2 %–49 % for PM. This confirms that estimates related

to volatile organic compounds are the ones affected by larger
uncertainties in different areas of Europe as well.

Further comparisons between fine-scale bottom-up ap-
proaches and European top-down inventories (EC4MACS,
TNO MACC-II, and TNO MACC-III) were performed for
seven urban areas in Norway (López-Aparicio et al., 2017).
These investigations revealed that the three top-down re-
gional inventories underestimated NOx and PM10 traffic
emissions by approximately 20 %–80 % and 50 %–90 % re-
spectively. Other authors, such as Borge et al. (2012), con-
ducted a comparison between two of the most widely used
traffic-emission methodologies in Europe, EMEP/EEA and
HBEFA, in assessing traffic emissions for the city of Madrid.
Their analysis showed that the annual totals for NOx from
HBEFA were 21 % higher than those from EMEP/EEA,
while the differences for primary NO2 were on the order of
13 %.

These studies provide evidence that the discrepancies ob-
served between VERT and INEMAR are consistent with sim-
ilar comparisons made for other European cities and areas.
In addition, the findings from the same studies highlight the
importance of employing bottom-up methods alongside top-
down approaches to achieve more accurate estimates of traf-
fic emissions, particularly for volatile organic compounds,
which are crucial for air quality modelling and policy devel-
opment.

Simulations with VERT were also carried out to estimate
the resuspension of road dust caused by vehicle movement,
whose emissions are not included in the local emission inven-
tory. In the absence of a standardised method for assessing
this component of PM10 emissions, simulations were con-
ducted using both the EPA-42 methodology and a second
approach based on user-defined EFs. The EPA-42 method-
ology was applied using a silt load of 0.2 gm−2, while the
second approach relied on different EFs for cars, mopeds,
light trucks, and heavy trucks, which were set, respectively,
to 12.5, 1.1, 45, and 250 mgkm−1 per vehicle, as in the range
proposed by Amato et al. (2012). The results revealed signif-
icant discrepancies between the two methods (Table 3), with
the EPA-42 approach consistently overestimating compared
to the second approach. These relative differences were equal
to 46 % for motorways, 60 % for non-urban roads, and 51 %
for urban roads. Although similar results have been found
in the past by other authors (Amato et al., 2016; Harrison
et al., 2021; Casotti Rienda and Alves, 2021), it is impor-
tant to note that the EPA-42 methodology is based on data
collected from US roads, while the selected emission factors
come from studies carried out in Spain. As a result, their ap-
plicability to a situation different from the one for which they
were developed may be subject to some uncertainty, and nei-
ther approach can be clearly considered as a reference for the
Po Valley. Nevertheless, these simulations provide a prelimi-
nary assessment of the potential emission contributions from
road dust resuspension.
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Figure 7. Traffic flows simulated by PTV VISUM during the morning rush hour (from 07:00 to 09:00 local time) for a typical working day
in the Emilia-Romagna region (Po Valley). Basemap from Esri, USGS, and NOAA.

Table 2. Comparison between VERT and INEMAR in terms of setup and calculation methods.

Emission type Input or details INEMAR VERT

– Fleet composition ACI (2023) year 2019 ACI (2023) year 2019,
adjusted according to ISPRA (2023)

– Extra-urban and PTV VISUM PTV VISUM
motorway fluxes simulations simulations

– Urban fluxes Empirical formulas for average vehicle Computed with an iterative process based
mileage and fuel consumption only on fuel consumption

– Extra-urban and Assessed using measured Assessed using measured
motorway velocities speed-flow curves speed-flow curves

– Urban velocities Derived from various urban Derived from measured-traffic
traffic plans campaigns in Modena

Exhaust

Methodology Eqs. (2), (3), and (4) Eqs. (2), (3), and (4)
EFs EMEP/EEA 2020 EMEP/EEA 2020
EFidgr Function of vehicle speed Constant with vehicle speed
Cold-start emissions Urban includes both extra-urban Divided between extra-urban

and urban and urban

Non-exhaust
Methodology Eq. (7) Eq. (7)
EFs EMEP/EEA 2020 EMEP/EEA 2020

Evaporative Methodology Eqs. (B1) and (B2) Eq. (11)
running losses

Resuspension Methodology Not included Eq. (8) and custom EFs
from Amato et al. (2012)
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Table 3. Comparative analysis between VERT simulations and INEMAR estimates for the Emilia-Romagna region. The table includes the
annual totals and the percentage differences between the two methods.

Motorway Extra-urban Urban Totals

Pollutant VERT INEMAR Diff VERT INEMAR Diff VERT INEMAR Diff VERT INEMAR Diff
(t) (t) (%) (t) (t) (%) (t) (t) (%) (t) (t) (%)

NOx 19 649 13 065 34 12 748 12 722 0 7209 8025 −11 39 606 33 812 15
CO 7428 9443 −27 6371 5357 16 38 498 12 019 69 52 297 26 819 49
PM exhaust 373 229 39 254 223 12 186 204 −9 813 656 19
NMVOCexh 856 501 41 1112 635 43 9582 1658 83 11 549 2794 76
NMVOCevap 42 55 −24 41 59 −31 1198 1577 −24 1281 1691 −24
SO2 27 21 22 23 23 1 14 13 6 64 57 11
NH3 131 232 −77 91 170 −86 132 87 34 354 489 −38
Wear TSP 868 760 12 724 1029 −42 473 422 11 2064 2211 −7
Wear PM10 543 458 16 486 685 −41 319 287 10 1348 1430 −6
Wear PM2.5 293 259 12 256 365 −43 169 150 11 718 774 −8
Resusp PM10 2015 – – 1687 – – 1804 – – 5506 – –
EPA-42
Resusp PM10 1088 – – 682 – – 879 – – 2649 – –
custom EF

Figure 8 illustrates the spatial distribution of annual emis-
sions for NOx and PM10 across the municipalities of the
Emilia-Romagna region. To facilitate comparison between
municipalities, total emissions are expressed in tonnes per
square kilometre. Generally, municipalities with lower emis-
sions are located in the southern part of the region, in hilly
and mountainous areas where traffic flows are lower and the
municipalities are less populated than in other locations. On
the other hand, areas with higher emissions are characterised
by the presence of motorways, which contribute additional
emissions from both urban and rural networks. This is par-
ticularly evident for NOx (Fig. 8a), where emissions from
motorways are exacerbated by the higher speeds compared
to rural and urban driving. In contrast, motorway emissions
are less pronounced for PM10 (Fig. 8b), as the non-exhaust
component dominates PM emissions, with the latter being
less significant on motorways because braking and cornering
are more frequent in urban and rural driving.

5 Conclusions

This study presents VERT, a bottom-up traffic emissions
model implemented in the R programming language. VERT
is capable of estimating emissions for a wide range of pol-
lutants and greenhouse gases starting from traffic estimates
along a reference road network, accompanied by data on ve-
hicle fleet composition and fuel blends. Compared to exist-
ing tools in the literature, VERT is characterised by simplic-
ity of operation and rapid configuration, even for users with
limited programming experience. At the same time, the tool
offers remarkable flexibility in user input, accommodating
three different types of vehicle flows. VERT also includes
emission factors for the calculation of different emissions,

such as hot exhaust, cold-start, evaporative, non-exhaust,
and resuspension emissions, whose implementation follows
the methodology proposed by the EMEP/EEA and the 2006
IPCC guidelines.

VERT was integrated into a modelling framework together
with PTV VISUM and GRAMM–GRAL to evaluate its abil-
ity to accurately estimate traffic emissions in a real case
study. This integrated approach allows for the validation of
VERT in simulating NOx emissions in the town of Modena,
an urban hotspot of the Po Valley. VERT emissions were fed
to the Lagrangian dispersion suite GRAMM–GRAL to sim-
ulate NOx concentrations, which in turn are compared with
observations from two urban air quality monitoring stations,
one located in an area representative of urban background
conditions and the other representative of traffic conditions.
The results show that the integrated modelling approach ef-
fectively reproduces the observed trends, especially at the
traffic site where the associated emissions are expected to
be the major contributors, confirming the ability of VERT to
provide reliable estimates of traffic emissions. Although the
accuracy of the modelling system at the urban-background
site is lower than it is at the urban-traffic site, its performance
at both sites meets the acceptance criteria defined in the lit-
erature for urban dispersion modelling.

The effectiveness of VERT in reproducing traffic emis-
sions is further evaluated at a regional scale in a domain cov-
ering the entire Emilia-Romagna region located south of the
Po Valley. VERT simulations are performed for 72 different
traffic scenarios using measured traffic counts and simula-
tions of the PTV VISUM model calibrated for the morning
rush hour (from 07:00 to 09:00 local time) of a typical work-
ing day. The results of VERT are then extrapolated to annual
totals and compared with INEMAR, the reference emission
inventory for the same region. VERT demonstrates strong
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Figure 8. Spatial distribution of NOx (a) and PM10 (b) emissions simulated by VERT for each municipality in the Emilia-Romagna re-
gion (from © OpenStreetMap contributors 2023; distributed under the Open Data Commons Open Database License (ODbL) v1.0). The
cumulative emissions account for contributions from urban, rural, and motorway roads.

agreement with INEMAR, especially for NOx , PM exhaust,
SO2, wear PM, and evaporative NMVOCs, with differences
ranging from −24 % to 19 %. For other pollutants, such as
CO, NMVOC, and NH3, the discrepancy increases to 76 %,
but it is still within the range (3 %–92 %) of similar compar-
isons carried out in other regions of the Po Valley. At the
same time, these results highlight the persistent uncertainty
associated with the estimation of NMVOC emissions from
traffic.

Simulations with VERT are also performed to account for
the resuspension of road dust at the regional scale. Employ-
ing both the EPA-42 methodology and vehicle-specific emis-
sion factors, a comprehensive range of potential contribu-

tions of resuspension to PM10 are provided in the last section
of the paper.

In conclusion, VERT is a versatile and user-friendly
bottom-up traffic emissions model that effectively estimates
traffic emissions at both urban and regional scales. Its abil-
ity to simulate emission patterns and its alignment with ref-
erence emission inventories make it a valuable tool for air
quality modelling and emission reduction strategies.
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Appendix A: Model evaluation

To assess the performance of the model in reproducing NOx
concentrations, several statistical indicators were employed.
These indicators were derived using the following notation.

M: modelled values

O: observed values

n: number of model–observation pairs.

Average modelled value:

M̄ =
1
n

n∑
i=1

Mi . (A1)

Average observed value:

Ō =
1
n

n∑
i=1

Oi . (A2)

The following metrics were used for evaluation:

MB=
1
n

n∑
i=1
(Mi −Oi) (A3)

NMB=
1
n

n∑
i=1

(Mi −Oi)

Oi
(A4)

r =

∑n
i=1(Mi − M̄)(Oi − Ō)√∑n

i=1(Mi − M̄)2
∑n
i=1(Oi − Ō)

2
(A5)

FAC2= fraction of data where 0.5≤
Mi

Oi
≤ 2 (A6)

NMSE=
(O −M)2

Ō · M̄
(A7)

FB=
O −M

0.5 · (Ō + M̄)
(A8)

NAD=
|O −M|

(Ō + M̄)
(A9)

RMSE=

√√√√1
n

n∑
i=1
(Mi −Oi)

2 . (A10)

Appendix B: Evaporative emissions formulation
included in the INEMAR emission model

The INEMAR emission model accounts only for evaporative
running losses. The formulation included in the model is rep-
resented by Eq. (B1):

Eki runinemar = n.vehk ·Lk ·EFhr · δ× 10−6 . (B1)

EFhr is given by Eq. (B2). n.vehk and Lk are, respectively,
the number of vehicles travelling on road segment k and the
length of road segment k. δ takes the value of 1 for petrol-
powered vehicles, 0 for vehicles powered by other fuels, 0.2
for mopeds, and 0.4 for motorcycles.

EFhr =

0.136 · exp(−5.967+ 0.04259 ·RVP+ 0.1773 · T ) · ε (B2)

RVP represents the fuel vapour pressure in kPa, T is the
mean air temperature for the period of interest, and ε equals
1 for vehicles without a canister fuel system and 0.1 for ve-
hicles equipped with a canister.

Appendix C: Emission modulations

Figure C1. Emission modulations used for GRAL simulations.
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Code and data availability. The source code for VERT used in
this study can be accessed via the digital object identifier
(DOI) https://doi.org/10.5281/zenodo.12549513 (Veratti, 2024b)
under the GNU GPL-3 license. Additionally, the Git reposi-
tory for VERT, which includes the latest updates, version his-
tory, and detailed documentation, is available at https://gitlab.
com/GiorgioVeratti/vert (last access: 26 AUGUST 2024). This
repository also provides issue tracking and contribution guide-
lines for those interested in collaborating on the project. The of-
ficial software code for GRAMM–GRAL is available at https:
//gral.tugraz.at/ (Oettl et al., 2024) and through the Git reposi-
tory at https://github.com/GralDispersionModel (last access: 26 Au-
gust 2024). The specific version of the GRAMM–GRAL code used
in this study is also available via the following permanent link:
https://doi.org/10.5281/zenodo.10728500 (Veratti, 2024a). The in-
put and output data necessary to run the VERT model, as de-
scribed in the Supplement, are available at the same DOI as VERT
(https://doi.org/10.5281/zenodo.12549513, Veratti, 2024b). Addi-
tional data used in this manuscript can be provided upon request
to the corresponding author.
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