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Abstract. Since their advent over 2 decades ago, au-
tonomous Argo floats have revolutionized the field of
oceanography, and, more recently, the addition of biogeo-
chemical and biological sensors to these floats has greatly
improved our understanding of carbon, nutrient, and oxygen
cycling in the ocean. While Argo floats offer unprecedented
horizontal, vertical, and temporal coverage of the global
ocean, uncertainties remain about whether Argo sampling
frequency and density capture the true spatiotemporal vari-
ability in physical, biogeochemical, and biological proper-
ties. As the true distributions of, e.g., temperature or oxygen
are unknown, these uncertainties remain difficult to address
with Argo floats alone. Numerical models with synthetic ob-
serving systems offer one potential avenue to address these
uncertainties. Here, we implement synthetic biogeochemical
Argo floats into the Energy Exascale Earth System Model
version 2 (E3SMv2), which build on the Lagrangian In Situ
Global High-Performance Particle Tracking (LIGHT) mod-
ule in E3SMv2 (E3SMv2-LIGHT-bgcArgo-1.0). Since the
synthetic floats sample the model fields at model run time,
the end user defines the sampling protocol ahead of any
model simulation, including the number and distribution of
synthetic floats to be deployed, their sampling frequency, and
the prognostic or diagnostic model fields to be sampled. Us-
ing a 6-year proof-of-concept simulation, we illustrate the
utility of the synthetic floats in different case studies. In par-

ticular, we quantify the impact of (i) sampling density on the
float-derived detection of deep-ocean change in temperature
or oxygen and on float-derived estimates of phytoplankton
phenology, (ii) sampling frequency and sea-ice cover on float
trajectory lengths and hence float-derived estimates of cur-
rent velocities, and (iii) short-term variability in ecosystem
stressors on estimates of their seasonal variability.

1 Introduction

Autonomous observing systems, such as profiling floats,
sample the global ocean at much higher spatial and tempo-
ral resolution than traditional ship-based hydrography (Tal-
ley et al., 2016; Wong et al., 2020; Johnson et al., 2022).
The more than 2 million profiles collected by autonomous
Argo floats as part of the “Core Argo” array over the past 2.5
decades have revolutionized our understanding of the spa-
tiotemporal variability in physical ocean properties in the top
2000 m of the water column (e.g., Jayne et al., 2017; John-
son et al., 2022). Complementing the successful implementa-
tion of a global physical float array, a Global Ocean Biogeo-
chemistry (GO-BGC) Array will be implemented over the
upcoming years and decades as part of the “BGC Argo” ar-
ray (Roemmich et al., 2019; Claustre et al., 2020; Matsumoto
et al., 2022; Schofield et al., 2022). In recent years, the de-
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ployment of > 250 floats carrying biogeochemical and bio-
logical sensors within the Southern Ocean Carbon and Cli-
mate Observations and Modeling project (SOCCOM, 2023;
Sarmiento et al., 2023) has already permitted the first quan-
tification of spatiotemporal variability in carbon, nutrients,
and oxygen in the Southern Ocean (Gray et al., 2018; Arteaga
et al., 2020; Su et al., 2021; Prend et al., 2022a, b), promis-
ing similar scientific advances on the global scale. Similarly,
the successful deployment of regional pilot “Deep Argo”
arrays, with floats sampling down to 6000 m, demonstrates
the possibility of expanding this technology to the sampling
of the whole water column (Blunden and Arndt, 2017). All
three arrays are part of the international “One Argo” program
(Roemmich et al., 2019). While the advent of Argo floats rep-
resents a major step forward in the global ocean observing
system with many potential uses, important uncertainties re-
main due to, e.g., the specific spatiotemporal coverage of the
resulting dataset and uncertainties in determining float posi-
tions.

Most Argo floats profile the upper ocean approximately
every 10 d, drifting with ocean circulation in between pro-
files at a parking depth of ∼ 1000 dbar and being localized
via the Global Positioning System (GPS) when transmitting
data upon surfacing (Fig. 1 and Jayne et al., 2017). As a
float’s position is not known while drifting at the parking
depth, its exact trajectory in between profiles cannot be re-
solved, which directly affects float-based velocity estimates
(Gille and Romero, 2003; Ollitrault and Rannou, 2013; Wang
et al., 2022; Zilberman et al., 2023). Similarly, since the pres-
ence of sea ice prevents a float from surfacing to avoid sen-
sor damage and total float loss (Klatt et al., 2007), floats can
currently not be routinely localized while under sea ice, thus
limiting the utility of Argo floats in high-latitude polar re-
gions (Chamberlain et al., 2018).

Data from the Core Argo and BGC Argo floats may still
not fully characterize the spatiotemporal variability in upper
ocean biogeochemical properties with high certainty despite
the unprecedented spatiotemporal coverage of the global
ocean. As an example, the projected float density in BGC
Argo (1000 floats; Bittig et al., 2019; Roemmich et al., 2019)
corresponds to approximately one float per 6° × 6° grid cell.
This target density is much larger than typical spatial scales
of, e.g., variability in phytoplankton chlorophyll (<100 km;
see McKee et al., 2022) and pCO2 (<1 km; see Eveleth
et al., 2017), complicating the extrapolation from individ-
ual float-based observations to larger spatial scales. The 10 d
sampling frequency is also longer than the turnover time of
phytoplankton biomass of 2–6 d (Behrenfeld and Falkowski,
1997). Similarly, biogeochemical properties such as nutri-
ents and carbonate chemistry are known to exhibit variabil-
ity on sub-kilometer spatial scales and on timescales shorter
than 10 d (Gruber et al., 2021), e.g., due to the diurnal cycle
(Kawai and Wada, 2007; Torres et al., 2021), tides (Droste
et al., 2022), or ocean weather (Nicholson et al., 2022). Al-

together, this complicates the float-based detection of any
trends in phytoplankton dynamics and carbon cycling.

Until the Deep Argo float program is fully operational,
the majority of the ocean volume will remain undersampled
(Jayne et al., 2017; Roemmich et al., 2019). As a result, the
observation-based detection of changes in deep-ocean heat
and oxygen content and in deep-ocean ventilation are still
mostly based on scarce hydrographic observations (Johnson
et al., 2015; Talley et al., 2016; Roemmich et al., 2019),
which introduces large uncertainties when extrapolating to
the global scale. All Deep Argo floats will be equipped with
sensors to measure temperature and salinity, but the fraction
of floats onto which an oxygen sensor will be mounted is
uncertain (King et al., 2021). While available funding will
ultimately limit both the number of floats to be deployed and
the number of floats including an oxygen sensor, dedicated
studies assessing the impact of float density on our ability
to track large-scale changes in both deep-ocean temperature
and oxygen are lacking.

Overall, in the absence of knowledge on the true distribu-
tion of physical, biogeochemical, and biological properties,
uncertainties stemming from sampling frequency and density
as well as imprecise localization are difficult to address with
float-based observations alone, as it remains unknown how
representative a given float profile is for a wider area or a
longer timescale (Chamberlain et al., 2023). Model simula-
tions are one approach to address these uncertainties. In par-
ticular, numerical models with synthetic observing systems
can provide a known truth for the global distribution of any
physical, biogeochemical or biological tracer, so that such
models can be used as an ideal test bed to address uncertain-
ties in sampling network design. In the past, this approach
has been used to assess variability in oceanic heat content
(Johnson et al., 2015; Allison et al., 2019; Garry et al., 2019;
Gasparin et al., 2020), salinity distributions (Gasparin et al.,
2020), the global oceanic carbon sink (Gloege et al., 2021;
Hauck et al., 2023), and chlorophyll concentrations (Ford,
2021; Clow et al., 2024), demonstrating the wide range of
possible scientific applications. In general, synthetic obser-
vations can be extracted either offline from time-averaged
model output or online during model run time. Most pub-
lished studies extracted the synthetic observations offline
(e.g., Gasparin et al., 2020; Gloege et al., 2021). This ap-
proach is storage-intensive, as model fields need to be stored
at high temporal frequency (often at least daily) because
real-world observations always represent snapshots of ocean
properties rather than time averages, leading to higher uncer-
tainties if lower-frequency (e.g., monthly) model fields are
used to extract the synthetic observations. While this offline
extraction of synthetic observations offers the advantage of
being easily applicable to any model with high-enough fre-
quency output available, extracting synthetic observation on-
line during the model run time eliminates the uncertainty as-
sociated with assessing time-averaged model output, as such
synthetic observations provide the same snapshot view of the
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Figure 1. Sketch of a synthetic vs. a real-world biogeochemical float. (a) A synthetic biogeochemical float in E3SMv2 with a 1 d sampling
cycle, i.e., drifting at a parking depth of 1000 m for a day and then instantaneously sampling any model tracer or diagnostic throughout the
water column in open waters and under sea-ice cover. (b) A biogeochemical Argo float with a 10 d sampling cycle, i.e., drifting at a parking
depth of 1000 m for about 9 d, then descending to 2000 m and sampling temperature, salinity, oxygen, nitrate, pH, chlorophyll, particulate
backscatter, and irradiance in the upper 2000 m while ascending. This float relies on localization via GPS, such that its exact position is
unknown while under ice. Panel (b) is adapted from Jayne et al. (2017).

modeled ocean as real-world observing systems do of the real
ocean. Yet, since this approach requires substantial modifica-
tions of the model code, few models have such capabilities to
date (Brady et al., 2021; Clow et al., 2024).

Here, we present the new synthetic biogeochemical float
capabilities (LIGHT-bgcArgo-1.0) of the Energy Exascale
Earth System Model version 2 (E3SMv2). These capabilities
build on the Lagrangian in Situ Global High-Performance
Particle Tracking (LIGHT) module (Wolfram et al., 2015;
Brady et al., 2021). To more closely resemble real-world

Argo floats, the synthetic floats sample the model fields on-
line during model run time, which facilitates a more realis-
tic assessment of what floats truly see when they sample the
ocean. The number and distribution of the synthetic floats,
the sampling frequency, and the sampled variables are de-
fined by the end user before the start of the model experi-
ment. After describing the implementation of synthetic floats
into E3SMv2 in more detail in the following section, we will
present its utility for physical, biogeochemical, and biologi-
cal research questions with several case studies. These case
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studies address critical uncertainties related to float sampling
networks, i.e., quantifying the impact of (i) sampling den-
sity on the float-derived detection of deep-ocean change in
temperature or oxygen and on float-derived estimates of phy-
toplankton phenology, (ii) sampling frequency and sea-ice
cover on float trajectory lengths and hence float-derived esti-
mates of current velocities, and (iii) short-term variability in
ecosystem stressors on estimates of seasonal variability.

2 Methods

2.1 Model description: E3SMv2 with synthetic
biogeochemical floats
(E3SMv2-LIGHT-bgcArgo-1.0)

We implement the synthetic biogeochemical float capabili-
ties, LIGHT-bgcArgo-1.0, into the ocean component of the
E3SMv2 version 2 (E3SMv2; Golaz et al., 2022). The phys-
ical component of E3SMv2 consists of the E3SMv2 Atmo-
sphere Model version 2 (EAMv2), the E3SMv2 Land Model
version 2 (ELMv2), the Model for Prediction Across Scales
– Ocean (MPAS-O), and the Model for Prediction Across
Scales – Sea Ice (MPAS-Seaice; Golaz et al., 2019; Petersen
et al., 2019; Turner et al., 2022; Golaz et al., 2022). Both
MPAS-O and MPAS-Seaice are run on unstructured mul-
tiresolution model grids, allowing for enhanced model res-
olution in selected regions (Ringler et al., 2013). While we
assess an ocean sea-ice-only simulation in this study, i.e.,
a simulation without coupled atmosphere and land model
components (see Sect. 2.2), we note that the new techni-
cal development described below can equally be used in
the fully coupled mode. Ocean biogeochemistry is described
by the Marine Biogeochemistry Library (MARBL; Long
et al., 2021), which is based on the Biogeochemical Ele-
mental Cycling module (BEC; Moore et al., 2004, 2013).
MARBL describes the biogeochemical cycling of carbon,
nitrogen, silicon, phosphorus, iron, and oxygen and allows
flexible lower-trophic-level ecosystem configuration (Long
et al., 2021). Lastly, sea-ice biogeochemistry is represented
by four dissolved inorganic nutrients (silicate, nitrate, ammo-
nium, and iron), dissolved organic nitrogen, and two phyto-
plankton groups, i.e., diatoms and small flagellates (MPAS-
Seaice zbgc; Jeffery et al., 2020).

The implementation of synthetic biogeochemical floats in
E3SMv2 builds on the online Lagrangian, in Situ, Global,
High-Performance Particle Tracking (LIGHT) module devel-
oped for MPAS-O (Wolfram et al., 2015; Brady et al., 2021).
For our simulations, LIGHT particles are seeded at a depth of
1000 m and advected laterally with ocean circulation using a
second-order Runge–Kutta scheme; unlike previous studies
(e.g., Brady et al., 2021), particles are not permitted to move
vertically. During the simulation, the virtual floats instanta-
neously sample the whole water column at their current loca-
tion and with a prescribed frequency, e.g., daily or every 10 d.

The synthetic floats are thus not subject to lateral current dis-
placement during ascent or descent (cf. synthetic and Argo
floats in Fig. 1). Further, in contrast to Argo floats, whose
position can only be registered upon surfacing in ice-free wa-
ters, the position of synthetic floats in E3SMv2 is known at
all times (Fig. 1). In general, any prognostic or diagnostic
physical or biogeochemical model variable can be recorded
by the synthetic floats, and the sampled variables are bilin-
early interpolated to the float’s current location. Inclusion of
profiling floats increased the computational cost of the simu-
lation by about 50 % and scaled approximately linearly with
the numbers of processors, floats, and variables. However, we
note that for the proof-of-concept simulation assessed in this
study (see Sect. 2.2), no attempt was made to optimize the
new code’s performance. In particular, interpolation weights
from biogeochemical tracer locations to particle locations
were unnecessarily recalculated for every tracer, which cer-
tainly caused significant slowdown. The distribution of vir-
tual particles to be seeded (or floats to be deployed), the sam-
pling frequency, and the variables to be recorded are defined
by the user prior to the model simulation to best align with a
given application or research question.

2.2 Model setup and simulation

For this study, we use the ocean–ice version of E3SM, i.e.,
MPAS-O and MPAS-Seaice, each with their corresponding
biogeochemical module (MARBL and MPAS-Seaice zbgc;
see Sect. 2.1). In this version, the ecosystem within MARBL
consists of three phytoplankton functional types (diatoms, di-
azotrophs, and a mixed small phytoplankton group) and a
single zooplankton functional type. To demonstrate the func-
tionality of the new synthetic float tool, we conduct a 6-year
model simulation from 2012 to 2017, i.e., overlapping with
the SOCCOM period starting in 2014 (Riser et al., 2018;
Sarmiento et al., 2023). In our simulation, the model grid
has a horizontal resolution that ranges from ∼ 30 km in the
tropics and the high latitudes to ∼ 60 km in the subtropics
(Fig. 2), and includes 60 z-star levels in the vertical, i.e.,
the vertical coordinate system varies with changes in the lo-
cal water-column thickness in response to sea-surface height
variability (EC30to60E2r2 mesh; Petersen et al., 2019). The
simulation is forced with 3 h atmospheric data from the
Japanese atmospheric reanalysis version 1.4 (JRA; Tsujino
et al., 2018). All model fields are initialized from an existing
unpublished simulation using the same model grid and at-
mospheric forcing data as the 6-year simulation analyzed in
this paper (Takano et al., 2023). Model tracers in this exist-
ing simulation were initialized in the same manner as in Bur-
rows et al. (2020). The simulation was spun-up from 1750
to 1957 using repeat-year atmospheric and river runoff forc-
ing derived from the period July 1984 to June 1985, with
atmospheric CO2 concentrations held constant at 284 ppm
between 1750 and 1850 and increasing according to histor-
ical records thereafter (Meinshausen et al., 2017). Starting
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in 1958, interannually varying JRA forcing is enabled and
run through 2012, after which point the atmospheric CO2 is
held at a constant value of 405 ppm through 2017. Nutrient
inputs with river discharge are invariant in time and taken
from Mayorga et al. (2010, GNEWS model). The model uses
climatological fields for atmospheric deposition of dust and
iron (Luo et al., 2003) and nitrogen (Lamarque et al., 2010).
Eulerian model output is stored at monthly frequency for all
variables; daily output is stored for phytoplankton and zoo-
plankton biomass.

Synthetic biogeochemical floats (a total of 10 560) are de-
ployed on 1 January 2012. Initially, floats are located at ev-
ery grid cell vertex at a depth of 1000 m, then are succes-
sively culled so that a specified number of cells separates
each float. Due to the multiresolution model grid of MPAS-
Ocean, the resulting density of synthetic floats varies in
space. Only floats seeded in the open ocean away from con-
tinental shelves and slopes, i.e., at a water depth > 2000 m,
are retained for the analysis in this study (8739 floats; see
Fig. 2a). The synthetic float density is up to 4 times higher
than the density of Core Argo floats deployed for the same
period in the (sub)tropics (especially in the Pacific and In-
dian sectors) and is comparable to it elsewhere (Fig. 2a). For
all latitudes and longitudes, the synthetic float density ex-
ceeds that of Deep Argo (not shown) and BGC Argo (red
lines; note the different scale; Fig. 2a). The synthetic floats
instantaneously sample the whole water column every day
at midnight Greenwich Mean Time. In addition to every
float’s position at sampling, the following model variables
are recorded: temperature, salinity, dissolved inorganic car-
bon (DIC), alkalinity, nitrate, silicic acid, phosphate, oxy-
gen, total phytoplankton carbon biomass, total phytoplank-
ton chlorophyll, zooplankton carbon biomass, O2 consump-
tion, O2 production, the zonal- and meridional-resolved ve-
locity components, sea-ice fraction, mixed-layer depth (as
determined with the 0.03 kg m−3 density criterion), sea-level
pressure, surface partial pressure of CO2 (pCO2) in seawa-
ter, difference in pCO2 between the ocean and the atmo-
sphere, atmospheric CO2 concentration, air–sea CO2 flux,
and air–sea O2 flux. We calculate pH on each float profile
offline using the Python routines to model the ocean car-
bonate system (mocsy v2.0; code was obtained from https:
//github.com/jamesorr/mocsy on 19 July 2023; Orr and Epi-
talon, 2015). We use DIC, alkalinity, potential temperature,
salinity, silicic acid, phosphate, and sea-level pressure from
each float profile as inputs for the mocsy functions.

3 Results and discussion

3.1 Evaluation of synthetic float velocity, temperature,
salinity, and nitrate in E3SMv2

We evaluate the synthetic float capabilities in E3SMv2 in two
ways: (1) by comparing the synthetic float data to the full

Eulerian model output, we ensure the sampling by synthetic
floats technically functions as intended and is sufficient in
terms of spatiotemporal coverage, and (2) by comparing the
synthetic float data to Core Argo data (Argo, 2023), we eval-
uate the extent to which the new synthetic observing network
can be used for real-world applications. Specifically, we eval-
uate whether ocean currents at 1000 m, i.e., at the float park-
ing depth, are adequately represented and whether environ-
mental variables, such as temperature, salinity, and nitrate,
are adequately simulated in E3SMv2 for realistic float-based
sampling.

The simulated pattern of current velocities in E3SM agrees
with an observation-based estimate, but current speeds are
overall biased low in the model. In E3SM, current velocities
at 1000 m are highest in the Antarctic Circumpolar Current
and in the subpolar North Atlantic off the southeast coast of
Greenland (locally > 8 cm s−1), with velocities of less than
3 cm s−1 elsewhere (Fig. 3a). Figure 3b shows a Lagrangian-
based velocity estimate derived from all 10 d synthetic float
positions that were averaged within 3° × 3° boxes. The spa-
tial patterns and magnitudes in current velocity produced by
the Eulerian model output are largely captured by the syn-
thetic floats (cf. Fig. 3a and b). The equatorial regions are
the only exception, for which the Lagrangian E3SMv2 es-
timate suggests higher velocities (up to 4 cm s−1) than the
Eulerian estimate (up to 2 cm s−1). This implies substantial
variability in current speeds at 1000 m in E3SMv2 at sub-
monthly timescales that are not captured by the Eulerian
time-averaged output. Quantitatively, using bilinear interpo-
lation to align the average Eulerian velocity field to the same
3° × 3° grid of the Lagrangian velocity estimate, the Pear-
son correlation coefficient between the two fields amounts
to 0.40, and the area-weighted mean bias is 0.21 cm s−1. In
comparison to Argo-derived current speeds (Zilberman et al.,
2022, 2023), velocities in E3SMv2 at 1000 m are a factor
of 2–3 too low, and the area-weighted mean bias amounts
to 4.2 cm s−1 (compare panels (a)–(c) in Fig. 3). This bias
in ocean current speeds is a common feature in non-eddying
ocean circulation models and is possibly related to how high-
frequency dynamical processes are parameterized (e.g., in-
ternal mixing or tides; Su et al., 2023), in addition to lim-
itations related to grid resolution. In spite of this bias, most
high-velocity features present in the Argo-derived dataset are
reproduced in E3SMv2 (Fig. 3b and c), and the Pearson cor-
relation coefficient between the two fields amounts to 0.66.
The only exception to the fairly good spatial agreement is the
Gulf Stream, which is too shallow in E3SMv2 (not shown),
resulting in much lower current speeds at 1000 m in E3SMv2
than in the Argo-based estimate in the northwest Atlantic
(< 2 cm s−1 compared to ∼ 12 cm s−1).

Synthetic floats in our configuration of E3SMv2 are capa-
ble of sampling the wide range of global physical and biogeo-
chemical properties that appear in the Eulerian-mean model
output, and they sample across a wider range of global tem-
perature and salinity values than Core Argo floats. By com-
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Figure 2. (a) Distribution of deployed synthetic floats in E3SMv2 and Core and biogeochemical Argo floats between 2012 and 2017. Blue
dots on the map indicate the initial positions of synthetic floats seeded in the deep ocean (> 2000 m). On the sides of the map, the number of
deployed synthetic floats per degree longitude (top) and latitude (right) is shown in blue, with the corresponding numbers for Core Argo and
biogeochemical Argo floats denoted as the gray and red lines, respectively. Note the different axis scale for the biogeochemical Argo floats
(red scale; synthetic and Core Argo floats are shown on the black scale). (b) Zonal average model resolution in kilometers in the E3SMv2
test simulation with synthetic floats analyzed in this paper. The shaded area denotes the latitudinal range for which the model resolution is
eddy-permitting, i.e., where it is higher than the Rossby radius of deformation (Chelton et al., 1998).

paring the model datasets in temperature–salinity space, we
evaluate the ability of the synthetic floats in E3SMv2 to cor-
rectly sample their model environment (Fig. 4). For the three
latitudinal bands, 30–90° N, 30° N–30° S, and 30–90° S, the
sampled temperature–salinity–nitrate space is very similar
for the 10 d whole-water-column synthetic float output and
the monthly mean Eulerian output (compare the first two
columns in Fig. 4; note that only data for the year 2016 is
shown here). We attribute any differences to not having a
synthetic float sample in every single grid cell and to the
differing temporal resolution of the data. In comparison to
all core-Argo data from 2012–2017 (third column in Fig. 4),
the model output samples a larger temperature–salinity space
(see e.g., cold, fresh waters for 30–90° N in panels a–c).
While model biases likely contribute to some extent, we
mostly attribute this difference to differences in the float dis-
tribution (e.g., in contrast to in E3SM, there are very few
floats in the Arctic within Argo; see Fig. 2) and to differences
in the sampled water depth (see e.g., fewer data points in
Core Argo than in E3SMv2 for the latitudinal band 30–90° S
at temperatures between 0 and 5 °C and salinities between 34
and 35; these data points lie in the deep ocean > 2000 m as
indicated by nitrate concentrations exceeding 35 mmol m−3).
In summary, the synthetic floats in E3SMv2 reproduce key
large-scale patterns of variability of both the Eulerian model
output and the Core Argo floats, making these floats a valu-

able tool for the assessment of spatiotemporal variability in
physical and biogeochemical properties from a Lagrangian
perspective and for sampling network design.

3.2 The impact of sampling frequency on float-derived
velocities

Only knowing the position of typical Argo floats upon surfac-
ing every ∼ 10 d, Argo-float-derived velocity estimates are
subject to uncertainty stemming from the assumption of a lin-
ear trajectory between any two positions (see example from
a synthetic float in Fig. 5a). With velocity calculated as the
distance traveled per 10 d, a shorter trajectory length for 10 d
sampling (blue line in Fig. 5a) than for daily sampling (black
line) implies that the velocity derived from 10 d positions is
underestimated relative to that derived from daily positions.
We use the synthetic E3SMv2 floats to compare the differ-
ence in the 10 d trajectory length (equivalent to the 10 d aver-
aged velocity) when (a) knowing the respective float’s posi-
tion once per day and (b) only knowing the respective float’s
position on day 1 and day 11 (as for Core Argo floats) of
each 10 d period (Fig. 5). Analysis of all our modeled syn-
thetic floats reveals that the true distance traveled by the
floats over a 10 d period is longer than indicated by their
10 d position differences. Our analysis shows that the mis-
match in the trajectory length between daily and 10 d float
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Figure 3. Horizontal current velocity at 1000 m in centimeters per
second (a) in the full Eulerian E3SMv2 output from 2012 to 2017,
(b) derived from 10 d position data of synthetic floats in E3SMv2
and averaged for regular 3° × 3° boxes, and (c) derived from 10 d
position data of Argo floats and averaged for regular 3° × 3° boxes
(Zilberman et al., 2022, 2023). Note the different scales between
panels (a)–(b) and (c).

profiling frequencies can be substantial (Fig. 5b), with 10 %
of all 10 d trajectories in the Southern Ocean south of 30° S
being at least 50 % longer when the float position is known
every day as opposed to only at the start and end of the tra-
jectory (orange box in Fig. 5b). In other words, for 10 % of
all Southern Ocean synthetic float trajectories, velocities de-
rived from the float positions are more than 50 % too low
if the float positions are only known at the start and end of
any 10 d period. In general, the smaller the error in trajectory
length/velocity (x axis in Fig. 5b), the more trajectories are
affected. In addition, trajectories in more northerly latitudinal
bands are more severely affected by this error than those in
the Southern Ocean. For example, while 80 % of all trajec-
tories north of 60° N (< 70 % in the Southern Ocean south
of 60° S) display a difference of at least 10 % in 10 d trajec-
tory length/velocity for daily vs. 10 d float profiling frequen-
cies, the number of affected trajectories amounts to nearly

40 % (10 % in the Southern Ocean) for a 50 % mismatch.
These regional differences reflect the general gradient from
high velocities at 1000 m in the Southern Ocean (Antarc-
tic Circumpolar Current) to lower velocities in the Northern
Hemisphere (see Figs. 5c and 3a). Since the 10 d trajectory
length forms the basis for float-derived velocity estimates
(Fig. 3; Ollitrault and Rannou, 2013; Zilberman et al., 2023),
our analysis illustrates the bias introduced by the absence of
more frequent knowledge of every float’s position. Acknowl-
edging that it remains unclear to what extent the absence of
eddy-permitting or eddy-resolving grid resolution at extra-
tropical latitudes affects these results (Fig. 2), our analysis
demonstrates that this bias can be quite substantial in certain
instances.

3.3 Case studies

Here, we present four example mini-studies using output
from the synthetic floats in E3SMv2 to illustrate some of
the capabilities of this modeling tool. In particular, we will
use the synthetic floats to quantify variability in ecosystem
stressors as derived from synthetic float snapshots at different
sampling frequencies (Sect. 3.3.1), the impact of float sam-
pling density on the float-based detection of changes in deep-
ocean water-mass properties (Sect. 3.3.2), the impact of sea-
ice cover on estimates of trajectory length (Sect. 3.3.3), and
the impact of float sampling density on float-derived phyto-
plankton bloom phenology (Sect. 3.3.4). The analysis in each
of the following subsections is not meant to be comprehen-
sive, and many more applications are imaginable, some of
which will be outlined further. Each of the following subsec-
tions will be structured like a mini-paper, with a motivation
followed by methods specific to the respective case study,
before presenting and discussing the results.

3.3.1 Case study I: float-based quantification of
seasonal variability in marine ecosystem stressors

Our first case study quantifies the synthetic float-derived am-
plitude of seasonal variations in physical and biogeochemical
marine ecosystem stressors, i.e., temperature, nutrient avail-
ability, oxygen levels, and carbonate chemistry, as recorded
at different sampling frequencies. This case study is moti-
vated by the need to understand the present-day exposure
of marine organisms to certain environmental conditions, as
this can inform their potential for acclimation and adaptation
to future environmental change (Kapsenberg and Cyronak,
2019). Observations have revealed ongoing change in the
seasonal amplitude of upper-ocean carbonate chemistry, e.g.,
south of Australia (mooring-based; Shadwick et al., 2023)
and in the global ocean (ship-based; Landschützer et al.,
2018), making an earlier exceedance of thresholds critical
to ecosystems likely and highlighting the need to better un-
derstand seasonal and sub-seasonal variability in all marine
ecosystem stressors. Based on regional hydrographic, glider,
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Figure 4. (a–c) Temperature–salinity diagrams north of 30° N of (a) 10 d data from synthetic floats in E3SM, (b) monthly mean Eulerian
E3SMv2 output, and (c) Core Argo float data (Argo, 2023). Data points in panels (a)–(b) are for the whole water column in 2016, and data
points in panel (c) are a subset of all available points for the top 2000 m in 2012–2017. We note that subsurface interannual variability in
temperature and salinity is negligible on the large spatial scale assessed here and that > 80 % of all E3SMv2 data are in the top 2000 m of
the water column, implying comparability of the first two columns with the third. Data points in panels (a)–(b) are colored as a function of
nitrate concentrations (in mmol m−3) and shown as averages within 50 equally sized bins in temperature and salinity space. The small inlets
in panels (a)–(c) show the distribution of data. Panels (d–i): same as (a)–(c) but for (d)–(f) 30° N–30° S and (g)–(i) south of 30° S.

and mooring observations, we know that substantial short-
term variability in ecosystem stressors is caused by, e.g., the
diurnal cycle (Torres et al., 2021), tides (Droste et al., 2022),
or ocean weather (Nicholson et al., 2022). High temporal res-
olution data can be provided by satellites for the global sur-
face ocean (although temporal composites are often neces-
sary due to data gaps at a sub-monthly scale; Prend et al.,
2022c; Clow et al., 2024), by gliders for the upper ocean
in small regions (Chai et al., 2020), and by profiling floats,

which offer advances over these aforementioned technolo-
gies in terms of their spatiotemporal coverage of the global
ocean, especially at the subsurface. Yet, given the floats’ 10 d
sampling cycle, it remains unclear to what extent these data
capture extreme conditions that are not representative of the
seasonal cycle. Further, the contribution of daily variability
to float-derived estimates of seasonal variability remains un-
quantified.
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Figure 5. (a) Example synthetic 10 d trajectory from the Southern Ocean to compare daily and 10 d sampling. (b) Comparison of the 10 d
trajectory length of all synthetic floats for daily and 10 d sampling. Plotted is the fraction of all 10 d trajectories (y axis) displaying a trajectory
length at daily sampling that exceeds the length at 10 d sampling by a certain percentage (x axis). Data are grouped into 30° latitudinal bands
(see colors). Percent longer trajectory as shown on the x axis is equivalent to percent lower velocity. The orange box refers to the example
given in the text. (c) Difference in 10 d trajectory length of the synthetic floats for daily and 10 d sampling plotted as a function of the average
10 d velocity at 1000 m in centimeters per second as derived from the float positions. Shown are the 50th (dark blue) and 90th percentiles
(light blue).

In this case study, we use the ability of the synthetic floats
in E3SMv2 to sample the water column each day to as-
sess how sampling frequency affects estimates of the sea-
sonal amplitude of marine ecosystem stressors. In particu-
lar, we assess the difference in daily and 10 d sampling for
estimates of the seasonal amplitude in temperature, nitrate,
oxygen, and pH (Fig. 6). Defining the seasonal amplitude
as the difference between the maximum and minimum of a
given property over any given calendar year during 2012 to
2017 (see Fig. 6a for an example), we quantify the seasonal
amplitude along all 1-year trajectories of synthetic floats in
E3SMv2. We particularly focus our analysis on the top 300 m
of the water column where seasonal variability is largest
(Fig. 6c) and on the tropical region between 21° S and 21° N,
where our model simulation is run at eddy-permitting reso-
lution (see Fig. 2). Only retaining float trajectories that stay
within the tropical latitudinal bounds for any full calendar
year, this results in 34 098 estimates of seasonal amplitude
for this region, and we report the mean ± 1 standard devia-
tion in Fig. 6c.

The sampling frequency of the synthetic floats substan-
tially affects estimates of seasonal amplitude, with the effect
varying both horizontally (Fig. 6b) and vertically (Fig. 6c).
Acknowledging that differences in seasonal surface pH am-
plitude of more than 15 % are simulated for all ocean regions,
the average difference for surface pH is largest in the tropics
(Fig. 6b), where the eddy-permitting model grid resolution
facilitates a stronger spatiotemporal variability in the simu-
lated tracer fields. In the tropics, the average seasonal am-
plitude between 50 and 300 m derived from daily sampling
exceeds the amplitude derived from 10 d sampling by 12.4 %
(temperature), 11 % (nitrate), 10 % (oxygen), and 9.6 % (pH;
Fig. 6c). Above 50 m, the difference is similar to the one
for below 50 m for nitrate and pH, while being smaller and
larger for temperature (6.5 %) and oxygen (14.7 %), respec-
tively. The larger discrepancy for oxygen is likely associ-

ated with the timescale for air–sea exchange of oxygen (a
few weeks; Sarmiento and Gruber, 2006). Our findings im-
ply that atmosphere–ocean oxygen disequilibrium manifests
more strongly in seasonality estimates derived from daily
float snapshots. For all marine ecosystem stressors, the vari-
ability (expressed as 1 standard deviation around the mean)
in the impact of sampling frequency is substantial, with dif-
ferences in estimates of seasonal amplitude often exceeding
20 % (all variables), 25 % (subsurface temperature), or even
30 % (near-surface oxygen).

While it is unsurprising that higher-frequency sampling
captures more temporal variability, the 10.6 ± 10.9 % larger
seasonal amplitude in daily float sampling in the tropics in
our model experiment (mean ± 1 standard deviation aver-
aged over all ecosystem stressors in the top 300 m of the
water column) highlights the uncertainty associated with the
float-based detection of changes in prevalent environmental
conditions in a given region based on 10 d sampling. Differ-
ences in seasonality of physical and biogeochemical prop-
erties across large-scale ocean regions are well-established
(Longhurst, 1995; Fay and McKinley, 2014; Rodgers et al.,
2023), but the simulated spatial variability within any large-
scale region in E3SMv2 (Fig. 6b) underscores the importance
of both sampling distribution and frequency when aiming to
adequately capture large-scale dynamics with observations.
This is especially apparent for the tropics at eddy-permitting
grid resolution (Fig. 2). Yet, we note that even at non-eddy-
permitting resolution, the synthetic floats suggest differences
in seasonal amplitude for the two sampling frequencies of
comparable magnitude to those in the tropics for some float
trajectories in, e.g., the Southern Ocean (Fig. 6b). Alto-
gether, this suggests that while 10 d sampling with floats pro-
vides unprecedented global observational coverage to quan-
tify spatiotemporal variability in marine ecosystem stressors,
targeted regional assessments of sub-10 d variability, e.g.,
with gliders (e.g., Thomalla et al., 2015) or moorings (e.g.,
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Figure 6. Case study “Quantifying physical-biogeochemical variability”: (a) evolution of surface pH along an example 1-year float trajectory
for daily (blue) and 10 d (black) sampling. The seasonal amplitude, defined as the maximum minus the minimum pH over the whole year, is
given for both sampling frequencies on the right side. (b) Map showing the difference in seasonal pH amplitude in percent between daily and
10 d sampling for each float in the year 2012. (c) Synthetic float-derived vertical profiles for the top 300 m of (left) the seasonal amplitude
with 10 d sampling and (right) the difference in the seasonal amplitude between daily and 10 d sampling in percent for temperature (black),
nitrate (blue), oxygen (orange), and pH (red). All floats that stayed in the tropical region between 21° S and 21° N for any full calendar year
during 2012 to 2017 have been included in the analysis, resulting in 34 098 estimates of seasonal amplitude. The solid lines correspond to
the average over all estimates, and the shading denotes 1 standard deviation.

Shadwick et al., 2023), are necessary to adequately quantify
exposure of marine organisms to varying environmental con-
ditions, which is a key factor in determining an organism’s
resilience to environmental change (Helmuth et al., 2014;
Kapsenberg and Cyronak, 2019).

3.3.2 Case study II: float-based detection of changes in
deep-ocean water-mass properties

To obtain basin-scale estimates of variability and trends in
the properties of climatically important water masses such
as Antarctic Bottom Water or North Atlantic Deep Water,
a denser observing network in both space and time is re-
quired than hydrographic observations can provide (Talley
et al., 2016; Jayne et al., 2017; Roemmich et al., 2019). To
that end, a key goal of Deep Argo is the detection of changes
in deep-ocean heat content, which will facilitate the track-
ing of the deep ocean’s contribution to steric sea-level rise
(Johnson et al., 2015; Roemmich et al., 2019). Further, the
addition of oxygen sensors on Deep Argo will enable the de-
tection of changes in deep-ocean oxygenation, particularly
in regions downstream of deep- and bottom-water formation
in the North Atlantic and Southern Ocean (Hoppema, 2004;
Rhein et al., 2017). While any difference in the spatiotem-

poral variability in deep-ocean temperature and deep-ocean
oxygen will directly impact the number of floats required to
capture large-scale changes in each variable over time, this
difference remains unquantified to date.

In this case study, we use different float densities to quan-
tify the error associated with capturing larger-scale temporal
variability in deep-ocean temperature, salinity, and oxygen
in the North Atlantic (between 30–60° N and 10–60° W) and
Southern Ocean (south of 60° S). To facilitate the compari-
son of errors across variables, we calculate the normalized
root-mean-square error (NRMSE; normalized by 1 standard
deviation of all monthly Eulerian values averaged over the
respective subarea; see Fig. 7 for spatial distribution of vari-
ables) between Eulerian and synthetic float model output. By
normalizing by 1 standard deviation, the underlying assump-
tion is that this metric captures sufficient variability in the
true tracer distribution to facilitate drawing conclusions on
the required float density to reproduce the temporal evolution
of different variables. In particular, we calculate the NRMSE
between the 6-year-long monthly time series of the Eulerian
model output and the float-derived monthly time series con-
structed from 10 d sampling for a given float density. For
each float density, we randomly subsample all available floats
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in each subregion 10 000 times to obtain NRMSE percentiles
of the time series mismatch (see violin plots in Fig. 7).

Our analysis reveals that (1) the NRMSE decreases when
more floats are used in the calculation of the error across
all variables and in both regions, (2) the NRMSE is over-
all higher in the North Atlantic than in the Southern Ocean,
and (3) for both regions, the NRMSE is highest for tem-
perature and lowest for oxygen. The first point aligns with
that of other studies (e.g., Youngs et al., 2023). The second
point can possibly be attributed to more variability in bottom
topography in the North Atlantic (note the presence of the
mid-Atlantic ridge in Fig. 7a), making a float-based estimate
of any water-mass property in this region more dependent
on the float distribution than in the Southern Ocean, where
the average spatial variability is much smaller (Fig. 7a, d, g).
This finding is unaffected by the normalization of the error
metric; the root-mean-square error (RMSE) is approximately
2 (temperature), 4 (salinity) and 2 (oxygen) times larger in
the North Atlantic than in the Southern Ocean for all float
densities over the 6-year time series (see printed gray num-
bers in violin plots in Fig. 7).

That the NRMSE is highest for temperature and lowest
for oxygen in both regions has implications for the design
of a deep-ocean float array. A generally lower NRMSE for
biogeochemical (oxygen) than for physical (temperature and
salinity) water-mass properties implies that to capture prop-
erty changes at comparable accuracy (at least in terms of nor-
malized error metrics), it would be sufficient to equip a sub-
set of all floats with oxygen sensors, thereby reducing the
overall cost of a deep-ocean float array. However, we note
that based on our analysis, the RMSE for a deep-ocean array
consisting of 400 floats, i.e., one-third of the global target
density (Johnson et al., 2015; Jayne et al., 2017), amounts
to 1.4 mmol m−3 (Southern Ocean; printed gray numbers in
Fig. 7h) and 3.62 mmol m−3 (North Atlantic; Fig. 7i), which
is approximately 6 times larger than the range of regionally
and monthly averaged Eulerian model output over the 6-year
time series (0.24 and 0.60 mmol m−3; not shown). Our anal-
ysis thus suggests that such a reduced deep-ocean oxygen
array would complicate the float-based detection of interan-
nual variability and possibly trends in deep-ocean ventilation
on large spatial scales. Importantly, the RMSE is reduced
by 33 % and 43 % in the Southern Ocean and the North At-
lantic, respectively, when equipping a full global network of
1200 floats with oxygen sensors instead of only 400 floats
(Fig. 7h–i), enhancing our ability to capture variability in
oxygen concentrations over large spatial scales with floats.

3.3.3 Case study III: float trajectories under Southern
Ocean sea-ice cover

Argo floats rely on localization via GPS upon surfacing in
ice-free waters (Fig. 1b). Since the risk of damaging in-
strumentation is high upon contact with sea ice, conven-
tional floats follow an ice-avoidance protocol, which makes

them abort their ascent when subsurface temperatures indi-
cate high likelihood of sea ice present at the surface (Klatt
et al., 2007; André et al., 2020). In the absence of position
data, the trajectory of such a float is then linearly interpo-
lated between the last position before and the first position
after the under-ice period. Depending on how long a float
cannot be localized, this procedure potentially causes large
uncertainties in the estimated trajectory (Chamberlain et al.,
2018; Nguyen et al., 2020).

In this case study, we use our ability to localize synthetic
floats at all times, including under sea-ice cover (Fig. 1a), to
quantify the impact of sea-ice presence on float trajectories
for different sectors of the Southern Ocean. Using all South-
ern Ocean 1-year float trajectories from our 6-year proof-of-
concept simulation, we compare the 1-year trajectory length
of floats (1) when knowing the position of the float every
day of the year and (2) when linearly interpolating a float’s
position when it is under substantial sea-ice cover. For this
analysis, we use the modeled sea-ice concentration as sam-
pled by the synthetic floats to determine whether substantial
sea-ice cover is present for a given location and time, and
we quantify the difference in trajectory length for different
sea-ice concentration thresholds defining “substantial sea-ice
cover”, ranging from 5 %–95 %. Lastly, for our analysis, we
divide the Southern Ocean south of 60° S into four sectors,
i.e., the Weddell Sea (between 300° E and the prime merid-
ian), East Antarctica (0–160° E), the Ross Sea (160–210° E),
and the Amundsen and Bellingshausen seas (210–300° E).

Linear interpolation of float position data in E3SMv2
under-ice floats introduces biases in under-ice trajectory
length and estimated under-ice statistical tracer properties
(Fig. 8). In agreement with observations (Eayrs et al., 2019),
annual mean sea-ice concentration in E3SMv2 is highest in
the southwestern Weddell Sea (Fig. 8a). In winter (June–
August), large areas of the high-latitude Southern Ocean are
fully ice covered, implying a lack of exact position data for
Core Argo floats. The trajectory of an example synthetic float
in E3SMv2 reveals that the mismatch in the 1-year trajectory
length can be substantial (58 % in the example in Fig. 8b, as-
suming unknown float positions when sea-ice cover exceeds
50 %). As the linear interpolation of position data also re-
locates the associated data of physical and biogeochemical
water-mass properties (as illustrated with nitrate in Fig. 8b),
this procedure adds uncertainty to the float-derived tracer dis-
tribution field in the sea-ice zone, and challenges our ability
to accurately determine decorrelation length scales of these
tracers (as done in, e.g., Eveleth et al., 2017).

The difference in under-ice trajectory length depends on
the threshold used to identify critical sea-ice conditions and
on the location of the float (Fig. 8c). The difference in tra-
jectory length is larger the more often a float encounters
critical sea-ice conditions. Thus, the higher average sea-ice
concentration in the Weddell Sea than in other sectors ex-
plains the largest average differences in trajectory length
in this region (∼ 40 % for sea-ice concentration thresholds
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Figure 7. Case study “Deep ocean”: (a) temperature in °C below 2000 m and averaged over 2012–2017. (b) Violin plots of the normalized
root-mean-square error (NRMSE) of the monthly temperature time series for the area south of 60° S (orange box in panel (a)) between the
full Eulerian output and a float-based estimate using 10 d sampling and subsets of all synthetic floats corresponding to different global target
float densities (x axis). The subsampling is repeated 10 000 times. The horizontal red lines denote the 90th, 50th, and 10th percentiles (from
top to bottom). The horizontal black line corresponds to the NRMSE using all synthetic floats in the area. The RMSE is normalized by the
area-weighted standard deviation of monthly mean temperature values of all grid cells in the area. The unnormalized RMSE is denoted in
grey. Panel (c): same as (b) but for the North Atlantic between 30–60° N and 10–60° W (green box in panel (a)). Panels (d)–(f) and (g)–(i):
same as (a)–(c) but for (d)–(f) salinity and (g)–(i) oxygen (in mmol m−3), respectively.

≤ 10 %; see Fig. 8c). Even for a sea-ice concentration thresh-
old of 50 %, trajectories are between 10 % (East Antarc-
tic) and 25 % (Weddell Sea) longer when accounting for all
floats’ true positions than when linearly interpolating posi-
tions under sea-ice cover. Given that Core Argo floats aim to
avoid any direct contact with sea ice to minimize the risk of
damage, their ice-avoidance procedures are very risk-averse
(Klatt et al., 2007), which corresponds to a low sea-ice con-
centration threshold for surfacing shown in Fig. 8. Acknowl-
edging that the horizontal grid resolution used here is too
coarse in the Southern Ocean to adequately resolve eddies
(Fig. 2), our analysis of the synthetic floats in E3SMv2 show-
cases the possibly large uncertainty in float trajectories when
float positions for such conditions are unknown. Alternative

approaches to locating floats under sea ice, such as via acous-
tic tracking (Klatt et al., 2007; Chamberlain et al., 2022)
or via contours of potential vorticity, sea level, or density
(Chamberlain et al., 2018; Oke et al., 2022), offer the po-
tential to reduce errors in the hydrographic measurements
(Nguyen et al., 2020) and the geopositioning of the associ-
ated tracer data.

3.3.4 Case study IV: deriving phytoplankton phenology
from biogeochemical floats

Biogeochemical floats can provide new information about
surface and subsurface phytoplankton abundance, helping
to elucidate their role in global carbon and nutrient cy-
cling. In the Southern Ocean, biogeochemical floats have al-
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Figure 8. Case study “Sea-ice cover”: (a) Annual mean (left) and winter mean (June, July, August; right) sea-ice concentration in percent in
each grid cell of E3SMv2 averaged over 2012–2017. (b) Example illustrating the effect of unknown float positions under sea ice on the tra-
jectory length. The daily location of the float is plotted in latitude–longitude space and colored as a function of surface nitrate concentrations
(in mmol m−3). For this example, the location is assumed unknown whenever the sea-ice concentration exceeds 50 % (crosses) and known
elsewhere (squares). When the float location is unknown, the trajectory is obtained by linearly interpolating between the last and first known
positions (black line). (c) Difference in trajectory length in percent for all 1-year trajectories between 2012 and 2017 with known or unknown
daily positions as a function of the sea-ice concentration threshold in percent. The position of a float is considered unknown whenever a given
sea-ice threshold is exceeded, and data gaps are linearly interpolated. Results are shown separately for the Weddell Sea (black), Ross Sea
(purple), Amundsen and Bellingshausen seas (red), and the east Antarctic (blue). See map inset for the initial float positions of all considered
1-year trajectories.

ready provided a more detailed description of phytoplank-
ton phenology (including under sea-ice cover; see, e.g.,
Arteaga et al., 2020; Hague and Vichi, 2021), phytoplank-
ton biomass loss (Moreau et al., 2020), and net commu-
nity production (e.g., Johnson et al., 2017; Su et al., 2021).
Similar advances are expected in other regions (e.g., Cornec

et al., 2021) as more biogeochemical floats are deployed
globally (see https://www.go-bgc.org/array-status and https:
//maps.biogeochemical-argo.com/bgcargo/, last access: 28
June 2024). As a result, we urgently need to assess our abil-
ity to capture large-scale characteristics of phytoplankton dy-
namics with float networks differing in density.

https://doi.org/10.5194/gmd-17-6415-2024 Geosci. Model Dev., 17, 6415–6435, 2024

https://www.go-bgc.org/array-status
https://maps.biogeochemical-argo.com/bgcargo/
https://maps.biogeochemical-argo.com/bgcargo/


6428 C. Nissen et al.: Synthetic biogeochemical Argo floats

In this case study, we assess the ability of float networks
differing in float density to capture subsurface phytoplank-
ton bloom characteristics, i.e., the timing (day of the year)
and magnitude of phytoplankton biomass peaks, in the sub-
tropical Pacific (between 15–30° N and 120–170° W), where
subsurface maxima in phytoplankton biomass are commonly
observed (Cornec et al., 2021; Yasunaka et al., 2022). For
each calendar year during 2012 to 2017, we compare the tim-
ing and magnitude of maximum total phytoplankton carbon
biomass at 30 and 60 m depth between 10 d Eulerian output
and 10 d data from synthetic floats. Synthetic float data at
10 d intervals were obtained from the daily data by randomly
assigning each float a sampling start day between 1 and 10
so that floats sample the modeled ocean on different days. To
obtain a statistically robust estimate of the mismatch, we sub-
sample the 197 available synthetic floats in the subtropical
Pacific 5000 times to float densities ranging from 2 to 28 in
this subregion (corresponding to between 100 and 1200 floats
globally). This results in 30 000 estimates of bloom charac-
teristics over the 6 simulation years for each float density,
and we report the average mismatch ± 1 standard deviation
in Fig. 9.

In the subtropical Pacific, E3SMv2 peak bloom magnitude
and timing is different in the surface and subsurface ocean
(Fig. 9). Peak biomass levels display more year-to-year vari-
ability and are up to 2 times higher at 30 m (black and grey
lines in Fig. 9a) than at 60 m (dark- and light-blue lines). Fur-
ther, based on 10 d averages, maximum biomass is simulated
to occur earlier in the year at 30 m than at 60 m, possibly il-
lustrating differences in environmental factors such as light
and nutrient availability in driving phytoplankton dynamics
throughout the year (Cornec et al., 2021). Overall, the spa-
tiotemporal variability is high at both depth levels (Fig. 9a–
e), suggesting that a certain number of floats is needed to ad-
equately capture large-scale bloom dynamics in this region.

The peak bloom magnitude and timing in the subtropi-
cal northeast Pacific is dependent on the total number of
floats sampling the region (Fig. 9f and g). We conduct ran-
dom subsampling of the full set of 197 available 6-year syn-
thetic float time series in the area 5000 times for different
float densities. For the vast majority of repetitions in the sub-
sampling exercise, the magnitude of the bloom peak derived
from the synthetic floats is larger than the true bloom peak
derived from the Eulerian output (ratio > 1 in Fig. 9f). We
acknowledge that the sampling time of all floats (midnight
Greenwich Mean Time) likely causes a slight systematic dis-
crepancy between the full-day average of the Eulerian model
output and the synthetic float-based estimates (see Fig. 9a).
Increasing the float density improves the ability of the float
network to capture the true magnitude of the bloom peak at
both depths (Fig. 9f). While the mismatch at float densities
of ≤ 200 global floats is larger for the bloom at 30 m, the op-
posite holds for float densities larger than this. At 60 m, even
the full synthetic float network in this region, whose density
corresponds to 8400 floats globally, overestimates the mag-

nitude of the bloom peak by ∼ 5 % (horizontal blue line),
while it is captured well at 30 m (horizontal black line). On
average, the timing of the bloom is reasonably well captured
for all float densities (± 10 ds at most; Fig. 9g). However, the
variability around the mean is large for both depths and all
float densities (1 standard deviation ranges from 21 to 75 d at
30 m and from 40 to 61 d at 60 m across float densities; see
whiskers in Fig. 9g). Given that the bloom duration in the
ocean typically amounts to a few weeks (see Fig. 9 and, e.g.,
Soppa et al., 2016; Silva et al., 2021), a misrepresentation of
the bloom timing of > 3 weeks combined with an error in the
magnitude of > 10 % complicate the detection of any long-
term trend. In this context, we further note that the analysis
of phytoplankton bloom phenology based on float-derived
10 d snapshots of phytoplankton biomass, as done here to
mimic the typical real-world sampling frequency, possibly
masks substantial biomass variability at sub-10 d timescales
(compare panels (b) and (d) as well as panels (c) and (e) in
Fig. 9). While we focus our analysis on the uncertainty in de-
riving phytoplankton bloom characteristics stemming from
the float density in a given focus area, the synthetic float ob-
servations should also be used in future work to assess the
uncertainty related to the sampling frequency. Our subtropi-
cal Pacific-focused case study highlights the spatiotemporal
variability in phytoplankton dynamics in this region (McKee
et al., 2022) and underlines the difficulty of adequately cap-
turing bloom dynamics on large spatial scales from sparse
measurements. Future studies should investigate the magni-
tude of these uncertainties in other ocean regions (see, e.g.,
Ford, 2021).

4 Limitations and future work

While biogeochemical float capabilities in E3SMv2 are a re-
markable new tool for the ocean modeling and observational
communities, the synthetic floats sample the model fields
somewhat differently than Argo floats sample the real ocean.
Argo floats can be laterally displaced by ocean circulation
while profiling the upper ocean and while transmitting data
at the ocean surface. This study does not account for the pos-
sibility of lateral displacement in the synthetic floats during
this profiling, adding uncertainty to the comparison of veloc-
ity estimates derived from synthetic and Argo floats (Fig. 3).
Previous work has quantified the effect of velocity shear to
amount to up to 1.2 cm s−1 in the tropics, leading to an un-
certainty of ± 8° in the current direction (Gille and Romero,
2003; Wang et al., 2022). Acknowledging that the absence of
this effect in E3SMv2 likely has to be considered for regional
applications of the synthetic floats, we assume this shortcom-
ing to be of lesser importance for the basin-scale applica-
tions presented here. In contrast to Argo floats, all synthetic
floats in E3SMv2 sample the water column at the same time
each day, i.e., midnight Greenwich Mean Time. This means
that the sampling of all variables undergoing strong diurnal
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Figure 9. Case study “Phytoplankton phenology”: (a) time series from 2012 to 2017 of average 10 d total phytoplankton carbon biomass (in
mmol m−3) in the subtropical northeast Pacific between 15–30° N and 120–170° W at 30 m in the full Eulerian output (black) and based on
all available floats (light grey). The corresponding time series at 60 m are displayed in dark blue and light blue, respectively. (b–e) Example
fields of daily averaged total phytoplankton carbon biomass for (b–c) 5 March 2014 and (d–e) 15 March 2014 in the subtropical northeast
Pacific at (b, d) 30 m and (c, e) 60 m. (f) Ratio of the annual peak phytoplankton carbon biomass (mean ± 1 standard deviation) between the
10 d float output subsampled to different global float densities (x axis) and the full Eulerian 10 d output at 30 m (black) and at 60 m (blue)
in the subtropical northeast Pacific. The subsampling is repeated 5000 times, and the ratio is thus quantified 30 000 times (6 years of data)
for each global float density. Horizontal lines denote the mismatch between the full float output and the Eulerian output (197 floats). Panel
(g): same as (f) but for the mismatch in days in the timing of peak phytoplankton carbon biomass.

fluctuations, e.g., light-sensitive processes such as biological
productivity and hence biomass, is skewed towards a partic-
ular phase of the respective diurnal cycle, increasing the dis-
crepancy between float-derived estimates and daily averaged
model output. As the seasonal cycle directly impacts the vari-
ability in the diurnal cycle over the course of the year, this
effect is expected to be less pronounced in tropical regions
(see Sect. 3.3.4) than in polar regions.

For this study, synthetic floats in E3SMv2 are seeded uni-
formly as a function of grid resolution (Fig. 2). While uni-
form ocean coverage by Argo floats is the ultimate goal
(Roemmich et al., 2019), achieving this is complicated by
the dependence on ships for float deployment. In addition,
in contrast to the unlimited lifetime of synthetic floats, the
typical lifetime of today’s Argo floats is ∼ 5–7 years (typi-
cally lower for BGC Argo than Core Argo; Riser et al., 2018;
Roemmich et al., 2019), causing spatial gaps in our observ-
ing system if a timely re-deployment of a float is not possi-
ble for a given region. While we did not account for random
failures of some sensors or entire floats in the 6-year proof-
of-concept simulation analyzed for this paper, imperfect syn-

thetic float datasets could easily be constructed offline to as-
sess the impact of a temporary or permanent absence of ob-
servations in a specific region or for a specific time period.
Future work should assess the impact of data scarcity and of
using different mapping methods on reconstructed fields of
biogeochemical tracers and, e.g., air–sea CO2 fluxes (Gloege
et al., 2021; Hauck et al., 2023; Heimdal et al., 2024). Lastly,
we note that on smaller spatial scales, model biases and struc-
tural limitations of the E3SMv2 configuration used here due
to, e.g., model resolution and parametrizations of internal
wave dynamics, could reduce the utility of the synthetic bio-
geochemical float capabilities as an ideal test bed, as the sim-
ulated variability on small spatial scales might differ from the
variability experienced by real-world Argo floats.

5 Conclusions

We implement synthetic biogeochemical float capabilities
into the Energy Exascale Earth System Model version 2
(E3SMv2-LIGHT-bgcArgo-1.0). The synthetic floats are ad-
vected with ocean circulation at 1000 m online during the
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model integration, sampling all desired prognostic and diag-
nostic model variables throughout the whole water column
at the frequency prescribed by the end user. Using E3SMv2
with synthetic floats as a perfect test bed, in which the true
distribution of modeled physical, biogeochemical, and bio-
logical variables is known, we demonstrated the utility of
this new tool in different use cases. In particular, acknowl-
edging the remaining uncertainty stemming from the used
model configuration not explicitly resolving eddy dynamics,
we demonstrated that by sampling every 10 d, float-derived
velocities are biased low (> 50 % for some 10 d trajectories).
Similarly, 1-year Southern Ocean float trajectories derived
from linearly interpolated float positions under sea-ice cover
differ substantially from the true simulated float trajectories,
especially in regions of high sea-ice cover such as the Wed-
dell Sea (> 40 % mismatch for conservative sea-ice thresh-
olds). We further showed that, on average, synthetic daily
float-based snapshots of marine ecosystem stressors in the
tropics result in 10.6 ± 10.9 % larger estimates of seasonal
amplitude than 10 d snapshots (mean ± 1 standard deviation
for all ecosystem stressors between the surface and 300 m).
Lastly, our results highlight the importance of the float net-
work size for adequately capturing spatiotemporal biogeo-
chemical dynamics, e.g., for detecting trends in deep-ocean
heat content, deep-ocean ventilation, or upper-ocean phyto-
plankton bloom dynamics.

Even though differences exist in how synthetic and Argo
floats sample the simulated and real ocean, respectively, the
synthetic floats in E3SMv2 can be used in the future to im-
prove our understanding of how Argo floats see the ocean,
thereby contributing to the interpretation of existing obser-
vational records. For example, the synthetic float capabili-
ties could be used to (i) assess uncertainties in deriving bio-
geochemical fluxes such as air–sea CO2 exchange or net
community production from float-based observations; (ii) as-
sess uncertainties in mapping float-based observations or de-
rived quantities to global, gridded datasets arising from, e.g.,
float distributions, sampling frequency, or sensor inaccura-
cies including drift; or (iii) inform future float deployment
strategies within the One Argo program. Computing syn-
thetic floats online eliminates both the need to store high-
frequency model output and the uncertainty associated with
time-averaging model output to extract synthetic observa-
tions offline. Given that Argo floats do not sample time-
averaged water-mass properties but provide a snapshot view
of the ocean, the online computation produces a more real-
istic dataset of synthetic observations. Expanding the online
synthetic observing capabilities in E3SMv2 or other models
by further sampling methodologies, e.g., ship-based hydrog-
raphy, deep-sea moorings, gliders, or surface drifters, should
be a key focus of future work, with the aim to improve our
global ocean observing system.

Code and data availability. The model source code of E3SMv2
including synthetic biogeochemical float capabilities is available
on Zenodo: https://doi.org/10.5281/zenodo.10094349 (Energy Ex-
ascale Earth System Model Program, 2023). The synthetic bio-
geochemical float dataset and the corresponding Eulerian model
fields from E3SMv2 are deposited in the PetaLibrary of the Univer-
sity of Colorado, Boulder, and can be accessed via Globus (https:
//www.globus.org/, Nissen, 2023). To find the data, enter “E3SM-
BGCArgo” as the name of the collection in the file manager.

Author contributions. CN, NSL, MM, and ARG conceived the
study. CN performed the analysis and wrote the paper. NSL and
ARG acquired the funding. MM implemented the synthetic floats
into E3SMv2 and performed the test simulation analyzed here. YT
performed the Eulerian model simulation serving as the spinup for
the test simulation with synthetic floats. All authors gave input on
the case studies and commented on the paper.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. This research used resources of the Na-
tional Energy Research Scientific Computing Center (NERSC),
a US Department of Energy Office of Science User Facility lo-
cated at Lawrence Berkeley National Laboratory, operated under
contract no. DE-AC02-05CH11231 using NERSC award BER-
ERCAPm4003, and used a high-performance computing cluster
provided by the BER Earth System Modeling program and oper-
ated by the Laboratory Computing Resource Center at Argonne
National Laboratory. Data storage is supported by the University
of Colorado, Boulder, PetaLibrary. Argo data were collected and
made freely available by the international Argo project and the na-
tional programs that contribute to it. SOCCOM data were collected
and made freely available by the Southern Ocean Carbon and Cli-
mate Observations and Modeling (SOCCOM) project funded by
the National Science Foundation, Division of Polar Programs (NSF
PLR-1425989, with extension NSF OPP-1936222); by the Global
Ocean Biogeochemistry Array (GO-BGC) project funded by the
National Science Foundation, Division of Ocean Sciences (NSF
OCE-1946578), supplemented by NASA; and by the International
Argo Program and the NOAA programs that contribute to it. The
Argo Program is part of the Global Ocean Observing System (Argo,
2023; https://www.ocean-ops.org/board?t=argoTS5, last access: 26
August 2024).

Financial support. This research has been supported by the US De-
partment of Energy (grant no. DE-SC0022243).

Geosci. Model Dev., 17, 6415–6435, 2024 https://doi.org/10.5194/gmd-17-6415-2024

https://doi.org/10.5281/zenodo.10094349
https://www.globus.org/
https://www.globus.org/
https://www.ocean-ops.org/board?t=argoTS5


C. Nissen et al.: Synthetic biogeochemical Argo floats 6431

Review statement. This paper was edited by Andrew Yool and re-
viewed by Paul Chamberlain and two anonymous referees.

References

Allison, L. C., Roberts, C. D., Palmer, M. D., Hermanson, L.,
Killick, R. E., Rayner, N. A., Smith, D. M., and Andrews,
M. B.: Towards quantifying uncertainty in ocean heat content
changes using synthetic profiles, Enviro. Res. Lett., 14, 084037,
https://doi.org/10.1088/1748-9326/ab2b0b, 2019.

André, X., Le Traon, P.-Y., Le Reste, S., Dutreuil, V., Leymarie,
E., Malardé, D., Marec, C., Sagot, J., Amice, M., Babin, M.,
Claustre, H., David, A., D’Ortenzio, F., Kolodziejczyk, N., La-
gunas, J. L., Le Menn, M., Moreau, B., Nogré, D., Penkerc’h, C.,
Poteau, A., Renaut, C., Schaeffer, C., Taillandier, V., and Thierry,
V.: Preparing the New Phase of Argo: Technological Develop-
ments on Profiling Floats in the NAOS Project, Front. Mar. Sci.,
7, 1–22, https://doi.org/10.3389/fmars.2020.577446, 2020.

Argo: Argo float data and metadata from Global Data
Assembly Centre (Argo GDAC) – Snapshot of Argo
GDAC of March 10st 2023, SEANOE [data set],
https://doi.org/10.17882/42182#100487, 2023.

Arteaga, L. A., Boss, E., Behrenfeld, M. J., Westberry, T. K.,
and Sarmiento, J. L.: Seasonal modulation of phytoplankton
biomass in the Southern Ocean, Nat. Commun., 11, 5364,
https://doi.org/10.1038/s41467-020-19157-2, 2020.

Behrenfeld, M. J. and Falkowski, P. G.: Photosynthetic rates de-
rived from satellite-based chlorophyll concentration, Limnol.
Oceanogr., 42, 1–20, https://doi.org/10.4319/lo.1997.42.1.0001,
1997.

Bittig, H. C., Maurer, T. L., Plant, J. N., Schmechtig, C., Wong, A.
P. S., Claustre, H., Trull, T. W., Udaya Bhaskar, T. V. S., Boss,
E., Dall’Olmo, G., Organelli, E., Poteau, A., Johnson, K. S.,
Hanstein, C., Leymarie, E., Le Reste, S., Riser, S. C., Rupan,
A. R., Taillandier, V., Thierry, V., and Xing, X.: A BGC-Argo
Guide: Planning, Deployment, Data Handling and Usage, Front.
Mar. Sci., 6, https://doi.org/10.3389/fmars.2019.00502, 2019.

Blunden, J. and Arndt, D. S.: State of the Climate
in 2016, B. Am. Meteorol. Soc., 98, Si–S280,
https://doi.org/10.1175/2017BAMSStateoftheClimate.1, 2017.

Brady, R. X., Maltrud, M. E., Wolfram, P. J., Drake, H. F., and
Lovenduski, N. S.: The Influence of Ocean Topography on the
Upwelling of Carbon in the Southern Ocean, Geophys. Res.
Lett., 48, 1–11, https://doi.org/10.1029/2021GL095088, 2021.

Burrows, S. M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X.,
Ricciuto, D., Wang, S., Bisht, G., Tang, J., Wolfe, J., Harrop, B.
E., Singh, B., Brent, L., Baldwin, S., Zhou, T., Cameron-Smith,
P., Keen, N., Collier, N., Xu, M., Hunke, E. C., Elliott, S. M.,
Turner, A. K., Li, H., Wang, H., Golaz, J.-C., Bond-Lamberty,
B., Hoffman, F. M., Riley, W. J., Thornton, P. E., Calvin, K., and
Leung, L. R.: The DOE E3SM v1.1 Biogeochemistry Configura-
tion: Description and Simulated Ecosystem-Climate Responses
to Historical Changes in Forcing, J. Adv. Model. Earth Sys.,
12, e2019MS001766, https://doi.org/10.1029/2019MS001766,
2020.

Chai, F., Johnson, K. S., Claustre, H., Xing, X., Wang, Y., Boss,
E., Riser, S., Fennel, K., Schofield, O., and Sutton, A.: Moni-
toring ocean biogeochemistry with autonomous platforms, Nat.

Rev. Earth Environ., 1, 315–326, https://doi.org/10.1038/s43017-
020-0053-y, 2020.

Chamberlain, P., Cornuelle, B., Talley, L. D., Speer, K., Han-
cock, C., and Riser, S.: Acoustic Float Tracking with the
Kalman Smoother, J. Atmos. Ocean. Tech., 40, 15–35,
https://doi.org/10.1175/JTECH-D-21-0063.1, 2022.

Chamberlain, P., Talley, L. D., Cornuelle, B., Mazloff, M.,
and Gille, S. T.: Optimizing the Biogeochemical Argo
Float Distribution, J. Atmos. Ocean. Tech., 40, 1355–1379,
https://doi.org/10.1175/JTECH-D-22-0093.1, 2023.

Chamberlain, P. M., Talley, L. D., Mazloff, M. R., Riser, S. C.,
Speer, K., Gray, A. R., and Schwartzman, A.: Observing the Ice-
Covered Weddell Gyre With Profiling Floats: Position Uncer-
tainties and Correlation Statistics, J. Geophys. Res.-Oceans, 123,
8383–8410, https://doi.org/10.1029/2017JC012990, 2018.

Chelton, D. B., DeSzoeke, R. A., Schlax, M. G., El Nag-
gar, K., and Siwertz, N.: Geographical Variability of the
First Baroclinic Rossby Radius of Deformation, J. Phys.
Oceanogr., 28, 433–460, https://doi.org/10.1175/1520-
0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998.

Claustre, H., Johnson, K. S., and Takeshita, Y.: Observing the
Global Ocean with Biogeochemical-Argo, Annu. Rev. Mar.
Sci., 12, 23–48, https://doi.org/10.1146/annurev-marine-010419-
010956, 2020.

Clow, G. L., Lovenduski, N. S., Levy, M. N., Lindsay, K., and Kay,
J. E.: The utility of simulated ocean chlorophyll observations:
a case study with the Chlorophyll Observation Simulator Pack-
age (version 1) in CESMv2.2, Geosci. Model Dev., 17, 975–995,
https://doi.org/10.5194/gmd-17-975-2024, 2024.

Cornec, M., Claustre, H., Mignot, A., Guidi, L., Lacour, L.,
Poteau, A., D’Ortenzio, F., Gentili, B., and Schmechtig, C.:
Deep Chlorophyll Maxima in the Global Ocean: Occurrences,
Drivers and Characteristics, Global Biogeochem. Cy., 35, 1–30,
https://doi.org/10.1029/2020GB006759, 2021.

Droste, E. S., Hoppema, M., González-Dávila, M., Santana-
Casiano, J. M., Queste, B. Y., Dall’Olmo, G., Venables, H. J.,
Rohardt, G., Ossebaar, S., Schuller, D., Trace-Kleeberg, S., and
Bakker, D. C. E.: The influence of tides on the marine carbonate
chemistry of a coastal polynya in the south-eastern Weddell Sea,
Ocean Sci., 18, 1293–1320, https://doi.org/10.5194/os-18-1293-
2022, 2022.

Eayrs, C., Holland, D., Francis, D., Wagner, T., Kumar, R., and Li,
X.: Understanding the Seasonal Cycle of Antarctic Sea Ice Ex-
tent in the Context of Longer-Term Variability, Rev. Geophys.,
57, 1037–1064, https://doi.org/10.1029/2018RG000631, 2019.

Energy Exascale Earth System Model Program: Energy Exascale
Earth System Model (E3SMv2) code with Argo float simulator,
Zenodo [code], https://doi.org/10.5281/zenodo.10094349, 2023.

Eveleth, R., Cassar, N., Doney, S. C., Munro, D. R., and
Sweeney, C.: Biological and physical controls on O2/Ar, Ar
and pCO2 variability at the Western Antarctic Peninsula and
in the Drake Passage, Deep-Sea Res. Pt. II, 139, 77–88,
https://doi.org/10.1016/j.dsr2.2016.05.002, 2017.

Fay, A. R. and McKinley, G. A.: Global open-ocean biomes: mean
and temporal variability, Earth Syst. Sci. Data, 6, 273–284,
https://doi.org/10.5194/essd-6-273-2014, 2014.

Ford, D.: Assimilating synthetic Biogeochemical-Argo and ocean
colour observations into a global ocean model to in-

https://doi.org/10.5194/gmd-17-6415-2024 Geosci. Model Dev., 17, 6415–6435, 2024

https://doi.org/10.1088/1748-9326/ab2b0b
https://doi.org/10.3389/fmars.2020.577446
https://doi.org/10.17882/42182#100487
https://doi.org/10.1038/s41467-020-19157-2
https://doi.org/10.4319/lo.1997.42.1.0001
https://doi.org/10.3389/fmars.2019.00502
https://doi.org/10.1175/2017BAMSStateoftheClimate.1
https://doi.org/10.1029/2021GL095088
https://doi.org/10.1029/2019MS001766
https://doi.org/10.1038/s43017-020-0053-y
https://doi.org/10.1038/s43017-020-0053-y
https://doi.org/10.1175/JTECH-D-21-0063.1
https://doi.org/10.1175/JTECH-D-22-0093.1
https://doi.org/10.1029/2017JC012990
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2
https://doi.org/10.1146/annurev-marine-010419-010956
https://doi.org/10.1146/annurev-marine-010419-010956
https://doi.org/10.5194/gmd-17-975-2024
https://doi.org/10.1029/2020GB006759
https://doi.org/10.5194/os-18-1293-2022
https://doi.org/10.5194/os-18-1293-2022
https://doi.org/10.1029/2018RG000631
https://doi.org/10.5281/zenodo.10094349
https://doi.org/10.1016/j.dsr2.2016.05.002
https://doi.org/10.5194/essd-6-273-2014


6432 C. Nissen et al.: Synthetic biogeochemical Argo floats

form observing system design, Biogeosciences, 18, 509–534,
https://doi.org/10.5194/bg-18-509-2021, 2021.

Garry, F. K., McDonagh, E. L., Blaker, A. T., Roberts, C. D., Des-
bruyères, D. G., Frajka-Williams, E., and King, B. A.: Model-
Derived Uncertainties in Deep Ocean Temperature Trends Be-
tween 1990 and 2010, J. Geophys. Res.-Oceans, 124, 1155–
1169, https://doi.org/10.1029/2018JC014225, 2019.

Gasparin, F., Hamon, M., Rémy, E., and Le Traon, P.-Y.: How Deep
Argo Will Improve the Deep Ocean in an Ocean Reanalysis, J.
Climate, 33, 77–94, https://doi.org/10.1175/JCLI-D-19-0208.1,
2020.

Gille, S. T. and Romero, L.: Statistical Behavior of ALACE
Floats at the Surface of the Southern Ocean, J. Atmos.
Ocean. Tech., 20, 1633–1640, https://doi.org/10.1175/1520-
0426(2003)020<1633:SBOAFA>2.0.CO;2, 2003.

Gloege, L., McKinley, G. A., Landschützer, P., Fay, A. R.,
Frölicher, T. L., Fyfe, J. C., Ilyina, T., Jones, S., Lovenduski,
N. S., Rodgers, K. B., Schlunegger, S., and Takano, Y.: Quan-
tifying Errors in Observationally Based Estimates of Ocean
Carbon Sink Variability, Global Biogeochem. Cy., 35, 1–14,
https://doi.org/10.1029/2020GB006788, 2021.

Golaz, J., Caldwell, P. M., Van Roekel, L. P., Petersen, M. R., Tang,
Q., Wolfe, J. D., Abeshu, G., Anantharaj, V., Asay-Davis, X. S.,
Bader, D. C., Baldwin, S. A., Bisht, G., Bogenschutz, P. A.,
Branstetter, M., Brunke, M. A., Brus, S. R., Burrows, S. M.,
Cameron-Smith, P. J., Donahue, A. S., Deakin, M., Easter, R. C.,
Evans, K. J., Feng, Y., Flanner, M., Foucar, J. G., Fyke, J. G.,
Griffin, B. M., Hannay, C., Harrop, B. E., Hoffman, M. J., Hunke,
E. C., Jacob, R. L., Jacobsen, D. W., Jeffery, N., Jones, P. W.,
Keen, N. D., Klein, S. A., Larson, V. E., Leung, L. R., Li, H.,
Lin, W., Lipscomb, W. H., Ma, P., Mahajan, S., Maltrud, M. E.,
Mametjanov, A., McClean, J. L., McCoy, R. B., Neale, R. B.,
Price, S. F., Qian, Y., Rasch, P. J., Reeves Eyre, J. E. J., Riley,
W. J., Ringler, T. D., Roberts, A. F., Roesler, E. L., Salinger,
A. G., Shaheen, Z., Shi, X., Singh, B., Tang, J., Taylor, M. A.,
Thornton, P. E., Turner, A. K., Veneziani, M., Wan, H., Wang,
H., Wang, S., Williams, D. N., Wolfram, P. J., Worley, P. H., Xie,
S., Yang, Y., Yoon, J., Zelinka, M. D., Zender, C. S., Zeng, X.,
Zhang, C., Zhang, K., Zhang, Y., Zheng, X., Zhou, T., and Zhu,
Q.: The DOE E3SM Coupled Model Version 1: Overview and
Evaluation at Standard Resolution, J. Adv. Model. Earth Sy., 11,
2089–2129, https://doi.org/10.1029/2018MS001603, 2019.

Golaz, J. C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe,
J. D., Lin, W., Bradley, A. M., Tang, Q., Maltrud, M. E., Forsyth,
R. M., Zhang, C., Zhou, T., Zhang, K., Zender, C. S., Wu, M.,
Wang, H., Turner, A. K., Singh, B., Richter, J. H., Qin, Y., Pe-
tersen, M. R., Mametjanov, A., Ma, P. L., Larson, V. E., Krishna,
J., Keen, N. D., Jeffery, N., Hunke, E. C., Hannah, W. M., Guba,
O., Griffin, B. M., Feng, Y., Engwirda, D., Di Vittorio, A. V.,
Dang, C., Conlon, L. A. M., Chen, C. C. J., Brunke, M. A., Bisht,
G., Benedict, J. J., Asay-Davis, X. S., Zhang, Y., Zhang, M.,
Zeng, X., Xie, S., Wolfram, P. J., Vo, T., Veneziani, M., Tesfa,
T. K., Sreepathi, S., Salinger, A. G., Reeves Eyre, J. E., Prather,
M. J., Mahajan, S., Li, Q., Jones, P. W., Jacob, R. L., Huebler,
G. W., Huang, X., Hillman, B. R., Harrop, B. E., Foucar, J. G.,
Fang, Y., Comeau, D. S., Caldwell, P. M., Bartoletti, T., Bal-
aguru, K., Taylor, M. A., McCoy, R. B., Leung, L. R., and Bader,
D. C.: The DOE E3SM Model Version 2: Overview of the Phys-

ical Model and Initial Model Evaluation, J. Adv. Model. Earth
Sy., 14, 1–51, https://doi.org/10.1029/2022MS003156, 2022.

Gray, A. R., Johnson, K. S., Bushinsky, S. M., Riser, S. C., Rus-
sell, J. L., Talley, L. D., Wanninkhof, R., Williams, N. L.,
and Sarmiento, J. L.: Autonomous Biogeochemical Floats
Detect Significant Carbon Dioxide Outgassing in the High-
Latitude Southern Ocean, Geophys. Res. Lett., 45, 9049–9057,
https://doi.org/10.1029/2018GL078013, 2018.

Gruber, N., Boyd, P. W., Frölicher, T. L., and Vogt, M.: Bio-
geochemical extremes and compound events in the ocean, Na-
ture, 600, 395–407, https://doi.org/10.1038/s41586-021-03981-
7, 2021.

Hague, M. and Vichi, M.: Southern Ocean Biogeochemical Argo
detect under-ice phytoplankton growth before sea ice retreat,
Biogeosciences, 18, 25–38, https://doi.org/10.5194/bg-18-25-
2021, 2021.

Hauck, J., Nissen, C., Landschützer, P., Rödenbeck, C., Bushinsky,
S., and Olsen, A.: Sparse observations induce large biases in
estimates of the global ocean CO2 sink: An ocean model sub-
sampling experiment, Philos. T. Roy. Soc. A, 381, 20220063,
https://doi.org/10.1098/rsta.2022.0063, 2023.

Heimdal, T. H., McKinley, G. A., Sutton, A. J., Fay, A.
R., and Gloege, L.: Assessing improvements in global
ocean pCO2 machine learning reconstructions with Southern
Ocean autonomous sampling, Biogeosciences, 21, 2159–2176,
https://doi.org/10.5194/bg-21-2159-2024, 2024.

Helmuth, B., Russell, B. D., Connell, S. D., Dong, Y., Harley,
C. D., Lima, F. P., Sará, G., Williams, G. A., and Mieszkowska,
N.: Beyond long-term averages: making biological sense of
a rapidly changing world, Climate Change Responses, 1, 6,
https://doi.org/10.1186/s40665-014-0006-0, 2014.

Hoppema, M.: Weddell Sea is a globally significant contributor to
deep-sea sequestration of natural carbon dioxide, Deep-Sea Res.
Pt. I, 51, 1169–1177, https://doi.org/10.1016/j.dsr.2004.02.011,
2004.

Jayne, S. R., Roemmich, D., Zilberman, N., Riser, S. C., John-
son, K. S., Johnson, G. C., and Piotrowicz, S. R.: The
argo program: Present and future, Oceanography, 30, 18–28,
https://doi.org/10.5670/OCEANOG.2017.213, 2017.

Jeffery, N., Maltrud, M. E., Hunke, E. C., Wang, S., Wolfe, J.,
Turner, A. K., Burrows, S. M., Shi, X., Lipscomb, W. H.,
Maslowski, W., and Calvin, K. V.: Investigating controls on sea
ice algal production using E3SMv1.1-BGC, Ann. Glaciol., 61,
51–72, https://doi.org/10.1017/aog.2020.7, 2020.

Johnson, G. C., Lyman, J. M., and Purkey, S. G.: Informing
Deep Argo Array Design Using Argo and Full-Depth Hydro-
graphic Section Data, J. Atmos. Ocean. Tech., 32, 2187–2198,
https://doi.org/10.1175/JTECH-D-15-0139.1, 2015.

Johnson, G. C., Hosoda, S., Jayne, S. R., Oke, P. R., Riser,
S. C., Roemmich, D., Suga, T., Thierry, V., Wijffels, S. E.,
and Xu, J.: Argo – Two Decades: Global Oceanogra-
phy, Revolutionized, Annu. Re. Mar. Sci., 14, 379–403,
https://doi.org/10.1146/annurev-marine-022521-102008, 2022.

Johnson, K. S., Plant, J. N., Dunne, J. P., Talley, L. D., and
Sarmiento, J. L.: Annual nitrate drawdown observed by SOC-
COM profiling floats and the relationship to annual net com-
munity production, J. Geophys. Res.-Oceans, 122, 6668–6683,
https://doi.org/10.1002/2017JC012839, 2017.

Geosci. Model Dev., 17, 6415–6435, 2024 https://doi.org/10.5194/gmd-17-6415-2024

https://doi.org/10.5194/bg-18-509-2021
https://doi.org/10.1029/2018JC014225
https://doi.org/10.1175/JCLI-D-19-0208.1
https://doi.org/10.1175/1520-0426(2003)020<1633:SBOAFA>2.0.CO;2
https://doi.org/10.1175/1520-0426(2003)020<1633:SBOAFA>2.0.CO;2
https://doi.org/10.1029/2020GB006788
https://doi.org/10.1029/2018MS001603
https://doi.org/10.1029/2022MS003156
https://doi.org/10.1029/2018GL078013
https://doi.org/10.1038/s41586-021-03981-7
https://doi.org/10.1038/s41586-021-03981-7
https://doi.org/10.5194/bg-18-25-2021
https://doi.org/10.5194/bg-18-25-2021
https://doi.org/10.1098/rsta.2022.0063
https://doi.org/10.5194/bg-21-2159-2024
https://doi.org/10.1186/s40665-014-0006-0
https://doi.org/10.1016/j.dsr.2004.02.011
https://doi.org/10.5670/OCEANOG.2017.213
https://doi.org/10.1017/aog.2020.7
https://doi.org/10.1175/JTECH-D-15-0139.1
https://doi.org/10.1146/annurev-marine-022521-102008
https://doi.org/10.1002/2017JC012839


C. Nissen et al.: Synthetic biogeochemical Argo floats 6433

Kapsenberg, L. and Cyronak, T.: Ocean acidification refugia in
variable environments, Glob. Change Biol., 25, 3201–3214,
https://doi.org/10.1111/gcb.14730, 2019.

Kawai, Y. and Wada, A.: Diurnal sea surface temperature varia-
tion and its impact on the atmosphere and ocean: A review,
J. Oceanogr., 63, 721–744, https://doi.org/10.1007/s10872-007-
0063-0, 2007.

King, B., Thierry, V., Zilberman, N., and Walicka,
K.: 3rd Deep-Argo Workshop Report, Tech. rep.,
https://www.euro-argo.eu/content/download/159856/file/
DeepArgoWorkshop2021-Report.pdf (last access: 20 Octo-
ber 2023), 2021.

Klatt, O., Boebel, O., and Fahrbach, E.: A Profiling Float’s
Sense of Ice, J. Atmos. Ocean. Tech., 24, 1301–1308,
https://doi.org/10.1175/JTECH2026.1, 2007.

Lamarque, J.-F., Bond, T. C., Eyring, V., Granier, C., Heil, A.,
Klimont, Z., Lee, D., Liousse, C., Mieville, A., Owen, B.,
Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van
Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N.,
McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D.
P.: Historical (1850–2000) gridded anthropogenic and biomass
burning emissions of reactive gases and aerosols: methodol-
ogy and application, Atmos. Chem. Phys., 10, 7017–7039,
https://doi.org/10.5194/acp-10-7017-2010, 2010.

Landschützer, P., Gruber, N., Bakker, D. C. E., Stemmler, I., and
Six, K. D.: Strengthening seasonal marine CO2 variations due
to increasing atmospheric CO2, Nat. Clim. Change, 8, 146–150,
https://doi.org/10.1038/s41558-017-0057-x, 2018.

Long, M. C., Moore, J. K., Lindsay, K., Levy, M., Doney,
S. C., Luo, J. Y., Krumhardt, K. M., Letscher, R. T., Grover,
M., and Sylvester, Z. T.: Simulations With the Marine Bio-
geochemistry Library (MARBL), J. Adv. Model. Earth Sy.,
13, e2021MS002647, https://doi.org/10.1029/2021MS002647,
2021.

Longhurst, A.: Seasonal cycles of pelagic production and consump-
tion, Prog. Oceanogr., 36, 77–167, https://doi.org/10.1016/0079-
6611(95)00015-1, 1995.

Luo, C., Mahowald, N. M., and del Corral, J.: Sensitivity study
of meteorological parameters on mineral aerosol mobilization,
transport, and distribution, J. Geophys. Res.-Atmos., 108, 4447,
https://doi.org/10.1029/2003JD003483, 2003.

Matsumoto, G. I., Johnson, K. S., Riser, S., Talley, L., Wijffels,
S., and Hotinski, R.: The Global Ocean Biogeochemistry (GO-
BGC) Array of Profiling Floats to Observe Changing Ocean
Chemistry and Biology, Mar. Technol. Soc. J., 56, 122–123,
https://doi.org/10.4031/MTSJ.56.3.25, 2022.

Mayorga, E., Seitzinger, S. P., Harrison, J. A., Dumont, E.,
Beusen, A. H., Bouwman, A., Fekete, B. M., Kroeze,
C., and Van Drecht, G.: Global Nutrient Export from
WaterSheds 2 (NEWS 2): Model development and im-
plementation, Environ. Modell. Softw., 25, 837–853,
https://doi.org/10.1016/j.envsoft.2010.01.007, 2010.

McKee, D. C., Doney, S. C., Della Penna, A., Boss, E. S., Gaube,
P., Behrenfeld, M. J., and Glover, D. M.: Lagrangian and Eule-
rian time and length scales of mesoscale ocean chlorophyll from
Bio-Argo floats and satellites, Biogeosciences, 19, 5927–5952,
https://doi.org/10.5194/bg-19-5927-2022, 2022.

Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Mein-
shausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A.,

Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U.,
Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lun-
der, C. R., O’Doherty, S., Prinn, R. G., Reimann, S., Rubino,
M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and
Weiss, R.: Historical greenhouse gas concentrations for cli-
mate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116,
https://doi.org/10.5194/gmd-10-2057-2017, 2017.

Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean
ecosystem dynamics and iron cycling in a global three-
dimensional model, Global Biogeochem. Cy., 18, GB4028,
https://doi.org/10.1029/2004GB002220, 2004.

Moore, J. K., Lindsay, K., Doney, S. C., Long, M. C.,
and Misumi, K.: Marine Ecosystem Dynamics and Biogeo-
chemical Cycling in the Community Earth System Model
[CESM1(BGC)]: Comparison of the 1990s with the 2090s under
the RCP4.5 and RCP8.5 Scenarios, J. Climate, 26, 9291–9312,
https://doi.org/10.1175/JCLI-D-12-00566.1, 2013.

Moreau, S., Boyd, P. W., and Strutton, P. G.: Remote assessment of
the fate of phytoplankton in the Southern Ocean sea-ice zone,
Nat. Commun., 11, 3108, https://doi.org/10.1038/s41467-020-
16931-0, 2020.

Nguyen, A. T., Heimbach, P., Garg, V. V., Ocaña, V., Lee, C., and
Rainville, L.: Impact of Synthetic Arctic Argo-Type Floats in a
Coupled Ocean–Sea Ice State Estimation Framework, J. Atmos.
Ocean. Tech., 37, 1477–1495, https://doi.org/10.1175/JTECH-
D-19-0159.1, 2020.

Nicholson, S.-A., Whitt, D. B., Fer, I., du Plessis, M. D., Lebéhot,
A. D., Swart, S., Sutton, A. J., and Monteiro, P. M. S.: Storms
drive outgassing of CO2 in the subpolar Southern Ocean, Nat.
Commun., 13, 158, https://doi.org/10.1038/s41467-021-27780-
w, 2022.

Nissen, C.: Synthetic biogeochemical float data and corresponding
Eulerian model fields from E3SMv, PetaLibrary of the University
of Colorado, Boulder [data set], https://www.globus.org/ (last ac-
cess: 27 August 2024), 2023.

Oke, P. R., Rykova, T., Pilo, G. S., and Lovell, J. L.: Estimating
Argo Float Trajectories Under Ice, Earth Space Sci., 9, 1–16,
https://doi.org/10.1029/2022EA002312, 2022.

Ollitrault, M. and Rannou, J.-P.: ANDRO: An Argo-Based Deep
Displacement Dataset, J. Atmos. Ocean. Tech., 30, 759–788,
https://doi.org/10.1175/JTECH-D-12-00073.1, 2013.

Orr, J. C. and Epitalon, J.-M.: Improved routines to model the ocean
carbonate system: mocsy 2.0, Geosci. Model Dev., 8, 485–499,
https://doi.org/10.5194/gmd-8-485-2015, 2015.

Petersen, M. R., Asay-Davis, X. S., Berres, A. S., Chen, Q.,
Feige, N., Hoffman, M. J., Jacobsen, D. W., Jones, P. W., Mal-
trud, M. E., Price, S. F., Ringler, T. D., Streletz, G. J., Turner,
A. K., Van Roekel, L. P., Veneziani, M., Wolfe, J. D., Wol-
fram, P. J., and Woodring, J. L.: An Evaluation of the Ocean
and Sea Ice Climate of E3SM Using MPAS and Interannual
CORE-II Forcing, J. Adv. Model. Earth Sy., 11, 2018MS001373,
https://doi.org/10.1029/2018MS001373, 2019.

Prend, C. J., Gray, A. R., Talley, L. D., Gille, S. T., Hau-
mann, F. A., Johnson, K. S., Riser, S. C., Rosso, I., Sauvé, J.,
and Sarmiento, J. L.: Indo-Pacific Sector Dominates Southern
Ocean Carbon Outgassing, Global Biogeochem. Cy., 36, 1–22,
https://doi.org/10.1029/2021GB007226, 2022a.

Prend, C. J., Hunt, J. M., Mazloff, M. R., Gille, S. T., and Talley,
L. D.: Controls on the Boundary Between Thermally and Non-

https://doi.org/10.5194/gmd-17-6415-2024 Geosci. Model Dev., 17, 6415–6435, 2024

https://doi.org/10.1111/gcb.14730
https://doi.org/10.1007/s10872-007-0063-0
https://doi.org/10.1007/s10872-007-0063-0
https://www.euro-argo.eu/content/download/159856/file/DeepArgoWorkshop2021-Report.pdf
https://www.euro-argo.eu/content/download/159856/file/DeepArgoWorkshop2021-Report.pdf
https://doi.org/10.1175/JTECH2026.1
https://doi.org/10.5194/acp-10-7017-2010
https://doi.org/10.1038/s41558-017-0057-x
https://doi.org/10.1029/2021MS002647
https://doi.org/10.1016/0079-6611(95)00015-1
https://doi.org/10.1016/0079-6611(95)00015-1
https://doi.org/10.1029/2003JD003483
https://doi.org/10.4031/MTSJ.56.3.25
https://doi.org/10.1016/j.envsoft.2010.01.007
https://doi.org/10.5194/bg-19-5927-2022
https://doi.org/10.5194/gmd-10-2057-2017
https://doi.org/10.1029/2004GB002220
https://doi.org/10.1175/JCLI-D-12-00566.1
https://doi.org/10.1038/s41467-020-16931-0
https://doi.org/10.1038/s41467-020-16931-0
https://doi.org/10.1175/JTECH-D-19-0159.1
https://doi.org/10.1175/JTECH-D-19-0159.1
https://doi.org/10.1038/s41467-021-27780-w
https://doi.org/10.1038/s41467-021-27780-w
https://www.globus.org/
https://doi.org/10.1029/2022EA002312
https://doi.org/10.1175/JTECH-D-12-00073.1
https://doi.org/10.5194/gmd-8-485-2015
https://doi.org/10.1029/2018MS001373
https://doi.org/10.1029/2021GB007226


6434 C. Nissen et al.: Synthetic biogeochemical Argo floats

Thermally Driven pCO2 Regimes in the South Pacific, Geophys.
Res. Lett., 49, 1–11, https://doi.org/10.1029/2021GL095797,
2022b.

Prend, C. J., Keerthi, M. G., Lévy, M., Aumont, O.,
Gille, S. T., and Talley, L. D.: Sub-Seasonal Forcing
Drives Year-To-Year Variations of Southern Ocean Pri-
mary Productivity, Global Biogeochem. Cy., 36, 1–15,
https://doi.org/10.1029/2022GB007329, 2022c.

Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I., and Yashayaev,
I.: Ventilation variability of Labrador Sea Water and its impact
on oxygen and anthropogenic carbon: a review, Philos. T. Roy.
Soc. A, 375, 20160321, https://doi.org/10.1098/rsta.2016.0321,
2017.

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones,
P. W., and Maltrud, M.: A multi-resolution approach
to global ocean modeling, Ocean Model., 69, 211–232,
https://doi.org/10.1016/j.ocemod.2013.04.010, 2013.

Riser, S. C., Swift, D., and Drucker, R.: Profiling Floats in
SOCCOM: Technical Capabilities for Studying the South-
ern Ocean, J. Geophys. Res.-Oceans, 123, 4055–4073,
https://doi.org/10.1002/2017JC013419, 2018.

Rodgers, K. B., Schwinger, J., Fassbender, A. J., Landschützer, P.,
Yamaguchi, R., Frenzel, H., Stein, K., Müller, J. D., Goris, N.,
Sharma, S., Bushinsky, S., Chau, T., Gehlen, M., Gallego, M. A.,
Gloege, L., Gregor, L., Gruber, N., Hauck, J., Iida, Y., Ishii, M.,
Keppler, L., Kim, J., Schlunegger, S., Tjiputra, J., Toyama, K.,
Vaittinada Ayar, P., and Velo, A.: Seasonal Variability of the Sur-
face Ocean Carbon Cycle: A Synthesis, Global Biogeochem. Cy.,
37, 1–34, https://doi.org/10.1029/2023GB007798, 2023.

Roemmich, D., Alford, M. H., Claustre, H., Johnson, K., King, B.,
Moum, J., Oke, P., Owens, W. B., Pouliquen, S., Purkey, S.,
Scanderbeg, M., Suga, T., Wijffels, S., Zilberman, N., Bakker,
D., Baringer, M., Belbeoch, M., Bittig, H. C., Boss, E., Calil, P.,
Carse, F., Carval, T., Chai, F., Conchubhair, D. Ó., D’Ortenzio,
F., Dall’Olmo, G., Desbruyeres, D., Fennel, K., Fer, I., Ferrari,
R., Forget, G., Freeland, H., Fujiki, T., Gehlen, M., Greenan, B.,
Hallberg, R., Hibiya, T., Hosoda, S., Jayne, S., Jochum, M., John-
son, G. C., Kang, K., Kolodziejczyk, N., Körtzinger, A., Traon,
P.-Y. L., Lenn, Y.-D., Maze, G., Mork, K. A., Morris, T., Na-
gai, T., Nash, J., Garabato, A. N., Olsen, A., Pattabhi, R. R.,
Prakash, S., Riser, S., Schmechtig, C., Schmid, C., Shroyer, E.,
Sterl, A., Sutton, P., Talley, L., Tanhua, T., Thierry, V., Thoma-
lla, S., Toole, J., Troisi, A., Trull, T. W., Turton, J., Velez-
Belchi, P. J., Walczowski, W., Wang, H., Wanninkhof, R., Wa-
terhouse, A. F., Waterman, S., Watson, A., Wilson, C., Wong, A.
P. S., Xu, J., and Yasuda, I.: On the Future of Argo: A Global,
Full-Depth, Multi-Disciplinary Array, Front. Mar. Sci., 6, 1–28,
https://doi.org/10.3389/fmars.2019.00439, 2019.

Sarmiento, J. L. and Gruber, N.: Ocean Biogeochemical Dynamics,
Princeton University Press, 1st Edn., ISBN 0-691-01707-7, 2006.

Sarmiento, J. L., Johnson, K. S., Arteaga, L. A., Bushinsky, S. M.,
Cullen, H. M., Gray, A. R., Hotinski, R. M., Maurer, T. L., Ma-
zloff, M. R., Riser, S. C., Russell, J. L., Schofield, O. M., and Tal-
ley, L. D.: The Southern Ocean Carbon and Climate Observations
and Modeling (SOCCOM) project: A review, Prog. Oceanogr., 7,
103130, https://doi.org/10.1016/j.pocean.2023.103130, 2023.

Schofield, O., Fassbender, A., Hood, M., Hill, K., and Johnson, K.:
A global ocean biogeochemical observatory becomes a reality,
EOS, 103, https://doi.org/10.1029/2022EO220149, 2022.

Shadwick, E. H., Wynn-Edwards, C. A., Matear, R. J., Jansen, P.,
Schulz, E., and Sutton, A. J.: Observed amplification of the sea-
sonal CO2 cycle at the Southern Ocean Time Series, Front. Mar.
Sci., 10, 1–11, https://doi.org/10.3389/fmars.2023.1281854,
2023.

Silva, E., Counillon, F., Brajard, J., Korosov, A., Petters-
son, L. H., Samuelsen, A., and Keenlyside, N.: Twenty-
One Years of Phytoplankton Bloom Phenology in the Bar-
ents, Norwegian, and North Seas, Front. Mar. Sci., 8, 1–16,
https://doi.org/10.3389/fmars.2021.746327, 2021.

SOCCOM: “Southern Ocean Carbon and Climate Observations
and Modeling” Project, https://soccom.princeton.edu (last ac-
cess: 31 August 2023), 2023.

Soppa, M., Völker, C., and Bracher, A.: Diatom Phenol-
ogy in the Southern Ocean: Mean Patterns, Trends and
the Role of Climate Oscillations, Remote Sens., 8, 420,
https://doi.org/10.3390/rs8050420, 2016.

Su, F., Fan, R., Yan, F., Meadows, M., Lyne, V., Hu, P., Song, X.,
Zhang, T., Liu, Z., Zhou, C., Pei, T., Yang, X., Du, Y., Wei,
Z., Wang, F., Qi, Y., and Chai, F.: Widespread global disparities
between modelled and observed mid-depth ocean currents, Nat.
Commun., 14, 2089, https://doi.org/10.1038/s41467-023-37841-
x, 2023.

Su, J., Strutton, P. G., and Schallenberg, C.: The subsur-
face biological structure of Southern Ocean eddies re-
vealed by BGC-Argo floats, J. Mar. Syst., 220, 103569,
https://doi.org/10.1016/j.jmarsys.2021.103569, 2021.

Takano, Y., Maltrud, M., Sinha, A., Jeffery, N., Smith, K., Con-
lon, L., Wolfe, J., and Petersen, M.: Global Ocean Carbon Cy-
cle Simulations with the 2 E3SM version 2 (E3SMv2), Zenodo,
https://doi.org/10.5281/zenodo.10093369, 2023.

Talley, L., Feely, R., Sloyan, B., Wanninkhof, R., Baringer, M.,
Bullister, J., Carlson, C., Doney, S., Fine, R., Firing, E., Gru-
ber, N., Hansell, D., Ishii, M., Johnson, G., Katsumata, K., Key,
R., Kramp, M., Langdon, C., Macdonald, A., Mathis, J., McDon-
agh, E., Mecking, S., Millero, F., Mordy, C., Nakano, T., Sabine,
C., Smethie, W., Swift, J., Tanhua, T., Thurnherr, A., Warner,
M., and Zhang, J.-Z.: Changes in Ocean Heat, Carbon Con-
tent, and Ventilation: A Review of the First Decade of GO-SHIP
Global Repeat Hydrography, Annu. Rev. Mar. Sci., 8, 185–215,
https://doi.org/10.1146/annurev-marine-052915-100829, 2016.

Thomalla, S. J., Racault, M.-F., Swart, S., and Monteiro, P.
M. S.: High-resolution view of the spring bloom initiation
and net community production in the Subantarctic Southern
Ocean using glider data, ICES J. Mar. Sci., 72, 1999–2020,
https://doi.org/10.1093/icesjms/fsv105, 2015.

Torres, O., Kwiatkowski, L., Sutton, A. J., Dorey, N., and Orr, J. C.:
Characterizing Mean and Extreme Diurnal Variability of Ocean
CO2 System Variables Across Marine Environments, Geophys.
Res. Lett., 48, 1–12, https://doi.org/10.1029/2020GL090228,
2021.

Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M.,
Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L.,
Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P.,
Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M.,
Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi,
S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland,
S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M.,
and Yamazaki, D.: JRA-55 based surface dataset for driving

Geosci. Model Dev., 17, 6415–6435, 2024 https://doi.org/10.5194/gmd-17-6415-2024

https://doi.org/10.1029/2021GL095797
https://doi.org/10.1029/2022GB007329
https://doi.org/10.1098/rsta.2016.0321
https://doi.org/10.1016/j.ocemod.2013.04.010
https://doi.org/10.1002/2017JC013419
https://doi.org/10.1029/2023GB007798
https://doi.org/10.3389/fmars.2019.00439
https://doi.org/10.1016/j.pocean.2023.103130
https://doi.org/10.1029/2022EO220149
https://doi.org/10.3389/fmars.2023.1281854
https://doi.org/10.3389/fmars.2021.746327
https://soccom.princeton.edu
https://doi.org/10.3390/rs8050420
https://doi.org/10.1038/s41467-023-37841-x
https://doi.org/10.1038/s41467-023-37841-x
https://doi.org/10.1016/j.jmarsys.2021.103569
https://doi.org/10.5281/zenodo.10093369
https://doi.org/10.1146/annurev-marine-052915-100829
https://doi.org/10.1093/icesjms/fsv105
https://doi.org/10.1029/2020GL090228


C. Nissen et al.: Synthetic biogeochemical Argo floats 6435

ocean–sea-ice models (JRA55-do), Ocean Model., 130, 79–139,
https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.

Turner, A. K., Lipscomb, W. H., Hunke, E. C., Jacobsen, D.
W., Jeffery, N., Engwirda, D., Ringler, T. D., and Wolfe,
J. D.: MPAS-Seaice (v1.0.0): sea-ice dynamics on unstruc-
tured Voronoi meshes, Geosci. Model Dev., 15, 3721–3751,
https://doi.org/10.5194/gmd-15-3721-2022, 2022.

Wang, T., Du, Y., and Wang, M.: Overlooked Current Es-
timation Biases Arising from the Lagrangian Argo Tra-
jectory Derivation Method, J. Phys. Oceanogr., 52, 3–19,
https://doi.org/10.1175/JPO-D-20-0287.1, 2022.

Wolfram, P. J., Ringler, T. D., Maltrud, M. E., Jacobsen, D. W.,
and Petersen, M. R.: Diagnosing Isopycnal Diffusivity in an Ed-
dying, Idealized Midlatitude Ocean Basin via Lagrangian, in
Situ, Global, High-Performance Particle Tracking (LIGHT), J.
Phys. Oceanogr., 45, 2114–2133, https://doi.org/10.1175/JPO-
D-14-0260.1, 2015.

Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda,
S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Mur-
phy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J.
J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André,
X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Bel-
béoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Ly-
man, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N.,
Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh,
C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sut-
ton, P. J. H., Cancouët, R., Coatanoan, C., Dobbler, D., Juan,
A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès,
B., Claustre, H., D’Ortenzio, F., Le Reste, S., Le Traon, P.-
Y., Rannou, J.-P., Saout-Grit, C., Speich, S., Thierry, V., Ver-
brugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G.,
Poulain, P.-M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska,
N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T.,
Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L.,
Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould,
W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Tur-
ton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J.,
Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross,
T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim,
S.-D., and Park, H.-M.: Argo Data 1999–2019: Two Million
Temperature-Salinity Profiles and Subsurface Velocity Observa-
tions From a Global Array of Profiling Floats, Front. Mar. Sci.,
7, 1–23, https://doi.org/10.3389/fmars.2020.00700, 2020.

Yasunaka, S., Ono, T., Sasaoka, K., and Sato, K.: Global distri-
bution and variability of subsurface chlorophyll a concentra-
tions, Ocean Sci., 18, 255–268, https://doi.org/10.5194/os-18-
255-2022, 2022.

Youngs, M. K., Freilich, M. A., and Lovenduski, N. S.:
Air-Sea CO2 Fluxes Localized by Topography in a
Southern Ocean Channel, Geophys. Res. Lett., 50, 1–9,
https://doi.org/10.1029/2023GL104802, 2023.

Zilberman, N. V., Scanderbeg, M., Gray, A. R., and Oke,
P. R.: Scripps Argo trajectory-based velocity product
2001-01 to 2020-12, Scripps Argo Trajectory-Based Ve-
locity Product, UC San Diego Library Digital Collections,
https://doi.org/10.6075/J0KD1Z35, 2022.

Zilberman, N. V., Scanderbeg, M., Gray, A. R., and Oke, P. R.:
Scripps Argo Trajectory-Based Velocity Product: Global Esti-
mates of Absolute Velocity Derived from Core, Biogeochemical,
and Deep Argo Float Trajectories at Parking Depth, J. Atmos.
Ocean. Tech., 40, 361–374, https://doi.org/10.1175/JTECH-D-
22-0065.1, 2023.

https://doi.org/10.5194/gmd-17-6415-2024 Geosci. Model Dev., 17, 6415–6435, 2024

https://doi.org/10.1016/j.ocemod.2018.07.002
https://doi.org/10.5194/gmd-15-3721-2022
https://doi.org/10.1175/JPO-D-20-0287.1
https://doi.org/10.1175/JPO-D-14-0260.1
https://doi.org/10.1175/JPO-D-14-0260.1
https://doi.org/10.3389/fmars.2020.00700
https://doi.org/10.5194/os-18-255-2022
https://doi.org/10.5194/os-18-255-2022
https://doi.org/10.1029/2023GL104802
https://doi.org/10.6075/J0KD1Z35
https://doi.org/10.1175/JTECH-D-22-0065.1
https://doi.org/10.1175/JTECH-D-22-0065.1

	Abstract
	Introduction
	Methods
	Model description: E3SMv2 with synthetic biogeochemical floats (E3SMv2-LIGHT-bgcArgo-1.0)
	Model setup and simulation

	Results and discussion
	Evaluation of synthetic float velocity, temperature, salinity, and nitrate in E3SMv2
	The impact of sampling frequency on float-derived velocities
	Case studies
	Case study I: float-based quantification of seasonal variability in marine ecosystem stressors
	Case study II: float-based detection of changes in deep-ocean water-mass properties
	Case study III: float trajectories under Southern Ocean sea-ice cover
	Case study IV: deriving phytoplankton phenology from biogeochemical floats


	Limitations and future work
	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

