
Geosci. Model Dev., 17, 6401–6413, 2024
https://doi.org/10.5194/gmd-17-6401-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

Physics-motivated cell-octree adaptive mesh refinement
in the Vlasiator 5.3 global hybrid-Vlasov code
Leo Kotipalo1, Markus Battarbee1, Yann Pfau-Kempf1, and Minna Palmroth1,2

1Department of Physics, University of Helsinki, Helsinki, Finland
2Finnish Meteorological Institute, Space and Earth Observation Centre, Helsinki, Finland

Correspondence: Leo Kotipalo (leo.kotipalo@helsinki.fi)

Received: 31 January 2024 – Discussion started: 16 February 2024
Revised: 27 June 2024 – Accepted: 9 July 2024 – Published: 29 August 2024

Abstract. Automatically adaptive grid resolution is a com-
mon way of improving simulation accuracy while keeping
computational efficiency at a manageable level. In space
physics, adaptive grid strategies are especially useful as sim-
ulation volumes are extreme, while the most accurate physi-
cal description is based on electron dynamics and hence re-
quires very small grid cells and time steps. Therefore, many
past global simulations encompassing, for example, near-
Earth space have made tradeoffs in terms of the physical de-
scription and laws of magnetohydrodynamics (MHD) used
that require less accurate grid resolutions. Recently, using
supercomputers, it has become possible to model the near-
Earth space domain with an ion-kinetic hybrid scheme go-
ing beyond MHD-based fluid dynamics. These simulations,
however, must develop a new adaptive mesh strategy beyond
what is used in MHD simulations.

We developed an automatically adaptive grid refinement
strategy for ion-kinetic hybrid-Vlasov schemes, and we
implemented it within the Vlasiator global solar wind–
magnetosphere–ionosphere simulation. This method auto-
matically adapts the resolution of the Vlasiator grid using
two indices: one formed as a maximum of dimensionless gra-
dients measuring the rate of spatial change in selected vari-
ables and the other derived from the ratio of the current den-
sity to the magnetic field density perpendicular to the current.
Both these indices can be tuned independently to reach a de-
sired level of refinement and computational load. We test the
indices independently and compare the results to a control
run using static refinement.

The results show that adaptive refinement highlights rel-
evant regions of the simulation domain and keeps the com-
putational effort at a manageable level. We find that the re-

finement shows some overhead in the rate of cells solved per
second. This overhead can be large compared to the control
run without adaptive refinement, possibly due to resource uti-
lization, grid complexity, and issues in load balancing. These
issues lay out a development roadmap for future optimiza-
tions.

1 Introduction

Due to the practical difficulty of gathering in situ mea-
surements, simulations are an indispensable tool for space
physics research. The two primary families of models are ki-
netic models where plasma is described as a collection of
particles with position and velocity and fluid models where
particle species are simplified to a fluid with macroscopic
spatial properties. Hybrid methods combine these two ap-
proaches, typically modelling ions kinetically and the much
lighter electrons as a fluid. The particle-in-cell (PIC) ap-
proach is a notable kinetic method, simplifying large num-
bers of particles into macroparticles with a single position
and velocity (Nishikawa et al., 2021). Another way to de-
scribe the particles is through a six-dimensional distribution
function f (x,v) describing particle density in position and
velocity space. The distribution is evolved in time according
to the Vlasov equation, and this method is thus called the
Vlasov method (Palmroth et al., 2018). A commonly used
fluid method is magnetohydrodynamics (MHD), where all
particle species are simplified into a single fluid (Janhunen
et al., 2012).

Vlasiator is a hybrid-Vlasov plasma simulation that mod-
els ions kinetically and electrons as a massless, charge-

Published by Copernicus Publications on behalf of the European Geosciences Union.

6402 L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code

neutralizing fluid, used for global simulation of near-
Earth plasma. The time evolution of the distribution is
semi-Lagrangian: the function’s value is stored on a six-
dimensional Eulerian grid of three Cartesian spatial and ve-
locity dimensions, sampled and transported along their char-
acteristics via Lagrange’s method and then sampled back.
This is done one dimension at a time using the SLICE-3D
algorithm (Zerroukat and Allen, 2012). Electron charge den-
sity everywhere is taken to be equal to the ion charge density.
Magnetic fields are solved using Faraday’s law and electric
fields using Hall MHD Ohm’s law and Ampère’s law with
the displacement current neglected, added to a static back-
ground dipole field approximating the geomagnetic dipole.
The simulation uses OpenMP for threading and the Message
Passing Interface (MPI) for task parallelism, with load bal-
ancing handled via the Zoltan library (Devine et al., 2002).
A more in-depth description of the model used is provided
by von Alfthan et al. (2014) and Palmroth et al. (2018).

As a global plasma simulation, Vlasiator’s problem do-
main encompasses the entire magnetosphere and enough of
its surroundings to model interactions with the solar wind.
This domain ranges from shock interfaces with discontinu-
ous conditions to areas of relative spatial homogeneity. Suf-
ficient resolution in areas of interest is vital for describing
some kinetic phenomena (Dubart et al., 2020), and low res-
olution also affects physical processes such as the recon-
nection rate through numerical resistivity (Rembiasz et al.,
2017). Due to this diversity, using a static, homogeneous grid
for calculations is suboptimal. This paper explores the auto-
matic local adjustment of spatial resolution using a method
called adaptive mesh refinement (AMR; Berger and Jame-
son, 1985), examining its performance impact and assessing
whether it enhances the simulation results.

The paper is organized as follows: Sect. 1 describes the
problem domain and adaptive mesh refinement. Section 2 de-
scribes methods used in Vlasiator and the implementation of
AMR. Section 3 examines the qualitative effect on the sim-
ulation grid and quantitative performance impact. Section 4
summarizes the findings and discusses further avenues of de-
velopment.

1.1 Problem domain

With three spatial and velocity dimensions, a uniform grid re-
solving the relevant kinetic scales can become unreasonably
demanding to calculate. For simulation accuracy in the mag-
netospheric domain, some of the surroundings around the
inner magnetosphere and magnetotail need to be resolved;
otherwise phenomena such as magnetic reconnection and
magnetosheath waves (Dubart et al., 2020) cannot be de-
scribed with sufficient accuracy. Taking solar wind temper-
ature of 5× 105 km, a proton density of 1 cm−3, velocity of
750 km s−1, and an interplanetary magnetic field strength of
−5 nT in the z direction results in a Larmor radius of 130 km
and ion inertial length of 230 km. Using Earth radii (RE =

6.371× 106 m), take for example a box sized 120 RE in
each dimension with |y|, |z| ≤ 60 RE and x ∈ [−100,20] RE
with1x = 1000 km for partially resolving ion kinetic effects
(Pfau-Kempf et al., 2018) while maintaining reasonable com-
putational cost for a total of 4.5× 108 spatial cells. Then re-
solve typical velocities with |vi | ≤ 4000 km s−1 to match ob-
served velocities and 1v = 40 km s−1 to resolve kinetic ef-
fects resulting in 8× 106 velocity space cells per spatial cell
(Pfau-Kempf et al., 2018). This results in 3.6× 1015 phase-
space cells taking about 14 PiB of memory stored as single-
precision floating point numbers (Ganse et al., 2023), too
much for any current supercomputer to handle. Grid dimen-
sions here are sourced from Ganse et al. (2023); however,
the memory figure differs due to a calculation error in that
article.

Modelling the velocity space allows for the representation
of kinetic effects such as certain wave modes (Kempf et al.,
2013; Dubart et al., 2020) and instabilities (von Alfthan et al.,
2014; Hoilijoki et al., 2016). However, this increases the
computational load considerably compared to MHD meth-
ods, where each spatial cell only stores a few moments
instead of the entire velocity space. Hybrid models such
as Vlasiator allow for reasonable kinetic modelling of ions
without requiring resolving electron scales or use of a non-
physical mass ratio.

Representing the velocity space sparsely can be used to
alleviate the problem of dimensionality. Phase-space density
is very low in most of the velocity space, so cells can be
pruned without significant impact on simulation results. By
limiting the velocity space to cells that pass a minimum den-
sity threshold, savings in computational load of up to 2 or-
ders of magnitude can be achieved (von Alfthan et al., 2014);
with fmin = 10−15 s3 m−6, memory savings of 98 % can be
achieved with a mass loss of less than 1 % (Pfau-Kempf et al.,
2018).

1.2 Adaptive mesh refinement

The sparse velocity space strategy allows for simulations
with two spatial dimensions and three velocity space dimen-
sions, but a third spatial dimension requires further optimiza-
tions. Due to the global nature of Vlasiator, the required
resolution of simulation varies greatly between different re-
gions of the magnetosphere illustrated in Fig. 1. Particu-
larly at shock surfaces and current sheets, the properties of
plasma change rapidly over a short distance, requiring high
spatial resolution. Currently Vlasiator models the solar wind
as a constant Maxwellian inflow, making the upstream so-
lar wind homogeneous. Upstream plasma phenomena on a
kinetic scale are beyond the scope of the simulation, as mod-
elling them using Vlasov methods is unfeasible on a global
scale due to the phase-space requirements outlined in the pre-
vious section.

To optimize simulation of a nonhomogeneous problem,
the spatial grid itself can have variable resolution. Regions of

Geosci. Model Dev., 17, 6401–6413, 2024 https://doi.org/10.5194/gmd-17-6401-2024

L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code 6403

high interest and large spatial gradients can be modelled in a
higher resolution than other areas. If the problem domain is
well known, this can be statically parametrized such that the
grid is the same from start to finish. Alternatively, refinement
can be done dynamically during runtime based on simulation
data; this is called adaptive mesh refinement (AMR).

AMR can be implemented in a block-based manner refin-
ing rectangular regions, such as in the AMReX framework
(Zhang et al., 2021), the hybrid-PIC simulation A.I.K.E.F.
(Müller et al., 2011), and the MHD code BATS-R-US used
in SWMF (Gombosi et al., 2021), or cell by cell, such as
in the grid library DCCRG (Honkonen et al., 2013) used in
the MHD simulation GUMICS (Janhunen et al., 2012) and
in Vlasiator. Block-based AMR provides easier optimization
and communication as each block is a simple Cartesian grid
and interfaces between refinement regions are minimized,
but this limits the granularity of refinement, as refining en-
tire blocks may create an excessive number of refined cells
(Stout et al., 1997).

This paper focuses on the cell-based approach, where the
local value of a refinement index calculated from the cell data
determines the refinement of the cell. Each cell has a refine-
ment level, with 0 being the coarsest; refining it splits the cell
into smaller children on a higher refinement level. Each cell
has a unique parent; unrefining or coarsening a cell merges
it with its siblings, children of the same parent, back to the
parent cell. Generally refinement in such a scheme may have
an arbitrary shape. Cell-based refinement is sometimes called
quadtree or octree refinement when splitting cubic cells into
four or eight equal children in two or three dimensions re-
spectively.

2 Methods

2.1 Spatial refinement

The sparse velocity space described in Sect. 1.1 is sufficient
for hybrid simulations in two spatial dimensions, but three-
dimensional simulations require additional spatial optimiza-
tions. The method used is cell-based spatial refinement, im-
plemented in Vlasiator 5 (Pfau-Kempf et al., 2024) in a static
manner by parametrizing regions to simulate at a finer spatial
resolution (Ganse et al., 2023). The adaptive grid is provided
by a library called the distributed Cartesian cell-refinable grid
(DCCRG; Honkonen, 2023), which also communicates data
between processes and provides an interface for the load bal-
ancing library Zoltan (Devine et al., 2002). Each cell keeps
track of the processes that cells in its neighbourhood belong
to, allowing remote communication.

Initially, each cubic cell starts at refinement level 0. These
cells are refined by splitting them into eight equally sized cu-
bic children, i.e. splitting them in half along each Cartesian
direction. The children of a cell have a refinement level that is
one higher than their parent. DCCRG cells have a neighbour-

hood defined by a distance of the cell’s own size for ghost
data. Vlasiator’s semi-Lagrangian solver has a stencil width
of two cells, and a neighbourhood of three cells is used to
catch all edge cases. Neighbours are required to be at most
one refinement level apart, so a cell of level 0 has a minimum
of six level 1 cells between itself and a level 2 cell (Honko-
nen et al., 2013). If this condition is not met, for example if
a level 1 cell with level 0 neighbours is refined, DCCRG re-
solves this by inducing refinement in the refined cell’s neigh-
bours. In case refining a cell is not possible due to, for ex-
ample, boundary limitations, refinement is cancelled. Effec-
tively, the last refinement change takes precedence. The grid
also has a maximum refinement level given as a parameter.

Static refinement is configured to refine a sphere around
the inner boundary up to level 2 and the tail box and the nose
cap up to level 3. This is done when starting a simulation run,
and the refinement remains constant throughout. The spher-
ical refinement and nose cap are meant to catch the magne-
topause and the tail box the magnetotail current sheet. The
top half of Fig. 1 shows this static refinement, with the two
slices shown in full in Fig. 2. The performance gains of this
method are demonstrated by Ganse et al. (2023).

Note that spatial refinement is only applied to the 3D spa-
tial grid containing the distribution function. Updating the
electromagnetic field is relatively cheap, so the field solver
grid is homogeneous, matching the maximum refinement
level of the Vlasov grid. After each Vlasov solver time step,
moments of the distribution function are copied over to the
field solver grid, to multiple field solver cells in case of reso-
lution mismatch. These moments are used to evolve the field,
and after the field solver time step, fields are copied from the
field solver grid to the Vlasov grid, taking an average if nec-
essary. To prevent sampling artefacts, a low-pass filter is used
when the local resolutions do not match (Papadakis et al.,
2022).

2.2 Shortcomings of static refinement

Examining Fig. 2 reveals some issues with static refinement.
Note that the parametrized spherical region does not follow
the shape of the shock exactly; in this case, an elliptic shape
would refine less of the spatially homogeneous solar wind
and catch more shock dynamics.

We may also consider situations where the refinement pa-
rameters fit poorly. Solar wind is not static, so under vary-
ing conditions, the regions of interest may shift. Refine-
ment regions are symmetric with respect to the x–y and
x–z planes, so they do not perfectly fit structures for an
oblique solar wind or tilted geomagnetic dipole field either.
Reparametrization is not too difficult using trial and error,
but it is unnecessary work for the end user. In a dynamic
simulation, we might even find these regions shifting during
a single run, making a static refinement from start to finish
necessarily suboptimal.

https://doi.org/10.5194/gmd-17-6401-2024 Geosci. Model Dev., 17, 6401–6413, 2024

6404 L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code

Figure 1. Overview of the global magnetospheric domain, tail side x–z and y–z planes in geocentric solar ecliptic (GSE) coordinates, with x
positive sunwards and z northwards perpendicular to the ecliptic plane. A is the bow shock, B the magnetopause, and C the tail current sheet;
these three regions are of particular interest, with variables changing rapidly over a short distance. The variable plotted is proton number
density, with two levels of refinement contours on top: the inside of the region outlined in black has higher resolution than the outside, and
the inside of the white outlines has the highest resolution. Two runs are plotted here, separated by the x–y plane marked by the horizontal red
lines. The north side (above) is from a control run using static refinement, and the south side (below) is from a run using adaptive refinement.
Physical differences can be seen in the subsolar shock, magnetopause, and tail; these are artefacts of the lower initial resolution of the AMR
run.

A solution to these issues is to use adaptive mesh refine-
ment for dynamic runtime refinement. With properly cho-
sen parameters, refinement should be better optimized, eas-
ier to tune, and more adaptive to changing conditions. Re-
refining with sufficient frequency also allows following dy-
namic structures. Quantitative comparisons between the re-
finement methods are given in Sect. 3.

2.3 Refinement indices

We first introduce the refinement index α1, a maximum of
changes in spatial variables based on the index used in GU-
MICS (Janhunen et al., 2012):

α1 =max

|1ρ|

ρ̂
(a)

|1U |

Û
(b)

(1p)2

2ρÛ
(c)

(1B)2

2µ0Û
(d)

|1B|

B̂
. (e)

(1)

These variables are (a) particle density; (b) total, (c) plasma,
and (d) magnetic field energy density scaled to total energy

density; and (e) magnetic flux density. The contribution of
the electric field energy density is considered negligible:

U ≈
p2

2ρ
+

B2

2µ0
. (2)

In GUMICS, the magnetic field of the Earth’s dipole is re-
moved from B, leaving the perturbed field B1 in the deter-
mination of these ratios. In Vlasiator we find that better re-
finement results from using the full magnetic field in Eq. (1).
The simulation is given a refinement threshold and a coars-
ening threshold as parameters; for example a cell might be
coarsened if α1 < 0.3 and refined if α1 > 0.6.

The way this works is each cell is compared pairwise to all
cells that share a face with it, with 1a being the difference
and â the maximum in quantity a between those two cells.
The maximum of all these comparisons is the final value of
α1.

Plots of the constituents of α1 in the x–z plane near the
x axis are given in Fig. 3. Comparing this to Fig. 2, the mag-
netotail and dayside magnetopause are clearly visible along
with the front of the shock, but the inner magnetosphere is
less highlighted.

Geosci. Model Dev., 17, 6401–6413, 2024 https://doi.org/10.5194/gmd-17-6401-2024

L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code 6405

Figure 2. Contour plot of static refinement on particle density, with
two slices. Note that the spherical refinement does not follow the
shape of the shock; the second refinement level extends outside it
and is circular rather than an arc.

A second refinement index is derived from current density
and the magnetic field:

α2 =
µ0|J |

B⊥+ ε
1x, (3)

where J = 1
µ0
∇×B is the current density in the cell, B⊥ the

density of the magnetic field perpendicular to the current, ε
a small constant to avoid dividing by zero, and 1x the edge
length of the cell. This is used to detect magnetic reconnec-
tion regions in the MHD-AEPIC model (Wang et al., 2022)
in order to embed PIC regions, which is similar in aim to
the spatial refinement sought in this work. Consider that α2
is dimensionless: B⊥/|J | gives a characteristic length scale,
which is compared to1x. We can again use a refinement and
coarsening threshold as with α1.

As the framework for adaptive runtime refinement is im-
plemented, developing new refinement indices is simple. So
far, the Larmor radius rL and the ion inertial length di have
been evaluated but have been deemed to be less usable on
their own than the current indices. Combining them to an ag-
gregate index in a similar way to α1 could prove useful and
will be the topic of further investigations.

2.4 Interpretation of refinement thresholds

Refinement thresholds have a physical meaning as the max-
imum allowed gradient or perpendicular current in a cell be-
fore it is refined. A useful formulation would be to consider
the target refinement level that a cell would be refined to-
wards. The term α2 has an explicit dependency on1x, while
the constituents of α1 can generally be written as ∇y

ŷ
1x. Tak-

ing a general refinement parameter α := y1x, its refinement
criterion for a threshold b is

α := y1x > b

y1x0 · 2−r > b
y1x0 > b · 2r

log2 (y1x0) > log2b+ r

α′ := log2 (y1x0)− log2b > r, (4)

with the substitution 1x =1x0 · 2−r using the zeroth level
cell size 1x0 and refinement level r . Thus, we can define α′

as the target refinement level of the cell.
With this rescaling, we now have a modified index where

a cell’s target refinement level is at least α′, which can be
calculated straightforwardly using the original index α and
its refinement threshold b. This also gives the natural choice
of the unrefinement threshold as b/2. In practice, a cell would
be refined if α′ > r and unrefined if α′ < r−1, with log2b as
a shift parameter.

The logical meaning of negative values is that the ideal cell
size in a region is larger than the coarsest level of refinement
in the grid. In practice increasing the size of the coarsest cells
is not necessary, as these regions typically have the fewest
velocity space cells and contribute little to the overall com-
putational load. A very large value of 1x0 would also cause
issues with induced refinement. In the configuration used in
this work, a cell of level −7 would be larger than the entire
grid, while having a single cell of level −5 would limit the
maximum refinement found anywhere within the domain to
−3.

Plots of α′1 and α′2 are given in Fig. 4. Comparing them
to Fig. 2, the indices are more narrowly localized to the tail
current sheet, shock, and magnetopause than the static re-
finement. Additionally, a flank foreshock at x ≈−30 RE is
picked up by both indices; refining such moving structures
is impossible using static refinement. The two indices are
somewhat similar but distinct; particularly the subsolar shock
is resolved better by α1, as α2 focuses on detecting current
sheets which do not occur on the shock surface.

2.5 Implementation

The refinement procedure is as follows:

1. Each process calculates the refinement indices for all its
cells.

2. Each process iterates over its cells, marking them for
refinement or coarsening based on the indices.

https://doi.org/10.5194/gmd-17-6401-2024 Geosci. Model Dev., 17, 6401–6413, 2024

6406 L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code

Figure 3. Plots of the constituent gradients of α1 near the x axis at y = 0, and their maximum α1. Letters correspond to Eq. (1). Gradients
are clipped to a maximum of 1, as this is the maximum of (a) and (b). Particle density (a) and total energy density (b) seem to discern the
magnetopause and shock, while the field energy density (d) and magnetic flux density (e) highlight the magnetopause and tail current sheets.
Kinetic energy density (c) seems to have a minor effect on the value of α, highlighting regions that are similar but with lower value compared
to the other parameters.

3. The requirement of neighbouring cells having a max-
imum refinement level difference of 1 is imposed by
DCCRG, inducing additional refinement.

4. The memory usage after refinement is estimated before
execution. If this exceeds the memory threshold set for
the simulation, the run tries to rebalance the load ac-
cording to the targeted refinement. If it is still estimated
that the run will exceed the memory threshold, the run
exits so that the simulation may be restarted from that
point with more resources or less aggressive refinement.

5. Refinement is executed. Refined cells are split into eight
children with the distribution copied over, and coars-
ened cells are merged with the distribution averaged be-
tween eight siblings.

6. The moments are calculated for coarsened cells, and co-
ordinate data are set for all new cells.

7. The computational load is balanced between the pro-
cesses, and remote neighbour (ghost cell) information
is updated.

Mesh refinement prefers refinement over coarsening. If ei-
ther refinement index passes its refinement threshold, the cell
is refined. A cell is coarsened only if both indices for the cell

and all its siblings pass their coarsening threshold. This over-
rides DCCRG behaviour for induced refinement; a cell will
not be unrefined if that would result in the unrefinement of
any cell above its coarsening threshold. Alternatively, either
refinement index may be disabled, in which case the other
controls the refinement entirely. There is also additional bias
against isolated, unrefined cells: a cell is always refined if
a majority of its neighbours are refined, and cells are never
unrefined in isolation; cells are only unrefined if they have
either coarser neighbours or neighbours that would also be
unrefined.

Mesh refinement may be limited to a specific distance
from the origin to limit refinement to where it is most rel-
evant for the simulation; refinement is still induced outside
this, as refining a cell on the boundary to the second level re-
quires cells outside to be on the first level and so on. Refine-
ment may also be started at a specific time after the beginning
of the simulation. This enables simulating initial conditions
using a coarse grid and refining after a certain time without
user intervention.

Boundary cells are not refined or unrefined dynamically,
since this makes the refinement simpler and the code easier
to maintain due to not having to factor in boundary condi-
tions. Therefore it is recommended to initially refine the in-

Geosci. Model Dev., 17, 6401–6413, 2024 https://doi.org/10.5194/gmd-17-6401-2024

L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code 6407

Figure 4. Plots of α′1 (a, c) and α′2 (b, d) on the x–z (a, b) and x–y (c, d) planes. Both indices highlight the magnetopause, particularly the
subsolar region. Both indices also highlight the shock: α1 highlights the subsolar shock better and α2 the flanks and the flank foreshocks at
x ≈−30 RE.

ner boundary region up to the desired level, similarly to static
refinement.

Refinement may be done automatically during runtime or
manually by creating a file named DOMR in the run directory.
As refinement requires load balancing, it is done before load
balancing at user-set intervals. Refinement cadence thus de-
pends on the load balance interval.

3 Results

3.1 Refinement

Runtime adaptive refinement was tested using similar param-
eters to a two-level test run shown in Fig. 2. The physical pa-
rameters were as specified in Sect. 1.1 but with a maximum
resolution of 2000 km, as the tests were performed with two
levels of refinement as opposed to three used on production
runs.

Using only α1, three test runs were done using refinement
thresholds of 0.6, 0.4, and 0.2 with the unrefinement thresh-
old set to half the refinement threshold. These test runs are re-
ferred to as alpha1-low, alpha1-med, and alpha1-high respec-
tively. Similarly, using only α2, three test runs were done us-
ing the same refinement and unrefinement thresholds. These
are referred to as alpha2-low, alpha2-med, and alpha2-high.
The option of delaying refinement was utilized to initialize

the simulation with minimal refinement, and refinement was
enabled from 500 s onwards. Refinement was restricted to a
radius of 50 RE from the origin. The runs alpha1-med and
alpha2-med have final phase-space cell counts closest to that
of the control run (1.058× 1011), yielding good points of
comparison.

A quantitative comparison of the runs is provided in Fig. 5.
Panels (a) and (b) show the behaviour of the phase-space
cell count on AMR runs. With minimal refinement, the cell
count and computational load are consistently lower than on
the control run. Notably the medium AMR runs with a cell
count comparable to the control have more level 1 cells and
fewer level 2 cells than the control run; isolated regions of
level 2 cells cause comparatively more induced refinement.
The stacked histograms in panels (c) and (d) showing spatial
volume for each refinement level as a function of α1 are a
validation of α1 refinement, while histograms in panels (e)
and (f) likewise show the same for α2 and validate α2 refine-
ment. The runs alpha1-med and alpha2-med have few level
2 cells below the unrefinement threshold of 0.2 compared to
the control run, as well as having no cells below level 2 above
the refinement threshold of 0.4. There are many level 1 cells
below the unrefinement threshold, likely due to induced re-
finement. The number of cells above the refinement thresh-
old is also reduced overall, as smaller cells end up with lower
cell-to-cell differences in variables compared to larger cells.
Stacked histograms in panels (g) through (j) show the same

https://doi.org/10.5194/gmd-17-6401-2024 Geosci. Model Dev., 17, 6401–6413, 2024

6408 L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code

runs using the α′ indices or target refinement levels (Eq. 4).
As expected, there are sharp limits at α′ = 0, above which
there are no cells below level 1, and α′ = 1, above which
there are no cells below level 2.

Examining plots of alpha1-med and alpha2-med in the x–
y and x–z planes (Fig. 6), adaptive refinement follows the
structures of the magnetosphere better than static refinement.
The spherical region around the inner boundary seen in Fig. 2
is absent in both AMR runs, with refinement regions in-
stead following the dayside magnetopause and shock. The
tails of refinement also flare more widely in the x–y plane
in both runs. In the case of α1, refinement has left some dis-
joint regions inside the initial spherical refinement region. A
smaller region of initial refinement might have avoided this
issue. The results of the two refinement methods are some-
what similar but still distinct enough to warrant the usage of
both. There are also notable physical differences between the
control and AMR runs, particularly in the magnetotail. The
reconnection rate is likely affected by numerical resistivity
caused by the lower resolution during the 500 s initialization
phase. Running the simulation for longer with AMR enabled
is likely to reduce these differences, but ultimately conver-
gence can only be compared to a simulation resolving the
entire grid at the highest resolution, which is not computa-
tionally feasible.

In terms of proton density, two flank foreshocks in the
y–z plane can be seen, and adaptive refinement follows the
moving structure. Comparing particle density to Fig. 2 re-
veals the structure is somewhat different, particularly in the
x–y plane; coarse initialization changes the physical be-
haviour of the system, with the benefit of smaller resource
usage.

Refinement was performed at every load balance, i.e. ev-
ery 50 time steps. This corresponds to about half a sec-
ond in simulation time. Since cell size is between 2000 and
8000 km in this simulation and solar wind plasma veloc-
ity is some hundreds of kilometres per second, refinement
should occur faster than the movement of any structure. The
cadence seems sufficient: refinement follows the flank fore-
shocks, and the general structure of refinement regions sets
in quickly. Further testing is required to determine suitability
in more dynamic conditions. These findings seem to suggest
that this would only need an adjustment of cadence.

3.2 Performance

The runs were performed on the CSC Mahti supercomputer,
utilizing CPU nodes with 256 GB memory and two AMD
Rome 7H12 CPUs with 64 cores each for a total of 128 phys-
ical cores and 256 logical cores with hyperthreading. The un-
refined run was on 32 nodes, while all the other runs were on
100 nodes due to their greater computational requirements.
Each node ran 64 tasks for a total of four OpenMP threads
per task. The task balance was kept constant as this was not
the principal factor investigated.

Every run’s performance was evaluated using the rate of
cells solved per second per core. These data are provided in
Table 1. The AMR runs have generally worse performance
relative to the control run, with the comparative cell rate
ranging from 62.6 % for alpha2-low to 99.9 % for alpha1-
high. This implies that the increased grid complexity comes
at a higher computational cost. There are two possible expla-
nations for performance improving with cell count. First, as
the problem size compared to core count increases, each pro-
cess ends up spending more time in solving cells compared
to communicating data with its neighbours, resulting in more
ideal parallelization. Second, more refinement leads to more
unified regions with fewer interfaces between unrefined and
refined cells. This might be improved by using some heuris-
tic to merge isolated regions of refinement, but it remains to
be seen whether any simplification of the grid would offset
the cost of additional phase-space cells.

Table 2 compares time spent in spatial translation and MPI
wait times in runs alpha1-med and alpha2-med and the con-
trol; most of the time loss in translation is in waiting for other
processes to finish translation in each direction. The load bal-
ancing method used was Zoltan’s recursive coordinate bi-
section (Devine et al., 2002), with the velocity space cell
count as the weight. This seems to work poorly for a com-
plex grid due to either orthogonal cuts being non-ideal or the
single weights not accounting for different translation times
in each direction. Another possibility is poor weight calcula-
tion: weights are calculated on the step before load balancing,
and the load balance after refinement uses the weight calcu-
lated for the parent, not accounting for changing refinement
interfaces. Since refinement was performed at every load bal-
ance in these tests, every load balance was suboptimal, at
least until the grid had settled to a point where few cells
were refined on each pass. Load balancing between refine-
ment passes is expected to alleviate this issue, and reducing
the cadence of refinement without compromising the capture
of spatial evolution is a matter of parameter optimization. It
remains to be seen if this problem persists on a production-
scale run with more tasks.

Of particular note is the performance of the initial 500 s of
simulation, done with minimal refinement with only the in-
ner boundary region refined to level 2. The total phase-space
cell count reached at 500 s was 3.298×1010, with roughly the
same number of cells solved per core second as the control
run on 4096 cores. Initializing the simulation with minimal
static refinement is thus quite efficient, using only a third of
the resources of static refinement shown in Fig. 2. This per-
formance benefit is expected to increase when refining a sim-
ulation up to level 3 or more.

Table 3 shows the time taken in load balance and refin-
ing in each run. Balancing the load every 50 time steps and
refining before each load balance, re-refining took on aver-
age 1.2 % of the simulation time in the run alpha1-med. In
comparison, load balancing took 0.67 %, so refining almost
triples the overhead compared to just rebalancing. However,

Geosci. Model Dev., 17, 6401–6413, 2024 https://doi.org/10.5194/gmd-17-6401-2024

L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code 6409

Figure 5. Ten plots of refinement-related parameters. Panel (a) shows the phase-space cell count over simulation time for the static runs and
the six AMR runs with the unrefinement and refinement threshold in square brackets for the refined runs. Note that this includes velocity
space, indicating the total computational load. Panel (b) shows the percentage of phase-space cells in each refinement level at the end of the
static runs and both medium AMR runs (t = 550 s). Panels (c)–(f) show stacked histograms of spatial volume by α1 and α2 in the control and
medium AMR runs with the lowest bin of α < 0.04 clipped. Panels (g)–(j) show stacked histograms of spatial volume by targeted refinement
levels α′1 and α′2 in the control and medium AMR runs.

load balancing itself took 81 % more time on the alpha1-
med run, indicating that the refined grid is harder to partition.
Splitting a cell effectively increases its load balance weight
8-fold; if a task domain contains a large number of refined
cells, this increases the amount of communication required
to balance the load. This effect is not limited to tasks where
cells are refined: as these tasks migrate cells to neighbouring

tasks, they will also have to migrate cells to other tasks in or-
der to balance the load. Scaled to the phase-space cell count,
the effect on load balancing is smaller in the alpha1-high
run, indicating similar reasons to those for the overhead in
translation performance. On the other hand, refinement time
per cell grows with grid size; this is likely due to additional
checks for induced refinement in DCCRG. As the total spa-

https://doi.org/10.5194/gmd-17-6401-2024 Geosci. Model Dev., 17, 6401–6413, 2024

6410 L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code

Figure 6. Contour plots of the refinement level on top of the particle density in the control (a, d), alpha1-med (b, e), and alpha2-med (c, f)
runs (t = 550 s; top panels, x–z plane; bottom panels, x–y plane). The run alpha1-med retains a large amount of the inner magnetosphere
refined and has a clean level 2 boundary right on the bow shock. Meanwhile alpha2-med has less refinement in the inner magnetosphere but
has more on the sides of the shock. A faint shape can be seen in proton density around x =−20 to −40RE in the top panels; this is a flank
foreshock that the refinement picks up, which has partially exited the refinement radius.

tial cell count in the grid grows with refinement, each process
has more cells, and each refined cell has more neighbours to
check for induced refinement.

4 Conclusions

In this paper we introduced a method to automatically adapt
the Vlasiator spatial grid to concentrate numerical accuracy
in regions of special interest. The method is based on two
indices α1 and α2, measuring the rate of change in spatial
variables and the occurrence of current sheets respectively.
The grid is refined to a higher resolution in regions where
these indices are high and coarsened to a lower resolution
where they are low.

We also tested the performance of adaptive mesh refine-
ment, and the results in Sect. 3 show this method works well
for global simulations with some caveats. The option to de-
lay refinement alone cuts computational load of the initial-
ization phase to one-third in the test setup, as demonstrated
in Table 1, and AMR produces good refinement, albeit with
a notable performance overhead of around 26 % in the test
case most similar to the control. Since the performance dif-
ference between the control and AMR runs seems to be pri-
marily caused by load imbalance, developing better load bal-
ance criteria and methods might help alleviate the issue.

Another possibility is to consider different refinement pa-
rameters. Replacing them in the simulation code is simple
now that the groundwork for AMR has been laid. As the cur-
rent criteria borrow heavily from (1) GUMICS and MHD-
AEPIC and (2) magnetohydrodynamic and embedded PIC
simulations respectively, they might not be optimal for a
Vlasov simulation. As both refinement indices are based on
spatial variables, they do not explicitly account for kinet-
ics present in the simulation. Implementing kinetic measures
such as non-Maxwellianity (Graham et al., 2021) or agy-
rotropy (Swisdak, 2016) would efficiently indicate regions
where kinetic phenomena dominate but would not directly
map to dimensionless gradients. Thus, refining those regions
would not bring the evaluated parameter into the requested
range, and implementing them as refinement criteria is not
straightforward.

Adaptive mesh refinement fulfils the goals set in its de-
velopment: replacing static refinement with an adaptive and
efficient algorithm. We plan to use AMR in upcoming large-
scale production runs, providing further information on the
method’s advantages and shortcomings. In particular, initial-
izing a simulation at a low resolution allows for a longer total
simulated time using the same quantity of resources; how-
ever, care must be taken so that this does not compromise the
simulation results.

Geosci. Model Dev., 17, 6401–6413, 2024 https://doi.org/10.5194/gmd-17-6401-2024

L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code 6411

Table 1. Table of rates of phase-space cells solved per second and per core in each run over 500 to 550 s. The cell rate is generally worse for
AMR runs but improves for runs with more refinement. The total runtime is given for reference, with the alpha1-med and alpha2-med runs
closest to the computational load of control.

Run Cores Cells solved [1 s−1] Cells solved per core [1 s−1] % of control Runtime [s]

Control 12800 2.492× 1010 1.946× 106 100.0 17× 103

Unrefined 4096 8.630× 109 2.107× 106 108.3 16× 103

alpha1-low 12800 1.674× 1010 1.308× 106 67.2 17× 103

alpha1-med 12800 1.836× 1010 1.434× 106 73.7 24× 103

alpha1-high 12800 2.488× 1010 1.944× 106 99.9 36× 103

alpha2-low 12800 1.560× 1010 1.219× 106 62.6 18× 103

alpha2-med 12800 1.586× 1010 1.239× 106 63.7 23× 103

alpha2-high 12800 1.836× 1010 1.434× 106 73.7 33× 103

Table 2. Comparison of the time spent in spatial translation and specific timers within the alpha1-med and control runs. Vlasiator performs
translation one dimension at a time, updating ghost cells in between. Pre-update barriers refer to the time spent by processes waiting for
other processes to complete translation in order to update ghost cells. These waiting times account for 77 % of the time difference between
alpha1-med and the control and 90 % between alpha2-med and the control.

Timer Spatial translation Pre-update barriers

Run Total [s] z [s] x [s] y [s] Total [s]

Control 10460.0 1287.7 1104.5 837.2 3229.4
alpha1-med 15970.1 4697.5 1731.8 1047.4 7476.7
alpha2-med 14730.0 4553.0 1600.6 903.7 7057.3

alpha1-med− control 5510.1 3409.8 627.3 210.2 4247.3
alpha2-med− control 4270.0 3265.3 496.1 66.5 3827.9

Appendix A: Reproducing the data

The data may be reproduced in the following manner using
the provided configuration (Kotipalo, 2023):

1. Install and compile Vlasiator using the instructions
provided at https://github.com/fmihpc/vlasiator/wiki/
Installing-Vlasiator (last access: 23 August 2024).

2. To generate the control data, run Vlasiator
in the control directory using the corre-
sponding configuration files via, for example,
srun BIN -run_config control.cfg,
where BIN is the Vlasiator executable.

3. To generate the unrefined data, run Vlasiator in the
unrefined directory first using the configuration file
unrefined-500s. Run it again using the configura-
tion file unrefined-550s using the restart file cre-
ated at 500 simulation seconds via, for example, srun
BIN -run_config unrefined_550s.cfg
-restart.filename restart/FILENAME,
where FILENAME is the restart file.

4. To generate each AMR data point, run Vlasiator in each
of the alpha1 and alpha2 directories using the cor-

responding configuration files and the same restart file
as used for unrefined-550s.

5. The data in Tables 1, 2, and 3 are given by the
script data.sh. Data for each run are given by
./data.sh RUN, where RUN is the path of the run
to analyse.

6. The first three lines of output correspond to the first
three columns of Table 1. The last column is the ratio
of cells solved per core to the corresponding number of
the control run.

7. The first four columns of Table 2 corre-
spond to the timers Spatial-space and
barrier-trans-pre-update_remote{z,x,y}.
The average value in seconds is used here, with the
total for pre-update barriers calculated as the sum of
the z, x, and y barriers, and the difference is simply the
difference between the two runs.

8. The columns “Load balance” and “Refine” in Ta-
ble 3 correspond to the timers Balancing load and
Re-refine spatial cell. The values used are
average time, percentage of time, and time per phase-
space cell.

https://doi.org/10.5194/gmd-17-6401-2024 Geosci. Model Dev., 17, 6401–6413, 2024

https://github.com/fmihpc/vlasiator/wiki/Installing-Vlasiator
https://github.com/fmihpc/vlasiator/wiki/Installing-Vlasiator

6412 L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code

Table 3. Table of the time taken in load balance and refinement in seconds and the percentage of simulation time and microseconds per
phase-space cell over 500 to 550 s. Load is balanced every 50 time steps in each run, with the AMR runs refined before every load balance.
Load balancing takes somewhat longer on AMR runs, with the worst results on the runs with cell counts closest to the control.

Timer Load balance Refine

Run Time [s] Time [%] Time / cell [µs] Time [s] Time [%] Time / cell [µs]

Control 87.1 0.510 5.267 – – –
Unrefined 69.6 0.446 4.268 – – –
alpha1-low 100.0 0.576 9.257 158.7 0.914 14.70
alpha1-med 157.5 0.666 9.359 285.7 1.208 16.97
alpha1-high 237.7 0.671 7.643 681.6 1.923 21.92
alpha2-low 98.8 0.563 9.689 158.0 0.900 15.49
alpha2-med 129.9 0.577 9.003 219.4 0.974 15.21
alpha2-high 197.7 0.604 8.776 429.5 1.313 19.06

Code and data availability. The current version of model is avail-
able from GitHub – https://github.com/fmihpc/vlasiator/ (last ac-
cess: 23 August 2024) – under the GNU General Public Li-
cense Version 2 (GPLv2). The exact version of the model used
to produce the results used in this paper is archived on Zen-
odo (https://doi.org/10.5281/zenodo.10600112, Pfau-Kempf et al.,
2024), while the input data and scripts to run the model and
analyse the output for all the simulations presented in this pa-
per are archived on Fairdata (https://doi.org/10.23729/f7f9d95d-
1e23-49e3-9c35-1d8e26c47bf7, Kotipalo, 2023). Figure 1 was
made using VisIt 3.3.1 (Childs et al., 2012), and the rest
were made using the Analysator library available from GitHub
– https://github.com/fmihpc/analysator/ (last access: 23 August
2024) – under GNU GPLv2 and are archived on Zenodo
(https://doi.org/10.5281/zenodo.4462515, Battarbee et al., 2021).

Author contributions. LK prepared the manuscript with contribu-
tions from all co-authors, implemented adaptive mesh refinement
in code, and carried out the tests. MP wrote the abstract and is the
University of Helsinki principal investigator (PI) of Plasma-PEPSC.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. The paper is based on code development as
part of the Plasma-PEPSC project. The simulations and data anal-
ysis presented were performed on the CSC Mahti supercomputer.
Markus Battarbee, Yann Pfau-Kempf, and Minna Palmroth are
funded by the Research Council of Finland.

The Finnish Centre of Excellence in Research of Sustainable
Space, funded through the Research Council of Finland, has sig-
nificantly supported Vlasiator development, as has the European
Research Council Consolidator Grant 682068-PRESTISSIMO. The
authors wish to thank the University of Helsinki local computing in-
frastructure and the Finnish Grid and Cloud Infrastructure (FGCI)
for supporting this project with computational and data storage re-
sources.

Financial support. This research has been supported by the
European Commission Horizon Europe Framework Programme
(grant no. 4100455) and the Research Council of Finland Scientific
Council for Natural Sciences and Engineering (grant nos. 312351,
335554, 336805, 339756, 345701, and 347795).

Open-access funding was provided by the Helsinki
University Library.

Review statement. This paper was edited by Tatiana Egorova and
reviewed by three anonymous referees.

References

Battarbee, M., Hannuksela, O. A., Pfau-Kempf, Y., von Alfthan,
S., Ganse, U., Jarvinen, R., Leo, Suni, J., Alho, M., lturc,
Ilja, tvbrito, and Grandin, M.: fmihpc/analysator: v0.9, Zenodo
[code], https://doi.org/10.5281/zenodo.4462515, 2021.

Berger, M. J. and Jameson, A.: Automatic adaptive grid re-
finement for the Euler equations, AIAA J., 23, 561–568,
https://doi.org/10.2514/3.8951, 1985.

Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S.,
Pugmire, D., Biagas, K., Miller, M. C., Harrison, C., Weber,
G. H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel,
E. W., Camp, D., Rubel, O., Durant, M., Favre, J. M., and
Navratil, P.: High Performance Visualization–Enabling Extreme-
Scale Scientific Insight, edited by: Bethel, E. W., Childs, H.,
and Hansen, C., 1st Edn., Chapman and Hall/CRC, 520 pp.,
https://doi.org/10.1201/b12985, 2012.

Geosci. Model Dev., 17, 6401–6413, 2024 https://doi.org/10.5194/gmd-17-6401-2024

https://github.com/fmihpc/vlasiator/
https://doi.org/10.5281/zenodo.10600112
https://doi.org/10.23729/f7f9d95d-1e23-49e3-9c35-1d8e26c47bf7
https://doi.org/10.23729/f7f9d95d-1e23-49e3-9c35-1d8e26c47bf7
https://github.com/fmihpc/analysator/
https://doi.org/10.5281/zenodo.4462515
https://doi.org/10.5281/zenodo.4462515
https://doi.org/10.2514/3.8951
https://doi.org/10.1201/b12985

L. Kotipalo et al.: Physics-motivated cell-octree AMR in the Vlasiator 5.3 global hybrid-Vlasov code 6413

Devine, K., Boman, E., Heapby, R., Hendrickson, B., and
Vaughan, C.: Zoltan Data Management Service for Paral-
lel Dynamic Applications, Comput. Sci. Eng., 4, 90–97,
https://doi.org/10.1109/5992.988653, 2002.

Dubart, M., Ganse, U., Osmane, A., Johlander, A., Battarbee,
M., Grandin, M., Pfau-Kempf, Y., Turc, L., and Palmroth,
M.: Resolution dependence of magnetosheath waves in global
hybrid-Vlasov simulations, Ann. Geophys., 38, 1283–1298,
https://doi.org/10.5194/angeo-38-1283-2020, 2020.

Ganse, U., Koskela, T., Battarbee, M., Pfau-Kempf, Y., Pa-
padakis, K., Alho, M., Bussov, M., Cozzani, G., Dubart, M.,
George, H., Gordeev, E., Grandin, M., Horaites, K., Suni, J.,
Tarvus, V., Kebede, F. T., Turc, L., Zhou, H., and Palmroth,
M.: Enabling technology for global 3D + 3V hybrid-Vlasov
simulations of near-Earth space, Phys. Plasmas, 30, 042902,
https://doi.org/10.1063/5.0134387, 2023.

Gombosi, T. I., Chen, Y., Glocer, A., Huang, Z., Jia, X., Liemohn,
M. W., Manchester, W. B., Pulkkinen, T., Sachdeva, N., Shidi,
Q. A., Sokolov, I. V., Szente, J., Tenishev, V., Toth, G., van der
Holst, B., Welling, D. T., Zhao, L., and Zou, S.: What sustained
multi-disciplinary research can achieve: The space weather
modeling framework, J. Space Weather Space Clim., 11, 42,
https://doi.org/10.1051/swsc/2021020, 2021.

Graham, D. B., Khotyaintsev, Y. V., André, M., Vaivads, A., Chas-
apis, A., Matthaeus, W. H., Retinò, A., Valentini, F., and Gersh-
man, D. J.: Non-Maxwellianity of Electron Distributions Near
Earth’s Magnetopause, J. Geophys. Res.-Space, 126, e29260,
https://doi.org/10.1029/2021JA029260, 2021.

Hoilijoki, S., Palmroth, M., Walsh, B. M., Pfau-Kempf, Y., von
Alfthan, S., Ganse, U., Hannuksela, O., and Vainio, R.: Mir-
ror modes in the Earth’s magnetosheath: Results from a global
hybrid-Vlasov simulation, J. Geophys. Res.-Space, 121, 4191–
4204, https://doi.org/10.1002/2015JA022026, 2016.

Honkonen, I.: fmihpc/dccrg: dccrg, Github [code], https://github.
com/fmihpc/dccrg, 2023.

Honkonen, I., von Alfthan, S., Sandroos, A., Janhunen, P., and
Palmroth, M.: Parallel grid library for rapid and flexible simu-
lation development, Comput. Phys. Commun., 184, 1297–1309,
https://doi.org/10.1016/j.cpc.2012.12.017, 2013.

Janhunen, P., Palmroth, M., Laitinen, T., Honkonen, I.,
Juusola, L., Facsko, G., and Pulkkinen, T. I.: The
GUMICS-4 global MHD magnetosphere-ionosphere cou-
pling simulation, J. Atmos. Sol.-Terr. Phys., 80, 48–59,
https://doi.org/10.1016/j.jastp.2012.03.006, 2012.

Kempf, Y., Pokhotelov, D., von Alfthan, S., Vaivads, A., Palmroth,
M., and Koskinen, H. E. J.: Wave dispersion in the hybrid-Vlasov
model: Verification of Vlasiator, Phys. Plasmas, 20, 112–114,
https://doi.org/10.1063/1.4835315, 2013.

Kotipalo, L.: AMR Test Configuration, University of
Helsinki [data set], Matemaattis-luonnontieteellinen
tiedekunta, https://doi.org/10.23729/f7f9d95d-1e23-49e3-
9c35-1d8e26c47bf7, 2023.

Müller, J., Simon, S., Motschmann, U., Schüle, J., Glassmeier, K.-
H., and Pringle, G. J.: A.I.K.E.F.: Adaptive hybrid model for
space plasma simulations, Comput. Phys. Commun., 182, 946–
966, https://doi.org/10.1016/j.cpc.2010.12.033, 2011.

Nishikawa, K., Duţan, I., Köhn, C., and Mizuno, Y.: PIC meth-
ods in astrophysics: simulations of relativistic jets and kinetic
physics in astrophysical systems, Living Reviews in Compu-

tational Astrophysics, 7, 1, https://doi.org/10.1007/s41115-021-
00012-0, 2021.

Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc,
L., Brito, T., Grandin, M., Hoilijoki, S., Sandroos, A., and
von Alfthan, S.: Vlasov methods in space physics and astro-
physics, Living Reviews in Computational Astrophysics, 4, 1,
https://doi.org/10.1007/s41115-018-0003-2, 2018.

Papadakis, K., Pfau-Kempf, Y., Ganse, U., Battarbee, M., Alho,
M., Grandin, M., Dubart, M., Turc, L., Zhou, H., Horaites,
K., Zaitsev, I., Cozzani, G., Bussov, M., Gordeev, E., Tesema,
F., George, H., Suni, J., Tarvus, V., and Palmroth, M.: Spa-
tial filtering in a 6D hybrid-Vlasov scheme to alleviate adap-
tive mesh refinement artifacts: a case study with Vlasiator (ver-
sions 5.0, 5.1, and 5.2.1), Geosci. Model Dev., 15, 7903–7912,
https://doi.org/10.5194/gmd-15-7903-2022, 2022.

Pfau-Kempf, Y., Battarbee, M., Ganse, U., Hoilijoki, S., Turc,
L., von Alfthan, S., Vainio, R., and Palmroth, M.: On the Im-
portance of Spatial and Velocity Resolution in the Hybrid-
Vlasov Modeling of Collisionless Shocks, Front. Phys., 6, 44,
https://doi.org/10.3389/fphy.2018.00044, 2018.

Pfau-Kempf, Y., von Alfthan, S., Ganse, U., Battarbee, M., Koti-
palo, L., Koskela, T., Honkonen, I., Sandroos, A., Papadakis,
K., Alho, M., Zhou, H., Palmu, M., Grandin, M., Suni, J.,
Pokhotelov, D., and Horaites, K.: fmihpc/vlasiator: Vlasiator 5.3,
Zenodo [code], https://doi.org/10.5281/zenodo.10600112, 2024.

Rembiasz, T., Obergaulinger, M., Cerdá-Durán, P., Ángel Aloy, M.,
and Müller, E.: On the Measurements of Numerical Viscosity
and Resistivity in Eulerian MHD Codes, Astrophys. J., 230, 18,
https://doi.org/10.3847/1538-4365/aa6254, 2017.

Stout, Q. F., De Zeeuw, D. L., Gombosi, T. I., Groth, C. P. T., Mar-
shall, H. G., and Powell, K. G.: Adaptive Blocks: A High Perfor-
mance Data Structure, in: Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, SC ’97, 1–10, Association for
Computing Machinery, New York, NY, USA, ISBN 0897919858,
https://doi.org/10.1145/509593.509650, 1997.

Swisdak, M.: Quantifying gyrotropy in magnetic
reconnection, Geophys. Res. Lett., 43, 43–49,
https://doi.org/10.1002/2015GL066980, 2016.

von Alfthan, S., Pokhotelov, D., Kempf, Y., Hoilijoki, S.,
Honkonen, I., Sandroos, A., and Palmroth, M.: Vlasiator:
First global hybrid-Vlasov simulations of Earth’s foreshock
and magnetosheath, J. Atmos. Sol.-Terr. Phys., 120, 24–35,
https://doi.org/10.1016/j.jastp.2014.08.012, 2014.

Wang, X., Chen, Y., and Tóth, G.: Global Magnetohydrody-
namic Magnetosphere Simulation With an Adaptively Em-
bedded Particle-In-Cell Model, J. Geophys. Res.-Space, 127,
e2021JA030091, https://doi.org/10.1029/2021JA030091, 2022.

Zerroukat, M. and Allen, T.: A three-dimensional monotone and
conservative semi-Lagrangian scheme (SLICE-3D) for trans-
port problems, Q. J. Roy. Meteor. Soc., 138, 1640–1651,
https://doi.org/10.1002/qj.1902, 2012.

Zhang, W., Myers, A., Gott, K., Almgren, A., and Bell, J.: AMReX:
Block-structured adaptive mesh refinement for multiphysics ap-
plications, Int. J. High Perform. Comput. Appl., 35, 508–526,
https://doi.org/10.1177/10943420211022811, 2021.

https://doi.org/10.5194/gmd-17-6401-2024 Geosci. Model Dev., 17, 6401–6413, 2024

https://doi.org/10.1109/5992.988653
https://doi.org/10.5194/angeo-38-1283-2020
https://doi.org/10.1063/5.0134387
https://doi.org/10.1051/swsc/2021020
https://doi.org/10.1029/2021JA029260
https://doi.org/10.1002/2015JA022026
https://github.com/fmihpc/dccrg
https://github.com/fmihpc/dccrg
https://doi.org/10.1016/j.cpc.2012.12.017
https://doi.org/10.1016/j.jastp.2012.03.006
https://doi.org/10.1063/1.4835315
https://doi.org/10.23729/f7f9d95d-1e23-49e3-9c35-1d8e26c47bf7
https://doi.org/10.23729/f7f9d95d-1e23-49e3-9c35-1d8e26c47bf7
https://doi.org/10.1016/j.cpc.2010.12.033
https://doi.org/10.1007/s41115-021-00012-0
https://doi.org/10.1007/s41115-021-00012-0
https://doi.org/10.1007/s41115-018-0003-2
https://doi.org/10.5194/gmd-15-7903-2022
https://doi.org/10.3389/fphy.2018.00044
https://doi.org/10.5281/zenodo.10600112
https://doi.org/10.3847/1538-4365/aa6254
https://doi.org/10.1145/509593.509650
https://doi.org/10.1002/2015GL066980
https://doi.org/10.1016/j.jastp.2014.08.012
https://doi.org/10.1029/2021JA030091
https://doi.org/10.1002/qj.1902
https://doi.org/10.1177/10943420211022811

	Abstract
	Introduction
	Problem domain
	Adaptive mesh refinement

	Methods
	Spatial refinement
	Shortcomings of static refinement
	Refinement indices
	Interpretation of refinement thresholds
	Implementation

	Results
	Refinement
	Performance

	Conclusions
	Appendix A: Reproducing the data
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

