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Abstract. Based on long-term observations at the Southern
Great Plains site by the Atmospheric Radiation Measure-
ment (ARM) program for training and validation, a deep-
learning model is developed to simulate the daytime evolu-
tion of boundary layer clouds (BLCs) from the perspective
of land–atmosphere coupling. The model takes ARM mea-
surements (including early-morning soundings and diurnally
varying surface meteorological conditions and heat fluxes)
as inputs and predicts hourly estimates (including cloud oc-
currence, the positions of cloud boundaries, and the vertical
profile of the cloud fraction) as outputs. The deep-learning
model offers good agreement with the observed cloud fields,
especially in the accuracy with which cloud occurrence and
base height are reproduced. When the inputs are substituted
by reanalysis data from ERA5 and MERRA-2, the outputs
of the deep-learning model provide a better agreement with
observation than the cloud fields extracted from ERA5 and
MERRA-2 themselves. Thus, the deep-learning model shows
great potential to serve as a diagnostic tool for the perfor-
mance of physics-based models in simulating stratiform and
cumulus clouds. By quantifying biases in clouds and attribut-
ing them to the simulated atmospheric state variables versus
the model-parameterized cloud processes, this observation-
based deep-learning model may offer insights into the direc-
tions needed to improve the simulation of BLCs in physics-
based models for weather forecasting and climate prediction.

1 Introduction

Boundary layer clouds (BLCs), which primarily comprise
stratiform and shallow cumuli, exert a profound influence
on the Earth’s radiative balance (Betts, 2009; Teixeira and

Hogan, 2002; Lu et al., 2013; Golaz et al., 2002). Their for-
mation and evolution are critically shaped by the interactions
between the surface, the planetary boundary layer (PBL),
and the free troposphere (Miao et al., 2019; Berg and Kas-
sianov, 2008; Zhang and Klein, 2013; Guo et al., 2017, 2019;
Y. Zhang et al., 2017). Numerous studies have investigated
the controlling factors for BLCs, highlighting the pivotal role
of the land surface in modulating cloud formation and af-
fecting the spatial and temporal distribution of low clouds
(Zhang and Klein, 2010, 2013; Rieck et al., 2014; Xiao et
al., 2018; Lareau et al., 2018; Lee et al., 2019; Tang et al.,
2019; Tao et al., 2019; Tian et al., 2022).

These clouds, which frequently form in the PBL’s en-
trainment zone, are very challenging to simulate in weather
prediction and climate modeling due to the small scales
of the physics involved and the complex feedback mecha-
nisms between land surface fluxes, PBL turbulent processes,
and cloud microphysics (Miao et al., 2019; Lu et al., 2011;
Fast et al., 2019; Morrison et al., 2020; Yang et al., 2018;
Nogherotto et al., 2016; Caldwell et al., 2021; Wang et al.,
2023; Guo et al., 2019). These challenges are compounded
when attempting to represent such processes in global and
regional climate models, where the fine-scale interactions are
often parameterized in a coarse-resolution grid due to com-
putational constraints (Bretherton et al., 2007; Zheng et al.,
2021; Moeng et al., 1996; Randall et al., 2003; Prein et al.,
2015). In addition, different cloud regimes exhibit complex
nonlinear cloud–land interactions, which pose challenges for
observational studies and modeling efforts, particularly for
physical parameterizations (Tang et al., 2018; Qian et al.,
2024; Sakaguchi et al., 2022; Poll et al., 2022; Tao et al.,
2021).
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As an emerging tool, machine learning (ML) has been
widely employed for a variety of environmental and atmo-
spheric studies (e.g., McGovern et al., 2017; Gagne et al.,
2019; Vassallo et al., 2020; Cadeddu et al., 2009; Molero
et al., 2022; Guo et al., 2024). Specifically, ML tech-
niques are increasingly being employed to simulate and es-
timate convection and precipitation, which are crucial for
accurate weather forecasting and climate modeling (Moo-
ers et al., 2021; Wang et al., 2020; O’Gorman and Dwyer,
2018; Gentine et al., 2018; Zhang et al., 2021). For exam-
ple, Rasp (2020) presents algorithms for the implementa-
tion of coupled learning in cloud-resolving models and the
super-parameterization framework. Similarly, ML tools have
been applied to leverage observational data for the refine-
ment of convection parameterizations, offering more insights
into convective triggering (Zhang et al., 2021). In addition,
ML has been used to emulate convection schemes and de-
velop parameterizations using data from advanced simula-
tions (O’Gorman and Dwyer, 2018; Gentine et al., 2018).
Furthermore, Haynes et al. (2022) developed pixel-based
ML-based methods of detecting low clouds, with a focus on
improving detection in multilayer cloud situations and with
specific attention given to improving cloud characteristics.
Despite the considerable advancements brought by ML, there
are persistent challenges in accurately simulating the verti-
cal structure of clouds as well as their complex relationships
with the land surface.

The Southern Great Plains (SGP) site, which is part of the
US Department of Energy Atmospheric Radiation Measure-
ment (ARM) program, is crucial for cloud evaluation and
climatology studies in modeling efforts. Recognized glob-
ally as a leading climate research facility, the ARM SGP site
(located 36.607° N, 97.488° W) has been collecting a wealth
of meteorological and radiative measurements and can offer
data that spans over 2 decades (Sisterson et al., 2016). The
rich dataset from the ARM SGP site can help address per-
sistent challenges in cloud modeling. This study leverages
these extensive observations to build a deep-learning model
that serves as an observation-based “emulator” for simulat-
ing BLCs. Our model enhances the estimations for cloud
fields of BLCs, particularly those for cloud occurrence, posi-
tion, and fraction. Furthermore, a critical assessment of our
model in comparison with existing reanalysis datasets, in-
cluding MERRA-2 and ERA5, highlights the improvement
in estimating cloud vertical structure. Our study analyzes the
model’s performance across different cloud regimes, such as
stratiform and cumulus. By undertaking this endeavor, we
aim to help bridge the existing gaps between field observa-
tions and modeling by providing a deep-learning model of
BLCs, thereby improving diagnostics of model performance
and enriching our understanding of BLC processes.

2 Data description

2.1 Observations for the development of the
deep-learning model

This study utilized the ARM SGP observations during 1998–
2020 to serve as training, validation, and testing data for the
development of the deep-learning model. Note that all the
observations are collected at the central facility in the SGP, a
fixed location, which is different from other ML studies that
use global data from reanalysis or climate model simulations
(e.g., O’Gorman and Dwyer, 2018; Shamekh et al., 2023).

The input data used to train and validate the deep-learning
model include early-morning sounding data and diurnally
varying surface meteorological conditions and surface tur-
bulent heat fluxes. We take radiosonde (SONDE) measure-
ments at around 06:00 local time to obtain thermodynamic
and wind profiles in the PBL and the free atmosphere for
use as initial conditions (Holdridge et al., 2011). SONDE
launches typically took place 4 times per day at the SGP
site, usually at 00:00, 06:00, 12:00, and 18:00 local time.
Local time, defined as daylight saving time, is used consis-
tently throughout the year. Each morning profile comprises
46 levels spanning from 0–8 km, including levels at intervals
of 50 m from 0 to 1 km, 0.1 km from 1 to 2 km, 0.25 km from
2 to 4 km, and 0.5 km from 4.5 to 8 km. Meanwhile, the col-
located surface meteorology systems (MET; Ritsche, 2011)
provide a variety of meteorological measurements (i.e., tem-
perature, relative humidity, wind, and pressure) at the sur-
face. Surface sensible- and latent-heat fluxes are taken from
the ARM value-added product called the best-estimate fluxes
from the bulk aerodynamic calculations of the energy bal-
ance Bowen ratio measurements (BAEBBR, Cook, 2018).

In addition, we also use derived variables based on ob-
servations as the input fields for the deep-learning model.
The lifting condensation level (LCL) is derived from the sur-
face meteorology (Romps, 2017), while the BLHparcel (the
boundary layer height derived from parcel methods) is calcu-
lated from the morning temperature profiles and the surface
air temperature (Holzworth, 1964; Su and Zhang, 2024; Chu
et al., 2019). Specifically, BLHparcel is defined as the height
where the morning potential-temperature profile first exceeds
the current surface potential temperature by more than 1.5 K.
Meanwhile, BLHSH (the boundary layer height derived from
the sensible heat flux) is calculated from the morning tem-
perature profiles and surface sensible heat (Stull, 1988; Su et
al., 2023).

Our study employs hourly cloud fraction data available
from the ARM Best Estimate (ARMBE; Xie et al., 2010)
dataset as the target data for model outputs when training
and validating the deep-learning model. This cloud fraction
is developed based on Active Remote Sensing of Clouds
(ARSCL; Clothiaux et al., 2000, 2001; Kollias et al., 2020),
which utilizes the best estimates from a ceilometer for the
lowest cloud bases and integrates micro-pulse lidar, ceilome-
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ter, and cloud radar data to define cloud tops and the cloud
fraction. In addition, to construct learning targets, the base of
the BLC is determined as the lowest altitude where the cloud
fraction first exceeds 1 %, and the cloud top is identified as
the point where the cloud fraction transitions from exceeding
1 % to falling below this threshold. In multi-layer systems,
the deep neural network (DNN) model is trained based on the
lowest cloud layer when it is coupled with the land surface.
However, we do not exclude multiple-layer cloudy cases if
their vertical fractions are continuous from the lower to the
upper layer.

Based on ARM observations, this study develops an ad-
vanced deep-learning framework to simulate the BLCs us-
ing detailed observational data, including SONDE profiles,
surface meteorological measurements, and ARSCL, from the
SGP site. This framework is designed for BLCs and places
particular emphasis on cloud–land coupling mechanisms.
By integrating morning SONDE observations with diurnally
varying surface fluxes and meteorological data, this deep-
learning model is capable of diagnosing the initiation and
evolution of low clouds, especially those coupled with land
surface processes.

2.2 Classification of coupled boundary layer clouds
from observations

The deep-learning model in this study aims to simulate BLCs
that are strongly coupled with boundary layer and land sur-
face processes. The classification of clouds described below
is used to filter the BLCs based on the concept of cloud–land
coupling and is important for the training and analysis of the
deep-learning model. Here, we treat BLCs as synonymous
with land-coupled clouds, in contrast to clouds that are de-
coupled from the PBL and land surface.

Coupled clouds are identified when the cloud base height
(CBH), as derived from the ceilometer, aligns with or is be-
low the lidar-detected PBL top height to within 0.2 km and
the calculated surface-based LCL (Romps, 2017) falls within
the maximum allowable range of 0.7 km (Su et al., 2022).
PBL height data (Su et al., 2020; Roldán-Henao et al., 2024)
are available through the ARM database. This alignment is
indicative of clouds that are directly influenced by surface-
driven processes. Meanwhile, a cloud thickness threshold
(<4 km) is applied to ensure the occurrence of BLCs (i.e.,
not deep convective clouds).

Within the scope of land-coupled clouds, we further clas-
sify the observed daytime BLCs into cumulus and stratiform
categories following the methodology in Su et al. (2024).
Stratiform cloud days are identified as those with prolonged
(lasting more than 3 h) overcast conditions during the day-
time and a maximum cloud fraction exceeding 90 % based
on ARSCL data. For cumulus cloud days, two criteria are
applied: (1) cloud formations emerge after sunrise, ensuring
that they are driven by local convective processes, and (2)
there is an absence of stratiform clouds. Based on these crite-

ria, we identify 940 d that are categorized as having a cumu-
lus regime, with 21 % occurring in spring, 56 % in summer,
17 % in fall, and 6 % in winter. Similarly, we identify 657 d
that fall within the stratiform cloud regime, with a seasonal
distribution of 37 % in spring, 12 % in summer, 23 % in fall,
and 28 % in winter. Note that this cloud regime classification
is done on a daily basis. To maintain clarity in our analysis,
we exclude days with mixed cloud regimes, focusing only on
days that exhibit only stratiform or cumulus clouds during
the daytime.

2.3 Reanalysis data for the application of the
deep-learning model

To demonstrate how to use the deep-learning model, we take
advantage of reanalysis datasets from the European Cen-
tre for Medium-Range Weather Forecasts’ fifth-generation
global reanalysis (ERA5; Hersbach et al., 2020) and NASA’s
Modern-Era Retrospective analysis for Research and Appli-
cations Version 2 (MERRA-2; Gelaro et al., 2017). Note that,
unlike the aforementioned observational data, reanalysis data
are not used for training the deep-learning model; instead,
they are used to help illustrate how the deep-learning model
may disentangle the potential causes leading to biased cloud
simulations.

ERA5 provides hourly atmospheric states and cloud frac-
tions around the SGP by utilizing the Integrated Forecast-
ing System (IFS) and a data assimilation system with a hor-
izontal resolution of 0.25°× 0.25° and a vertical resolution
of 25 hPa in the lower atmosphere (700–1000 hPa). The IFS
employs a prognostic cloud scheme capable of capturing
the evolution of cloud dynamics over consecutive time steps
(Tiedtke, 1993), a feature that enhances its utility in time-
dependent climate studies.

MERRA-2 provides hourly low-cloud fraction and 3-
hourly vertical cloud-fraction profiles at a spatial resolution
of 0.67° (longitude)× 0.5° (latitude). MERRA-2 is based on
the Goddard Earth Observing System Data Assimilation Sys-
tem Version 5 and utilizes a diagnostic cloud scheme that fo-
cuses on the immediate state of clouds (Randles et al., 2017),
which is widely used in multiple studies (e.g., Yeo et al.,
2022; Kuma et al., 2020; Miao et al., 2019).

Here we acknowledge the local heterogeneity of cloud
fields in the area covered by an ERA5 or MERRA-2 grid
cell. This inherent discrepancy between the reanalysis data
and the ARM SGP observations may arise from the differ-
ence between point-based measurements and area-based as-
similated grid averages. However, observations at the SGP
site, representative of plain regions, have been widely used
for evaluating models across scales from climatological and
statistical perspectives (e.g., Song et al., 2014; Zheng et al.,
2023; L. Zhang et al., 2017).
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Figure 1. Conceptual diagram of the deep-learning framework for
simulating boundary layer cloud (BLC) characteristics over the
US Southern Great Plains. Inputs for the deep neural networks
(DNNs) include morning meteorological profiles from radiosondes
(SONDE), time indicators (i.e., the local time and month), and sur-
face conditions such as fluxes (curved black arrows) and meteoro-
logical data. The relevance of relative-humidity (RH) profiles and
the planetary boundary layer (PBL) top is emphasized due to their
critical role in BLC development. These variables are processed
through multiple layers of hidden neurons (h11 to hMK). Both in-
put and output parameters are provided hourly, except for the morn-
ing SONDE data. Separate DNN modules are constructed for each
task: Module 1 handles the initiation (trigger) of BLC, Module 2
estimates the cloud base, and Module 3 estimates the cloud frac-
tion and thickness. Together, these models synergize to predict the
presence, altitude, and stratification of BLC.

3 Construction of the deep-learning model for
boundary layer clouds

3.1 Structural design of the deep-learning model

This study develops an integrated deep-learning model to
simulate BLC over the SGP site. The model design is illus-
trated in Fig. 1. Traditionally, simulating BLCs involves solv-
ing complex equations related to PBL turbulence and cloud
microphysical processes. Our approach, however, leverages
deep learning to bypass these intricate simulations. By us-
ing module-specific hidden layers, the deep-learning model
serves as an observation-based “emulator” that directly es-
timates BLCs from early-morning soundings and surface-
related parameters.

The model is purpose-built to consist of three distinct
deep-learning modules, each responsible for a critical aspect

of the cloud simulation: (1) the determination of BLC occur-
rence, (2) the height position of the cloud base, and (3) the
cloud thickness and the normalized 10-layered shape of the
cloud fraction within cloud boundaries, which jointly yield
the hourly averaged vertical structures of BLCs. This modu-
lar approach ensures that the estimations are specific for each
aspect of the BLCs. Combining cloud thickness and cloud
fraction in one module is logical because the vertical distri-
bution of cloud fraction is related to the overall cloud thick-
ness; e.g., thicker clouds are usually associated with larger
cloud fractions. Naturally, the cloud top is considered as the
cloud base plus the thickness. This separation of tasks en-
hances the overall reliability and clarity of the model in cap-
turing the various characteristics of BLCs. Note that each of
the three deep-learning modules is built upon a DNN with
multiple hidden layers.

In the first step, the occurrence module evaluates the like-
lihood of cloud formation by producing a number between 0
and 1 which we call the “trigger” in the following; a value
above 0.5 indicates the presence of clouds. The target value
for this module is binary (0 or 1), and the model output is a
continuous value between 0 and 1. This occurrence informa-
tion then feeds into the other two modules – one for locat-
ing cloud boundaries and the other for delineating the verti-
cal shape of the cloud fraction in cloudy layers – in parallel.
While the cloud-base (or boundary) module and the fraction-
thickness (or fraction) module are independent of each other,
they collaborate to depict the vertical cloud-fraction profile.

To represent the vertical structure of BLC in the fraction-
thickness module, we segment the cloud layer from the base
to the top into 10 levels, with each level’s thickness vary-
ing according to the overall cloud thickness. These values
are then interpolated to create a continuous vertical profile
of cloud fraction within the BLC boundaries, offering a de-
tailed depiction of the cloud’s vertical extent. The vertical
position of the layer changes based on the predicted cloud
base and top to accurately represent the vertical structure of
BLCs. This dynamic approach allows the fraction module to
adjust and focus on the relevant portions of the cloud fraction
within cloudy layers. Compared to a static height-level ap-
proach, which requires the prediction of cloud fraction across
a fixed vertical extent (e.g., multiple levels between 0–6 km),
our method focuses on the shape of the fraction profile. This
ensures that the model is not constrained by fixed vertical
levels, allowing for more efficient and robust estimations.

3.2 DNN architecture and configuration

The construction of the deep-learning model uses the
TensorFlow Package, developed by Google (https://www.
tensorflow.org/, last access: 2 June 2024). Each module in
the deep-learning model is constructed based on a separate
DNN. The DNN architecture is designed beginning with
an input layer reflective of the selected feature set, which
includes morning sounding profiles, surface meteorology
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and heat flux data, and the derived variables such as LCL,
BLHparcel, and BLHSH. The input surface conditions for pre-
dicting the current-hour BLC include data from both the
current hour and the previous hour. The input variables for
training and validating the deep-learning model are detailed
in Table 1, including variable names, descriptions, and data
sources, together with the ARMBE cloud fraction profiles
used as the learning target for model outputs. Normalization,
a preprocessing technique, is applied to both input and target
data to scale them to a zero mean and a standard deviation
of 1 (Klambauer et al., 2017; Salimans and Kingma, 2016;
Raju et al., 2020). This standardization ensures that the data
is scaled to a common range and offers some benefits, such as
improving the stability and efficiency of the training process.

The architecture of the DNN models is structured and tai-
lored for each module: occurrence, cloud-base, and fraction
(or fraction-thickness) estimation. Each module’s structure is
defined by the number of neurons in its hidden layers. For the
occurrence module, the structure consists of four hidden lay-
ers with 108, 64, 36, and 24 neurons, respectively. The CBH
prediction module is similarly structured with four hidden
layers, but it consists of 96, 56, 32, and 24 neurons, respec-
tively. The module for predicting cloud fraction and thick-
ness has a slightly simpler structure, with three hidden layers
containing 56, 32, and 24 neurons, respectively.

For the specific configuration, we utilize the ReLU (rec-
tified linear unit) activation function to introduce nonlinear-
ity into the DNN. L2 regularization with a strength of 0.01
is applied to mitigate overfitting by penalizing large weights
and encouraging simpler models. Batch normalization is im-
plemented at each layer to normalize the inputs, ensuring a
consistent data distribution and stabilizing the learning pro-
cess. A dropout rate of 0.2 is used to randomly omit neu-
ron connections during training, preventing overfitting and
encouraging the network to learn more robust features. The
training process is refined with early stopping (further epochs
are ceased when the validation loss ceases to improve) and
learning-rate reduction (the learning rate is systematically
decreased upon encountering plateaus in performance im-
provement). These callbacks are instrumental in honing the
model’s performance by ensuring convergence to the accu-
rate estimation of the BLC. Neuron biases are included in the
network’s architecture and systematically inserted in the hid-
den layers (Battaglia et al., 2018). The model is compiled us-
ing the Adam optimizer with an initial learning rate of 0.01.
The loss functions used are mean squared error for regres-
sion tasks and binary cross-entropy for binary classification
tasks. The batch size during training is set to 32. Early stop-
ping with a patience of 37 epochs is implemented to prevent
overfitting and to restore the best weights when the validation
loss ceases to improve.

3.3 Model training process and examples

The construction of the deep-learning model commences
with the segregation of the ARM observations during 1998–
2016 into a training subset (70 %) and a validation subset
(30 %). In addition, we save data from 2017–2020 for test-
ing, specifically focusing on this independent period to as-
sess the model’s performance. Upon training completion, the
model is then evaluated, with its performance metrics exam-
ined for accuracy and reliability. This methodical and data-
driven process balances complexity with precision, culminat-
ing in a robust model capable of simulating BLC features.

The modules within the deep-learning model operate syn-
ergistically, with the predicted occurrence of clouds extend-
ing into the modules for cloud base and vertical structure
(i.e., cloud thickness and shape of the cloud fraction profile).
As an example of the model output, Fig. 2 offers a compar-
ative display of diurnal cloud fraction profiles over the SGP,
contrasting the observed data with the simulated clouds from
the deep-learning model. The model accurately simulates the
cloud occurrence and the CBH for these cases: they align
well with observations. However, it falls short in simulat-
ing the cloud top heights, with especially significant overes-
timates for stratiform clouds. It also underestimates the max-
imum cloud fractions for stratiform clouds. The observed
maximum cloud fraction for stratiform clouds is close to
1, indicating complete coverage; however, this aspect is not
fully replicated by the deep-learning model. The third case
also falls into the category of stratiform clouds and is char-
acterized by an observed cloud fraction exceeding 0.9. How-
ever, the presence of multiple local maxima within the cloud
fraction profile indicates a relatively complex structure. This
complexity poses a challenge to the model, as the DNN is
not fully capable of capturing the internal variations within
the convective system. Instead, the model tends to produce a
more uniform cloud fraction across this convective system.
Despite these variances, the model-derived cloud bases and
occurrence demonstrate high consistency with observations,
highlighting its value in the cloud simulations.

3.4 Calculation of feature importance and
performance metrics

To elucidate the significance of each input variable within
our deep-learning models, we implement a permutation im-
portance analysis. This robust, model-agnostic technique as-
sesses each feature’s influence on the model’s predictive
accuracy, which is crucial for assessing DNNs (Date and
Kikuchi, 2018; Altmann et al., 2010). In this study, the per-
mutation importance method differs slightly for each module
within the deep-learning model, based on whether the mod-
ule’s task is regression (cloud-base and fraction-thickness
modules) or classification (occurrence module).

For the cloud-base and fraction-thickness modules, which
are regression tasks, the mean absolute error (MAE) serves as
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Table 1. Detailed descriptions of the input and output variables used in the deep-learning models for predicting BLCs. The table includes the
variable names, descriptions, and data sources. For the input parameters, the surface meteorology and fluxes are taken from the current and
previous hour, while the morning profiles comprise 46 values spanning from 0–8 km at 06:00 LT. Note that the output data are derived from
ARSCL (Active Remote Sensing of Clouds). The three outputs correspond to the trigger module, cloud-base module, and fraction-thickness
module, respectively.

Variable Description Data source

Input

Month Ranges from 1 to 12 Time record
LT Local time Time record
PS Pressure at surface level (2 m) Surface meteorology station
RH Relative humidity at 2 m Surface meteorology station
U Zonal wind at 2 m Surface meteorology station
V Meridional wind at 2 m Surface meteorology station
T Temperature at 2 m Surface meteorology station
LCL Lifted condensation level Derived from T , RH, PS
SH Sensible heat Energy balance Bowen ratio
LH Latent heat Energy balance Bowen ratio
RH profile Morning RH profiles Radiosonde
U profile Morning U wind profiles Radiosonde
V profile Morning V wind profiles Radiosonde
θ profile Morning potential temperature profiles Radiosonde
BLHSH PBL height derived from sensible heat Derived from θ profile and SH
BLHparcel PBL height derived from parcel method Derived from θ profile and T

Output

Trigger Cloud occurrence ARSCL
Position Cloud-base height ARSCL
Fraction profiles Cloud fraction and thickness ARSCL

the performance metric. First, we perform a test run to estab-
lish a baseline performance by calculating the MAE of the
module using the original, unperturbed validation datasets,
which comprise the early-morning sounding, the surface con-
ditions, and the derived variables used as the inputs. Then,
for every input feature in the validation set, we disrupt its as-
sociation with the target cloud fields by shuffling its values
across all instances, creating a permutation of the dataset.
This is executed while maintaining the original order of the
other features. When performing the permutation, we shuf-
fle the entire morning profile for each case without altering
the internal height order of values within the profile. This
approach ensures that while profiles are permuted across dif-
ferent cases, the sequential structure of height values within
each profile remains intact. This method allows us to assess
the importance of the profiles as coherent units, rather than
disrupting their vertical structures. Furthermore, we re-run
the DNN modules with the shuffled feature and all other fea-
tures intact as inputs and recalculate the MAE with the new
outputs. The difference between this new MAE and the base-
line MAE represents the feature’s importance. To ensure a
comprehensive assessment, the permutation and the subse-
quent MAE calculation are repeated 20 times with different
random shuffles for each input feature. The final importance

score for each feature is then determined as the mean increase
in MAE across these permutations.

For the module of cloud occurrence, which is a classifica-
tion task, the accuracy score is used as the performance met-
ric. The accuracy score is a measure of the model’s overall
correctness and is calculated using the formula

Accuracy=
TP+TN

TP+TN+FP+FN
, (1)

where TP (true positives) indicates the number of instances
correctly predicted as positive, TN (true negatives) indicates
the number of instances correctly predicted as negative, FP
(false positives) indicates the number of instances incorrectly
predicted as positive, and FN (false negatives) indicates the
number of instances incorrectly predicted as negative. Af-
ter determining the performance metric, other procedures for
determining feature importance remain the same for the re-
gression tasks and the classification task.

After determining the importance scores from the test run,
to refine the model, features contributing a negligible or neg-
ative effect on performance (i.e., importance scores less than
zero) are excluded to ensure only beneficial data are used.

Figure 3 illustrates the importance scores from different
features obtained using this methodology, underscoring the
most influential factors for predicting BLC occurrence, the
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Figure 2. Examples of diurnal cloud fraction profiles for cumulus
(a, b), stratiform (c, d), and complex (e, f) cloud structures over the
US Southern Great Plains. Observed data (OBS) are shown along-
side deep-learning neural network (DNN) simulations. Black lines
represent the observed PBL height (PBLH), with the cloud base
(CBH) and cloud top height (CTH) marked by pink and red dots,
respectively. The color gradient indicates the cloud fraction.

cloud base, and the thickness and shape of the vertical frac-
tion of BLCs. These factors are ranked from the most impor-
tant factors to the least important factors. Notably, the im-
portance scores are not computed as a simple sum but are
determined by collectively shuffling groups of features and
observing the impact on model performance. The BLC trig-
ger for occurrence is a special factor since it is the output of
the classification model. The trigger value, which indicates
the likelihood of cloud occurrence, is used as an input to ob-
tain the estimations of cloud boundaries and fractions. Some-
times the trigger value hovers around 0.5, indicating uncer-
tainty about the presence of clouds. This situation often cor-
responds to scenarios like broken clouds or residual clouds,
typically associated with relatively small cloud fractions. In-
corporating the trigger value as an input for cloud fraction
estimation helps the model account for these ambiguous sit-
uations, thereby enhancing its ability to estimate the cloud
fraction. Specifically, only trigger values greater than 0.5 in-
dicate cloud presence and are used for cloud fraction predic-
tions. While including the trigger value is beneficial for the
cloud fraction model, it does not affect the CBH estimation.

In particular, the surface relative humidity (RH), surface
air temperature (T ), and morning relative-humidity profiles
are highly influential in the BLC simulations. This is con-

Figure 3. Feature importance scores for predicting cloud occur-
rence (a), cloud base height (CBH) (b), and cloud fraction (c) in
the deep-learning simulations of BLCs. Each panel presents the rel-
ative contributions of input features, including month, local time
(LT), surface pressure (PS), relative humidity (RH), zonal (U ) and
meridional (V ) wind components, temperature (T ), lifting conden-
sation level (LCL), boundary layer height derived from sensible
heat (BLHSH) and parcel methods (BLHP), sensible heat (SH), la-
tent heat (LH), and morning profiles of relative humidity (R Pro-
file), U wind (U Profile), V wind (V Profile), and potential tem-
perature (θ Profile). These factors are ranked based on their overall
importance. The importance scores are calculated with a permuta-
tion method and quantify the relative contribution of each feature to
the model’s predictive accuracy.

sistent with previous observational and modeling studies
(Zhang and Klein, 2013). Surface RH is a critical factor af-
fecting the occurrence, CBH, and cloud fraction predictions.
As they are the input conditions for the DNN modules, the
early-morning atmospheric profiles of different meteorologi-
cal parameters (i.e., RH, temperature, and wind components)
exert a notable impact on cloud occurrence detection and the
determination of cloud fractions. Surface air temperature is
shown to have a substantial effect on cloud fraction, high-
lighting the sensitivity of cloud simulations to near-surface
thermal conditions. Meanwhile, BLHparcel demonstrates a
notable impact, which is understandable since the PBLH is
a critical factor for the formation of BLCs, and BLHparcel
provides a good representation of the PBLH. This approach
also recognizes the interconnectedness of certain features
and their collective contribution to the model’s output.
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4 Boundary layer cloud simulations by the
deep-learning model

4.1 The occurrence of boundary layer clouds

The occurrence of BLC is a multifaceted process influenced
by a variety of atmospheric parameters and surface pro-
cesses. As it is a critical component in the formation of
BLCs, we utilize the deep-learning model to identify the
BLC trigger using morning meteorological profiles and the
observed surface meteorology and fluxes. Figure 4 show-
cases the model’s proficiency in classifying the occurrences
(class 1) and non-occurrences (class 0) of BLC during both a
training period and an independent period. The classification
significantly affects the statistical estimation of cloud frac-
tion, as cloud fraction is set to 0 if the trigger is less than 0.5.
The confusion matrices (Luque et al., 2019) for the training
period (1998–2016) and for the independent period (2017–
2020) display the model’s predictive performance. The ma-
trices reveal the counts and percentages of TP, FP, TN, and
FN. For the training period, we use a 70 % training and 30 %
validation split to ensure model validation and use the vali-
dation dataset to generate the statistics. Meanwhile, for the
independent period, we use the full dataset for the validation.

Figure 4a represents the training period. The validation
datasets show high percentages of TN (71.2 %) and TP
(21.1 %), indicating that the model is accurate for the period
on which it was trained. For the independent period (2017–
2020), the model still performs well, with 71.8 % TN and
17.4 % TP (Fig. 4b). However, the rates of FN and FP are
slightly higher at 5.6 % and 5.2 %, respectively, which could
indicate that the model is slightly less accurate when applied
to data beyond its training scope. The table highlights the
model’s robustness, with an overall accuracy rate of 92.3 %
for the training period and a slightly reduced but still sub-
stantial rate of 89.2 % for the independent period. Moreover,
for the training period, the model achieved a high precision
of 88.1 % and a recall of 81.2 %. For the independent period,
the precision and recall remained reasonably high at 76.9 %
and 75.6 %, respectively, demonstrating the model’s effec-
tive generalization to new data. These metrics demonstrate
the model’s predictive capabilities and reliability for both the
training and independent periods.

Figure 5 further compares the diurnal frequency of BLC
occurrence between observations (OBS) and the DNN pre-
dictions for different seasons. The BLC’s strong diurnal
pattern is well captured by the model, as BLC develop-
ment peaks between 12:00–16:00 local time, aligning closely
with observed frequencies. Among the different seasons, the
model is notably effective in simulating the pronounced di-
urnal cycle of summer clouds, which are typically influenced
by local convection. Conversely, the winter season exhibits a
weaker diurnal pattern, likely linked to the diminished sur-
face fluxes. The DNN tends to overestimate BLC presence
in the early morning, especially for the winter season. The

Figure 4. Confusion matrices for the classification performance of
the deep-learning model in predicting the occurrence of boundary
layer clouds (BLCs) during (a) the training period (1998–2016) and
(b) the independent period (2017–2020). The matrices in the train-
ing period are calculated using the 30 % of the dataset used for the
validation. The matrices with black values display the counts and
percentages of true-positive (TP), false-positive (FP), true-negative
(TN), and false-negative (FN) predictions. The overall accuracy,
precision, and recall scores for each class are also included, demon-
strating the model’s ability in identifying BLC occurrence.

overall alignment between observations and the DNN mod-
ule represents the model’s capability to capture the diurnal
patterns of BLC formation and development. Determining
the occurrence of BLC lays the foundation for the integrated
simulations of BLC features.

4.2 Cloud boundaries and fraction

A key aspect of cloud modeling involves the accurate sim-
ulation of the cloud boundaries and fraction, which are in-
dicative of a cloud’s vertical extent and fractional coverage
at different height levels. Our deep-learning model demon-
strates capabilities to predict these key attributes of BLC.
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Figure 5. Bar graph comparison of the occurrence frequency of
boundary layer cloud (BLC) between the observed frequency (OBS,
red) and the frequency predicted by the deep-learning neural net-
work (DNN, blue) at different local times of the day during each
season: (a) MAM (spring), (b) JJA (summer), (c) SON (fall), and
(d) DJF (winter).

Figure 6 offers comparisons between observed values and
predictions by the DNN for CBH, CTH, and cloud frac-
tion. As in Sect. 4.1, these comparisons are presented for
both the training period (Fig. 6a, c, e, based on validation
datasets) and an independent period (Fig. 6b, d, f), reveal-
ing the model’s ability to generalize beyond its initial train-
ing data. The DNN model demonstrates remarkable perfor-
mance in simulating the cloud base, boasting a correlation
coefficient surpassing 0.9 and an MAE below 0.15 km. Con-
versely, the model encounters challenges in CTH prediction,
evidenced by a lower correlation of about 0.5 and a signifi-
cantly higher MAE of between 0.8 and 0.9 km, aligning with
case studies in Fig. 2.

The discrepancy in accurately simulating CBH and CTH
may stem from two main factors. Firstly, observed CBH de-
terminations are generally more precise due to the effective-
ness of laser-based methods (Pal et al., 1992), while observed
CTH estimations often suffer from reduced accuracy, which
is partly attributed to signal attenuation issues (Clothiaux et
al., 2000). For observed shallow cumulus, the cloud top is of-
ten contaminated by insect signals, further complicating ac-
curate CTH measurements (Chandra et al., 2010). Secondly,
our DNN simulations are developed from the perspective of
cloud–land coupling and primarily utilize the surface meteo-
rology. This can introduce inherent limitations, as the tops of
many clouds may be affected by free-troposphere conditions

Figure 6. Scatter density comparison between the observed (OBS)
and the values predicted by the deep-learning neural network
(DNN) for cloud base height (CBH), cloud top height (CTH), and
cloud fraction during the training period (a, c, e) and an indepen-
dent period (b, d, f). Note that the BLC is segmented into 10 lay-
ers, yielding 10 separate cloud fraction values per BLC instance for
analysis. The correlation coefficient (R) and mean absolute error
(MAE) are indicated for each comparison. The color scale repre-
sents the normalized density of data points. Each solid line shows a
linear regression and each error bar denotes the standard deviation.

despite the presence of a coupled base, potentially leading to
gaps in the DNN’s ability to accurately define and estimate
the cloud top.

A comparison of cloud fraction between observations and
the DNN model is presented in Fig. 6e–f to examine the
model’s capability to simulate the vertical distribution of
cloud fraction. The scatterplots comparing observed and
modeled cloud fractions at individual levels in cloudy sce-
narios show satisfactory correlation, with an R value ex-
ceeding 0.77 and an MAE of around 0.15. Nevertheless, the
DNN model tends to underestimate the peak cloud fraction: it
ranges up to ∼ 0.8, whereas the full range (0–1) is observed.
This underestimation is intrinsically linked to the model’s
simulation of cloud boundaries, as both the cloud-fraction
and cloud-base modules operate in tandem. For stratiform
clouds, observational data typically exhibit a relatively uni-
form vertical extent, with cloud fractions of close to unity at
the central height, whereas the DNN model tends to generate
a broader, more attenuated profile with a reduced maximum
cloud fraction at the center. This points to a need to refine
the model’s ability to replicate the pronounced peak cloud
fractions characteristic of stratiform cloud profiles.
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Figure 7. Diurnal profiles of cloud base height (CBH) and cloud top
height (CTH) as determined from observations (OBS) and deep-
learning simulations for all BLCs (a–b), stratiform clouds (c–d),
and cumulus (e–f). The shaded areas represent the variability (1
standard deviation) around the mean heights.

The diurnal patterns of cloud base and top height cap-
tured through daily profiles showcase the model’s adeptness
at simulating the temporal changes in cloud positions for all
BLCs, the cumulus regime, and the stratiform regime (as
shown in Fig. 7). These profiles, derived from both observa-
tional data and DNN outputs, include shaded regions repre-
senting the variability (1 standard deviation) around the aver-
age heights. Cumulus clouds exhibit a marked diurnal cycle,
whereas stratiform clouds typically maintain relatively con-
stant cloud boundaries and show smaller variations through-
out the day. The mean and standard deviation of the cloud
base show close alignment between the observed and the
simulated data for different cloud regimes. In contrast, while
the mean cloud top heights follow a similar diurnal trend in
both cases, the observed data exhibit more pronounced vari-
abilities compared to the relatively small variabilities in the
DNN simulations.

Figures 6 and 7 collectively demonstrate the model’s abil-
ity to simulate cloud boundaries and fractions within BLC.
It reliably captures the CBH yet encounters challenges in ac-
curately representing cloud top heights and peak cloud frac-
tions on an individual basis. These constraints are somewhat
expected, given that even very fine-scale models struggle to
entirely capture the vertical extent of clouds, as evidenced
by large-eddy simulations and convection-permitting mod-
els (Y. Zhang et al., 2017; Gustafson et al., 2020; Bogen-
schutz et al., 2023). In addition to the discussion of deep-

learning models, we also acknowledge the role of mixed-
layer (single-column) models in representing boundary layer
processes (Lilly, 1968; Pelly and Belcher, 2001; Clayson and
Chen, 2002; Zhang et al., 2005, 2009; De Roode et al., 2014).
Mixed-layer models have several advantages: they are inher-
ently grounded in physical principles and are readily inte-
grated into many large-scale models. These models are ef-
fective at capturing the diurnal evolution of the PBL given
an initial state and time series of surface fluxes. However,
the DNN approach offers distinct benefits that complement
this theoretical approach. DNNs might be able to capture
complex, nonlinear relationships between various control-
ling factors and the cloud fraction. These may be difficult
to capture using single (for overcast stratocumulus-topped
mixed layer) or multiple (for broken trade cumulus clouds)
mixed-layer models, which are still subject to assumptions,
e.g., on entrainment processes. By training on large observa-
tional datasets, DNNs can learn from real-world examples,
potentially identifying patterns and relationships not explic-
itly encoded in physical models.

5 Application of the deep-learning model

5.1 Integration with reanalysis datasets

As shown in Sect. 4, the deep-learning model can take
conventional meteorological observations (i.e., morning
SONDE data and surface conditions) as inputs to simulate
the BLC as outputs, producing a reasonably good agreement
with the observed vertical structures of BLCs. In potential
applications, we may treat it as an “emulator” of the observed
relationships between input and output variables. Here we
present an example of integrating the deep-learning model
with ERA5 and MERRA-2 to simulate BLC, with early-
morning profiles and surface conditions from the reanaly-
sis used as input. Here we ask, if the inputs are treated as
“reality”, what would the expected resulting cloud fraction
simulated by the deep-learning model, an observation-based
emulator, be?

Following these thoughts, Fig. 8 contrasts diurnal cloud-
fraction patterns from the observational data with the deep-
learning model predictions averaged over all conditions
across seasons and years. Figure 8a and b present the ob-
served cloud fractions and those simulated by the deep-
learning model using ARM data as inputs, respectively.
Panels c and e show the cloud fractions directly extracted
from ERA5 and MERRA-2 reanalysis datasets, while pan-
els d and f illustrate the cloud fraction simulated by the
deep-learning model using inputs from ERA (ERADNN) and
MERRA (MERRADNN) reanalysis data. Observing fluctua-
tions in surface-temperature and humidity data in ERA5 for
this region, we smoothed the ERA5 surface-air-temperature
and humidity data with a ±1 h window to mitigate poten-
tial variability from assimilation before using them as input
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Figure 8. Color-shaded areas demonstrate the observed and sim-
ulated diurnal variation in cloud fraction for all cases. Panel (a)
shows the observed cloud fraction (OBS), while panel (b) illus-
trates the cloud fraction simulated by the deep-learning neural net-
works (DNNs) using ARM observational data as inputs. (c, e) Cloud
fractions directly extracted from the ERA and MERRA reanalysis
datasets, respectively. (d, f) Cloud fractions simulated by the DNN
model using ERA (ERADNN) and MERRA (MERRADNN) data as
inputs.

for the DNN modules. To eliminate sampling biases in the
comparison, we averaged only those samples for which both
observations and reanalysis are concurrently available.

Note that here we adopt the deep-learning model as a com-
plementary tool rather than as a replacement for any exist-
ing cloud representations in reanalysis data. The DNN out-
puts serve a diagnostic purpose, identifying biases in BLCs
and aiding in understanding deficiencies within the reanaly-
sis data.

The DNN simulations with ARM observations as inputs
align closely with the ARM-observed cloud fraction profiles
within the 0–2 km range, reflecting the model’s ability to cap-
ture land-coupled clouds. As this model is designed for di-
agnosing land-coupled clouds, the model does not simulate
decoupled clouds, which often have bases occurring above
2 km (Su et al., 2022). Original cloud data directly from re-
analysis show significant underestimations of BLC fractions,

which are particularly evident in MERRA-2. The application
of the deep-learning model using reanalysis data as inputs
enhances cloud fraction estimations compared to the orig-
inal cloud data directly from reanalysis, demonstrating the
DNN model’s strength in simulating BLC. Given that the
DNN model specializes in simulating BLC, when utilizing
reanalysis data, the set of cloud profiles that are decoupled
(i.e., for the cloud layers above the BLC tops or the clouds
rooted above the PBL) are preserved as they are in the origi-
nal datasets.

Furthermore, Fig. 9 provides a detailed examination of
stratiform clouds, utilizing the same comparative approach
as in Fig. 8. The observed stratiform clouds display a lay-
ered structure with expansive coverage and maximum cloud
fractions typically exceeding 0.6. The DNN model using
ARM data as inputs reproduces these observed characteris-
tics fairly well, albeit with minor overestimations in cloud
vertical extent. Conversely, the original ERA5 and MERRA-
2 stratiform cloud data exhibit limitations, particularly in un-
derestimating the cloud fraction. The integration of the DNN
model with reanalysis data as inputs enhances the estimations
of stratiform cloud fractions, as depicted in the heatmaps of
Fig. 9, which showcase an improved agreement with obser-
vational data and underscore the enhancement potential of
cloud fraction simulations using reanalysis datasets.

In addition, Fig. 10 extends the comparative study to cu-
mulus clouds. Cumulus clouds pose significant challenges
to modeling and parameterization, partly due to their typi-
cally small spatial extent compared to the model resolution:
they often span a few hundred meters to several kilometers
in size (Y. Zhang et al., 2017; Tao et al., 2021; Bogenschutz
et al., 2023; Gustafson et al., 2020). In line with expecta-
tions, the original ERA5 and MERRA-2 cloud fields exhibit
significant biases in representing cumulus clouds when com-
pared to observational data. In contrast, the DNN model with
ARM data as inputs achieves commendable success in cap-
turing the diurnal variability of cumulus clouds, including the
cloud base, vertical extension, and cloud fraction, by lever-
aging local convective signals derived from surface meteorol-
ogy data. When the DNN model is integrated with ERA5 as
inputs, the estimation of vertical cloud fields of cumulus sig-
nificantly improves. However, the original MERRA-2 data
tend to overlook the majority of cumulus clouds, and they
are still significantly underrepresented after the application
of the DNN, suggesting that additional biases in the input
variables such as meteorological factors may contribute to
this discrepancy.

The integration of deep learning with ERA5 and MERRA-
2 reanalysis datasets leads to notable refinement in the sim-
ulation of BLC and achieves more accurate estimations of
cloud fraction for both stratiform and cumulus clouds.
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Figure 9. Same as Fig. 8 but for stratiform clouds.

5.2 Applying deep learning for bias attribution in cloud
simulation

We further examine the disparities that remain in cloud frac-
tion simulations within reanalysis datasets despite the inte-
gration of deep-learning models (as shown in Figs. 8–10),
which indicate persisting meteorological biases. Deep learn-
ing is utilized to quantify and attribute these biases for BLC
simulations.

Figure 11 offers a comparative analysis of vertical cloud-
fraction profiles for both stratiform and cumulus clouds. It
presents cloud fraction directly taken from reanalysis data
(RD), including ERA5 and MERRA-2, and their correspond-
ing deep-learning-informed simulations. While the appli-
cation of deep learning to use reanalysis data as inputs
(RDDNN) yields improvements, remaining cloud biases are
evident, particularly in MERRA-2. Acknowledging the sig-
nificant influence of the surface RH on BLC simulations (as
indicated by Fig. 3e), we refine the inputs into the DNN
model by replacing the reanalysis surface RH with the ARM-
observed surface RH (the resulting model output is labeled as
RDDNN-RH). This modification leads to a much better simula-
tion for MERRA-2, closing the gap with observational data,
especially for stratiform clouds. For ERA5, RDDNN-RH and

Figure 10. Same as Fig. 8 but for cumulus.

RDDNN show negligible differences for cumulus clouds, but
for stratiform clouds, RDDNN-RH also exhibits a reduced bias.
These refined profiles of cloud fraction attest to the benefits
of using the observed surface moisture data as input, con-
firming its important role in achieving a more accurate rep-
resentation of BLC.

With this methodology, we may further dissect the bias in
cloud fraction simulations, attributing it to various meteoro-
logical factors and the parameterization schemes used within
ERA and MERRA reanalysis datasets:

Bias due to parameterization= |RD−OBS|

− |RDDNN−OBS| (2)

Bias due to surface RH= |RDDNN−OBS|

− |RDDNN-RH−OBS| , (3)

where RD and OBS are the cloud fractions taken directly
from reanalysis data and observations, respectively. RDDNN
and RDDNN-RH are defined the same as above. To get a repre-
sentative value, these biases are layer averaged from 0–4 km
at different local times and then normalized by the observed
mean cloud fraction, offering a climatological perspective
on the discrepancies between observed and simulated data
across seasons and years. For Eq. (2), we assume that the cli-
matology of observations used as input to the DNN model
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Figure 11. Vertical profiles of cloud fraction for stratiform (St) and
cumulus (Cu) scenarios over the US Southern Great Plains. Panels
(a) and (b) display ERA reanalysis data comparisons, while panels
(c) and (d) show MERRA reanalysis data comparisons. The ob-
served cloud fractions (OBS) are represented by the shaded grey
area, illustrating the averaged cloud coverage recorded by field ob-
servations. The original reanalysis data (RD) are indicated in pink,
indicating the baseline cloud-fraction profiles as simulated by the
reanalysis. The RDDNN profiles in blue depict the new simulation
results after applying the DNN models to the reanalysis data used
for boundary layer cloud (BLC) simulation. The RDDNN-RH pro-
files in green show the simulation results when the surface relative
humidity (RH) from the reanalysis data is replaced with observed
values, indicating the impact of accurate surface moisture represen-
tation on cloud fraction simulations.

(OBSDNN) matches the observed cloud-fraction climatology
(i.e., OBSDNN ≈OBS), which is demonstrated in Figs. 9–11.
Therefore, we exclude the term representing the difference
between the DNN-predicted observations and the actual ob-
servations. This assumption justifies our approach by ensur-
ing the input observations align with the observed cloud frac-
tion in equations.

We get the bias attributable to different meteorologi-
cal factors and parameterization schemes in the ERA5 and
MERRA-2 datasets, respectively (Fig. 12). Each bar indi-
cates the normalized bias contributed by factors such as
morning meteorological profiles, surface pressure, surface
fluxes, various surface meteorology variables, and param-
eterization schemes. Notably, parameterization stands out
as a significant contributor to bias, accounting for 14.45 %
and 19.05 % of the discrepancy in stratiform clouds be-
tween observations and ERA5 and between observations and

Figure 12. Attribution of the bias in cloud fractions between ob-
servations and reanalysis to various meteorological factors and pa-
rameterization schemes for stratiform (a) and cumulus (b) cloud
scenarios. The bars represent the normalized bias (bias divided by
mean cloud fraction) contributed by each of the following factors:
surface relative humidity (RH), relative humidity profile (R Profile),
meridional wind profile (V Profile), temperature profile (T Profile),
zonal wind profile (U Profile), surface pressure (SP), sensible heat
flux (SH), latent heat flux (LH), and parameterization (P ). All pro-
files were taken in the morning (06:00 LT). Light blue bars indicate
biases identified in the ERA reanalysis dataset, while pink bars rep-
resent biases in the MERRA reanalysis dataset. “P” denotes biases
attributed specifically to the parameterization within the reanalysis
models. This analysis uses the DNN to discern the impact of each
factor (ranked from highest to lowest) on the discrepancy in cloud
fraction estimates between observations and reanalysis models.

MERRA-2, respectively. For cumulus clouds, the parame-
terization biases are more pronounced, contributing 22.23 %
and 30.94 % of the discrepancy for ERA5 and MERRA-2,
respectively.

In addition to parameterization, RH, RH profiles, and sen-
sible heat are identified as major factors contributing to the
differences between observations and reanalysis data. For in-
stance, aligning MERRA-2’s RH with the observed surface
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RH could potentially reduce the bias by 23.13 % for strat-
iform and 10.26 % for cumulus clouds. Meanwhile, the sur-
face RH and morning RH profiles in ERA5 yield 11.25 % and
3.96 % of the bias for stratiform clouds. The bias between
ERA5 and observed cumulus clouds is largely driven by
parameterization, which suggests that employing the DNN
model with ERA5 can lead to a more accurate simulation of
cumulus clouds.

The detailed bias attribution analysis facilitated by the
deep-learning model elucidates the individual impacts of me-
teorological factors on the discrepancies in cloud fraction be-
tween observations and reanalysis data. It underscores the
necessity for more accurate humidity data within reanalysis
datasets to refine BLC simulations. Furthermore, this deep-
learning approach illuminates pathways for guiding the di-
rections to improve parameterization of boundary layer con-
vection.

6 Summary

This study has developed a deep-learning model to estimate
the evolution of BLCs over the SGP. The model utilizes over
2 decades of meteorological data to simulate BLC forma-
tion and characteristics, including the occurrence of BLCs,
cloud boundaries, and vertical structures of the cloud frac-
tion. As this model is built based on the perspective of cloud–
land coupling, the DNN approach demonstrates the capabil-
ity to diagnose land-coupled convective systems from early-
morning sounding and surface conditions. The DNN model
is built on cloud–land interactions and serves as testimony to
the coupling between BLCs and the land surface. The pro-
ficiency and reliability of the DNN model are evident in its
robustness during both the training period and the subsequent
independent periods. The deep-learning model addresses the
simulation of cloud vertical structure, which is one of the key
challenges in physics-based large-scale models. It should be
noted that the current DNN model cannot produce detailed
cloud microphysics and turbulence information. We propose
using the DNN model alongside traditional physical models
to obtain comprehensive information on BLCs.

The application of this model to reanalysis datasets like
ERA5 and MERRA-2 resulted in enhanced cloud field esti-
mations for stratiform clouds and cumulus and an accurate
vertical structure of clouds in terms of the climatology, in-
dicating that it is a promising diagnostic tool for improv-
ing weather forecasting and climate modeling. The deep-
learning model notably addresses the limitation on cumulus
simulations using reanalysis data. Meanwhile, this approach
is much more cost-effective compared to traditional parame-
terizations and schemes at various scales, as it can simulate
2 decades of BLCs with vertical information over the SGP
within 1 min using a single GPU node.

In addition to BLC simulations, the deep-learning model
developed in this study was also used to attribute discrep-

ancies between observational data and reanalysis datasets to
different meteorological factors. Besides parameterization,
surface RH, morning RH profiles, and surface sensible heat
are the three major factors that led to the mismatches in BLC
representation in ERA5 and MERRA-2. These findings un-
derscore the importance of incorporating more accurate hu-
midity information into reanalysis datasets; this is crucial for
refining BLC simulations. This analysis also sheds light on
the necessity to update reanalysis datasets with improved pa-
rameterization of boundary layer convection.

Moving forward, future work is warranted to test this di-
agnostic tool and extend it to different synoptic patterns
over a large region, as the tool can be integrated into both
multiple-scale models and reanalysis data. However, several
challenges need to be addressed to achieve this. One signif-
icant limitation is the lack of high-quality, detailed observa-
tions of clouds and radiosonde profiles globally. This scarcity
of data can hinder the model’s ability to generalize effec-
tively across different regions. To overcome this, there are
several potential strategies. First, transfer learning techniques
can help adapt a model trained in one region to other regions
with limited data. Integrating data from global observational
networks (i.e., ARM) can also create a more diverse and rep-
resentative training dataset that captures a wider range of at-
mospheric conditions and cloud characteristics. Meanwhile,
leveraging satellite data can provide broader coverage and
enhance the robustness of the model. We plan to explore
these approaches in future work to enhance the model’s per-
formance and applicability on a global scale.

Code and data availability. The code package for DNN models
and the BLCs outputted by simulations using observed mete-
orological data and ERA5 and MERRA-2 are available under
the GNU General Public License v3.0 at https://doi.org/10.5281/
zenodo.10719342 (Su, 2024). ARM radiosonde data, surface fluxes,
and cloud masks are available at https://doi.org/10.5439/1333748
(ARM, 1994). ARSCL (Active Remote Sensing of Clouds) can be
found at https://doi.org/10.5439/1996113 (ARM, 1996). MERRA-
2 reanalysis data can be downloaded from https://doi.org/10.5067/
Q9QMY5PBNV1T (GMAO, 2015). ERA5 reanalysis data are ob-
tained from https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al.,
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