
Geosci. Model Dev., 17, 6249–6275, 2024
https://doi.org/10.5194/gmd-17-6249-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

M
odelexperim

entdescription
paper

Dynamical Madden–Julian Oscillation forecasts using an ensemble
subseasonal-to-seasonal forecast system of the IAP-CAS model
Yangke Liu1,6, Qing Bao1, Bian He1, Xiaofei Wu2, Jing Yang3, Yimin Liu1, Guoxiong Wu1, Tao Zhu1, Siyuan Zhou1,
Yao Tang1,6, Ankang Qu1,7, Yalan Fan3, Anling Liu3, Dandan Chen1,6, Zhaoming Luo1,7, Xing Hu4, and Tongwen Wu5

1State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG),
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
2School of Atmospheric Sciences/Plateau Atmosphere and Environment Key Laboratory of Sichuan Province,
Chengdu University of Information Technology, Chengdu 610225, China
3Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
4National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China
5Center for Earth System Modeling and Prediction, China Meteorological Administration, Beijing 100081, China
6College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
7School of Emergency Management Science and Engineering, University of Chinese Academy of Sciences,
Beijing 100049, China

Correspondence: Qing Bao (baoqing@mail.iap.ac.cn)

Received: 2 January 2024 – Discussion started: 19 March 2024
Revised: 5 June 2024 – Accepted: 10 June 2024 – Published: 23 August 2024

Abstract. The Madden–Julian Oscillation (MJO) is a cru-
cial predictability source on a subseasonal-to-seasonal (S2S)
timescale. Therefore, the models participating in the World
Weather Research Programme and the World Climate Re-
search Programme (WWRP/WCRP) S2S prediction project
focus on accurately predicting and analyzing the MJO. This
study provides a detailed description of the configuration
within the Institute of Atmospheric Physics at the Chinese
Academy of Sciences (IAP-CAS) S2S forecast system. We
assess the accuracy of the IAP-CAS model’s MJO forecast
using traditional Real-time Multivariate MJO (RMM) analy-
sis and cluster analysis. Then, we explain the reasons behind
any bias observed in the MJO forecast. Comparing the 20-
year hindcast with observations, we found that the IAP-CAS
ensemble mean has a skill of 24 d. However, the ensemble
spread still has potential for improvement. To examine the
MJO structure in detail, we use cluster analysis to classify
the MJO events during boreal winter into four types: fast-
propagating, slow-propagating, standing, and jumping pat-
terns of MJO. The model exhibits biases of overestimated
amplitude and faster propagation speed in the propagating
MJO events. Upon further analysis, it was found that the
model forecasted a wetter background state. This leads to

stronger forecasted convection and coupled waves, especially
in the fast MJO events. The overestimation of the strength
and length of MJO-coupled waves results in a faster MJO
mode and quicker dissipation in the IAP-CAS model. These
findings show that the IAP-CAS skillfully forecasts signals
of MJO and its propagation, and they also provide valuable
guidance for improving the current MJO forecast by devel-
oping the ensemble system and moisture forecast.
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1 Introduction

With the increasing occurrence of metrological disasters
in recent years, there has been growing attention on
subseasonal-to-seasonal (S2S) forecasts, as these forecasts
bridge the gap between weather and climate forecasts and
reduces disaster risks through early warnings. In November
2013, the WWRP/WCRP S2S prediction project (Phase 1)
was launched, with the principal objectives of enhancing S2S
forecast accuracy and advancing our comprehension of its
dynamics and climate drivers. Then, work on S2S research
continued in Phase 2, from 2018 to 2023. The whole project
has made a significant contribution to the development of
S2S prediction.

The Madden–Julian Oscillation (MJO) (Madden and Ju-
lian, 1971) is a crucial predictability source of S2S fore-
casts. It is a significant tropical oscillation with a period of
30–60 d, characterized by expansive cloud masses and pre-
cipitation systems that propagate eastward along the equato-
rial regions. Accurate S2S prediction requires a good repre-
sentation of MJO. Many studies have clarified the relation-
ship between the MJO and global weather and climate, such
as monsoons (Goswami, 2012; Hsu, 2012; Lau and Chan,
1986; Wheeler et al., 2009; Liu et al., 2022), tropical cy-
clones (Bessafi and Wheeler, 2006; Ferreira et al., 1996; Hall
et al., 2001), and the El Niño–Southern Oscillation (ENSO;
Lau and Waliser, 2012; Zhang, 2005). The convective and
circulation anomalies associated with MJO establish intricate
connections across global weather and climate systems on
the S2S timescale. Being able to accurately forecast the MJO
can have a positive impact on the forecast of other related
systems (Cassou, 2008; Vitart and Molteni, 2010; Wu et al.,
2007). Achieving an accurate forecast of MJO has become a
primary objective in the field of S2S forecasts.

With an enhanced comprehension of the underlying phys-
ical mechanisms governing the MJO and the continuous im-
provement of numerical models, remarkable advancements
have been achieved in the MJO forecast. In Coupled Model
Intercomparison Project Phase 6 (CMIP6), models that ex-
hibited lower forecast skills (Hung et al., 2013) in Cou-
pled Model Intercomparison Project Phase 5 (CMIP5) have
demonstrated noteworthy improvements in the simulation of
MJO (Chen et al., 2022). Generally, the models in CMIP6
simulate more realistic eastward propagation and precipita-
tion over the Maritime Continent (MC) region (Ahn et al.,
2020).

However, for S2S forecasts, the improvement of model
physics is one aspect of advancing S2S forecasts, as various
factors impact MJO forecast skills, such as initialization and
ensemble generation (Kim et al., 2018). The forecast skills
of the MJO in most models are typically 3–4 weeks (Vitart,
2017), while the estimate of predictability of MJO is approx-
imately 5–7 weeks (Waliser et al., 2003; Neena et al., 2014).
These facts underscore the persisting challenges in the S2S
forecasts.

The realistic forecast of MJO eastward propagation is one
of the challenges that have been repeatedly mentioned in re-
cent years (Jiang, 2017; Kim, 2019; Lim et al., 2018; Wang
and Lee, 2017). The MJO propagation skill is closely re-
lated to the forecast of the state in the Maritime Continent
(MC) region (Gonzalez and Jiang, 2017). Many studies have
pointed out the “MC barrier” (Hendon and Salby, 1994; Rui
and Wang, 1990; Vitart et al., 2017) during the MJO’s prop-
agation through the MC region. The MC barrier refers to
a notable deterioration of the MJO signal when it traverses
the MC area, but this phenomenon is usually amplified in
the climate models (H.-M. Kim et al., 2014; Neena et al.,
2014; Xiang et al., 2022, 2015), showing the model’s lim-
itation in preserving MJO propagation within the MC re-
gion. The moisture mode theory (Raymond and Fuchs, 2009)
has been proposed to explain this phenomenon. It suggests
that the advection of seasonal mean moisture by the MJO-
related circulation anomalies in the lower troposphere is cru-
cial to MJO’s propagation through the MC region (Jiang,
2017; Kim, 2019). In models that struggle to capture the re-
alistic propagation of MJO, the mean low-troposphere mois-
ture amplitude over the MC is underestimated, resulting in a
weakened horizontal moisture gradient (Gonzalez and Jiang,
2017; Kim, 2017). This discrepancy in moisture advection
hinders MJO propagation.

The Institute of Atmospheric Physics at the Chinese
Academy of Sciences (IAP-CAS) has been actively involved
in climate model development and applications since CMIP1
in the 1990s. As for the IAP-CAS model, it has already
shown a significant enhancement in MJO simulation in
CMIP6 compared to CMIP5 (Chen et al., 2022), but the per-
formance of the S2S system in IAP-CAS remains uncertain
and requires comprehensive evaluation. Therefore, the ob-
jectives of this article are fourfold. Firstly, we introduce the
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S2S forecast system of the IAP-CAS model. Secondly, we
evaluate the forecast skills of the IAP-CAS in the MJO fore-
cast. Thirdly, we analyze the evaluation results to identify the
sources of forecast errors, facilitating further improvements
in the MJO forecast. Lastly, we hope that the verification and
analysis process can provide some valuable insights for other
models.

The structure of the paper is as follows. A thorough review
of the IAP-CAS model and S2S ensemble forecast system
is introduced in Sect. 2. Section 3 describes the observation
data and primary methodology utilized in the article. Sec-
tion 4 assesses the overall MJO forecast skills in IAP-CAS.
Section 5 focuses on analyzing the propagation details of the
fast-propagating and slow-propagating MJO. After that, in
Sect. 6, we discuss the potential causes of any bias observed
in the MJO forecast. In Sect. 7, we summarize our findings
and discuss the results.

2 The global S2S ensemble forecast system of IAP-CAS

The architecture of the IAP-CAS S2S ensemble forecast sys-
tem is depicted in Fig. 1. In this section, we give a thorough
description of the S2S system, covering the model, initializa-
tion methods, ensemble generation approaches, and the re-
sulting datasets.

2.1 Configuration of the IAP-CAS model

The Chinese Academy of Sciences Flexible Global Ocean–
Atmosphere–Land System Finite-Volume version 2 (CAS
FGOALS-f2) climate system model (Bao, 2019; Bao et al.,
2020) is the core of the IAP-CAS S2S ensemble forecast sys-
tem. It was developed by the State Key Laboratory of Nu-
merical Modeling for Atmospheric Sciences and Geophysi-
cal Fluid Dynamics (LASG) at the Institute of Atmospheric
Physics (IAP), Chinese Academy of Sciences (CAS). We uti-
lize the institution name, IAP-CAS, as a proxy for the model.

FGOALS-f2 is a fully coupled model that encompasses
four components: atmospheric, land, oceanic, and sea ice
models, with its configuration detailed in Table 1. The at-
mospheric component is version 2 of the Finite-volume At-
mospheric Model (FAMIL2; Li et al., 2019), with a stan-
dard horizontal resolution of C96, which means 96× 96 grid
points in each tile of the cube sphere, roughly equivalent to
1° resolution. Vertically, it features 32 hybrid sigma-pressure
levels, with the uppermost level situated at 1 hPa (the hybrid
coefficients are listed in Table A1). The land surface com-
ponent used in FGOALS-f2 is version 4 of the Community
Land Model (CLM4.0; Oleson et al., 2010; Lawrence et al.,
2011), featuring a horizontal resolution nearly at 1° resolu-
tion. The oceanic component is the Parallel Ocean Program
version 2 (POP2; Kerbyson and Jones, 2005), which utilizes
a displaced-pole grid with the North Pole shifted to Green-
land. This grid has a resolution of gx1v6, approximately

equivalent to a 1° horizontal resolution, and includes 60 ver-
tical layers. The sea ice component is the Los Alamos Sea
Ice Model version 4.0 (CICE4; Hunke et al., 2010), shar-
ing the same horizontal resolution as the ocean model. These
four components are coupled via the coupler version 7 in the
Community Earth System Model (CESM; Craig et al., 2012).

It is worth noting that FAMIL2, the latest-generation atmo-
spheric model from LASG, has adopted the Finite-Volume
Cubed-Sphere Dynamical Core (FV3; Lin, 2004; Putman
and Lin, 2007; Harris et al., 2020) as its dynamical core.
FV3 solves the fully compressible Euler equations on the
gnomonic cubed-sphere grid and a Lagrangian vertical co-
ordinate. The hydrostatic solver of FV3 is used in our model.
This enhancement of the atmospheric component results in
improved computational efficiency and accuracy. Moreover,
the key parameterization in FAMIL2 is a resolved convec-
tion precipitation (RCP) scheme, which is independently de-
veloped to calculate the microphysics processes in the con-
vective precipitation for both deep and shallow convection
(Bao and Li, 2020). Due to the rapid phase changes occur-
ring within the convective cloud, a sub-time step of 150 s
is employed for the calculation of microphysical processes
within a physical time step of 30 min. FAMIL2 has also im-
plemented the University of Washington Moist Turbulence
(UWMT) parameterization scheme (Park and Bretherton,
2009) as its boundary layer scheme. The microphysical pa-
rameterization used in FAMIL2 is the revised Lin scheme,
which is a single-moment scheme (Zhou et al., 2019).

2.2 Initialization scheme of the S2S forecast system

The S2S forecast system of the IAP-CAS model adopts
a Newtonian nudging method with time-varying treatment
(Jeuken et al., 1996) to complete the initialization of the at-
mosphere and ocean. The reanalysis nudging and the forecast
nudging are the two components that make up the initial-
ization process, which is seen in Fig. 2. Table A2 provides
a summary of the detailed technical specifics for these two
nudging processes.

The reanalysis nudging initializes the atmospheric vari-
ables, including temperature, surface pressure, sea level pres-
sure, and surface wind, from the NCEP Final (FNL) Opera-
tional Global Analysis datasets (National Centers for Envi-
ronmental Prediction/National Weather Service/NOAA/U.S.
Department of Commerce, 2000). The oceanic variable of
potential temperature from the National Oceanic and At-
mospheric Administration (NOAA) Optimum Interpolation
Sea Surface Temperature (OISST) reanalysis data (Reynolds
et al., 2007) is also included. These reanalysis data serve as
observations in Eq. (1) to diminish errors in the initial condi-
tion:

x(t)= xmodel(t)+Nrea(t)[xobs(t)− xmodel(t)], (1)

where t is the time; x(t) is the value after the nudging pro-
cess; xmodel(t) represents the model forcing; xobs(t) repre-
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Figure 1. The structure of the IAP-CAS S2S ensemble forecast system.

Table 1. Configuration of the coupled climate system model CAS FGOALS-f2.

Component Model name Horizontal resolution Vertical levels Reference

Atmosphere FAMIL2 Cubed-sphere grid (C96, ∼ 1°× 1°) 32 in the hybrid levels Li et al. (2019)
Land CLM4.0 Nested subgrid hierarchy (f09, ∼ 1°× 1°) 15 soil levels and 3 snow levels Oleson et al. (2010),

Lawrence et al. (2011)
Ocean POP2 Displaced-pole grid (gx1v6, ∼ 1°× 1°) 60 levels Kerbyson and Jones (2005)
Sea ice CICE4 Displaced-pole grid (gx1v6, ∼ 1°× 1°) 5 levels Hunke et al. (2010)

sents the “truth” value; and Nrea(t) is a relaxation coefficient
that varies over time, which constantly adjusts the model re-
sults during the integration process, making it approximate to
the observed values while being constrained by the dynami-
cal constraints of the physical model. The calculation process

for Nrea(t) is as follows:

Nrea(t)=
1t

T

1+cos(2π · t%T
T
)
+1t

. (2)

Here, 1t is the time step in FAMIL2, which is 0.5 h for
C96 resolution (approximately 1° resolution). T represents
the time window with a value of 6 h. As depicted in Fig. 2a,
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Figure 2. The initialization scheme of the S2S ensemble forecast system in the IAP-CAS model. The relaxation coefficient (N) as a function
of time (t) in (a) the reanalysis nudging and (b) the forecast nudging. In (a), the reanalysis nudging begins on 1 January 1976. The dots
indicate the nudging process every 30 min. In (b), the solid lines of four colors represent the four ensemble members with their generation
facilitated through the application of the time-lagged method.

the relaxation coefficient varies as a cosine function. It is
large at the beginning and end of the temporal window,
thereby facilitating accelerated convergence of the model re-
sults toward observations, while in the middle of the time
window, Nrea becomes smaller and even drops to 0, which
indicates the reliability of the reanalysis data decreases. The
reason is that the reanalysis data within the time window are
obtained through interpolation between its start and end val-
ues.

In the forecast nudging, the initialization process adheres
to a similar nudging algorithm at 6 h intervals, as shown in
Eq. (3).

x(t)= xmodel(t)+Nfcst(t)[xfcst(t)− xmodel(t)] (3)

Nevertheless, the atmospheric variables assimilated into
the S2S system are sourced from the Global Forecast System
(GFS) weather forecast, denoted as xfcst(t). The relaxation
coefficient Nfcst(t) is as follows:

Nfcst(t)=
1t

T

1+cos(2π · t%T
T
)
+1t

· cos
(
π

2
·
(t − t%T )

4mT

)
. (4)

Compared to Nrea, Nfcst is multiplied by a decay factor,
which also varies in accordance with the cosine function. In
this context, the number of days for forecast nudging is de-
noted bym, and the system is configured with a 10 d forecast
nudging period. Figure 2b illustrates the variation in Nfcst,
which decreases as the reliability of weather forecast data di-
minishes over time, ultimately reaching 0 by the 10th day.

In forecast nudging, we used 10 d of GFS weather forecast
data for nudging. One purpose of this approach is to avoid
coupling shock at initialization. Additionally, we aim to en-
hance the quality of initial forecasts in S2S by nudging GFS
weather forecast data to ultimately improve S2S prediction
accuracy, as the skill of weather forecasts is higher than that
of S2S forecasts during the initial period.

Summarily, the S2S forecast system commences its daily
forecast from the initial condition derived via reanalysis
nudging. It then fine-tunes the forecasts with weather predic-
tion data through the forecast nudging process. This initial-
ization system effectively reduces system errors in the model
and augments forecast accuracy.

2.3 Time-lagged method for ensemble generation

The value of ensemble forecasts in medium- to long-term
forecasts has been emphasized repeatedly (Liu, 2003; Vitart
and Molteni, 2009). In addition to improving the physical
scheme of the model, devising an effective approach for en-
semble generation might have a considerable impact on the
MJO forecast. The IAP-CAS S2S ensemble forecast system
utilizes the time-lagged method (Hoffman and Kalnay, 1983)
to generate ensemble members.

A schematic diagram of the time-lagged method is de-
picted in Fig. 2b. During the initial day of the forecast nudg-
ing, the S2S system issues forecasts from 00Z, 06Z, 12Z, and
18Z, resulting in the generation of four ensemble members.
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The core idea behind this approach is to introduce perturba-
tions by leveraging lagged initialization times.

2.4 Hindcast experiment and real-time forecast

The S2S ensemble forecast system provides daily forecasts,
forecasting weather and climate conditions for the upcom-
ing 65 d. Out of the 65 d, 5 d are reserved for extending the
ensemble members by using the time-lagged method, ensur-
ing a complete forecast for at least 60 d. Since 1 June 2019,
the IAP-CAS S2S system has been operating 16 ensemble
members daily for real-time forecasts. So far, approximately
8.2 TB of real-time data has been uploaded to the S2S web-
site. For hindcast experiments from 1999 to 2018, the system
has run four ensemble members daily, generating a dataset
of approximately 11 TB. Our subsequent research is based
on the 20-year hindcast experiment.

In 2021, the IAP-CAS model participated in phase II of
the S2S Project (Vitart et al., 2017), successfully providing
the 20-year hindcast and real-time forecast data generated by
the S2S ensemble forecast system. Detailed information re-
garding the data is listed in Table A3, and Table A4 shows
the list of output variables. The output data are interpolated
to a standardized horizontal resolution of 1.5°× 1.5°, fol-
lowing the S2S’s requirements, and are stored in version 2
of the General Regularly-distributed Information in Binary
(GRIB2) format. The output data of the S2S system are pub-
licly available on three S2S data portals (ECMWF, CMA,
and IRI).

3 Datasets and methods

3.1 Datasets

The observational datasets used for the MJO verification in-
clude the NOAA daily outgoing longwave radiation (OLR;
Liebmann and Smith, 1996), daily wind from the National
Centers for Environmental Prediction (NCEP) Department of
Energy (DOE) Reanalysis 2 dataset (Kanamitsu et al., 2002),
daily specific humidity from ECMWF Reanalysis version 5
(ERA5; Hersbach et al., 2023), and the precipitation product
from the Global Precipitation Climatology Project (GPCP;
Adler et al., 2003). To facilitate computation and mean-
ingful comparisons, both observation and hindcast datasets
have been uniformly interpolated to a horizontal resolution
of 2.5°× 2.5°. Seven pressure levels (1000, 925, 850, 700,
500, 300, and 200 hPa) of wind and specific humidity are ex-
tracted for analysis.

3.2 MJO RMM index

To conduct a quantitative assessment of MJO, we have em-
ployed the widely used Real-time Multivariate MJO (RMM)
index (Wheeler and Hendon, 2004) to extract the MJO signal.
This index consists of two components, RMM1 and RMM2,

which are the first and second principal components of the
combined empirical orthogonal functions (EOFs) of multi-
ple variables, including OLR, 200 hPa zonal wind (U200),
and 850 hPa zonal wind (U850). It serves as a tool for track-
ing the location and amplitude characteristics of MJO.

The calculation of the RMM index refers to the method
described in Gottschalck et al. (2010). Detailed calculation
steps are as follows.

1. Remove zero to three wave components from the clima-
tology and low-frequency variability of the U200, U850
and OLR variables from both the observation and hind-
cast data. It is noteworthy that removing low-frequency
variability is to subtract the mean of the past 120 d
from the anomalies. For model forecast, this is the mean
model anomalies of the previous forecast days plus the
mean observed anomalies of the remaining days.

2. Average the anomalies between 15° S and 15° N and
normalize the three variables, using the pre-computed
coefficients as in Gottschalck et al. (2010).

3. Project the anomalies onto the observed combined EOF
eigenvectors from Wheeler and Hendon (2004) to get
RMM1 and RMM2.

The bivariate anomaly correlation coefficient (ACC) and
bivariate root mean square error (RMSE) are calculated us-
ing the observed and hindcast RMM indices to represent the
forecast skills of the IAP-CAS model as

ACC(τ )=
∑N
t=1[a1(t)b1(t,τ )+ a2(t)b2(t,τ )]√∑N

t=1
[
a2

1(t)+ a
2
2(t)

]√∑N
t=1

[
b2

1(t,τ )+ b
2
2(t,τ )

]
, and (5)

RMSE(τ )=

√
1
N

∑N

t=1

[
(a1(t)− b1(t,τ ))

2

+(a2(t)− b2(t,τ ))
2

]
. (6)

Here, a1(t) and a2(t) are the observation RMM1 and
RMM2 at time t , b1(t) and b2(t) are the forecasting RMM1
and RMM2 at time t for lead τ days, and N is the total num-
ber of times. It is commonly accepted that days with ACC
above 0.5 are considered to have valid forecasts. Therefore,
the forecast skill of a model is quantitatively defined as the
maximum lead time exceeding 0.5, which approximately cor-
responds to the day when RMSE reaches

√
2.

The RMM index can also be adapted to quantitatively eval-
uate the forecasted intensity and velocity through the cal-
culation of the error of amplitude (ERRamp(τ )) and phase
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(ERRphase(τ )) as a function of lead time τ :

ERRamp(τ )=
1
N

∑
[AMPb(t,τ )−AMPa(t)], and (7)

ERRphase(τ )=
1
N

∑
tan−1

[
a1(t)b2(t,τ )− a2(t)b1(t,τ )

a1(t)b1(t,τ )+ a2(t)b2(t,τ )

]
.

(8)

Negative (positive) ERRamp(τ ) indicates weaker
(stronger) amplitude in forecasts. Similarly, negative
(positive) ERRphase(τ ) indicates slower (faster) propagation
in forecasts. Here, the MJO amplitude for observation
(AMPa(t)) and forecast (AMPb(t)) is defined as

AMPa(t)=
√
a1(t)2+ a2(t)2, and (9)

AMPb(t,τ )=
√
b1(t,τ )2+ b2(t,τ )2. (10)

3.3 Cluster analysis of MJO events

Another crucial method used in this research is cluster anal-
ysis. In Sect. 5, we select the representative MJO events and
classify them following Wang et al. (2019). This facilitates a
more focused and targeted investigation into the forecast bias
of MJO in the IAP-CAS model.

An MJO event was chosen if the regional average of OLR,
spanning 10° S to 10° N and 75 to 95° E, remained below 1
standard deviation for a consecutive period of 5 d during the
boreal winter (November–April). Subsequently, the K-means
cluster analysis is employed to categorize the chosen MJO
events based on the propagation patterns from day−10 to 20
(day 0 is the day with the peak MJO in the Indian Ocean). We
then use silhouette clustering evaluation criteria (Rousseeuw,
1987) to identify and eliminate poorly classified MJO events.

Finally, a total of 50 MJO events were selected for the win-
ters of 1999 to 2018, and four types of MJO events were
identified, namely the fast-propagating (10 cases), slow-
propagating (16 cases), standing (12 cases), and jumping
(12 cases) patterns of MJO (Fig. 5).

The fast-propagating MJO and slow-propagating MJO
belong to the propagating type of MJO, characterized by
their consecutive eastward propagation across the Indian
Ocean to the Pacific Ocean region. On the other hand, the
standing MJO and jumping MJO represent relatively non-
propagating types, where the convection remains relatively
fixed or exhibits discontinuous movement. Wang et al. (2019)
believe that propagating MJO events are often associated
with strong and tightly coupled Kelvin waves, especially for
fast-propagating MJO. This is the biggest difference between
propagating MJO and non-propagating MJO.

4 Evaluation of MJO forecast skill from the IAP-CAS
model

The evaluation in this section is conducted for the annual
MJO events. Figure 3 demonstrates the overall MJO forecast

skill in the IAP-CAS model and the improvement brought
by the time-lagged ensemble method. Figure 3a shows the
forecast skill of the ensemble mean is 24 d with the criterion
of ACC exceeding 0.5, while the skill of individual mem-
bers is about 21–22 d. Meanwhile, the ensemble mean RMSE
reaches

√
2 at 21 d, and the individual members exhibit a

larger RMSE, reaching
√

2 at 16 d (Fig. 3b). The solid blue
line in Fig. 3b represents the ensemble spread (Leutbecher
and Palmer, 2008) of IAP-CAS. When this ensemble spread
approaches the RMSE of the ensemble mean (solid red line),
it indicates that the ensemble members are sufficiently dis-
persive. Figure 3b illustrates that the ensemble exhibits an
underdispersive characteristic in the early stage of the fore-
cast. We have also observed similar issues of underdisper-
siveness in many other models (Rashid et al., 2011; Neena
et al., 2014; H.-M. Kim et al., 2014; Xiang et al., 2015), and
addressing this aspect may be a focal point for future model
enhancements.

Increasing the number of ensemble members within a cer-
tain range proves to be effective in forecasting the uncertainty
in weather and climate (Hou et al., 2001). We employed the
time-lagged ensemble method to further augment the ensem-
ble members. The time-lagged ensemble includes the en-
semble members generated on the forecast day and from
lag times. For instance, by incorporating ensemble members
with a lag of i (i = 0,1,2, . . .) days, the total number of mem-
bers becomes 4 ·(i+1). Upon examining the relationship be-
tween lag i days and forecast skill, it was found that the skill
increases as i increases at first, but then it reaches a plateau
when i > 3 (see Fig. A2). This suggests that the forecast skill
of the 16 members may represent the limit of the time-lagged
ensemble method in IAP-CAS. Figure 3d shows the ensem-
ble of 16 members is more dispersive than that of 4 members,
which is illustrated by less distinction between the RMSE
and spread in the 16-member system. The ensemble mean of
16 members achieves a skill of 26 d, surpassing the skill of
4 members by 2 d (Fig. 3c).

Numerous prior investigations have demonstrated that
MJO forecast skill is sensitive to the MJO amplitude in many
models (Lin et al., 2008; Rashid et al., 2011; Wang et al.,
2014; Xiang et al., 2022), and this characteristic is also ev-
ident in the IAP-CAS model. We classify an MJO case as
an initial (target) strong case if its initial (target) amplitude
is greater than 1, while an event with an initial (target) am-
plitude less than 1 is classified as an initial (target) weak
case. Figure 4a and b show that in the IAP-CAS model, the
forecast skills of strong MJO cases are generally higher than
those of weak cases, especially in the target strong (weak)
cases.

The amplitude and phase of MJO serve as additional in-
dicators for a detailed assessment of MJO forecast perfor-
mance. For initially strong MJO cases, we analyze the MJO
amplitude and forecasted phase angle error (Fig. 4b and c).
The individual member has a stronger amplitude than the ob-
servation, which leads to a relatively strong amplitude in the
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Figure 3. MJO forecast skill of IAP-CAS for the annual MJO events over 20 years (1999–2018) of reforecast data. (a) The bivariate
anomalous correlation coefficient (ACC) and (b) the root mean squared error (RMSE) varied with forecast lead days for individual members
(solid gray line) and ensemble mean (solid red line). The solid blue line denotes the ensemble spread. (c) The ACC of individual members
and ensemble mean, as generated by the time lag method, resulting in 16 ensemble members. The dashed line in (a) and (c) has a value
of 0.5, and it represents 1.414 in (b). (d) The difference between the RMSE and spread of 4-member ensemble mean (solid purple line) and
16-member ensemble mean (solid green line).

ensemble mean during the initial 40 d. However, as the noise
rapidly increases, the phase error of the individual members
also escalates (as shown in Fig. 4c). The phase error results
in a mutual cancellation in positive and negative phases of
MJO among ensemble members, leading to a rapid weaken-
ing of the amplitude in the ensemble mean. In Fig. 4d, the
phase error of the ensemble mean indicates that the speed
of forecasted MJO tends to decrease at first and then starts
increasing around the 10th day. A more detailed investiga-
tion into the speed of propagating MJO events is described
in Sect. 5.

5 The forecast of MJO propagation

We present a qualitative diagnostic of a 20-year hindcast ex-
periment to evaluate the overall forecast skills of IAP-CAS in
Sect. 4. This analysis provides us with preliminary insights
into the performance and biases of the system. Given that
the MJO is more pronounced during boreal winter, our fo-
cus is concentrated from November to the following April.
Based on Wang et al. (2019), we aim to conduct further in-
vestigations into different types of boreal winter MJO events
to explore the physical explanation of system biases.

In Sect. 3, we describe the methodology for classifying
MJO events and results. Figure 5 compares the composited
propagation patterns of precipitation and U850 between the
observation and forecast for four different MJO types. In
observations, the fast-propagating MJO (Fig. 5a) and slow-

Geosci. Model Dev., 17, 6249–6275, 2024 https://doi.org/10.5194/gmd-17-6249-2024



Y. Liu et al.: Dynamical MJO forecasts using an S2S system of IAP-CAS 6257

Figure 4. The ACC (a) varied with forecast lead days for initially strong (red) and weak (black) cases and (b) varied with forecast lag days
for target strong (red) and weak (black) cases from the ensemble mean. The dashed lines in (a) and (b) have a value of 0.5. (c) The forecast
of the MJO amplitude varied with forecast lead days for initially strong cases from the observation (solid black line), individual ensemble
members of the model (dashed red line), and their ensemble mean (solid red line). (d) The forecast of the MJO phase angle error (°) for
initially strong cases (solid black line). The dashed line in (d) is the reference line with a value of 0.

propagating MJO (Fig. 5b) exhibit a consecutive eastward
propagation structure from the Indian Ocean across the MC
region to the Pacific Ocean. The primary distinction be-
tween the two types lies in their propagation speed. The fast-
propagating MJO demonstrates a faster speed, with a velocity
of 4.58 ms−1, compared to the slow-propagating type, which
moves at 4 ms−1. The standing MJO (Fig. 5c) remains rela-
tively stationary over the Indian Ocean and does not continue
to propagate eastward. The jumping MJO (Fig. 5d) shows a
convective system that bypasses the MC region and directly
jumps from the Indian Ocean to the Pacific Ocean. Here, fast
MJO and slow MJO are considered propagating MJO events,
while the latter two types are regarded as non-propagating
MJO events.

The observed U850 displays a coupled structure char-
acterized by equatorial westerly anomalies of the Kelvin
wave component located west of the convection and east-
erly anomalies of the Rossby wave component located east of
the convection (Rui and Wang, 1990; Adames and Wallace,

2014; Wang and Lee, 2017). As illustrated in Fig. 5, a distinct
contrast between propagating MJO and non-propagating
MJO can be found in the circulation at the low level: in the
propagating MJO events, the Kelvin wave response is strong
and tightly coupled with the center of convection, which is
shown in the stronger and eastward-extending easterly wind
component, particularly prominent in fast MJO events. Many
previous studies (Benedict and Randall, 2007; Hsu and Li,
2012; Wang and Lee, 2017) have also indicated that the pres-
ence of low-level easterly winds is a key signal that con-
tributes to the eastward propagation of MJO by inducing low-
level convergence and premoistening to the east of the major
convection. In the non-propagating MJO events, the easterly
wind is weak and tends to decouple from the major convec-
tion.

The model accurately reproduces the propagating mor-
phology of the MJO and exhibits coupled signals of Kelvin
and Rossby waves (Fig. 5e and f). However, a noticeable ac-
celeration in speed is evident, particularly in the case of fast
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Figure 5. The 10° S–10° N averaged precipitation anomalies (shading; mm d−1) and 850 hPa zonal wind anomalies (contours with an interval
of 1 ms−1), varied with longitude (x axis) and time lag (y axis; days), composited for four types of the boreal winter MJO. Panels (a)–(d) are
for the observation (NCEP winds and GPCP precipitation), and panels (e)–(h) are for model forecasts. The thin solid black lines represent
positive values, and the dashed lines represent negative values. The thick solid black line represents the propagation trajectory of the MJO,
derived via least squares regression. The propagation speed of the propagating MJO is annotated in the top-right corner of the panels.

MJO, reaching speeds of 6 ms−1, while the simulated slow
MJO moves at 5 m s−1. Figure 5g also shows that the fore-
cast for standing MJO remains somewhat imprecise. This
aspect is also evident in the MJO forecast skill depicted in
Fig. 6, where the standing MJO has the lowest skill (13 d).
For each MJO type, we consider the skill as the ACC of the
cases initiated from day −20 to day 15 (Xiang et al., 2015).
Figure 6 shows that the fast MJO achieves the highest skill at
32 d, while the jumping MJO and slow MJO exhibit skills of
23 and 21 d, respectively.

Additionally, from the Hovmöller diagram of observed
propagating MJO (Fig. 5a and b), a significant change in con-
vection is observed after crossing the MC region, which is
marked by a decrease in intensity and a slower propagation
speed. This change is roughly delineated by 135° E, which
is commonly referred to as the MC barrier. As mentioned
above, the MC barrier effect is usually amplified in climate
models. In the IAP-CAS model, the forecasted convective
signal of slow MJO appears to stop after crossing the MC re-
gion. Could this indicate an amplification of the MC barrier
issue in the IAP-CAS model? However, this phenomenon is
less pronounced in the simulation of fast MJO. Due to the
zonal averaging in the Hovmöller diagram, some informa-
tion may be obscured. Further investigation is required to de-
termine the detailed characteristics of the propagating MJO
simulated by the model.

Figure 6. The bivariate ACC as a function of forecast lead days for
fast, slow, jumping, and standing MJO events. The dashed line has
a value of 0.5.

Figure 7 presents the evolution patterns of propagating
MJO. In the first 10 d, it is noticeable that the forecasted
precipitation intensity of propagating MJO is significantly
higher than observed, especially in the case of fast MJO.
Coupled winds in 850 hPa also exhibit stronger magnitudes,
with a larger zonal scale. The forecasted location of the ma-
jor convection is relatively biased towards the east, which
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Figure 7. Evolution patterns of the composite precipitation (shading; mm d−1) and 850hPa winds (vectors; ms−1) anomalies (exceeding
2 m s−1) for day 1, day 5, day 10, day 15, and day 20 in (a) observed fast MJO, (b) simulated fast MJO, (c) observed slow MJO and
(d) simulated slow MJO.

further confirms that there is an overestimation of the prop-
agation speed. On the 15th day, the MJO convective system
crosses the MC region and reaches the eastern Pacific. It is
worth noting that the forecasted negative phase of MJO ex-
hibits a significant development, with an accelerated speed,

gradually intruding into the positive phase (Fig. 7b and d).
By the 20th day, the development of the negative phase has
further intensified, extending its influence into the tropical
eastern Pacific region, while in the observation, the negative
phase remains east of the MC region. In the later stages, as

https://doi.org/10.5194/gmd-17-6249-2024 Geosci. Model Dev., 17, 6249–6275, 2024



6260 Y. Liu et al.: Dynamical MJO forecasts using an S2S system of IAP-CAS

the negative phase intrudes, the forecasted convective signal
in the positive phase is almost absent due to the inherently
weaker convection in slow MJO. The disappearance of the
slow MJO signal observed in the Hovmöller diagram after
crossing the MC region may stem from the intrusion of the
negative phase. This might differ from the commonly defined
issue of MC barrier amplification observed in many models.

In Fig. A3, simulations also show that both standing MJO
and jumping MJO exhibit overall enhanced convective inten-
sity. However, they accurately capture the non-propagating
characteristics of the observed MJO, such as the weak cou-
pling of Kelvin waves and the strong coupling of Rossby
waves.

6 The possible physical explanation for the forecast
biases

Section 5 highlights some biases observed in the forecast
of propagating MJO, which include stronger amplitude and
faster propagation speed in the IAP-CAS model. These bi-
ases are also mentioned in Sect. 4. In this section, we aim to
unravel the physical mechanisms underlying these biases.

As a large-scale convective system, MJO’s genesis, evo-
lution, and dissipation are intricately linked to atmospheric
moisture (Wang, 1988; Kemball-Cook and Weare, 2001;
Maloney, 2002; Wang and Lee, 2017). Given that the model
forecasts exhibit a systematic bias of stronger amplitude, we
start with the diagnosis of the background state in moisture.
Figure 8 shows the winter mean specific humidity averaged
over 10° S–10° N. A clear positive bias of the background
moisture state in the IAP-CAS model is observed (Fig. 8c),
which can enhance the convection in the MJO. However, the
distribution of this moisture bias is non-uniform. Figure 8c
illustrates that the positive moisture bias is more pronounced
towards the western Indian Ocean and the central-eastern
Pacific, and this bias gradually spreads to the upper levels.
However, in the MC region, the positive moisture bias is
smaller and primarily concentrated in the low level. We spec-
ulate that higher evaporation fluxes in the model may be the
reason for the positive moisture bias. Therefore, the reduc-
tion in oceanic surface area within the MC region contributes
to a decrease in this positive bias.

Figure 9 displays the precipitation-induced condensational
heating (Q2) during fast MJO and slow MJO events. The
condensational heating serves as a proxy for the distribution
of convection, which was estimated by the moisture sink de-
fined as

Q2 =−Lv

(
∂q

∂t
+V · ∇q +ω

∂q

∂p

)
, (11)

where q is the specific humidity; V is the horizontal circu-
lation; ω is the vertical pressure velocity; and Lv is the la-
tent heat at condensation, which is a constant here. The ver-
tical distribution of Q2 reveals that both fast MJO and slow

MJO events in the model forecasts trigger stronger convec-
tion, particularly in the fast MJO events. Furthermore, the en-
hanced convective heating leads to a strong response in the
coupled-MJO-related circulation (Fig. 9). From the 1st day
to the 10th day, there is a gradual strengthening process ob-
served in the simulated convection, particularly pronounced
in the fast MJO, with its intensity peaking on the 10th day.

To further understand the propagation and intensity varia-
tions in MJO in the IAP-CAS model, it is necessary to com-
prehend the underlying physical processes associated with
it. Under the framework of the moisture mode, Jiang (2017)
performed a moisture budget analysis on the latest genera-
tion of general circulation models (GCMs) and identified the
key processes for the eastward propagation of MJO. This re-
search revealed that the advection (V ′ · ∇Q) of the seasonal
mean moisture (Q) by the MJO anomalous circulations (V ′)
plays a crucial role in the propagation of MJO. By increasing
moisture eastward and decreasing it westward of the MJO
convection, the advection regulates the propagation. (D. Kim
et al., 2014; Adames and Kim, 2016; Jiang et al., 2018).
Among the two determining factors (V ′ and Q), the role
of the moisture gradient term is further emphasized. Many
studies (Gonzalez and Jiang, 2017; DeMott et al., 2018; Ahn
et al., 2020) have demonstrated that the mean moisture’s hor-
izontal gradient plays a crucial role in determining the prop-
agation of MJO (Fig. 10a). It is well forecasted in the mod-
els that simulate MJO well, leading to realistic horizontal
mean moisture gradients and, thus, well-forecasted horizon-
tal moisture advection associated with the MJO (Hsu and Li,
2012; D. Kim et al., 2014; Nasuno et al., 2015; Adames and
Wallace, 2015; Gonzalez and Jiang, 2017). The IAP-CAS
model is capable of reproducing this gradient, although there
is an overall stronger moisture bias (Fig. 10b). Here, the Q
presented is the winter mean specific humidity at 850 hPa
(Q850). Research has indicated that Q850 is representative
(Kim, 2019), and subsequent analysis also focuses on the
850 hPa level.

Figure 11 shows the composite equatorial U850 anoma-
lies averaged over 15° S–15° N for fast MJO and slow MJO,
respectively, and depicts the transition from westerly to east-
erly winds in the MC region (as enclosed by the two dashed
blue lines), leading to the change from positive advection to
negative advection. On the 1st and 5th days, the MC region
is predominantly occupied by easterly winds, while from the
10th to the 20th day, the region is primarily characterized by
westerly winds in both fast MJO and slow MJO. However,
the forecasted amplitude of low-level wind is significantly
stronger, which can be caused by the enhanced MJO convec-
tion as explained earlier.

The MJO anomalous circulation patterns in the MC re-
gion result in a positive moisture advection on the eastern
part of the MJO during the early stages of the MJO’s devel-
opment, which facilitates the propagation of convection in
the positive phase. We refer to this process as the “develop-
ing phase”. Figure 12 provides a detailed illustration of this
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Figure 8. The longitude–vertical profiles of winter (November–April) mean specific humidity (gkg−1) averaged over 10° S–10° N for (a) the
observation, (b) the IAP-CAS model, and (c) the difference between the IAP-CAS model and observation.

process. Conversely, during the later stages, there is a neg-
ative moisture advection on the western side of the MJO,
which leads to the propagation of convection in the nega-
tive phase and promotes the dissipation of the MJO. We refer
to this process as the “decaying phase” (Fig. 12). Compared
to the observation, the stronger amplitude of the low-level
moisture advection (V ′ ·∇Q) in the model explains the grad-
ual enhancement of convective moist phases during the early
stages and the amplification of convective dry phases dur-
ing the later stages (Fig. 13). The model’s moist environment
leads to intensified convection, triggering the strengthening
of coupled wind fields, which in turn enhances the moist
phase in the early stage and the dry phase in the later stage
of convection. Consequently, during the development phase
of the MJO, its amplitude gradually strengthens. Conversely,
during the decaying phase of the MJO, the intensity of the
dry phase also progressively increases.

As the simulated propagating MJO gradually intensifies,
we observe an enhancement of easterly winds on the east
of the convective center, accompanied by an overestimation
in zonal scale, indicating the triggering of stronger Kelvin
waves (Fig. 7b and d). According to Wang et al. (2019), MJO
with a larger zonal scale will experience an increased east-
ward propagation speed since the phase speed is inversely
proportional to the wave number. This phenomenon is also

observed in the observation, where the Kelvin wave response
to fast MJO exhibits a larger zonal scale compared to slow
MJO. Subsequently, during the decay phase of the propagat-
ing MJO, the model exhibits a pronounced Rossby wave re-
sponse triggered by the MJO, leading to the intrusion of con-
vective negative phases and facilitating the dissipation of the
MJO.

In addition to examining the winter mean moisture
state (Q), we analyzed MJO-related moisture anomalies (Q′)
as well (Fig. 14). By comparing the evolution pattern of
moisture anomalies between slow MJO and fast MJO, it is
found that the moisture anomalies in the eastern part of fast
MJO are more intense compared to the slow MJO. This re-
sults in stronger low-level moisture transport towards the
convective region, thereby also facilitating the intensification
and acceleration of the MJO. Moreover, there is a signifi-
cant distinction in the spatial correlation between fast and
slow MJO, and it happens as early as the first day. As the
forecast lead time progresses, the accuracy of the moisture
forecast deteriorates, while fast MJO events display compar-
atively better performance. The disparity in moisture anoma-
lies is possibly a pivotal factor contributing to differences
in forecast skills between the fast (32 d) and the slow MJO
(21 d). This underscores the significance of improving mois-
ture forecast in the MJO forecast.
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Figure 9. The composited longitude–vertical structure of precipitation heating (contours; 1× 10−2 Jkg−1 s−1) and zonal and vertical wind
anomalies (vectors; units are ms−1 for zonal winds and 0.01 Pas−1 for vertical winds) averaged over 10° S–10° N for day 1, day 5, and
day 10 in (a) observed fast MJO, (b) simulated fast MJO, (c) observed slow MJO, and (b) simulated slow MJO.

Figure 10. Winter (November–April) mean specific humidity (gkg−1) on 850 hPa for the (a) observation and (b) IAP-CAS model.
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Figure 11. The composited longitudinal structure of the 850 hPa zonal wind anomalies (ms−1) averaged over 15° S–15° N for day 1, day 5,
day 10, day 15, and day 20 from the observation (solid black line) and IAP-CAS model (solid red line) in fast and slow MJO events. The
dashed gray line is the reference line with a value of 0. The two dashed blue lines are 110 and 150° E, respectively, which denote the extension
of the MC region.

Figure 12. Schematic diagrams illustrating the moisture mode the-
ory on MJO propagation in the MC region.

7 Summary and discussion

7.1 Summary

The graphical abstract presents a workflow for this paper,
outlining the structure of this work. This study introduces a
newly developed S2S ensemble forecast system of the IAP-
CAS model. The introduction primarily focuses on the nu-
merical model, initialization, ensemble generation, and post-
processing aspects of the S2S system. Then we aim to iden-
tify potential possibilities for developing this S2S system
through a comprehensive assessment of its forecast skills.
Based on the 20-year hindcast experiment, the IAP-CAS
model shows comparable skill (24 d) to other S2S models.
However, the ensemble forecast for MJO has been demon-
strated to be underdispersive. A detailed examination of the

propagating MJO forecasted in the IAP-CAS model reveals
that the amplitude of the convection is overestimated with
an increasing propagation speed, particularly in the fast MJO
events. These biases are accompanied by a faster dissipation
of the MJO.

The root cause of these biases lies in the model’s wetter en-
vironment, which leads to enhanced convection and strength-
ened circulation coupled with convection. This, in turn, fur-
ther amplifies convection during the development of propa-
gating MJO. The gradual intensification of MJO strength and
coupled Kelvin waves is mainly associated with the stronger
amplitude of the low-level moisture advection (V ′ · ∇Q) in
the forecast. The overestimate in the zonal scale of Kelvin
waves accelerates the propagation of the propagating MJO
in the model. Similarly, the strengthening of Rossby waves
also hastens the dissipation of the MJO. Moreover, the dif-
ferences in forecast skills between the fast MJO and the slow
MJO may be attributed to discrepancies in moisture anomaly
(Q′) forecast. This further underscores the significance of ac-
curate moisture forecasts.

7.2 Discussion

In Fig. A4, we compare the forecast skill of the IAP-CAS
model with 11 other S2S models. The MJO index of 12 S2S
models and ERA-Interim from the S2S website (http://www.
s2sprediction.net/, last access: 1 December 2023) is used for
evaluation during the standard hindcast period of 2001–2010.
In Fig. A4, we observe improved forecast skill in ensem-
ble forecasts compared to deterministic forecasts. Among

https://doi.org/10.5194/gmd-17-6249-2024 Geosci. Model Dev., 17, 6249–6275, 2024

http://www.s2sprediction.net/
http://www.s2sprediction.net/


6264 Y. Liu et al.: Dynamical MJO forecasts using an S2S system of IAP-CAS

Figure 13. The composited −V ′ · ∇Q (gkg−1 s−1) averaged over the MC region (15° S–15° N, 110–150° E) as a function of forecast lead
days from the observation (solid black line) and IAP-CAS model (solid red line) in (a) fast MJO and (b) slow MJO events. The dashed gray
line is the reference line with a value of 0.

the 12 S2S models, the IAP-CAS model exhibits MJO skill
above the mean skill level, while the ECMWF model stands
out as the highest-performing model. Figure A5a shows
that the skill of individual members in ECMWF is approx-
imately 17–18 d, whereas the ensemble mean demonstrates
an extended skill of up to 30 d. This phenomenon may be
attributed to the ECMWF model’s considerable dispersion
(Fig. A5b), which once again underscores the critical role of
ensemble dispersion in forecasting uncertainties in weather
and climate.

Therefore, the forthcoming phase in our model’s develop-
ment plan encompasses increasing model dispersion through
improved ensemble perturbation methods, with the ulti-
mate goal of improving model forecast skills. The method
of orthogonal conditional nonlinear optimal perturbations
(CNOPs; Mu et al., 2003) and the second-order exact sam-
pling (Pham, 2001) are both promising approaches for gen-
erating initial perturbations in the model. This method allows
the generation of a set of initial perturbations in different
orthogonal perturbation subspaces, each with the maximum
potential for nonlinear development. When applied to ensem-
ble forecast using a simple Lorenz 96 model, the CNOPs
method has demonstrated higher forecast skill compared
to the commonly used linear singular vector (SV) method
(Mureau et al., 1993). Furthermore, the Parallel Data As-
similation Framework (PDAF; Nerger et al., 2020) provides
an efficient method known as second-order exact sampling,
which uses the long-time variability of the model dynamics
to estimate the uncertainty. Evidence has already suggested
that the use of second-order exact sampling can greatly im-
prove the skill in sea ice extent throughout the Arctic and
along the Northern Sea Route (Yang et al., 2020). We plan
to explore the application of CNOPs and second-order exact
sampling in the IAP-CAS model in the future and eagerly
anticipate the potentially significant results it may yield. Ad-

ditionally, using machine learning to improve the skill of en-
semble forecast is also a viable way to enhance the ensemble
forecast of our model.

In addition to exploring ensemble perturbations, we also
intend to enhance the initialization system of the model.
Recognizing the moisture and acknowledging the issue of
moisture bias in the IAP-CAS model are crucial in the fore-
cast of MJO; it is essential to take measures to ameliorate
moisture forecast in our model. Recent research by Zeng
et al. (2023) provides convincing evidence that humidity ini-
tialization can indeed significantly enhance MJO forecast in
the IAP-CAS S2S forecast system, especially in the second
and third phases of MJO propagation. However, it is worth
noting that changes in the mean state have a significant im-
pact on MJO development (Hannah et al., 2015; Kim, 2019).
We must thus pay attention to the influence of moisture ini-
tialization on the mean state. Moreover, the current S2S sys-
tem’s initialization process uses the nudging method, and it
is worthwhile to explore more efficient methods to enhance
the initialization process.

We are also considering increasing the resolution of the
model to C384 (25 km) globally. A high-resolution coupled
model could better represent the MJO (Crueger et al., 2013).
This improvement could be attributed to the enhanced reso-
lution, which better captures the ocean–atmosphere interac-
tion – a critical factor for MJO convection. Increasing the res-
olution is also meaningful for enhancing forecasts in the MC
region by accurately depicting terrain distortion (Hsu and
Lee, 2005; Inness and Slingo, 2006; Wu and Hsu, 2009). Fur-
ther optimizing the model’s physical processes and dynamic–
physical coupling is also believed to enhance the forecast of
the MJO (Zhou and Harris, 2022). As the foreseeable resolu-
tion and complexity of the model increase in the future, the
issue of power consumption on X86 architecture processors
for handling the growing amount of data will become more
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Figure 14. Evolution patterns of the composite specific humidity anomalies (gkg−1) and wind (vectors; ms−1) anomalies (exceeding
2 m s−1) on 850 hPa for day 1, day 5, day 10, day 15, and day 20 (a) observed fast MJO, (b) simulated fast MJO, (c) observed slow MJO, and
(b) simulated slow MJO. The spatial correlation coefficient between the simulated and observed moisture anomalies is shown to the right of
panels (b) and (c).
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pronounced. We have plans to port the model to the com-
puting platform based on ARM architecture to address the
challenges posed by the explosive growth of data.

Appendix A

Table A1. Hybrid coefficient of hybrid sigma-pressure coordinates at layer interfaces in CAS FGOALS-f2.

Layer Coefficient of pressure Coefficient of sigma Layer Coefficient of pressure Coefficient of sigma
coordinates coordinates coordinates coordinates

1 100.00 0.00 18 27131.33 0.23
2 400.00 0.00 19 24406.11 0.32
3 818.60 0.00 20 21326.05 0.42
4 1378.89 0.00 21 18221.18 0.51
5 2091.80 0.00 22 15275.15 0.59
6 2983.64 0.00 23 12581.68 0.67
7 4121.79 0.00 24 10181.43 0.73
8 5579.22 0.00 25 8081.90 0.79
9 7419.79 0.00 26 6270.87 0.83
10 9704.83 0.00 27 4725.35 0.87
11 12496.34 0.00 28 3417.39 0.91
12 15855.26 0.00 29 2317.75 0.93
13 19839.62 0.00 30 1398.09 0.96
14 24502.73 0.00 31 632.50 0.98
15 28177.10 0.02 32 0.00 0.99
16 29525.28 0.06 33 0.00 1.00
17 29016.34 0.14

Table A2. Initialization information of the S2S ensemble forecast system.

Nudging
type

Data assimilation Variable Data Frequency

Reanalysis
nudging

Time-lagged nudging
(Hoffman and Kalnay, 1983;
Jeuken et al., 1996)

U , V , T , Ps, z∗s FNL (National Centers for Environmental Predic-
tion/National Weather Service/NOAA/U.S. De-
partment of Commerce, 2000)

6 h

SST NOAA OISST (Reynolds et al., 2007)

Forecast
nudging

U , V , T , Ps, zs GFS weather forecast 6 h

∗ Table notes: U represents zonal wind, V represents meridional wind, T represents temperature, Ps represents surface pressure, zs represents surface geopotential height,
and SST represents sea surface temperature.
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Table A3. Introduction to the output data of the S2S ensemble forecast system.

Experiment Ensemble Time range Frequency Forecast Variable Resolution Interpolation
members time method

Hindcast 4 1999–2018 Daily 65 days
25 variables (a detailed
list of variables
is shown in Table A4)

Horizontal:
1.5°× 1.5°
Vertical: 7 levels
(1000, 925, 850,
700, 500, 300, and
200 hPa)

One-order
conservation

Real-time
forecast

16 Starting in 2019

Table A4. List the output variables in the S2S ensemble forecast system.

Statistical process Level(s) Short name Standard name Unit

Instantaneous value once per day
The variables are located on
10 pressure layers (1000, 925,
850, 700, 500, 300, 200, 100, 50,
10 hPa)

gh Geopotential height gpm
t Temperature K
u U velocity ms−1

v V velocity ms−1

w Vertical velocity pas−1

The variable is located on
7 pressure layers (1000, 925,
850, 700, 500, 300, 200 hPa)

q Specific humidity kgkg−1

Two-dimensional variables w Vertical velocity pas−1

sp Surface pressure Pa
lsm Land–sea mask Proportion

of land
orog Orography gpm

Daily average value tcc Total cloud cover %
skt Skin temperature K
2t Surface air temperature K
2d Surface air dew point temperature 2d
wtmp Sea surface temperature K
ci Sea ice cover Proportion

24 h accumulated value sf Snowfall water equivalent kgm−2

ttr Time-integrated top net thermal
radiation

Wm−2 s

ssr Time-integrated surface net solar
radiation

Wm−2 s

str Time-integrated surface net thermal
radiation

Wm−2 s

ssrd Time-integrated surface solar
radiation downwards

Wm−2 s

strd Time-integrated surface thermal
radiation downwards

Wm−2 s

Instantaneous value four times per day mx2t6 Surface air maximum temperature K
mn2t6 Surface air minimum temperature K
10u 10 m u velocity ms−1

10v 10 m v velocity ms−1

6 h accumulated value tp Total precipitation kgm−2
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Figure A1. The structure of ecFlow (ECMWF workflow). ecFlow, developed and maintained by the ECMWF, is a client–server workflow
package designed to facilitate the execution of a substantial number of programs within a controlled environment. ©European Centre for
Medium-Range Weather Forecasts (ECMWF), 2005. It is used in the IAP-CAS model to accomplish the download and preprocessing of the
forcing data.

Figure A2. MJO forecast skill of the ensemble mean of time-lagged members as a function of lag days. The values on the bars represent the
ACC on day 26.
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Figure A3. Evolution patterns of the composite precipitation (shading; mm d−1) and 850hPa wind (vectors; ms−1) anomalies (exceeding
2 m s−1) for day 1, day 5, day 10, day 15, and day 20 in (a) observed standing MJO, (b) simulated standing MJO, (c) observed jumping
MJO, and (d) simulated jumping MJO.
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Figure A4. The MJO forecast skill of 12 S2S models, providing comparisons between various model versions over the years, and the latest
versions of 12 models. The evaluation covers the period from 2001 to 2010, except for CMA, which spans 2008 to 2013. The solid lines
represent the skill of ensemble mean forecasts, while the dashed lines represent the skill of deterministic forecasts.
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Figure A5. The ACC (a) and the RMSE (b) of ECMWF (2019 version) from individual members (solid gray line), ensemble ctrl (solid
yellow line), and 10-member ensemble mean (solid red line) as a function of forecast lead days. The solid blue line denotes the ensemble
spread. The dashed line in (a) has a value of 0.5, and it represents 1.414 in (b).

Code availability. The code of the IAP-CAS model is archived
on Zenodo (https://doi.org/10.5281/zenodo.10791355, Bao et al.,
2024a). The code used to reproduce the figures in this work can
be obtained from https://doi.org/10.5281/zenodo.10817813 (Liu,
2024).

Data availability. The boundary conditions and input data are
available at https://doi.org/10.5281/zenodo.10820243 (Bao et
al., 2024b). The NCEP FNL data used are available at
https://doi.org/10.5065/D6M043C6 (National Centers for Envi-
ronmental Prediction/National Weather Service/NOAA/U.S. De-
partment of Commerce, 2000). The NOAA OISST data can
be downloaded from https://doi.org/10.25921/RE9P-PT57 (Huang
et al., 2020). The NCEP GFS data used are available at
https://doi.org/10.5065/D65D8PWK (National Centers for Environ-
mental Prediction/National Weather Service/NOAA/U.S. Depart-
ment of Commerce, 2015). The hindcast dataset of the IAP-CAS
S2S system used in the article is publicly available at https://apps.
ecmwf.int/datasets/ (Vitart et al., 2017). There are three data portals
provided by ECMWF, CMA, and IRI, with this being one of them.
All the validation data are available for download from the cited
references or data links shown in Sect. 3.1.
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