
Geosci. Model Dev., 17, 6153–6171, 2024
https://doi.org/10.5194/gmd-17-6153-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

ShellSet v1.1.0 parallel dynamic neotectonic modelling:
a case study using Earth5-049
Jon B. May1, Peter Bird2,1, and Michele M. C. Carafa1

1Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Sismologia e Tettonofisica, L’Aquila, Italy
2Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, California, USA

Correspondence: Jon B. May (jonbryan.may@ingv.it)

Received: 31 May 2023 – Discussion started: 10 July 2023
Revised: 4 May 2024 – Accepted: 10 June 2024 – Published: 19 August 2024

Abstract. We present a parallel combination of existing,
well-known and robust software used in modelling the neo-
tectonics of planetary lithosphere, which we call ShellSet. An
added parallel framework allows multiple models to be run
at the same time with varied input parameters. Additionally,
we have included a grid search option to automatically gen-
erate models within a given parameter space. ShellSet offers
significant advantages over the original programs through its
simplicity, efficiency and speed. We demonstrate the perfor-
mance improvement obtained by ShellSet’s parallel frame-
work by presenting timing and speedup information for a
parallel grid search, varying the number of processes and
models, on both a typical computer and a high-performance
computing cluster node. A possible use case for ShellSet
is shown using two examples in which we improve on an
existing global model. In the first example we improve the
model using the same data, and in the second example we
further improve the model through the addition of a new scor-
ing dataset. The necessary ShellSet program version along
with all the required input and post-processing files needed
to recreate the results presented in this article are available at
https://doi.org/10.5281/zenodo.7986808 (May et al., 2023).

1 Introduction

Recent decades have seen significant progress made in the
numerical modelling of lithospheric and crustal-scale pro-
cesses. Simulations have become increasingly complex, and
it often remains difficult to determine the best set of model
parameters for a specific simulation, especially if non-linear
rheologies or 3D effects are involved. Currently, the determi-

nation of the best set of model parameters is usually done by
iteratively changing the model input parameters, performing
numerous simulations, and scoring them against a particular
class of observations, e.g. GPS measurements, stress tensor
orientations or earthquake production rates.

There has been a significant improvement in computa-
tional power, efficiency and machine availability since the
first computers were utilised for scientific purposes. Re-
search institutions, both academic and industrial (public and
private), provide employees with personal machines for their
work. Even the least powerful of these machines is typi-
cally capable of simulations, serially and in parallel, that
would have required much more expensive hardware only a
decade previously. This allows many more simulations to be
performed within any given period and larger models to be
tested, which means that scientific knowledge is being im-
proved almost by the second. In short, present-day scientists
have access to more computing power than ever.

Unfortunately, this rapid improvement in computing
power has, in some cases, outstripped the ability of widely
used and scientifically robust programs to efficiently use the
hardware available. For example, the programs Plasti, Ellip-
sis3D and ConMan – see Fuller et al. (2006), Moresi et al.
(2007) and King et al. (2020) – all remain serial. Others,
e.g. SNAC and Gale (Choi et al., 2008; Moresi et al., 2012),
solve models in parallel using the Message Passing Interface
(MPI) to distribute the work across multiple cores; however,
they solve one model at a time, requiring the user to update
input parameters between queued models or to launch multi-
ple models in parallel manually. Whilst this parallelisation of
the program will yield a performance benefit, should a user
wish to perform multiple models, a manual procedure is not

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://doi.org/10.5281/zenodo.7986808


6154 J. B. May et al.: ShellSet

the most efficient one – especially if a methodological set of
models is required, e.g. when searching for an optimal value
within a particular parameter or set of parameters.

Shells is another program which, while it can solve a sin-
gle model in parallel, requires a set of models to be controlled
manually. Shells is a dynamic neotectonic modelling pro-
gram first developed and released in 1995 (Kong and Bird,
1995). Since then it has had several updates, the most re-
cent one being released in 2019. Shells uses the Intel Math
Kernel Library (MKL) to solve systems of linear equations
in parallel, which means that, unlike the previously noted
parallel software which uses the MPI, Shells uses OpenMP
style threads to parallelise its model. This limits the number
of tasks possible in parallel as these threads are limited to
a single shared-memory compute device, whereas the MPI
can span a distributed memory machine. Due to this, Shells
is unable to fully utilise the currently available computing
hardware and is also unable to automatically search for an
optimal value or set of values for input parameter(s).

In this work, we present ShellSet, which is composed of
(i) OrbData5, a program used to alter the input finite-element
grid (FEG) file, which we will refer to as OrbData; (ii) Shells,
a dynamic neotectonic modelling program using finite ele-
ments; and (iii) OrbScore2, a scoring program which we will
refer to as OrbScore. A brief explanation of the functionality
of each can be found in Sect. 2.1, 2.2 and 2.3, respectively.
Both OrbData and OrbScore function in conjunction with
Shells by design. The input FEG file can be created using
a separate program (OrbWin) maintained by, and available
from, the author of Shells, OrbData and OrbScore.

Our program is based entirely on freely distributed soft-
ware, with OrbData, Shells and OrbScore all being available
at http://peterbird.name/index.htm (last access: 1 May 2024).
All program dependencies, i.e. the Intel Fortran compiler,
Intel MKL and MPI environment, are available from In-
tel within the base and high-performance computing (HPC)
oneAPI toolkits. The final program runs in a Linux operat-
ing system (OS) environment using either a guest Linux OS
on Windows machines (e.g. WSL2) or directly on Linux OS
machines, including HPC structures. It requires Python3 for
the use of its (optional) graphical user interface (GUI) and
scatter plotter routines.

This work serves as an introduction to the neotectonic
modelling community of ShellSet, an MPI parallel combi-
nation of existing, well-known, robust and widely used soft-
ware. The version of ShellSet used for this article, along with
all the input files, examples and user documentation, is avail-
able online: see https://doi.org/10.5281/zenodo.7986808
(May et al., 2023). In the following work we will use the
term “model” to refer to a single model (defined by its input
parameters), while “test” refers to a set of models.

2 Software

At the base of ShellSet are three existing programs: OrbData,
Shells and OrbScore. Despite recent updates, these three pro-
grams remain both serial and separate by design. This re-
quires the user to manually control all the files required by
each program, which may be complicated further depending
on the settings for Shells simulations. For example, previ-
ously generated output is often required to be read before the
next Shells solution iteration begins. We outline the function
of each of these programs in the following sections.

2.1 OrbData

Before deformation of the lithosphere can be modelled, its
present structure must be defined, including its surface eleva-
tions, layer (crust and mantle-lithosphere) thicknesses, den-
sities and parameters, which define its internal temperatures.
These quantities must be specified for each node in the finite-
element grid, which defines the domain of the model. Orb-
Data calculates this lithosphere structure, which is used as
an input to both Shells and OrbScore, using simple local
operations on published datasets, often in spatially gridded
formats. OrbData does not affect the topology of the finite-
element grid or its included fault network.

OrbData computes the crustal and mantle-lithosphere
thicknesses based on assumptions of local isostasy and ei-
ther (a) a steady-state geotherm or (b) seismically deter-
mined layer thicknesses. It incorporates seismic constraints
by adding two adjustable parameters, the density anomaly of
the lithosphere of compositional origin and an extra quadratic
curvature of the geotherm due to transient cooling or heat-
ing. These extra values are then incorporated into the finite-
element grid at each node. For a description of the various
algorithms OrbData uses, see Bird et al. (2008).

Whether the finite-element grid needs updating by Orb-
Data depends on which input variables have been altered. We
therefore consider OrbData to be optional – it is strictly re-
quired in some cases but is unnecessary in others. ShellSet
takes this consideration away from the user by automatically
deciding whether or not a certain parameter change requires
an update to the finite-element grid. This decision is hard-
coded into the program and is based on which input parame-
ters are altered within a test.

2.2 Shells

Shells is the leading program for those who want to conduct
physics-based simulations of planetary tectonics with the ef-
ficiency of 2D spherical FE grids. Most competing programs
use 3D grids, e.g. Ellipsis3D, SNAC, CitComCU and Cit-
ComS (Moresi et al., 2007; Choi et al., 2008; Moresi et al.,
2009, 2014), while Gale (Moresi et al., 2012) has 2D and
3D functionalities. The 3D grids will typically require greater
computing resources for comparable domain sizes (depend-

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024

http://peterbird.name/index.htm
https://doi.org/10.5281/zenodo.7986808


J. B. May et al.: ShellSet 6155

Table 1. List of the misfit scoring options available in ShellSet.

Error Type Unit Filename in package

SSR Mean mma−1 magnetic_PB2002.dat
GV RMS mma−1 GPS2006_selected_subset.gps
SD Mean ° robust_interpolated_stress_for_OrbScore2.dat
SA Mean ° Fouch_2004_SKS_splitting-selected.dat
SC Correlation coefficient × GCMT_shallow_m5p7_1977-2017.eqc
FSR RMS mma−1 aggregated_offset_rates.dig

SSR – seafloor spreading rate. GV – geodetic velocity. SD – most-compressive horizontal stress direction. SA –
fast-polarisation azimuths of split SKS waves. SC – smoothed seismicity correlation. FSR – fault slip rates. SSR, GV, SD,
SA and FSR are misfits. SC is a score. The type of score reported for each error can be changed by altering a single line of
the OrbScore source code within ShellSet.
×This error type is unit-less.

ing on the mesh size), and therefore they limit the number of
experiments that are practical in parallel.

Shells uses the thermal and compositional structures of
thin spherical shells (usually called “plates”) of the planetary
lithosphere, together with the physics of quasi-static creep-
ing flow, to predict patterns of velocity, straining and fault
slip on the surface of a planet. Since the first publications
outlining the first release version, Kong and Bird (1995) and
Bird (1998), Shells has been updated and used in numerous
publications, including Liu and Bird (2002a), Liu and Bird
(2002b), Bird et al. (2006), Bird et al. (2008), Kalbas et al.
(2008), Stamps et al. (2010), Jian-jian et al. (2010), Auster-
mann et al. (2011), Carafa et al. (2015) and more recently
Tunini et al. (2017). A primary goal is to understand the bal-
ance of the forces that move the plates, while a secondary
goal is to predict fault slip rates and distributed strain rates
for seismic hazard estimation.

Shells is serial in its application, except in two parts of its
calculations, where it makes use of the thread-safe Intel MKL
routines dgbsv and dgesv. These routines apply OpenMP-
type threading within their execution if the problem size is
large enough. The number of parallel threads used within
each MKL routine is decided at runtime by the routines, al-
though it will default to the number of physical cores, and en-
vironment variables can be altered to specify a strict number
or to allow a dynamic selection of threads for MKL routines.

Shells produces six testable predicted fields in each
model: relative velocities of geodetic benchmarks, most-
compressive horizontal principal stress azimuths, long-term
fault heave and throw rates, rates of seafloor spreading, dis-
tribution of seismicity on the map as well as fast-polarisation
directions of split SKS arrivals. Each of these predictions can
be scored against observed data.

Shells contains the possibility of defining lateral variations
in lithospheric rheology within the model by updating the
FEG file using an additional numerical ID for groups of ele-
ments. This ID number should correspond to a value within a
separate file which defines the values of the four input param-
eters which describe frictional rheology at low temperatures,
including an option for lower effective friction in fault ele-

ments. Nine describe the dislocation–creep flow laws of the
crust and mantle-lithosphere layers of the lithosphere. All el-
ements placed within one of these groups will take their val-
ues from this new file; only elements within the default group
(ID= 0) will take values from the standard parameter input
file.

2.3 OrbScore

OrbScore is used to score any of the six testable Shells
predictions, for relative realism, against supplied real data.
These six options are seafloor spreading rates (SSRs), geode-
tic velocities (GVs), most-compressive horizontal principal
stress directions (SDs), fast-polarisation azimuths of split
SKS waves (SA), smoothed seismicity correlation (SC) and
fault slip rates (FSRs). Information on the SSR, GV, SD and
SA datasets can be found in Sect. 6.1, 6.2, 6.3 and 6.4, re-
spectively, of Bird et al. (2008). The FSR dataset was devel-
oped recently, and information on the dataset generation can
be seen in Appendix A. The SC scoring dataset (not used
in this work) is taken from the global centroid–moment–
tensor (GCMT) catalogue. The basic methodology and ap-
proach used in that project are outlined in Dziewonski et al.
(1981), with the most recent description of the analyses, in-
cluding some significant improvements, given in Ekström
et al. (2012).

Table 1 lists the six misfit scoring options along with the
type of error reported, their units and the name of the file
containing the dataset provided within the ShellSet package.
Using one score or a combination of these calculated misfit
scores, it is possible to compare different models and per-
form tuning of the input parameters to obtain the best misfit
score for a particular scoring setup. The best misfit score then
provides the optimal values for the tested variables.

In this work, as in Bird et al. (2008), we use a geometric
mean of misfits to grade each model. The geometric mean is
defined as the nth root of the product of n (assumed positive)
numbers:

GM= n
√

S1S2. . .Sn. (1)

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6156 J. B. May et al.: ShellSet

This is preferable to any arithmetic mean because the rank-
ing of models using the geometric mean is independent of the
units of the ingredient misfits.

3 ShellSet

Since the three individual programs are quick in their current
form and are intrinsically linked in their work, we focused
in this work on combining them into a single entity. Previ-
ously, in order to perform multiple models in parallel, the
user would have to start multiple models in separate instances
and control each one individually. In ShellSet the program
controls the runs for each, running several in parallel if the
compute resources exist. This simplifies the user interface
while simultaneously leveraging parallel computing to ob-
tain multiple results at the same time. This streamlined pro-
cess has multiple benefits for the user and their work when
compared with the three underlying programs. We will now
outline some of the most important additions to the program
and state the improvements that these have yielded, which
ShellSet offers over the original separate programs.

3.1 Grid search

We have programmed two options for the alteration of multi-
ple variables in parallel: a list input and a grid search. Each of
these options requires one simple input file to be completed
which defines the variables being tested, together with their
values, or ranges, for the list input or grid search, respec-
tively. While other parameter space sampling methods exist
(see Reuber, 2021, for an analysis of the various options),
we chose to add a grid search as it is simple to program and
understand while offering consistent information across the
entire parameter space. This means that, should only a sim-
ple visualisation of the misfit scores over a parameter space
be required, a single-level grid search would provide total
coverage with consistent spacing, while a random search, for
example, would not necessarily provide consistent detail over
the entire space.

A grid search is a searching algorithm used to tune param-
eters towards optimal values within a defined N -dimensional
parameter space. Several different schemes can be used in a
grid search for how the domain is divided, how to pass the
best models to the next level, etc. However, we use the most
basic version. This works by partitioning the parameter space
into a grid of equal N -dimensional cells. Each cell is repre-
sented by a single central model whose location defines the
value for each of the tested parameters. The upper-left image
of Fig. 1 shows an initial 2× 2 grid in a 2D space, with each
of the four models represented by a coloured point.

After a full grid of models has been simulated, the algo-
rithm will select a defined number of best models to continue
on to the next level. Each of the selected models has its cell
divided in the same fashion as the first level (to scale) and

Figure 1. Example two-level grid search that selects a best cell (red
point) and divides that cell into four new cells.

representative models at the centre of each cell. In this way
the algorithm progressively reduces the size of the searched
parameter space by reducing the sizes of the cells, dividing
increasingly smaller parameter spaces into cells, and select-
ing from their best models for further analysis. A typical al-
gorithm will continue in this way until a defined stopping
criterion is met, e.g. a specified number of levels, a desired
model score or a total number of models.

Figure 1 shows the transition from a single best model to
a new level. The red point in the upper-left image represents
the best model, which is selected for the next level shown in
the upper-right image. The lower image of Fig. 1 shows an
overview of these two levels.

The base grid search algorithm was adapted from the For-
tran grid search version available from May (2022). Like the
original, the grid search used in ShellSet has no limit on the
number of dimensions it is possible to use.

In ShellSet we rank the models using their misfit scores
before selecting the best models and refining the search area
within the parameter space. Since each model, at each level,
is independent, an automated search of the parameter space
may be performed by the program in parallel (see Sect. 3.2).
This parallel search of the parameter space finds optimal val-
ues for desired variables quickly and efficiently (see Sect. 5)
and allows the program to search each individual parameter
to degrees of accuracy that are useful to the user but ordinar-
ily tedious to perform manually.

ShellSet’s grid search will work to a defined number of
levels, whereupon the program will stop. It also optionally
allows the user to define a target misfit score. When any
model reaches or surpasses this value, the program will stop
on completion of that level.

The inclusion of a search algorithm necessitated an ad-
ditional set of checks to be performed on combinations of
input parameters. Originally the programs performed only
basic checks (unrealistic value entries on individual param-

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024



J. B. May et al.: ShellSet 6157

eters, etc.) as a human user was assumed to be in control
of all the input values. The grid search option essentially
replaces the human user with a machine user, which theo-
retically allows for unrealistic selections of values for input
variables. For example, in a test including both fault fric-
tion and continuum friction, the fault friction must be less
than the continuum friction. This is something which a user
would ordinarily handle manually, but the grid search algo-
rithm must be controlled using additional checks to prevent
unrealistic models from being performed. New checks are
added to a separated source code file to simplify future up-
dates. We currently place only the most general conditions
on some variables (fault friction must be less than continuum
friction and the mean mantle density must be greater than
that of the crust), and any user is advised to add any neces-
sary conditions to this file, depending on their local or global
model requirements, in order to keep these conditions in a
single location.

3.2 ShellSet parallelism

The grid search algorithm is made considerably more effi-
cient if multiple models at the same level are run in parallel.
For example, looking at Fig. 1, we can see that at the first
level there are four distinct models which could all be per-
formed in parallel, and at the second level there are another
four. Knowing this, we have placed ShellSet in a simple MPI
framework which allows the running of multiple models in
parallel.

Using the MPI to perform multiple models in parallel,
ShellSet also maintains the parallelism inherent in the Intel
MKLs. Therefore, each model run by an MPI process is able
to leverage a team of MKL threads within its call to the dgbsv
and dgesv routines if there are available computing resources.

By default, the Intel MKL routines will set the number of
threads to a value based on the problem size and the number
of available cores at runtime. This behaviour can be prob-
lematic when running multiple models in parallel using the
MPI, and although it can be changed by altering the program
source code (requiring compilation to take effect), we have
added a simple control on the maximum number of threads
which may be used by MKL routines. The results shown in
Sect. 5.1 demonstrate why allowing the MKL routines to se-
lect the number of threads automatically is not always opti-
mal – particularly when the possibility of running multiple
models in parallel exists. ShellSet calculates the number of
free cores available per MPI process at runtime and sets the
maximum number of threads available to MKL routines to
this value. This calculation does not require any extra infor-
mation from the user.

The migration of file control to the program was necessary
to run multiple models in parallel without constant user input.
This is discussed in more detail in Sect. 3.3.

3.3 User interface

As noted previously, some design features which were nec-
essary in order to perform multiple models in parallel have
also caused some unintended usability improvements. These,
along with designed usability improvements present at its in-
terface with the user, will be discussed now in terms of both
input to the program and output from it.

The main output of ShellSet is a single file which defines
the command line arguments used to start the program, along
with a list of results in which a row represents a model. For
every model the altered variables (those defined in the grid
search or list input files) are recorded, along with all the cal-
culated misfit results, a global model ID number and the ID
of the MPI process which performed the model. The two ID
numbers allow the user to trace the OrbData, Shells and Orb-
Score output files related to that model for further analysis.
While this output file was not necessary when manually con-
trolling a set of models, its addition in ShellSet gives an im-
mediate general understanding of the test results while re-
porting information required to conduct a deeper examina-
tion of the selected models. This is possible as all output files
from OrbData, Shells and OrbScore are saved in private di-
rectories with locations and filenames containing the process
ID, model number and Shells iteration number.

The simplified input and initialisation user interface has
three parts: (1) an input file for the model generation option
(list or grid search), (2) an input file containing a list of input
filenames for each of the original programs and (3) a selec-
tion of command line arguments which provide runtime in-
formation to ShellSet. These are visible in the three red boxes
within the dashed olive box labelled “GUI” in Fig. 2. The in-
put file names for each of OrbData, Shells and OrbScore are
stored in the input file list, which combines with the invoca-
tion line and a model input file to initialise a ShellSet test.
These steps, while providing the same input required by the
individual programs, remove the user’s control over any files
that are at the interface between OrbData, Shells and Orb-
Score as well as between iterated Shells runs, removing the
possibility of errors or delay after program initiation.

Certain experiments require the iteration of the Shells pro-
gram, with each subsequent iteration requiring a file gener-
ated by the previous one. ShellSet is able to handle this for
the user. The iteration of Shells is not exact in how many iter-
ations could be required. For example, in Bird et al. (2008),
three to five iterations were used, depending on the behaviour
of the result after each iteration. Due to this we have added
an option to exit the Shells iteration loop early. This exit may
be performed if any two consecutive Shells iterations have
misfit scores that are equal within a pre-selected tolerance.
When activated, ShellSet expects a decimal input at runtime
which represents the percentage change from the previous
iteration (e.g. 10 %= 0.1). This is used to generate a range
from the result of the previous model inside which the new
model is deemed close enough. Since this is an optional fea-

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6158 J. B. May et al.: ShellSet

Figure 2. Simplified ShellSet schematic. The blue boxes show optional IO, the orange boxes show IO from the original programs, and the
red boxes show new ShellSet functionality. Optional output is switched on at runtime, while optional input is switched on by its presence.
The parts shown in the shaded dashed box labelled “GUI” can be handled by the provided GUI. Only the Models.out file may be plotted
using the provided Python scatterplot routine.

ture, there is no default value, and the user is expected to
provide one when activating it. A good value will depend
on any requirement for subsequent results to be similar, on
the scoring dataset used, and on the underlying problem. The
ability to exit this iteration loop early has the potential to save
a lot of time over an entire test. For example, if all 18 models
of Bird et al. (2008) required five iterations, this would to-
tal 90 Shells runs, but if each required three iterations, there
would only be 54 runs, i.e. a saving of 40 % on model num-
bers.

Along with this option, there are eight further command
line arguments which allow the user to personalise the test
at run time. These eight arguments allow the user to define
the maximum iterations of Shells within the iterative loop,
choose between the List and Grid input options, name a new
directory where all IO files will be stored, and optionally set
ShellSet to abort if any ignorable error is detected. For exam-
ple, by default, if any FEG node exists outside a scoring data
input grid, ShellSet will extrapolate the required value with-
out calculation error but report an ignorable error. Activating
this option will cause this issue to abort the program. Fur-
thermore, the command line arguments allow a user to op-
tionally produce extra program information in a new output
file, select the misfit type used to select best models, create
a special output file to store models with misfit scores better
than a specified value, and optionally specify a misfit score
at which the grid search algorithm will stop.

ShellSet also contains a geometric mean of misfit scoring
option which can be used to rank models. This geometric
mean, which users of OrbScore would have to calculate man-
ually after each model has completed, can be comprised of

any set of the five misfits generated: SSR, GV, SD, SA and
FSR. Since SC is a score (larger is better) and not a misfit
(smaller is better), it should not be included in this geomet-
ric mean. See Table 1 for information on the error types and
Eq. (1) for the definition of the geometric mean.

By default, the geometric mean is always calculated by
ShellSet using all or any of the five noted misfits which are
calculated and reported in the output file. It may also be used
to rank the models within the grid search by using the rele-
vant command line argument at runtime and defining which
misfits to use in its calculation.

Included within the ShellSet package but separate from
its main work, there are two new Python programs which
improve the usability of the program when compared to the
stand-alone originals. First, we include a simple GUI which
helps the user to create or update key input files and select
runtime options before launching ShellSet. The GUI helps
the user to update the files related to the parameter input val-
ues, the input file list as well as the list and grid input files. It
also aids in the creation of a suitable invocation line (see the
GUI box in Fig. 2). It contains checks on some typical errors
for both file editing and program initialisation. The GUI dra-
matically simplifies the program setup and launch for new
users, while more experienced users can choose to manu-
ally edit the input files using any text editor before launching
from the terminal as with Shells. Second, we add a plotting
routine that can generate 1D, 2D or 3D scatterplots from the
main ShellSet output file. Plots generated by this routine can
be seen in Figs. 3 and 5.

This combination into a single program and the aforemen-
tioned updates have reduced errors related to manual control

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024



J. B. May et al.: ShellSet 6159

Figure 3. Visualisation of the grid search model set generated by
ShellSet. The best results are found in the lower-left corner of the
search area, corresponding to lower values for fFric and tauMax.
This plot was generated with ShellSet’s included Python scatter
plotter.

of the original individual programs. The ability to run mod-
els in parallel has saved us and our collaborators valuable
research time, allowing the exploration of multiple research
hypotheses in a shorter time. Performance analyses using two
different compute machines are shown in Sect. 5.2.

4 Real-world examples

We now present two real-world example uses of ShellSet and
its grid search option. Both examples follow the same path as
in Bird et al. (2008) and search a similar 2D parameter space.
All files for both examples are included with the ShellSet
package download: see the Code and data availability sec-
tion.

The first example is a direct comparison between the orig-
inal results in Table 2 of Bird et al. (2008) and our automated
search. In the second example we have added an extra dataset
used to score the models that was not available in Bird et al.
(2008). While Bird et al. (2008) had to manually update the
parameters within the input files to run their simulations, we
will use ShellSet’s grid search to analyse a comparable pa-
rameter space that we define as [0.025, 0.8] for fFric and
[1E12, 1E13] for tauMax (Nm−1).

In the first example, the geometric mean of misfits in
Eq. (1) is comprised of the SSR, GV, SD and SA datasets
as in Bird et al. (2008). The second example expands the
geometric mean of misfits to include the new FSR dataset.
Information on all misfit types and the geometric mean can
be found in Sect. 2.3.

Due to changes in software since 2008, we expect differ-
ent results to be calculated for the same models. Specifically,

there have been minor updates to the original software and
third-party libraries since the publication, which will affect
its results, while there have also been numerous updates to
the compilers used in the intervening years. Furthermore,
ShellSet is compiled to run on the Linux OS, whereas the
original results were obtained on a version compiled to run
on the Windows OS. These differences will lead to, for exam-
ple, different handling of variable precision at minor decimal
places, which, over multiple iterations, will compound to al-
ter model results in minor but noticeable ways. In order to ac-
count for these differences, we have re-run the previous best
model (see model Earth5-049 in Table 2 of Bird et al., 2008)
and reported the updated results in each example named New
Earth5-049.

Preliminary testing showed that the requirement of rela-
tive velocity convergence to within 0.0001 was too strict for
ShellSet; this is likely due to the aforementioned software
differences. This gave us choices regarding the linear sys-
tem solution iterations. We could alter the tolerance limit,
increase the number of allowed iterations from 50, or both.
We decided to loosen the tolerance to 0.0005 while keeping
the iterations set to 50 in order to complete all the models in
a reasonable time.

As in Bird et al. (2008), each model begins with a
trHMax limit of 0.0 Pa for the first call of Shells before up-
dating the limit to 2× 107 Pa. Parameter trHMax defines the
upper limit of basal shear tractions, so an initial value of 0.0
means that the first iteration of Shells imposes no basal shear
tractions.

A detailed analysis of the results is not within the scope
of this work. However, for each example we will offer some
observations and a basic analysis.

4.1 Using ShellSet to recreate Bird et al. (2008)

In this first example we show a recreation of the work done
by Bird et al. (2008) using ShellSet.

Our grid search was set up to perform four iterations of
Shells before a final call with updated boundary conditions,
for a total of five Shells iterations per model. After the fi-
nal run, OrbScore was used to generate misfit scores and
the geometric mean of misfits for each model, which were
used to rank the models. The geometric mean of misfits, from
Eq. (1), for this example is given as

GM= 4
√

SSSRSGVSSDSSA. (2)

The grid search partitioned the domain into nine cells in
a 3× 3 grid, with each cell represented by its central model.
The two best models of these nine were then chosen to con-
tinue to the second level, where each represented cell is fur-
ther divided into a 3× 3 grid. This was repeated with the
18 models at this second level to generate another 18 mod-
els. This three-level grid search gives a total of 41 distinct
models once the four repeated models are excluded, together
with a final resolution of 1/27 of the original ranges (from

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6160 J. B. May et al.: ShellSet

9× 1012 Nm−1 and 0.775 to 3.3× 1011 Nm−1 and 0.0287)
for tauMax and fFric, respectively.

Table 2 shows some of the results we have obtained using
ShellSet. The first two rows show the previous best model,
Earth5-049, and the scores when this model was re-run as
New Earth5-049. For brevity, we only report the models at
the first level to demonstrate the initial grid (models 1–9) and
then every model for which the geometric mean of misfits
is better than New Earth5-049. The entire search history, ex-
cluding the first level, can be seen in Table B1 of Appendix B.

It is immediately clear that, within the first nine models,
the best geometric mean results are obtained with a minimum
fFric and tauMax within their respective ranges, with fFric
being the more important of the two. This is made clearer in
Fig. 3, which maps the entire grid search.

There are eight distinct models (model 32 being a repeti-
tion of model 10) that obtained an equal or better geomet-
ric mean of misfit scores than New Earth5-049. Each one of
these eight models achieved a better SSR score than New
Earth5-049. Five of the eight have a better GV score (mod-
els 10, 29, 30, 33 and 36), but none of them has a better score
in either SD or SA. The absolute best model is model 29,
with a geometric mean of 16.29 (an improvement of 0.29).

Examining the full set of models within this test, using
Tables 2 and B1, we can see that over the entire model set no
single model has better or equal results in more than two of
the four individual scores that comprise the geometric mean
when compared to New Earth5-049.

Although a detailed analysis of these results is beyond the
scope of this work, we have plotted the horizontal velocities
of model 29 in Fig. 4 for comparison with Fig. 10 of Bird
et al. (2008). We can immediately see that our new model
has a lower maximum horizontal velocity than Earth5-049,
with a maximum of a little over 140 mma−1 compared to
153.9 mma−1. Interestingly, we can clearly see an increase
in velocities around Nepal from approximately 40 mma−1 to
approximately 60 mma−1. With all other inputs being equal
between the two models, these differences are caused solely
by the updated values of fFric and tauMax.

4.2 ShellSet with an additional fault slip rate dataset

The second example performs the same test as the first ex-
ample, with an added dataset that defines the FSR; see Ap-
pendix A for further information on this dataset. We note
that the fault slip rate dataset was not available in Bird et al.
(2008).

This additional dataset was used to generate an extra misfit
for each model, which was then used within the calculation
of the geometric mean of misfits as in Eq. (1), which becomes

GM= 5
√

SSSRSGVSSDSSASFSR. (3)

In the first two rows of Table 3, we report the best model
of Bird et al. (2008) (Earth5-049) and the best model of ex-

ample 1 (Ex1 29). We re-run these two best models, adding
the new FSR dataset to generate the fair comparison models
New Earth5-049 and New Ex1 29, respectively.

As in example 1, the search favours lower values for fFric
and tauMax. However, in this example, the more important
variable is tauMax. This search has generated four models
that are an improvement on or equal to New Earth5-049 and
New Ex1 29 (see models 28, 39, 42 and 45), with model 38
being a repeat of Ex1 29. The addition of the fault slip rate
scoring dataset has meant that every model has a better geo-
metric mean score than example 1 (see Table 2). The absolute
best model is model 28, with a geometric mean that is 0.07
lower than New Earth5-049 and 0.08 lower than New Ex1
29.

Although, as noted, every model run in both examples 1
and 2 has a lower geometric mean score in the second ex-
ample, not every reduction is equal, and so the alteration to
the geometric mean has caused alternate models to be se-
lected between the levels. This alteration takes the grid search
through a different path to find its optimal model. We will
now outline where the deviations within the search paths oc-
cur.

In example 1 the two best models of the first level are mod-
els 1 and 4 (see Table 2), while in example 2 the best models
are models 1 and 2 (see Table 3). Since all other misfit scores
remain equal between the two examples, this change from se-
lecting model 4 to selecting model 2 is wholly caused by the
addition of the fault slip rate dataset altering the geometric
mean score calculation. The best models at the second level
are also, by chance, run in both examples. In the first exam-
ple these models are models 10 and 13, while in the second
example they are models 10 and 11 (see Tables B1 and B2).
The best model in the second example is not run in the first
example: this is an effect of the updated geometric score cal-
culation.

As in example 1, we have plotted the horizontal velocities
of the best model (model 28) in Fig. 6 for simple comparison
with Figs. 4 and 10 of Bird et al. (2008). This model shows
a further reduction in the maximum horizontal velocity to
approximately 137 mma−1 and, unlike in example 1, shows
velocity magnitude results around Nepal that are similar to
Bird et al. (2008).

By comparing our two examples, we can see that, even
though the best models are those with minimum fFric and
tauMax, the addition of the fault slip rate dataset causes the
grid search (in this 2D fFric–tauMax space) to prefer models
with a lower tauMax value.

5 Performance analyses

In this section we demonstrate two different performance
tests used to check the performance of ShellSet. Firstly, we
test the effect on both the total program and the solution rou-
tine time when changing the number of MKL threads. Sec-

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024



J. B. May et al.: ShellSet 6161

Figure 4. Surface horizontal velocity field of model 29.

Table 2. Previous best model of Bird et al. (2008), Earth5-049, compared with the ShellSet grid search models. New Earth5-049 is an exact
re-run of Earth5-049 to account for differences in hardware and software. The best model, using the geometric mean score, is shown in bold
text.

Model fFric tauMax (Nm−1) SSR (mma−1) GV (mma−1) SD (°) SA (°) GM

Earth5-049 0.1 2× 1012 8.02 16.19 31.28 26.43 18.10
New Earth5-049 0.1 2× 1012 7.96 12.18 30.68 25.43 16.58
1 0.15417 2.5× 1012 9.97 13.02 31.10 24.93 17.81
2 0.4125 2.5× 1012 18.84 17.43 33.82 24.90 22.93
3 0.67083 2.5× 1012 26.57 21.09 35.00 25.36 26.56
4 0.15417 5.5× 1012 13.65 21.85 31.04 23.04 21.49
5 0.4125 5.5× 1012 21.90 24.11 33.43 22.28 25.04
6 0.67083 5.5× 1012 28.55 24.74 34.25 22.95 27.30
7 0.15417 8.5× 1012 14.90 23.66 32.51 21.94 22.40
8 0.4125 8.5× 1012 24.02 26.29 34.15 21.31 26.03
9 0.67083 8.5× 1012 30.18 27.00 35.27 22.02 28.20
10 0.06806 1.5× 1012 7.14 12.04 31.28 27.52 16.50
28 0.03935 1.17× 1012 6.57 12.27 32.00 27.65 16.34
29 0.06806 1.17 × 1012 7.03 11.70 31.57 27.10 16.29
30 0.09676 1.17× 1012 7.59 11.64 31.49 26.94 16.55
31 0.03935 1.5× 1012 6.69 12.68 31.73 27.50 16.49
32 0.06806 1.5× 1012 7.14 12.04 31.28 27.52 16.50
33 0.09676 1.5× 1012 7.74 11.96 31.03 26.35 16.58
35 0.06806 1.83× 1012 7.31 12.27 30.99 27.01 16.55
36 0.09676 1.83× 1012 7.86 12.09 30.87 25.66 16.56

Misfits are reported to two decimal places but are calculated to greater accuracy. The misfit types are SSR, GV, SD and SA. The geometric mean (GM) is
calculated as in Eq. (2).

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6162 J. B. May et al.: ShellSet

Table 3. The previous best model of Bird et al. (2008), Earth5-049, and example 1 compared with the ShellSet grid search models. New
Earth5-049 and New Ex1 29 are exact re-runs of Earth5-049 and the best model of example 1, respectively. The best model, using the
geometric mean score, is shown in bold text.

Model fFric tauMax (N m−1) SSR (mma−1) GV (mma−1) SD (°) SA (°) FSR (mma−1) GM

Earth5-049 0.1 2× 1012 8.02 16.19 31.28 26.43 × 18.10
Ex1 29 0.06806 1.17× 1012 7.03 11.70 31.57 27.10 × 16.29
New Earth5-049 0.1 2× 1012 7.96 12.18 30.68 25.43 4.42 12.73
New Ex1 29 0.06806 1.17× 1012 7.03 11.70 31.57 27.10 4.78 12.74
1 0.15417 2.5× 1012 9.97 13.02 31.10 24.93 3.84 13.10
2 0.4125 2.5× 1012 18.84 17.43 33.82 24.90 3.15 15.41
3 0.67083 2.5× 1012 26.57 21.09 35.00 25.36 3.22 17.41
4 0.15417 5.5× 1012 13.65 21.85 31.04 23.04 4.83 15.95
5 0.4125 5.5× 1012 21.90 24.11 33.43 22.28 3.23 16.63
6 0.67083 5.5× 1012 28.55 24.74 34.25 22.95 3.20 17.78
7 0.15417 8.5× 1012 14.90 23.66 32.51 21.94 4.62 16.34
8 0.4125 8.5× 1012 24.02 26.29 34.15 21.31 3.53 17.46
9 0.67083 8.5× 1012 30.18 27.00 35.27 22.02 3.43 18.51
28 0.12546 1.17 × 1012 8.46 11.85 32.06 25.78 3.93 12.66
38 0.06806 1.17× 1012 7.03 11.70 31.57 27.10 4.78 12.74
39 0.09676 1.17× 1012 7.59 11.64 31.49 26.94 4.35 12.67
42 0.09676 1.5× 1012 7.74 11.96 31.03 26.35 4.39 12.72
45 0.09676 1.83× 1012 7.86 12.09 30.87 25.66 4.44 12.73

Misfits are reported to two decimal places but are calculated to greater accuracy. The misfit types are SSR, GV, SD, SA and FSR. The GM is calculated as in Eq. (3).

Figure 5. Visualisation of the grid search model set generated by
ShellSet. The best results are found in the lower-left corner of the
search area, corresponding to lower values for fFric and tauMax.
This plot was generated with ShellSet’s included Python scatter
plotter.

ondly, we analyse the program performance when running
multiple models in parallel. All performance results reported
in this section are an average of three repeats of equal perfor-
mance tests. Each section uses an equal model for each of its
tests, and this model is consistent over all the sections.

5.1 MKL performance testing

We first test the effect that altering the number of threads
available to the MKL routines has on both the routine it-
self and the total program time. We focus this analysis on
the dgbsv routine as this is iteratively applied to the com-
plete system of equations representing the finite-element grid
(16 008× 16 008 in our global example), whereas the dgesv
routine is used to solve a 3× 3 system.

In order to analyse the effect of the MKL thread num-
ber, we perform an experiment using a single model iterated
twice on a single core (using a single MPI process), varying
only the number of threads available to the MKL routines.
Within an MKL routine the number of threads used includes
the core working in serial, so a team of 64 MKL threads is
the serial running core plus an extra 63 threads.

The experiment was performed on a single 64-core node
of the HPC cluster at INGV Rome. We use a single node
as MKL threads work in a shared-memory environment and
so cannot be divided across multiple nodes. Table 4 shows
the time taken and the calculated speedup (SU) for both the
entire program and the dgbsv routine for the model when run
with 1-64 MKL threads, while Fig. 7 plots these results.

Looking at Table 4, we can see that increasing the number
of MKL threads does improve the performance over a single
model, up to a point. Increasing the number of MKL threads
from 1 to 16 would see a speedup of approximately 5.5, re-
ducing the time spent inside the MKL routine from 120 to
22 s and accordingly reducing the time of the entire program

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024



J. B. May et al.: ShellSet 6163

Figure 6. Surface horizontal velocity field of model 28.

Table 4. Performance tests using a 64-core node. All the simulations were performed using a model on a single node, varying only the
number of MKL threads. The time, in seconds, and the speedup are reported to two decimal places.

MKL threads dgbsv time (s) dgbsv SU Program time (s) Program SU

1 120.19 × 190.97 ×

2 66.93 1.80 135.51 1.41
4 39.14 3.07 108.74 1.76
8 25.87 4.65 96.46 1.98
16 21.82 5.51 91.60 2.09
32 26.41 4.55 96.38 1.98
64 44.54 2.70 114.31 1.67

Tests were performed on a four-socket system equipped with four Xeon Gold 5218 CPUs, which are
16-core or 32-thread chips.
×SU is not calculated for the serial run as it will always be 1.

by approximately 100 s, which is not insignificant for a sin-
gle model. Furthermore, this would add up to a significant
amount of time saved over a large number of models. Adding
extra threads to the MKL routines beyond 16 began to de-
grade the performance, potentially due to the fact that the
HPC node is comprised of four CPUs with 16 cores, and so
using more than 16 threads would mean performing calcu-
lations across CPU boundaries. This can degrade the perfor-
mance by requiring cross-socket (inter-CPU) memory access
and thread barriers, which can give a reduced performance
relative to using a single CPU.

5.2 MPI performance testing

ShellSet causes no appreciable delay when individual com-
ponents are compared to the three original programs, as
the underlying software is not changed. However, the inter-
program links within ShellSet offer two opportunities for a
performance increase when compared to the original pro-
gram. Firstly, the total simulation time of each model is re-
duced thanks to the removal of the user interface during sim-
ulations. Secondly, the MPI framework made possible by
these new links allows numerous models to be run in parallel.
We now provide an analysis of these two enhancements.

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6164 J. B. May et al.: ShellSet

Figure 7. Speedup plot for the dgbsv routine and program using
2-64 MKL threads.

5.2.1 Performance gain from removing the user
interface

Removing the need for a user interface between the formerly
independent program units decreases the time required to
complete any model or set of models. The links, which would
otherwise require a user to feed output from one program into
the next, are now performed automatically by ShellSet. Com-
paring the time taken by ShellSet to utilise these links to a
user is a tricky task as the time taken depends on the user and
their abilities, so this is not something which we will show.
However, we report the following comparison from our ex-
perience.

Table 2 of Bird et al. (2008) shows 18 models in which
the fFric and tauMax variables were varied. Each model re-
quired one run of OrbData, four to five iterations (as stated
in the text) of Shells and one run of OrbScore. With all file
IOs controlled manually by the user, these 18 models (72–
90 Shells runs) took 4 d to 1 week when performed in a se-
rial manner. We performed a realistic test where we alter the
number of both MPI processes and MKL threads, testing the
performance over 18 models on a desktop machine.

Following the approach outlined in Bird et al. (2008), each
timed model consists of using OrbData to perform an update
to the finite-element grid, four Shells iterations, a fifth Shells
iteration (using updated boundary conditions) and a single
OrbScore run to score the final run. We use a model that we
know completes fully, meaning it converges within the user-
defined MKL iteration limit and passes all input variable cri-
teria.

Table 5 reports the time taken for various MPI process and
MKL thread pairings to perform 18 models. It shows that
ShellSet is able to perform 18 models with five Shells iter-
ations in less than 90 min and as fast as 48 min. Although

Table 5. Performance test using an Intel Core i9-12900 2.4 GHz
CPU desktop with 64 GB RAM, 16 physical cores (8 performance
cores, 8 efficient cores) and 24 threads. The times are reported to
the nearest second (mm:ss).

Processes 18 models

1 88:25
2 58:55
4 47:36
8 49:09
16 53:03

One worker uses six MKL
threads, 2 workers use four MKL
threads, 4 workers use two MKL
threads, and 8 and 16 workers use
one MKL thread.

the results shown in Table 5 were obtained from more recent
hardware and software, a large portion of the time taken for
the 18 models of Bird et al. (2008) was lost to the user inter-
face and times when the user was not present – these are not
issues with ShellSet.

5.2.2 Performance gain from parallel models

The use of an MPI framework provides a second opportunity
for performance improvement by allowing multiple models
to be run in parallel. This can be tested in a more traditional
fashion by comparing the time taken to complete a given
number of models using a given number of processes. We
also report the ratio between the serial and parallel times,
known as the speedup.

For simplicity, the tests were performed over a single
search level of a 2D parameter space, varying the number
of models and the number of worker processes. We do not
report the results where the number of processes is greater
than that of the models, as ShellSet contains a check on the
number of models and worker processes to prevent an over-
allocation of compute resources. In reality, it would likely
have a negative effect by unnecessarily tying up compute re-
sources. For these tests we have fixed the number of MKL
threads to one in order to maximise the number of cores
available for MPI processes. We have also fixed all the mod-
els to be equal (after the model generation procedure) in or-
der to be able to more fairly compare the timing results across
all the numbers of the models, the processes and both ma-
chines used. Each of the tests iterates the Shells solution pro-
cedures twice.

Table 6 reports the time in minutes and seconds for the
test performed on a typical desktop computer. The bracketed
entries are the speedup compared to a single worker. Table 7
reports only the speedup for the test carried out on a 64-core
HPC node. We calculate the SU using

SU=
Ts

Tp
,

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024



J. B. May et al.: ShellSet 6165

Table 6. Performance test using an Intel Core i9-12900 2.4 GHz CPU desktop with 64 GB RAM, 16 physical cores (8 performance cores,
8 efficient cores) and 24 threads. Each time is reported to the nearest second (mm:ss) and is an average of three tests. The speedup, shown in
brackets, is calculated using seconds to five decimal places but is reported to two decimal places.

Workers Models

2 4 8 16 32 64

1 6:25 12:49 25:41 51:11 102:19 205:13
2 3:18 (1.95) 6:42 (1.91) 13:40 (1.88) 27:35 (1.86) 55:15 (1.85) 110:07 (1.86)
4 × 3:57 (3.25) 7:47 (3.30) 15:54 (3.22) 32:54 (3.11) 66:04 (3.11)
8 × × 6:49 (3.77) 13:06 (3.91) 26:20 (3.89) 52:02 (3.94)
16 × × × 13:29 (3.80) 26:48 (3.82) 52:27 (3.91)

All simulations were performed with the number of threads used within MKL routines fixed at one.
×Test setups with more workers than models are not performed.

where Ts is the time taken by a single worker and Tp is the
time taken by multiple workers.

The speedup values reported (bracketed) in Table 6 are
around 2–4. In fact, the speedup results for two and four pro-
cesses are very reasonable at approximately 1.9 and 3.3, re-
spectively. Increasing the number of processes beyond this
however yields very little in extra speedup and eventually a
decrease in performance (see Fig. 8 for a plot of the speedup).
This could be because this computer is relatively small (with
eight performance cores and eight efficient cores), and in-
creasing the number of processes starts to strain the system.
By increasing the number of MPI processes performing mod-
els in parallel without increasing the total machine size, we
increase the load on the memory bandwidth. This will even-
tually cause a transition from a compute-bound situation to
a memory-bound situation, which would seem to occur be-
tween four and eight MPI processes and would then explain
the levelling-off performance after eight processes. It is also
the case that this test was performed in a WSL2 Linux en-
vironment hosted in Windows, and therefore we cannot be
certain about the true availability of the cores since there will
be some background OS work related to Windows, not least
of which is the running of the WSL2 environment.

Since the general user does not usually worry about
speedup results and instead focuses mostly on time, and de-
spite poor speedup results for a larger number of processes,
the results using up to four and even eight processes are very
interesting. The small increase in performance between four
and eight processes is worth considerable time-saving when
calculating 64 models with roughly 14 min saved and calcu-
lating 32 models with over 6 min saved.

The speedup values reported in Table 7, which shows re-
sults obtained on a single HPC node, range from 2 to al-
most 30. The speedup results for 2, 4, 8 and 16 processes are
very good at approximately 2, 3.8, 7.2 and 13.6, respectively,
remaining close to the ideal values. As in Table 6, increas-
ing the number of processes beyond this started to see less
increase in performance, but not to the same extent. Even at
32 processes, the speedup is reasonable at approximately 22.

Figure 8. Speedup plot for 2, 4, 8 and 16 workers performing 16, 32
and 64 models, on a desktop machine. Values are given (in brackets)
in Table 6.

We only see poor performance at 64 cores – when the node
is full. Figure 9 shows a plot of the speedup values. Interest-
ingly, we can see that, unlike in Fig. 8, where the three plots
have the same behaviour, in Fig. 9 the behaviour is equal un-
til the node is full, when we see quite a large difference in
the performance between the three plots. This is possibly a
symptom of the number of models performed within the test,
where running more models hides some poor performance
as a result of some models taking longer than others to com-
plete, although this would likely be borne out in other results
as well. Another possibility is a more general unpredictabil-
ity when a compute node is full.

We can see in these results the benefit of a larger, and ded-
icated, compute system compared to a smaller hosted envi-
ronment, with the speedup results of Table 7 remaining much
closer to the ideal value for longer. One possible reason for
the slowdown of the performance increase, seen between 16
and 32 MPI processes, is that, as noted in relation to the

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6166 J. B. May et al.: ShellSet

Table 7. Speedup results from performance tests using a 64-core node. The node is a four-socket system equipped with four Xeon Gold 5218
CPUs, which are 16-core or 32-thread chips. The speedup is calculated using seconds to five decimal places but is reported to two decimal
places.

Workers Models

2 4 8 16 32 64 128 256

2 2.00 1.99 2.00 2.00 1.98 2.01 2.01 2.01
4 × 3.84 3.83 3.84 3.82 3.86 3.89 3.92
8 × × 7.02 7.10 7.12 7.19 7.27 7.43
16 × × × 13.44 13.65 13.81 13.75 13.77
32 × × × × 22.09 22.34 22.58 22.51
64 × × × × × 18.63 23.88 27.69

All simulations were performed with the number of threads used within MKL routines fixed at one.
×Test setups with more workers than models are not performed.

Figure 9. Speedup plot for 2, 4, 8, 16, 32 and 64 workers performing
64, 128 and 256 models, on a 64-core node of a HPC machine.
Values are given in Table 7.

previous MPI performance example, we are increasing the
load on the memory bandwidth and possibly transitioning
from a compute-bound situation to a memory-bound situa-
tion. A reason for this levelling-off performance occurring in
a higher number of MPI processes, in comparison to the first
MPI performance test, could be that the HPC system has a
higher memory bandwidth. It is also true that there will be
fewer interfering background processes on a dedicated com-
pute system compared to WSL2 hosted in the Windows OS.

The two tests using two different types of Linux environ-
ment on two different machines prove that there is consid-
erable time to be saved by running models in parallel. Our
tests have shown results which are 4 times faster on a typical
desktop machine and almost 30 times faster using a dedicated
compute node.

In general, searching algorithms which contract through
levels such as the grid search could suffer from performance

loss at the interface between the end of one level and the
beginning of the next. Indeed, the grid search employed in
ShellSet would suffer from such a degradation. However, the
examples shown use a single level to generate the number of
models required, and so this would not be present in these
performance results.

Taken together, the results of the MKL and MPI perfor-
mance experiments suggest that, at least for our example
global model, it is more important to run many models in
parallel rather than fewer highly parallel models. Since the
speedup performance shown in Table 4 quickly falls away
from the ideal value (whereas the speedup results shown in
Tables 6 and 7 remain close to the ideal value), we can see
that the most important aspect of parallelism for ShellSet is
a multi-model approach. Trivially, when running a relatively
small number of models on a large enough machine, the most
sensible approach is likely to be a combination of the two
parallel schemes by performing multi-threaded MKL routine
calls in parallel. We note that the best approach will depend
on the underlying model size, its complexity as well as the
size and technical characteristics of the compute machine,
all of which will be personal to the user.

6 Conclusions and future work

This article has outlined a new MPI parallel dynamic neotec-
tonic modelling software package, ShellSet, which has been
designed for use by the wider geodynamic modelling com-
munity. The simplified hands-off nature of ShellSet reduces
user–program interactions to a minimum, while the addi-
tion of a GUI further simplifies those remaining interactions.
These improvements open ShellSet up to a less experienced
user and reduce setup errors for all users.

We showed in Sect. 4 two examples of ShellSet’s abilities
within the target field of study by first improving on an exist-
ing global model developed in Bird et al. (2008), and then we
further improved on that with the addition of a new dataset
of fault slip rates. Both examples were completed in a frac-

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024



J. B. May et al.: ShellSet 6167

tion of the time taken to generate the existing global model
of Bird et al. (2008).

In upcoming work, ShellSet will be used to optimise the
rheology of the lithosphere in the Apennine region for bet-
ter dynamical simulations of neotectonics and the associated
seismicity. We also plan to use ShellSet in work forming pre-
dictions of seismic hazard within the central Mediterranean
region.

ShellSet was developed and tested on a computer with
widely available capabilities. We have demonstrated that
ShellSet achieves improved performance (relative to the orig-
inal software) and speedup when running multiple models
in parallel on both typical and larger HPC machines (see
Sect. 5). Despite the improved performance, in Sect. 5 we
noted potential reasons for the levelling-off performance
when running multiple models in parallel, one of them be-
ing that we may be crossing from a compute-bound to a
memory-bound situation. The grid search algorithm could
also cause performance loss at the transition between con-
tracting levels, however our tests did not analyse this possi-
bility. An analysis of parameter space sampling methods, as
done in Reuber (2021), could yield a method which would
allow ShellSet to better utilise its parallelism, particularly on
HPC machines. One candidate method is the NAplus algo-
rithm (Baumann et al., 2014), which was shown to scale well
and which is built on the well-known Neighbourhood algo-
rithm introduced in Sambridge (1999). Another is a random
walk sampling performed using multiple parallel and inde-
pendent random walks. While these sampling methods would
not solve the issue of performance loss when transitioning to
a memory-bound situation, more efficient HPC machine use
would enable the parameter space to be searched to a finer
level and would provide faster results, and the improved use
of larger HPC structures would allow use of much larger (in
terms of memory) models.

Appendix A: Fault slip rate (FSR) dataset

Here we outline the process followed to create a usable FSR
dataset, as used in example 2 of Sect. 4.

In Styron and Pagani (2020), the authors report a global
active fault database of approximately 13 500 faults collected
through the combination of regional datasets. They note that
approximately 77 % of the faults have slip rate information:
this provided us with 10 395 estimated initial faults for po-
tential use in our work.

Due to the requirements of our program, the database
needed some cleaning. Of the approximately 13 500 initial
fault traces, around 9500 faults either have no offset rate or
lack upper and lower limits which identify a rate based on a
dated offset feature (unbounded rates are model rates, which
we do not consider to be data). A further 684 lack rake infor-
mation, and 1022 fault traces lack the necessary dip informa-
tion. After discounting these fault traces, we were left with

2487 traces, which might be used in OrbScore if each aligns
with a fault element of the current finite-element grid.

Those fault traces remaining are mostly located in one of
four areas: the Mediterranean–Tethyan orogenic belt, well-
covered from Portugal to Pakistan; Japan; New Zealand; and
California. Many of these almost 2500 fault traces (e.g. those
in Japan) did not correspond in position (and orientation) to
any of the fault elements of the existing finite-element grid as
used in Bird et al. (2008). Therefore, they were also removed
from our dataset.

Remaining fault traces were subjected to the following two
comparison filters with respect to the finite-element grid of
2008: firstly, the overall azimuth (endpoint to endpoint) of
the fault trace must be within a ± 15° tolerance of the grid
fault element azimuth; secondly, the shortest distance from
the fault trace to the grid fault element must be less than one-
eighth of the length of that fault element.

After applying these conditions to the fault traces, we were
left with 931 associations. Accounting for the fault traces of
the database which match with multiple fault elements left us
with 572 faults.

The fault elements of the finite-element grid file that have
multiple associations within the new dataset needed to be
controlled to avoid over-weighting of those elements with
more associations. This was done by summing the product
of the “adjacent” fault length (limited to the length of the
fault element) with the offset rate for all the associated traces
and then dividing the sum by the length of the fault element
to get the aggregated offset rate that the fault element should
match.

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6168 J. B. May et al.: ShellSet

Appendix B: Tables related to demonstrated real-world
examples

Table B1. Example-1 grid search results, excluding the first level, which is shown in Table 2.

Global model number fFric tauMax (Nm−1) SSR (mma−1) GV (mma−1) SD (°) SA (°) GM

10 0.06806 1.50× 1012 7.14 12.04 31.28 27.52 16.50
11 0.15417 1.50× 1012 9.43 12.38 32.09 25.69 17.61
12 0.24028 1.50× 1012 11.75 13.45 32.80 26.23 19.20
13 0.06806 2.50× 1012 8.06 13.19 30.49 26.12 17.06
14 0.15417 2.50× 1012 9.97 13.02 31.10 24.93 17.81
15 0.24028 2.50× 1012 12.18 14.17 32.00 24.83 19.24
16 0.06806 3.50× 1012 8.47 14.02 30.24 25.26 17.35
17 0.15417 3.50× 1012 10.79 14.80 30.25 24.13 18.48
18 0.24028 3.50× 1012 13.09 16.28 31.59 24.09 20.07
19 0.06806 4.50× 1012 10.11 19.12 30.36 24.49 19.47
20 0.15417 4.50× 1012 12.31 19.80 30.61 23.39 20.44
21 0.24028 4.50× 1012 14.52 20.56 31.61 23.25 21.64
22 0.06806 5.50× 1012 11.35 21.05 30.87 23.89 20.49
23 0.15417 5.50× 1012 13.65 21.85 31.04 23.04 21.49
24 0.24028 5.50× 1012 16.02 22.64 31.57 22.67 22.57
25 0.06806 6.50× 1012 11.84 21.57 31.41 23.35 20.80
26 0.15417 6.50× 1012 14.39 22.75 31.40 22.90 22.03
27 0.24028 6.50× 1012 17.19 23.80 32.12 22.34 23.27
28 0.03935 1.17× 1012 6.57 12.27 32.00 27.65 16.34
29 0.06806 1.17× 1012 7.03 11.70 31.57 27.10 16.29
30 0.09676 1.17× 1012 7.59 11.64 31.49 26.94 16.55
31 0.03935 1.50× 1012 6.69 12.68 31.73 27.50 16.49
32 0.06806 1.50× 1012 7.14 12.04 31.28 27.52 16.50
33 0.09676 1.50× 1012 7.74 11.96 31.03 26.35 16.58
34 0.03935 1.83× 1012 6.89 13.04 31.46 27.23 16.65
35 0.06806 1.83× 1012 7.31 12.27 30.99 27.01 16.55
36 0.09676 1.83× 1012 7.86 12.09 30.87 25.66 16.56
37 0.03935 2.17× 1012 7.17 13.43 31.21 27.00 16.88
38 0.06806 2.17× 1012 7.56 12.64 30.65 26.58 16.70
39 0.09676 2.17× 1012 8.10 12.44 30.48 25.29 16.69
40 0.03935 2.50× 1012 7.56 13.95 31.04 26.82 17.22
41 0.06806 2.50× 1012 8.06 13.19 30.49 26.12 17.06
42 0.09676 2.50× 1012 8.63 12.96 30.33 24.88 17.05
43 0.03935 2.83× 1012 7.60 14.23 31.07 27.35 17.41
44 0.06806 2.83× 1012 8.21 13.48 30.40 25.65 17.14
45 0.09676 2.83× 1012 8.95 13.41 30.19 24.58 17.28

Misfit types listed in Table 1.

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024



J. B. May et al.: ShellSet 6169

Table B2. Example-2 grid search results, excluding the first level, which is shown in Table 3.

Model fFric tauMax (Nm−1) SSR (mma−1) GV (mma−1) SD (°) SA (°) FSR (mma−1) GM

10 0.06806 1.50× 1012 7.14 12.04 31.28 27.52 4.80 12.89
11 0.15417 1.50× 1012 9.43 12.38 32.09 25.69 3.63 12.85
12 0.24028 1.50× 1012 11.75 13.45 32.80 26.23 3.20 13.42
13 0.06806 2.50× 1012 8.06 13.19 30.49 26.12 4.98 13.33
14 0.15417 2.50× 1012 9.97 13.02 31.10 24.93 3.84 13.10
15 0.24028 2.50× 1012 12.18 14.17 32.00 24.83 3.33 13.55
16 0.06806 3.50× 1012 8.47 14.02 30.24 25.26 5.68 13.88
17 0.15417 3.50× 1012 10.79 14.80 30.25 24.13 4.40 13.87
18 0.24028 3.50× 1012 13.09 16.28 31.59 24.09 3.62 14.24
19 0.32639 1.50× 1012 14.61 14.66 33.78 26.32 3.16 14.32
20 0.41250 1.50× 1012 18.22 15.84 34.67 26.27 3.27 15.37
21 0.49861 1.50× 1012 21.68 17.40 35.14 26.01 3.25 16.21
22 0.32639 2.50× 1012 15.25 16.03 33.10 24.99 3.11 14.45
23 0.41250 2.50× 1012 18.84 17.43 33.82 24.90 3.15 15.41
24 0.49861 2.50× 1012 22.18 18.94 34.28 24.85 3.17 16.25
25 0.32639 3.50× 1012 16.32 18.42 32.50 23.78 3.32 15.05
26 0.41250 3.50× 1012 19.90 19.88 33.14 23.59 3.10 15.72
27 0.49861 3.50× 1012 23.11 21.20 33.84 23.79 3.08 16.48
28 0.12546 1.17× 1012 8.46 11.85 32.06 25.78 3.93 12.66
29 0.15417 1.17× 1012 9.28 12.16 32.36 25.93 3.60 12.78
30 0.18287 1.17× 1012 10.03 12.51 32.58 26.09 3.38 12.93
31 0.12546 1.50× 1012 8.63 12.12 31.74 25.46 3.97 12.74
32 0.15417 1.50× 1012 9.43 12.38 32.09 25.69 3.63 12.85
33 0.18287 1.50× 1012 10.17 12.71 32.28 25.84 3.41 12.97
34 0.12546 1.83× 1012 8.84 12.36 31.29 24.99 4.02 12.80
35 0.15417 1.83× 1012 9.57 12.59 31.76 25.35 3.69 12.90
36 0.18287 1.83× 1012 10.35 12.97 31.93 25.53 3.45 13.04
37 0.03935 1.17× 1012 6.57 12.27 32.00 27.65 5.31 13.05
38 0.06806 1.17× 1012 7.03 11.70 31.57 27.10 4.78 12.74
39 0.09676 1.17× 1012 7.59 11.64 31.49 26.94 4.35 12.67
40 0.03935 1.50× 1012 6.69 12.68 31.73 27.50 5.32 13.16
41 0.06806 1.50× 1012 7.14 12.04 31.28 27.52 4.80 12.89
42 0.09676 1.50× 1012 7.74 11.96 31.03 26.35 4.39 12.72
43 0.03935 1.83× 1012 6.89 13.04 31.46 27.23 5.34 13.26
44 0.06806 1.83× 1012 7.31 12.27 30.99 27.01 4.83 12.94
45 0.09676 1.83× 1012 7.86 12.09 30.87 25.66 4.44 12.73

Misfit types listed in Table 1.

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024



6170 J. B. May et al.: ShellSet

Code and data availability. The exact version of ShellSet used to
produce the results shown in this paper is archived on Zenodo at
https://doi.org/10.5281/zenodo.7986808 (May et al., 2023), along
with all the input files, scripts to compile and run ShellSet, the GUI
and the scatter plotting routine. The most current version of ShellSet
is always available from the project website at https://github.com/
JonBMay/ShellSet (last access: 23 March 2024) under the GPL-3.0
license. At the time of publication this version is identical to the
Zenodo archive, except for an updated Makefile, which now points
to a general installation location for the MKL; User Guide updates
which reflect this change and which provide information on what
to change in the Makefile for other MKL installation locations; and
minor README updates.

Author contributions. JBM wrote the ShellSet code and additional
Python routines, designed and ran the examples and performance
tests, wrote the user guide, and wrote the first draft of the article.
After this all the authors contributed. PB and MMCC supervised
the correct combination of software in the final program. PB gen-
erated the new fault slip rate dataset and generated the map figures.
MMCC devised the work.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. We thank INGV Rome for providing access to
the HPC cluster Mercalli. We thank the editor Lutz Gross and the re-
viewers Lavinia Tunini and Rene Gassmoeller, whose detailed and
constructive comments helped to greatly improve the quality of this
work.

Financial support. Jon B. May has been supported by
INGV (internal research funding “PIANETA DINAMICO –
ADRIABRIDGE”).

Review statement. This paper was edited by Lutz Gross and re-
viewed by Lavinia Tunini and Rene Gassmoeller.

References

Austermann, J., Ben-Avraham, Z., Bird, P., Heidbach, O., Schubert,
G., and Stock, J. M.: Quantifying the forces needed for the rapid
change of Pacific plate motion at 6 Ma, Earth Planet. Sc. Lett.,
307, 289–297, https://doi.org/10.1016/j.epsl.2011.04.043, 2011.

Baumann, T. S., Kaus, B. J., and Popov, A. A.: Con-
straining effective rheology through parallel joint geo-
dynamic inversion, Tectonophysics, 631, 197–211,
https://doi.org/10.1016/j.tecto.2014.04.037, 2014.

Bird, P.: Testing hypotheses on plate-driving mechanisms with
global lithosphere models including topography, thermal struc-
ture, and faults, J. Geophys. Res.-Sol. Ea., 103, 10115–10129,
https://doi.org/10.1029/98JB00198, 1998.

Bird, P., Ben-Avraham, Z., Schubert, G., Andreoli, M., and
Viola, G.: Patterns of stress and strain rate in south-
ern Africa, J. Geophys. Res.-Sol. Ea., 111, B08402,
https://doi.org/10.1029/2005JB003882, 2006.

Bird, P., Liu, Z., and Rucker, W. K.: Stresses that drive the plates
from below: Definitions, computational path, model optimiza-
tion, and error analysis, J. Geophys. Res.-Sol. Ea., 113, B11406,
https://doi.org/10.1029/2007JB005460, 2008.

Carafa, M., Barba, S., and Bird, P.: Neotectonics and
long-term seismicity in Europe and the Mediterranean
region, J. Geophys. Res.-Sol. Ea., 120, 5311–5342,
https://doi.org/10.1002/2014JB011751, 2015.

Choi, E.-S., Lavier, L., and Gurnis, M.: SNAC v1.2.0, Com-
putational Infrastructure for Geodynamics [code], https://
geodynamics.org/resources/snac (last access: 1 May 2024),
2008.

Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H.: Determi-
nation of earthquake source parameters from waveform data for
studies of global and regional seismicity, J. Geophys. Res.-Sol.
Ea., 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825,
1981.

Ekström, G., Nettles, M., and Dziewoński, A.: The global
CMT project 2004–2010: Centroid-moment tensors for
13,017 earthquakes, Phys. Earth Planet. In., 200, 1–9,
https://doi.org/10.1016/j.pepi.2012.04.002, 2012.

Fuller, C. W., Willett, S. D., and Brandon, M. T.: Plasti v1.0.0,
Computational Infrastructure for Geodynamics [code], https:
//geodynamics.org/resources/plasti (last access: 1 May 2024),
2006.

Jian-jian, Z., Feng-li, Y., and Wen-fang, Z.: Tectonic characteristics
and numerical stress field simulation in Indosinian-early Yansha-
nian stage, Lower Yangtze Region, Geological Journal of China
Universities, 16, 474–482, 2010.

Kalbas, J. L., Freed, A. M., Ridgway, K. D., Freymueller, J., Haeus-
sler, P., Wesson, R., and Ekström, G.: Contemporary fault me-
chanics in southern Alaska, Active Tectonics and Seismic Poten-
tial of Alaska, Vol. 179, https://doi.org/10.1029/179GM18, 2008.

King, S. D., Raefsky, A., and Hager, B. H.: ConMan v3.0.0, Zenodo
[code], https://doi.org/10.5281/zenodo.3633152, 2020.

Kong, X. and Bird, P.: SHELLS: A thin-shell program for
modeling neotectonics of regional or global lithosphere
with faults, J. Geophys. Res.-Sol. Ea., 100, 22129–22131,
https://doi.org/10.1029/95JB02435, 1995.

Liu, Z. and Bird, P.: Finite element modeling of neotectonics in New
Zealand, J. Geophys. Res.-Sol. Ea., 107, ETG 1-1–ETG 1-18,
https://doi.org/10.1029/2001JB001075, 2002a.

Liu, Z. and Bird, P.: North America plate is driven westward
by lower mantle flow, Geophys. Res. Lett., 29, 17-1–17-4,
https://doi.org/10.1029/2002GL016002, 2002b.

May, J.: Fortran Grid Search v1.0.0, Zenodo [code],
https://doi.org/10.5281/zenodo.6940088, 2022.

Geosci. Model Dev., 17, 6153–6171, 2024 https://doi.org/10.5194/gmd-17-6153-2024

https://doi.org/10.5281/zenodo.7986808
https://github.com/JonBMay/ShellSet
https://github.com/JonBMay/ShellSet
https://doi.org/10.1016/j.epsl.2011.04.043
https://doi.org/10.1016/j.tecto.2014.04.037
https://doi.org/10.1029/98JB00198
https://doi.org/10.1029/2005JB003882
https://doi.org/10.1029/2007JB005460
https://doi.org/10.1002/2014JB011751
https://geodynamics.org/resources/snac
https://geodynamics.org/resources/snac
https://doi.org/10.1029/JB086iB04p02825
https://doi.org/10.1016/j.pepi.2012.04.002
https://geodynamics.org/resources/plasti
https://geodynamics.org/resources/plasti
https://doi.org/10.1029/179GM18
https://doi.org/10.5281/zenodo.3633152
https://doi.org/10.1029/95JB02435
https://doi.org/10.1029/2001JB001075
https://doi.org/10.1029/2002GL016002
https://doi.org/10.5281/zenodo.6940088


J. B. May et al.: ShellSet 6171

May, J., Bird, P., and Carafa, M.: ShellSet v1.1.0, Zenodo [code],
https://doi.org/10.5281/zenodo.7986808, 2023.

Moresi, L., Wijins, C., Dufour, F., Albert, R., and O’Neill, C.: El-
lipsis3D v1.0.2, Computational Infrastructure for Geodynamics
[code], https://geodynamics.org/resources/ellipsis3d (last access:
1 May 2024), 2007.

Moresi, L., Zhong, S., Gurnis, M., Armendariz, L., Tan, E.,
and Becker, T.: CitcomCU v1.0.3, Computational Infrastruc-
ture for Geodynamics [code], https://geodynamics.org/resources/
citcomcu (last access: 1 May 2024), 2009.

Moresi, L., Landry, W., Hodkison, L., Turnbull, R., Lemiale, V.,
May, D., Stegman, D., Velic, M., Sunter, P., and Giordani,
J.: Gale v2.0.1, Computational Infrastructure for Geodynam-
ics [code], https://geodynamics.org/resources/gale (last access: 1
May 2024), 2012.

Moresi, L., Zong, S., Lijie, H., Conrad, C., Tan, E., Gurnis, M.,
Choi, E.-S., Thoutireddy, P., Manea, V., McNamara, A., Becker,
T., Leng, W., and Armendariz, L.: CitcomS v3.3.1, Zenodo
[code], https://doi.org/10.5281/zenodo.7271920, 2014.

Reuber, G. S.: Statistical and deterministic inverse methods in
the geosciences: introduction, review, and application to the
nonlinear diffusion equation, GEM – International Journal on
Geomathematics, 12, 1–49, https://doi.org/10.1007/s13137-021-
00186-y, 2021.

Sambridge, M.: Geophysical inversion with a neighbourhood algo-
rithm – I. Searching a parameter space, Geophys. J. Int., 138,
479–494, https://doi.org/10.1046/j.1365-246X.1999.00876.x,
1999.

Stamps, D., Flesch, L., and Calais, E.: Lithospheric buoyancy forces
in Africa from a thin sheet approach, Int. J. Earth Sci., 99, 1525–
1533, https://doi.org/10.1007/s00531-010-0533-2, 2010.

Styron, R. and Pagani, M.: The GEM global ac-
tive faults database, Earthq. Spectra, 36, 160–180,
https://doi.org/10.1177/8755293020944182, 2020.

Tunini, L., Jiménez-Munt, I., Fernandez, M., Vergés, J., and Bird,
P.: Neotectonic deformation in central Eurasia: A geodynamic
model approach, J. Geophys. Res.-Sol. Ea., 122, 9461–9484,
https://doi.org/10.1002/2017JB014487, 2017.

https://doi.org/10.5194/gmd-17-6153-2024 Geosci. Model Dev., 17, 6153–6171, 2024

https://doi.org/10.5281/zenodo.7986808
https://geodynamics.org/resources/ellipsis3d
https://geodynamics.org/resources/citcomcu
https://geodynamics.org/resources/citcomcu
https://geodynamics.org/resources/gale
https://doi.org/10.5281/zenodo.7271920
https://doi.org/10.1007/s13137-021-00186-y
https://doi.org/10.1007/s13137-021-00186-y
https://doi.org/10.1046/j.1365-246X.1999.00876.x
https://doi.org/10.1007/s00531-010-0533-2
https://doi.org/10.1177/8755293020944182
https://doi.org/10.1002/2017JB014487

	Abstract
	Introduction
	Software
	OrbData
	Shells
	OrbScore

	ShellSet
	Grid search
	ShellSet parallelism
	User interface

	Real-world examples
	Using ShellSet to recreate Bird et al. (2008)
	ShellSet with an additional fault slip rate dataset

	Performance analyses
	MKL performance testing
	MPI performance testing
	Performance gain from removing the user interface
	Performance gain from parallel models


	Conclusions and future work
	Appendix A: Fault slip rate (FSR) dataset
	Appendix B: Tables related to demonstrated real-world examples
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

