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Abstract. Meteorological fronts are important due to their
associated surface impacts, including extreme precipitation
and extreme winds. Objective identification of fronts is there-
fore of interest in both operational weather prediction and
research settings. The aim of this study is to produce a
front identification algorithm based on earlier studies that
is portable and scalable to different resolution datasets. We
have made a number of changes to an earlier objective front
identification algorithm, applied these to reanalysis datasets,
and present the improvements associated with these changes.
First, we show that a change in the order of operations yields
smoother fronts with fewer breaks. Next, we propose the
selection of the front identification thresholds in terms of
climatological quantiles of the threshold fields. This allows
for comparison between datasets of differing resolutions. Fi-
nally, we include a number of numerical improvements in the
implementation of the algorithm and better handling of short
fronts, which yield further benefits in the smoothness and
number of breaks. This updated version of the algorithm has
been made fully portable and scalable to different datasets
in order to enable future climatological studies of fronts and
their impacts.

1 Introduction

Atmospheric fronts are of great importance for the day-to-
day variability in weather in the mid-latitudes. They are as-
sociated with a large proportion of both total and extreme
precipitation, as demonstrated by case studies (Browning,
2004); modelling (Browning, 1986; Sinclair and Keyser,
2015); and, more recently, long-term climatologies (Berry

et al., 2011b; Parfitt et al., 2017b; Schemm et al., 2017).
They are also strongly linked to extreme wind events (Dowdy
and Catto, 2017; Catto et al., 2019; Raveh-Rubin and Catto,
2019; Catto and Dowdy, 2021) and are key to air–sea inter-
action (Parfitt et al., 2017b). With a wealth of global gridded
observationally constrained and model-produced data, there
is a desire to be able to objectively identify these frontal fea-
tures in the gridded data. This avoids the huge time require-
ments of a manual analysis and allows for the features to be
linked to high-impact weather, such as extreme precipitation
or winds (Catto et al., 2012; Catto and Pfahl, 2013; Dowdy
and Catto, 2017). The application of the methods to model
data of historical and future climate also allows for the mod-
els to be evaluated on their ability to capture the dynamical
features and their connection to precipitation events (Leung
et al., 2022) and to investigate the future of such features and
how they may impact water resources and natural hazards
(Catto et al., 2014).

A number of methods have been developed to perform
such objective identification. Hewson (1998, referred to here-
after as H98) compiled a summary of methods used to iden-
tify frontal features in gridded data and further developed the
methods based on a thermal front parameter. Thomas and
Schultz (2019) highlighted the three main factors required in
identifying fronts with such a thermal front parameter: first,
the thermal variable and vertical level to be considered, e.g.
temperature, potential temperature, or equivalent (or wet-
bulb) potential temperature at 850 hPa; second, a function of
the variable, e.g. the gradient or some second or third deriva-
tive; and, finally, some thresholds. They found that different
thermal variables each had pros and cons and could be se-
lected depending on the purpose of the study. The study by
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Jenkner et al. (2010) used equivalent potential temperature
and its second derivative to place the frontal lines. This re-
sults in the fronts lying in the centre of a frontal zone rather
than at the leading edge, as a synoptic meteorologist would
typically put them. Berry et al. (2011b) directly applied the
methods of H98 to gridded data at 2.5°× 2.5° resolution,
placing fronts on the warm side of the strong temperature
gradient. This also included the addition of a numerical line-
joining algorithm, which is used to link the frontal points to
line features.

Other methods have used dynamical information to iden-
tify fronts. Simmonds et al. (2012) used information solely
on wind shifts. This method was found to work better in
the Southern Hemisphere than the Northern Hemisphere by
Schemm et al. (2015). A combination of this and the ther-
mal method was used by Bitsa et al. (2021) to identify cold
fronts in the Mediterranean, with the method tailored to suit
the smaller spatial scale of fronts in this region. Parfitt et al.
(2017b) used a combination of vorticity and temperature, re-
quiring both a thermal gradient and a wind shift. While each
method has its advantages and disadvantages, many of the
methods typically identify many of the same features (Hope
et al., 2014).

A major difficulty in applying objective front identifica-
tion is the many datasets and differing resolutions. This is
particularly an issue when using gradients of thermal proper-
ties since the resolution of the data will have a large impact
on these gradients. The thresholds used to define fronts need
to be varied depending on the resolution. Recently, Soster
and Parfitt (2022) investigated the sensitivity of results to the
use of different datasets and found a large difference in front
frequency between the datasets. Higher-resolution datasets
consistently show higher frequency of frontal points, with the
differences reduced when re-gridded to a common grid. This
was shown to lead to large differences between datasets in
the proportion of precipitation attributed to fronts.

Despite the many methods of identifying fronts and issues
and uncertainties associated with each of them, the thermal
front parameter method of H98 has been successful in iden-
tifying the key climatological features of front frequency and
the link to other variables in a number of studies (e.g. Berry
et al., 2011a, b; Catto et al., 2012, 2014; Catto and Pfahl,
2013; Dowdy and Catto, 2017). Those studies used either
the ERA-40 reanalysis of the European Centre for Medium-
Range Weather Forecasts (ECMWF) (Uppala et al., 2005)
at 2.5°× 2.5° resolution or, later, the ECMWF ERA-Interim
(Dee et al., 2011) reanalysis at 0.75°×0.75° resolution. How-
ever, the code used in those studies was not easily portable
due to it being written in a mixture of the National Cen-
ter for Atmospheric Research (NCAR) Command Language
(NCL, 2011) and FORTRAN 77 (1978) and did not easily
scale to the ECMWF ERA5 reanalysis at 0.25°× 0.25° or
other high-resolution datasets. The aim of this study is to
create a portable implementation of the front identification
method of H98 that is able to scale to contemporary high-

resolution (re)analyses with horizontal grid spacings of 0.25°
or less. We demonstrate a quantile-based method of tuning
the thresholds. First, the data used are described in Sect. 2.
Section 3 gives a description of the thermal front parameter
method and the improvements over the previous implemen-
tation of the algorithm. In Sect. 4, we compare the front cli-
matology using the new method with previous methods and
different datasets. We finish in Sect. 5 with a discussion of the
benefits and challenges associated with such objective iden-
tification methods.

2 Data

The updated front identification procedure is applied to the
ECMWF ERA-Interim reanalysis (ECMWF reanalysis – In-
terim; Dee et al., 2011). The data used here have a resolu-
tion of 0.75°× 0.75° on a regular longitude–latitude grid.
The 6-hourly instantaneous air temperature and specific hu-
midity fields at the 850 hPa level were used to compute the
wet-bulb potential temperature, θW, using the direct method
of Davies-Jones (2008, Eq. 3.8), in order to identify fronts.
The 6-hourly eastward and northward wind components at
850 hPa were used to compute the front speed using Eq. (13)
of H98, allowing for classification into cold, warm, or quasi-
stationary fronts. ERA-Interim was chosen over the more re-
cent ERA5 reanalysis (ECMWF reanalysis v5; Hersbach et
al., 2020) for the primary analysis since the updated pro-
cedure is of greatest benefit in middle- and low-resolution
models and the resolution of ERA-Interim is equal to that
of the highest resolution among standard CMIP6 general cir-
culation models (GCMs). Our baseline for comparison is the
global climatology of fronts in ERA-Interim at 0.75°×0.75°,
produced by Dowdy and Catto (2017) using the method of
Berry et al. (2011b). We also present a high-resolution clima-
tology based on applying the updated front identification pro-
cedure to the ERA5 reanalysis using the same 6-hourly fields
as ERA-Interim but with a grid spacing of 0.25°× 0.25°.

3 Methodology

Following H98 and Berry et al. (2011b), fronts are identified
in the wet-bulb potential temperature field, θW, at 850 hPa.
As described in H98 (their Eq. 5) and implemented in Berry
et al. (2011b), fronts are located as the zero contour of

∇ ·∇ |∇θW| = 0 or ∇2
|∇θW| = 0. (1)

For a one-dimensional front (Type 1 front in H98), this is
simply the third derivative of the wet-bulb potential temper-
ature, θW (see Fig. 3 of H98 for an intuitive explanation). We
will refer to Eq. (1) as the thermal front locator (TFL). In
practice, most atmospheric fronts are curved and not simple
one-dimensional objects. H98 derived an alternative (their
Eq. 6) to Eq. (1) based on the computation of “five-point
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mean axes” designed to mitigate the effects of frontal cur-
vature on the computation of Eq. (1), which can lead to noise
and exaggerated frontal curvature. Although the alternative
definition was preferred by H98, we keep the definition in
Eq. (1) primarily for compatibility with Berry et al. (2011b)
and the numerous studies which have utilised that implemen-
tation. However, the option to use the alternative definition
may be included in a future version of the code documented
by this study.

H98 defined two additional criteria that must be met in or-
der for a zero contour of Eq. (1) to be considered a front.
First, the rate of change in θW across the front in the direc-
tion of cold air must exceed some threshold value K1. This
criterion was formalised in Eq. (9) of H98 as

∇ |∇θW| ·
∇θW

|∇θW|
<K1, where K1 ≤ 0Km−2. (2)

This is the thermal front parameter (TFP) defined by Renard
and Clarke (1965). For a one-dimensional front, this crite-
rion simply states that the second derivative of θW must be
negative, placing the front on the warm side of the gradient.
Second, the gradient of θW in the adjacent baroclinic zone
(ABZ) must be greater than some threshold value K2. This
criterion was formalised in Eq. (11) of H98 as

|∇θW|ABZ >K2, where K2 ≥ 0Km−1, (3)

with

|∇θW|ABZ = |∇θW| +mχ |∇ |∇θW|| ,

where m= 1/
√

2 and χ is the grid length. For a one-
dimensional front, this criterion simply states that the mag-
nitude of the gradient of θW must be greater than K2 by a
fraction m of a grid length in the direction of greatest in-
crease in the gradient of θW, i.e. inside the ABZ. The value
of m of 1/

√
2 was suggested by H98, and we found it to be

effective at the resolution of ERA-Interim (0.75°) and ERA5
(0.25°).

Fronts are identified as warm, cold, or quasi-stationary us-
ing the front speed defined by Eq. (13) of H98, which is given
here as
V · ∇ |∇θW|

|∇ |∇θW||
=K3, (4)

where V = (u,v) is the vector wind field at 850 hPa. Fol-
lowing Berry et al. (2011b), we adopt a threshold of K3 =

1.5ms−1 such that front points are defined as belonging to
warm fronts if they have a speed that exceeds 1.5m s−1 and
as belonging to cold fronts if they have a speed of less than
−1.5ms−1. All other front points are defined as belonging to
quasi-stationary fronts.

The automatic front identification method described by
Eqs. (1)–(4) has been re-implemented in the R statistical
computing language (R Core Team, 2021). The new im-
plementation includes one key methodological change de-
scribed in Sect. 3.1 as well as a number of numerical updates
compared to that of Berry et al. (2011b).

Figure 1. Front identification in ERA-Interim on 1 January 2001,
00:00 UTC. (a) Using the mask-then-join approach and (b) us-
ing the contour-then-mask approach. Black contours show ∇ ·
∇ |∇θW| = 0, and red shading indicates regions where TFP≤−5×
10−11 Km−2 by masking in panel (a) and interpolation in panel (b).
Circles indicate front points located by each algorithm.

3.1 Methodological changes

The intention of this study was to create a portable and
scalable implementation of the front identification method
of H98 as implemented by Berry et al. (2011b) since that
implementation has been successfully used in a number of
other studies (e.g. Berry et al., 2011a; Catto and Pfahl, 2013;
Dowdy and Catto, 2017). However, one key methodological
change was implemented regarding the order of operations
when identifying front objects as lines. Berry et al. (2011b)
take what we will call a “mask-then-join” approach, illus-
trated in Fig. 1a. First they locate all those grid boxes that are
that satisfy the TFP criterion in Eq. (2) to form a mask (the
ABZ gradient criterion in Eq. 3 is not used). Zero points of
the TFL in Eq. (1) are located by an exhaustive search using
linear interpolation between only those grid boxes included
in the TFP mask defined Eq. (2). Finally, a line-joining al-
gorithm is used to join the zero points of the TFL in Eq. (1)
to form lines representing fronts. Points are joined with their
nearest neighbour if the Euclidean distance calculated in de-
grees of longitude and latitude between two points is lower
than a specified threshold. This requires the repeated calcula-
tion of the distance between the current point and all remain-
ing un-joined points, making the algorithm computationally
expensive. Berry et al. (2011b) also apply a minimum front
length criteria of 250 km.

In contrast, H98 originally proposed a “contour-then-
mask” approach, which we adopt here and illustrate in
Fig. 1b. We identify zero points in the complete TFL field
defined by Eq. (1) and join them into lines using a contour-
ing algorithm, specifically the contourLines() function
in R. Zero points are again located by linear interpolation,
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but only zero points located in adjacent grid boxes are con-
sidered for joining into lines, reducing the computational ex-
pense compared to an exhaustive search and avoiding the
need for repeatedly calculating the distance between a large
number of points. We then interpolate the values of the fields
defined by the TFP and ABZ criteria in Eqs. (2) and (3), re-
spectively, on the points located by the contouring algorithm.
Only points that meet the TFP and ABZ criteria defined by
Eqs. (2) and (3) are retained, leaving a set of pre-joined line
segments representing fronts.

The two approaches are compared in Fig. 1. Zero points
in Eq. (1) usually occur between grid points. That means
that adjacent grid boxes meeting the TFP criteria in Eq. (2)
are required in order to find zero points of the TFL using
Eq. (1) by the mask-then-join approach. At or below the
0.75°×0.75° resolution of ERA-Interim, the region that sat-
isfies the TFP criterion in Eq. (2) is often narrow, frequently
only one grid box wide. Therefore, the mask-then-join ap-
proach frequently fails to locate front points. This behaviour
can be seen in Fig. 1a where no front points are identified
between 44.25 and 45.75° N since two zonally adjacent grid
boxes would be required for successful interpolation of a zero
point between two masked points given the orientation of the
front. This may result in some features not being identified
at all or, more frequently, gaps in what should be continu-
ous features. The line-joining algorithm used by Berry et al.
(2011b) attempts to mitigate this using a search radius larger
than one grid length, but this is only partially effective. In
Fig. 1a, the search radius is effective in joining the southern-
most located point but fails to bridge the gap from between
44.25 and 45.75° N to the region between 46.5 and 48.0° N,
where multiple adjacent grid points might once again enable
the location of zero points. The number of points located in
that northern region is then too small to meet the minimum
front length criteria on their own. The contour-then-mask
approach originally proposed by H98 and demonstrated in
Fig. 1b is able to successfully identify the whole front as
a single object. The masked region is shown for illustra-
tion only; in practice, the masking variables are interpolated
directly onto the potential front points located on the zero
contour. Overall, the contour-then-mask approach results in
more fronts and front points identified and fewer breaks, as
can be seen in the examples in Fig. 3a and b and the clima-
tologies in Fig. 4b and c. The expected decrease in the num-
ber of fronts due to there being fewer breaks is compensated
by the number of new fronts located due to the increased
sensitivity of the contour-then-mask approach to identifying
potential front points. In some cases, these new fronts were
missed completely by the mask-then-join approach; in oth-
ers, they fail to meet the length criteria without additional
points located by the contour-then-mask approach.

3.2 Choosing the thresholds and level of smoothing

Although automated methods offer the promise of objec-
tive feature identification, it is still usually necessary to set
some key parameters subjectively. For the front identification
method of H98, there are three parameters that require tun-
ing: the amount of smoothing applied to the θW field; the TFP
threshold, K1; and the gradient threshold, K2. Some studies
have compared outputs with manual analyses by meteorolo-
gists to calibrate the parameters. While comparing to charts
is a necessary check of an objective algorithm, calibrating in
this way is difficult and time-consuming and calibrates the
algorithm to the subjective judgement of those meteorolo-
gists. Also, all three parameters depend on the resolution of
the data. Therefore, the calibration must be repeated for each
new dataset or datasets brought to a common resolution for
comparison. Instead, we offer some suggestions for objective
calibration criteria.

We first address the smoothing problem since the amount
of smoothing applied to θW affects the choice of K1 and K2.
The purpose of smoothing is to remove local minima and
maxima that might break up otherwise continuous features.
We particularly wish to avoid local extrema in the TFL field
defined by Eq. (1), which will appear as short closed contours
of TFL= 0Km−3. Therefore, it makes sense to examine the
effect of smoothing on the average length of the contours.
The noise in the TFL field will in part be due to the choice to
use Eq. (1), as implemented by Berry et al. (2011b), to define
the location of the fronts rather than the method preferred
by H98 (their Eq. 6), designed to quell the amplification of
frontal curvature. Previous studies that applied the method of
Berry et al. (2011b) to ERA-Interim used n= 2 passes of a
simple five-point average to smooth the θW field. In testing on
ERA-Interim data, it was found that the average length of the
contours of TFL= 0Km−3 initially increases rapidly with
the number of passes of the five-point smoother, but after
6–10 passes, the effect of further smoothing diminishes (see
Fig. S1 in the Supplement). Therefore, we settled on n= 8
passes of a five-point smoother.

Equation (1) was retained for its simplicity and compati-
bility with Berry et al. (2011b) and subsequent studies. How-
ever, the alternative method preferred by H98 may be made
available as an option in future versions of the code associ-
ated with this study. Jenkner et al. (2010) classify all closed
contours in the front locating field encircling an area smaller
than a given threshold as being associated with (potential)
local rather than synoptic fronts. Such a criterion introduces
additional subjectivity but would effectively reduce the noise
when identifying synoptic fronts, possibly allowing for less
smoothing to be used and further distinguish fronts associ-
ated with orography and other local features. The issue of
noise- and surface-driven gradients was also discussed in
Hewson (2001).

It is common to define weather phenomena as events ex-
ceeding some percentile of the climatological distribution.
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Therefore, we propose a quantile-based approach to setting
the thresholds K1 and K2. The advantage of setting thresh-
olds in terms of climatological quantiles is that the thresh-
olds should be comparable between datasets of differing res-
olutions, while the actual values can differ quite widely. For
example, Berry et al. (2011b) used a threshold for K1 of
−8×10−12 Km−2 at 2.5° resolution in ERA-40 compared to
the threshold of−5×10−11 Km−2 at 0.75° resolution used in
ERA-Interim by Dowdy and Catto (2017). In order to com-
pute quantiles, we require climatologies of the TFP and the
magnitude of the gradient obtained by evaluating Eqs. (2)
and (3), respectively, over an extended time period for the re-
gion of interest. The time period considered was 1979–2018
in ERA-Interim. Since most fronts occur in the extra-tropical
regions, we will focus our attention there. We seek quantiles
of the TFP and the magnitude of the gradient that produce
continuous fronts in good agreement with published charts
for the North Atlantic and Europe, focusing on January and
July 2020. Combinations of quantiles of both the TFP and
the magnitude of the gradient were systematically compared
(see Figs. S2–S4 in the Supplement). We set the first thresh-
old, K1, to the 25th percentile (0.25 quantile) of the climato-
logical distribution of the TFP (see Fig. S2). In the Northern
Hemisphere extra-tropics this is around−1.6×10−11 Km−2.
We set the second threshold, K2, to be equal to the 50th
percentile (0.50 quantile) of the climatological distribution
of the magnitude of the gradient of θW (see Fig. S3). In
the Northern Hemisphere extra-tropics (23.4–66.6° N), this is
around 7.5×−6 Km−1. These choices are subjective, and an
operational meteorologist might make other choices. How-
ever, in the absence of strong physical reasoning, these quan-
tiles have a simple symmetry, i.e. each is approximately the
50th percentile of the allowed range (since K1 < 0Km−2

and, globally, the 50th percentile of TFP is approximately
0 Km−2), and produce continuous fronts in good agreement
with published charts (Fig. S4).

Figure 2 illustrates the monthly and latitudinal climato-
logical variation in the chosen quantiles of the TFP and the
magnitude of the gradient of θW. The distributions of both
the TFP and the magnitude of the gradient are very different
in the tropics compared to the extra-tropics. The value of the
TFP chosen for K1 is biased toward the upper latitudes of
the Northern Hemisphere extra-tropics, where fronts are fre-
quently observed and associated with extra-tropical cyclones.
The chosen value of the magnitude of the gradient lies in the
middle of the seasonal variation in the extra-tropics, which
is fairly constant between around 35–65° N and 30–50° S,
with greater spread in the Northern Hemisphere. The cho-
sen values are broadly representative of the quantiles across
the seasons in both the Northern and Southern Hemisphere
extra-tropics. Given the relative insensitivity to reasonable
values of K1 and K2 shown in the Supplement, the chosen
values should be representative across the seasons and both
hemispheres for both criteria.

For comparison, previous studies applying the method
of Berry et al. (2011b) to ERA-Interim used a threshold
of K1 =−5× 10−11 Km−2 after n= 2 smoothing passes
(e.g. Dowdy and Catto, 2017; Catto and Raveh-Rubin, 2019;
Raveh-Rubin and Catto, 2019; Catto and Dowdy, 2021).
The ABZ gradient threshold, K2, in Eq. (3) was not imple-
mented by Berry et al. (2011b), which is equivalent to setting
K2 = 0Km−1 since |∇θW| ≥ 0 by definition. Our threshold,
K1, is higher primarily due to the additional smoothing, but
the exclusion of the second threshold, K2, may have caused
Berry et al. (2011b) to choose a lower threshold forK1 in or-
der to remove unwanted features that could more effectively
have been eliminated by implementing the second threshold,
K2.

3.3 Comparing fronts from different datasets

When comparing analyses from different weather and cli-
mate datasets, the most common approach is to interpolate
all the datasets to a common resolution, which is usually
the lowest resolution among them. For some features, such
as fronts that are more easily identified in higher-resolution
data, this can be limiting. The objective calibration criteria
described in Sect. 3.2 provide one route by which fronts
could be identified at the native resolution of each dataset
and then compared. The quantile-based criteria will identify
the same fraction of grid boxes potentially containing front
points for any reasonable resolution and number of smooth-
ing passes. However, computing the required climatologies is
time-consuming. An alternative is to keep the thresholds K1
and K2 constant and adjust the number of smoothing passes
such that the climatological distributions of the TFP and
the magnitude of the gradient are similar between datasets.
Specifically, the quantiles used to set the thresholds should be
similar. In testing, it was found that matching the threshold
quantile of the TFP field provided a more consistent compar-
ison than that of the gradient field. It is sufficient to compare
the quantiles for only a small subset of the data, provided that
the same subset is used for each dataset, avoiding the need to
compute a long climatology in order to determine the thresh-
olds. In testing, various lengths and spatial extents of train-
ing data were considered for comparing ERA-Interim and
ERA5 – from 1 month to 30 years – for the Northern Hemi-
sphere extra-tropics, Southern Hemisphere extra-tropics, or
the whole globe. Finally, 1 month of data was found to be
sufficient to consistently determine an appropriate number of
smoothing passes. The procedure is not sensitive to either
the month of the year or the spatial extent among those con-
sidered. In practice, we used January 2001 for the Northern
Hemisphere extra-tropics, which is consistent with the exam-
ples in Figs. 1 and 3.
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Figure 2. Choosing the thresholds K1 and K2 from ERA-Interim data (1979–2018) with n= 8 smoothing passes. (a) The 25th percentile
of the TFP and (b) the 50th percentile of |∇θW| by latitude and month of the year. Each coloured line represents a different month: blue for
December, January, and February; yellow for March, April, and May; red for June, July, and August; and orange for September, October,
and November. Horizontal dotted lines represent the major circles of latitude (66.6° N, 23.4° N, 23.4° S, and 66.6° S). Vertical dashed lines
indicate the thresholds chosen in the text: −1.6× 10−11 Km−2 in panel (a) and 7.5× 10−6 Km−1 in panel (b).

3.4 Numerical updates

Berry et al. (2011b) used repeated applications of a simple
central finite-difference approximation to the first derivative
to evaluate all the derivatives in Eqs. (1)–(4) at each grid box.
The simple approximation uses one grid box on either side
of the box in question to approximate the first derivative to
second-order accuracy. The zonal and meridional derivatives
are evaluated separately using one box to the left and right
or above and below, respectively. However, repeated appli-
cations of the approximation to the first derivative degrade
the accuracy for higher derivatives. In contrast, we use an
explicit central finite-difference approximation to the second
derivatives required to evaluate ∇2θW =

∂2θW
∂x2 +

∂2θW
∂y2 when

computing the TFL in Eq. (1), avoiding the need for repeated
applications of the first derivative and maintaining second-
order accuracy. The zonal and meridional terms, ∂2θW

∂x2 and
∂2θW
∂y2 , respectively, are evaluated separately. The computation

of both the first and the second derivatives was also updated
to maintain second-order accuracy at the edges of the do-
main using forward and backward differences. The increased
accuracy at the edges has no additional computational cost,
and the improved approximation to the second derivative is
actually more efficient than repeated applications of the first
derivative.

Other numerical differences include updates to the com-
putation of relative humidity and wet-bulb potential temper-
ature (θW). Relative humidity is required to compute wet-
bulb potential temperature. If only specific rather than rela-
tive humidity data are available, relative humidity can then
be computed from temperature, specific humidity, and pres-
sure (which is constant, at 850 hPa). The implementation by
Berry et al. (2011b) used the table-based approach built into
the NCAR Command Language to compute relative humid-
ity. The new implementation uses the mixed-phase parame-
terisation of relative humidity from the ECMWF Integrated
Forecasting System (ECMWF, 2021, Sect. 7.4.2). In the new
implementation, the wet-bulb potential temperature (θW) is
computed using the direct method of Davies-Jones (2008,
Eq. 3.8) rather than the iterative method implemented by
Berry et al. (2011b). The final numerical difference between
the two implementations is how short fronts are handled. In
the original application, Berry et al. (2011b) reject any fronts
that are less than three points long. In later applications, this
was updated to a great-circle distance-based criterion where
fronts whose end points are less than 250 km apart are re-
jected. In our implementation, we sum the great-circle dis-
tance between all adjacent points in each front and reject
fronts whose total length is shorter than 250 km. The length
threshold of 250 km is a subjective choice that has been re-
tained for approximate compatibility with previous studies.
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Figure 3. Comparison of methods in ERA-Interim on 1 January 2001, 00:00 UTC. (a) Mask-then-join with n= 2,K1 =−5×10−11 Km−2,
and K2 = 0Km−1; (b) contour-then-mask with n= 2, K1 =−5× 10−11 Km−2, and K2 = 0Km−1; (c) contour-then-mask with n= 8,
K1 =−1.6× 10−11Km−2, and K2 = 7.5× 10−6 Km−1; and (d) contour-then-mask in ERA5 with n= 96, K1 =−1.6× 10−11 Km−2,
and K2 = 7.5× 10−6 Km−1. Thin black lines indicate contours of wet-bulb potential temperature θW. Thick blue lines indicate cold fronts,
thick red lines indicate warm fronts, and thick black lines indicate quasi-stationary fronts. All fronts were classified using a threshold of
K3 = 1.5Km−1.

4 Results

4.1 Comparison with previous implementations

Figure 3 illustrates the difference between the mask-then-
join and contour-then-mask methods and the effect of the
updated parameter choices (i.e. n, K1, and K2) in ERA-
Interim on 1 January 2001, 00:00 UTC. The mask-then-join
approach using the original parameters (Fig. 3a) clearly iden-
tifies fronts, but they are fractured with frequent gaps. The
contour-then-mask (Fig. 3b) results in much smoother front
features with fewer gaps and more fronts identified. Fig-
ure 3c shows the results of the updated parameters with
more smoothing cycles and stronger thresholds. Figure 3d
shows the fronts identified in ERA5 and is discussed further
in Sect. 4.3. Compared to the original parameters, the front
features are smoother, with fewer breaks, and many spuri-
ous local fronts have been removed. One feature that can be
seen is a warm front running parallel to the (predominantly)
cold front extending from the Azores across the south of the
United Kingdom. Such features were noted by H98 and are
associated with a warm conveyor belt running adjacent to the
front. Hewson and Titley (2010) use a third masking criteria
based on potential temperature rather than wet-bulb potential

temperature that may be implemented in a future version of
the code documented in this study.

Figure 4 compares the front frequency climatologies from
three different implementations of the H98 algorithm applied
to ERA-Interim with identical parameters (i.e. the same num-
ber of smoothing passes and thresholds K1 and K2): the im-
plementation of Berry et al. (2011b) used by Dowdy and
Catto (2017) (Fig. 4a), a version incorporating our numeri-
cal updates but using the original mask-then-join approach
(Fig. 4b), and our final version using the contour-then-mask
approach (Fig. 4c). Figure 4d shows that our numerical up-
dates result in a slightly lower number of fronts identified
in most of the Northern and Southern Hemisphere extra-
tropics and a slightly higher number of fronts identified in
the tropics. Figure 4e and f compare our final version with
the implementation of Berry et al. (2011b) and the version
incorporating only the numerical updates. The numerical up-
dates produce relatively modest differences in the number of
fronts identified (Fig. 4d). Small decreases are seen in the
extra-tropics, and larger increases are seen in the tropics.
The move from the mask-then-join to the contour-then-mask
approach has a greater effect in the extra-tropics (Fig. 4f).
In the Northern and Southern Hemisphere storm tracks, the
number of fronts being identified increases by between 40 %
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Figure 4. Comparison of global climatologies of front frequency (% of 6-hourly frames from 1979–2018). (a) Dowdy and Catto (2017),
(b) updated implementation using the mask-then-join approach, (c) updated implementation using the contour-then-mask approach, (d) per-
centage difference between mask-then-join and Dowdy and Catto (2017) ((b-a)/a), (e) percentage difference between contour-then-mask
and Dowdy and Catto (2017) ((c− a)/a), and (f) percentage difference between contour-then-mask and mask-then-join ((c− b)/b). All
climatologies were computed with n= 2 smoothing cycles, K1 =−5× 10−11 Km−2, and K2 = 0Km−1.

Figure 5. Updated parameters. Percentage difference between
ERA-Interim climatology of front frequency computed using up-
dated parameters, n= 8, K1 =−1.6× 10−11 Km−2, and K2 =
7.5× 10−6 Km−1, and the original parameters, n= 2, K1 =−5×
10−11 Km−2, and K2 = 0Km−1.

and 80 %. The increases are a combination of increases in
the length of previously identified fronts and the addition of
fronts that were not previously identified, as demonstrated in
Figs. 1 and 3. The greatest relative increase in the number
of fronts identified is seen in the tropics. Comparing Fig. 4e
and f shows that this is due to a combination of the numeri-
cal updates and the move to the contour-then-mask approach.
The relative increase in the tropics is very large due to the
scarcity of fronts in the tropics making even a small increase
seem large. The absolute number of fronts detected in the
tropics remains small compared to the extra-tropics (Fig. 4c).

While changing the implementation of the front identifi-
cation leads to an increase in the number of fronts identified,
as shown in Fig. 4, the next aspect of the updated method is
a change to the parameters used. Figure 5 compares the cli-
matology of front frequency of our final version with updated
parameters (i.e. smoothing passes and thresholdsK1 andK2;
shown in Fig. 6a) applied to ERA-Interim against the imple-
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Figure 6. Updated global climatologies of front frequency as a percentage of times. (a) All fronts, (b) cold fronts, (c) warm fronts,
and (d) quasi-stationary fronts. All climatologies were computed with n= 8 smoothing cycles, K1 =−1.6× 10−11 Km−2, K2 = 7.5×
10−6 Km−1, and K3 = 1.5ms−1.

mentation by Berry et al. (2011b) with the original param-
eters. The updated parameters result in slightly fewer fronts
identified in almost all regions due to the increased smooth-
ing, making the climatology more similar to earlier estimates
but with the smoother individual fronts given by the contour-
then-mask method. The greatest decreases are seen on the
edges of the tropics, adjacent to regions with high front ac-
tivity. This pattern is to be expected due to the rapid drop-off
in the climatological quantile values of the masking parame-
ters in the tropics in Fig. 2.

4.2 Front climatology from ERA-Interim

Figure 6 shows the climatology of front frequency of our
final version with updated parameters applied to ERA-
Interim, including the breakdown into cold, warm, and quasi-
stationary fronts. Figure 6a allows for a direct comparison
with the climatologies in Fig. 4, showing that while the up-
dated parameters reduce the number of fronts identified com-
pared only to the updated numerical implementation, overall,
more fronts are still identified in almost all regions than in
earlier versions. Figure 6b and c show that cold and warm
fronts occur with similar frequencies in most extra-tropical
regions, as previously shown in Berry et al. (2011b). Fig-
ure 6d shows that quasi-stationary fronts occur most often
where winds are weaker, particularly in the horse latitudes
close to 30° N and 30° S, the inter-tropical convergence zone

(ITCZ) close to the Equator and adjacent to high orography,
as expected.

Figure 7 breaks the classification of fronts down further,
showing cold and warm fronts by season. Unsurprisingly,
cold fronts in the Northern Hemisphere are most common
at the beginning of the storm track regions of both Atlantic
and Pacific oceans in northern winter (DJF; Fig. 7a). In con-
trast, warm fronts in northern summer (JJA; Fig. 7g) tend to
outnumber cold fronts (Fig. 7c). In agreement with Berry et
al. (2011b), the seasonal distribution of fronts in the South-
ern Hemisphere is much more stable. Cold fronts are slightly
more common though less widely distributed in the South-
ern Hemisphere during southern summer (DJF; Fig. 7a) than
in southern winter (JJA; Fig. 7c), which is consistent with
Berry et al. (2011b) and the climatology of frontogenesis by
Satyamurty and de Mattos (1989). The large number of warm
fronts near Antarctica (JJA; Fig. 7f–h) is likely related to the
strong temperature gradients between the sea surface and sea
ice.

4.3 Front climatology from ERA5

The ERA5 reanalysis has a higher resolution than ERA-
Interim, with a grid spacing of 0.25°× 0.25° compared to
0.75°× 0.75° for ERA-Interim. For ERA5, a total of n= 96
smoothing cycles were required to make the climatologies of
the TFP and gradient similar to ERA-Interim. Figure 3d il-
lustrates fronts identified over Europe and the North Atlantic
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Figure 7. Updated seasonal climatologies of front frequency. Cold fronts are shown in panels (a)–(d) and warm fronts in panels (e)–(h)
for (a, e) DJF, (b, f) MAM, (c, g) JJA, and (d, h) SON. All climatologies were computed with n= 8 smoothing cycles, K1 =−1.6×
10−11 Km−2, K2 = 7.5× 10−6 Km−1, and K3 = 1.5ms−1.

on 1 January 2001, 00:00 UTC. As expected, the features are
very similar to those identified in ERA-Interim against which
ERA5 was calibrated (Fig. 3c). Figure 8 compares the fre-
quency of fronts identified in ERA5 with that in ERA-Interim
when fronts are identified in ERA5 at 0.25°× 0.25° grid
spacing with n= 96 smoothing cycles but identical thresh-
olds to those used for ERA-Interim and then aggregated to
0.75°×0.75° grid spacing for comparison with ERA-Interim.
Aggregation is performed by counting individual fronts iden-

tified at the higher resolution passing through the lower-
resolution grid. When aggregated to the same resolution,
more fronts are identified almost everywhere in ERA5 than
in ERA-Interim. Since aggregation is performed by count-
ing individual fronts, this indicates that ERA5 is able to re-
solve more fronts due to its higher resolution. The pattern of
increase broadly follows the general distribution of fronts,
with more fronts seen where they were already common,
particularly in the storm tracks where front frequency in-
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Figure 8. ERA5 compared to ERA-Interim. (a) ERA5 climatol-
ogy of all fronts at 0.75°× 0.75° and (b) percentage difference be-
tween ERA5 and ERA-Interim. The ERA5 climatology was com-
puted with n= 96 smoothing cycles, K1 =−1.6× 10−11 Km−2,
K2 = 7.5× 10−6 Km−1, and K3 = 1.5ms−1. ERA5 fronts were
identified at 0.25°× 0.25° and then re-gridded to 0.75°× 0.75° for
comparison with ERA-Interim.

creases by between 20 % and 40 %. The greatest percentage
increases are seen in the ITCZ region to the east and west
of South America, where very few fronts were identified in
ERA-Interim (and therefore represents a very small absolute
increase in frequency) and is mostly associated with quasi-
stationary fronts (Fig. 9d). Decreases in frequency are pri-
marily associated with areas of high orography, which are in
turn likely associated with the improved representation of the
orography in the higher-resolution dataset.

Figure 9 shows the climatology of fronts by type identi-
fied in ERA5 at its native 0.25°× 0.25° resolution. Due to
the smaller grid boxes, the frequency is necessarily lower
than for ERA-Interim in Fig. 6 and the aggregated data in
Fig. 8. One ERA-Interim grid box contains nine ERA5 grid
boxes. A perfectly straight front passing through one ERA-
Interim grid box would typically pass through only three of
the nine associated ERA5 grid boxes. Therefore, one might
expect the front frequency in ERA5 at its native resolution to
be approximately one-third of the frequency in ERA-Interim.
Comparing Figs. 6 and 9 shows that this is approximately the
case.

Figure 10 shows the seasonal breakdown of cold and warm
fronts in ERA5, which is provided to be able to compare the

most-up-to-date climatology from ERA5 with previous stud-
ies. In general, the maximum warm front frequency occurs at
higher latitudes than the maximum cold front frequency due
to the structure of extra-tropical cyclones and the associated
poleward transport of warm air. During DJF especially, the
high frequencies of atmospheric fronts that are influenced by
the sea surface temperature (SST) fronts associated with the
Gulf Stream in the North Atlantic and Kuroshio current in the
North Pacific are clearly visible. The influence of the SST on
the atmosphere is more marked for higher-resolution ocean
and atmosphere (Parfitt et al., 2016, 2017a).

5 Discussion

In this paper, we have presented an updated implementa-
tion of the automatic front identification method of Berry
et al. (2011b) based on H98. The updated implementation
was designed specifically to scale to modern high-resolution
datasets. It is open-source and does not require compilation,
making it extremely portable. Despite not requiring compila-
tion, computational performance of the new implementation
in R is improved over earlier versions that were implemented
in NCL with compiled components. Performance improve-
ments come primarily from three areas: (i) the improved ef-
ficiency of the contouring algorithm compared to the line-
joining algorithm, (ii) the vectorisation of many calculations
to avoid unnecessary loops, and (iii) the reduced memory us-
age by avoiding pre-allocating unnecessarily large arrays. In-
deed, 1 month of global ERA-Interim data at 6-hourly inter-
vals and 0.75°×0.75° resolution can be processed in around
6 min using a single core of a laptop based on an Intel i7-
8565U with a theoretical maximum speed of 4.6 GHz. The
same amount of global ERA5 data at 0.25°× 0.25° can be
processed in around 1 h. Memory requirements are minimal
since only one time step is processed at once. The improved
scalability enables us to present high-resolution climatolo-
gies of cold, warm, and quasi-stationary fronts for all seasons
from the ERA5 reanalysis.

In addition to several numerical improvements, the revised
implementation uses the contour-then-mask approach origi-
nally proposed by H98 rather than the mask-then-join ap-
proach used by Berry et al. (2011b). The advantages of the
contour-then-mask approach are demonstrated by example
and by comparison of climatologies which show an increased
number of fronts identified almost everywhere. Gaps in what
should be continuous fronts are reduced in ERA-Interim,
and greater improvements are expected in lower-resolution
datasets for the reasons demonstrated in Fig. 1. This improve-
ment will be useful when linking frontal features to precipi-
tation or winds (or compound extreme events) as in Catto and
Dowdy (2021) or when using more object-based connections
such as Papritz et al. (2014).

Most automatic feature detection algorithms require a cal-
ibration or training step involving comparison to analyses
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Figure 9. ERA5 global climatologies. (a) All fronts, (b) cold fronts, (c) warm fronts, and (d) quasi-stationary fronts. All climatologies were
computed with n= 96 smoothing cycles, K1 =−1.6× 10−11 Km−2, K2 = 7.5× 10−6 Km−1, and K3 = 1.5ms−1.

by a meteorologist. While this step cannot be neglected, we
propose a quantile-based approach to setting thresholds for
front identification. Setting thresholds in terms of climato-
logical quantiles makes the thresholds more easily compara-
ble between datasets of differing resolution. By considering
the climatological distributions of the masking variables, we
have demonstrated for the first time the regional and seasonal
variation in the TFP and gradient fields. Subsequent anal-
yses may consider adopting latitudinally or seasonally vary-
ing thresholds in order to capture features that may be missed
by or eliminate spurious features included by the used con-
stant thresholds. In ERA5, this results in a greater number of
fronts identified even after smoothing similarly to the results
of Parfitt et al. (2017b) after interpolation to lower resolu-
tion. Smoothing has the advantage of allowing for feature
identification to be conducted at the native resolution of each
dataset.

In addition to the various numerical and methodological
improvements presented in this study, further numerical im-
provements, methodological choices, and alternative choices
of meteorological field are possible. In addition to improv-
ing the accuracy of the finite-difference approximations of
the second derivative fields to the second order, more accu-
rate finite-difference schemes could be used for both the first-
and second-order derivatives. Following Berry et al. (2011b),
we identify fronts as zero contours in the field defined by
Eq. (5) of H98, which is effectively the third derivative of
the wet-bulb potential temperature field at 850 hPa. Firstly,
meteorological fields other than wet-bulb potential temper-

ature could be considered; see H98 for a list of previously
considered fields. Secondly, H98 derived an alternative ex-
pression for the front locator field, designed to reduce the
frontal curvature. We retained the simpler definition for com-
patibility with Berry et al. (2011b) and subsequent studies,
but the alternative definition preferred by H98 may be in-
cluded as an option in a future version of the code associated
with this study. Additional diagnostics, such as distinguish-
ing between local and synoptic fronts suggested by Jenkner
et al. (2010) or the additional criteria proposed by Hewson
and Titley (2010) designed to eliminate spurious features as-
sociated with proximity to the warm conveyor belt, could
also be implemented. Furthermore, while all distance calcu-
lations are carried out on a sphere in the updated implementa-
tion, contouring and interpolation still take place on a regular
longitude–latitude grid. Greater accuracy could be achieved
at high latitudes by also carrying out these operations on a
sphere.

While cyclone identification algorithms routinely include
the ability to track cyclonic features over subsequent time
steps, similar feature-tracking algorithms are almost absent
for fronts. Front tracking is inherently more complex than cy-
clone tracking since fronts are complex line objects, whereas
cyclones can be reduced to simple point objects or point ob-
jects with an associated area. Hewson and Titley (2010) pro-
posed a sophisticated tracking scheme for cyclonic features
developing on fronts, which relies on accurate identification
and classification of fronts in order to identify cyclones early
in their life cycle but is limited to tracking point objects
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Figure 10. ERA5 seasonal climatologies of front frequency. Cold fronts are shown in panels (a)–(d) and warm fronts in panels (e)–(h) for
(a, e) DJF, (b, f) MAM, (c, g) JJA, (d, h) SON. All climatologies were computed with n= 96 smoothing cycles,K1 =−1.6×10−11 Km−2,
K2 = 7.5× 10−6 Km−1, and K3 = 1.5ms−1.

associated with cyclones rather than fronts themselves. To
the authors’ knowledge, only Rüdisühli et al. (2020) have
documented a front-tracking algorithm. An openly avail-
able front-tracking algorithm would offer new possibilities
in terms of attributing and analysing impacts of individual
fronts, e.g. precipitation or wind events, or understanding bi-
ases in weather and climate models.

Code and data availability. Code for the revised
method detailed in this paper is available from
https://doi.org/10.5281/zenodo.7278068 and future develop-
ments will be available at https://github.com/phil-sansom/front_id
(last access: 15 August 2024). ERA5 reanalysis is available from
the Copernicus Climate Change Service Climate Data Store
(https://doi.org/10.24381/cds.bd0915c6, Hersbach et al., 2023)
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Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-6137-2024-supplement.
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