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Abstract. The spectral wave model WAM (Cycle 6) is a
commonly used code package for ocean wave forecasting.
However, it is still a challenge to include it into the long-
term Earth system modeling due to the huge computing re-
quirement. In this study, we have successfully developed a
GPU-accelerated version of the WAM model that can run
all its computing-demanding components on GPUs, with a
significant performance increase compared with its original
CPU version. The power of GPU computing has been un-
leashed through substantial efforts of code refactoring, which
reduces the computing time of a 7 d global 1/10° wave mod-
eling to only 7.6 min in a single-node server installed with
eight NVIDIA A100 GPUs. Speedup comparisons exhibit
that running the WAM6 with eight cards can achieve the
maximum speedup ratio of 37 over the dual-socket CPU node
with two Intel Xeon 6236 CPUs. The study provides an ap-
proach to energy-efficient computing for ocean wave mod-
eling. A preliminary evaluation suggests that approximately
90 % of power can be saved.

1 Introduction

Ocean wave modeling has long been regarded as an impor-
tant part of numerical weather prediction systems due to not
only its critical role in ship routing and offshore engineering,
but also its climate effects (Cavaleri et al., 2012). Nowadays,
wave forecasts are generated from the spectral wave mod-
els routinely operating on the scale of ocean basins to con-
tinental shelves (Valiente et al., 2023). To assess the uncer-

tainty in wave forecasts, major national weather prediction
centers also adopt an ensemble approach to provide prob-
abilistic wave forecasts (Alves et al., 2013). For example,
the Atlantic Ensemble Wave Model of the Met Office issues
probabilistic wave forecasts from an ensemble of 36 mem-
bers at a 20 km resolution. However, due to the limitation of
the high-performance computing (HPC) resource, these en-
semble members have to be loaded in two groups with a la-
tency of 6 h for each (Bunney and Saulter, 2015). Increasing
the spatial resolution and conducting ensemble forecasting
both require significant HPC resources (Brus et al., 2021).

In recent decades, wind-generated surface waves are re-
vealing themselves more and more as the crucial element
modulating the heat, momentum, and mass fluxes between
ocean and atmosphere (Cavaleri et al., 2012). The air–sea
fluxes of momentum and energy are sea-state-dependent, and
the forecasts of winds over ocean are demonstrably improved
by coupling atmosphere and wave models. Ocean circula-
tion modeling can also be improved through coupling with
wave models (Breivik et al., 2015; Couvelard et al., 2020).
Waves absorb kinetic energy and momentum from the wind
field when they grow and in turn release it when they break,
thus significantly enhancing the turbulence in the upper mix-
ing layer (Janssen, 2012). Non-breaking waves and swells
stir the upper water and produce enhanced upper-layer mix-
ing (Huang et al., 2011; Fan and Griffies, 2014). For high-
latitude marginal ice zones (MIZs), ice–wave interactions
comprise a variety of processes, such as wave scattering
and dissipation and ice fracturing, which also have impor-
tant impacts on both atmospheric and oceanic components
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(Williams et al., 2012; Iwasaki and Otsuka, 2021). The Earth
system model (ESM) developers are making efforts to ex-
plicitly include a surface wave model into their coupling
framework. For example, as part of ECMWF’s Earth system,
the wave model component of the IFS is actively coupled
with both the atmosphere and the ocean modeling subsys-
tems (Roberts et al., 2018). The First Institute of Oceanogra-
phy Earth System Model (FIO-ESM; Qiao et al., 2013; Bao
et al., 2020) and the Community Earth System Model ver-
sion 2 (Danabasoglu et al., 2020; Brus et al., 2021; Ikuyajolu
et al., 2024) also include a spectral wave model as part of
their default components.

The spectral wave models resolve wave phenomenons as
a combination of wave components along a frequency and
direction spectrum across space and time. Their generation,
dissipation, and nonlinear interaction processes are described
by a wave action transport equation with a series of source
terms, which requires large computational resources and a
long computing time (Cavaleri et al., 2007). The first oper-
ational third-generation spectral model, WAM (WAve Mod-
eling), was developed in 1980s (The Wamdi Group, 1988).
WAM has been replaced by the WaveWatch III (Tolman,
1999) as the most commonly used global and regional wave
model used by major national weather prediction (NWP)
centers. The SWAN (Simulating WAves Nearshore), is also
a popular wave model which has advantages in nearshore re-
gions (Booij et al., 1999). All these wave models are under
continued development by different communities, and their
code packages are freely accessible.

As an efficient and portable yet commercially available
substitute for HPC clusters, GPU computation has played
a central role in implementing massive computation power
across a wide range of areas (Yuan et al., 2020, 2023). In
the area of ocean and climate modeling, a variety of main-
stream models and algorithms have been successfully ported
to GPU devices, with substantial improvement on model per-
formance being reported (Xiao et al., 2013; Xu et al., 2015;
Qin et al., 2019; Yuan et al., 2020; Jiang et al., 2019; Häfner
et al., 2021). For brevity, in this paper, we do not elaborate on
these pioneering works. Due to the complexity of code, GPU
acceleration of spectral wave models has not been reported in
public until recently. Ikuyajolu et al. (2023) has ported one
of the WaveWatch III’s source-term scheme W3SRCEMD
to GPU with OpenACC. However, the GPU implementa-
tion only exhibited a 35 %–40 % decrease in both simulation
time and usage of computational resources, which was not
satisfactory. They suggested that rather than a simple usage
of OpenACC routine directives, a significant effort on code
refactoring had to be done for better performance.

Since 2020, we have managed to fully port the WAM Cy-
cle 6 wave model to GPUs through a significant amount of
work. The purpose of this paper is to report the progress
that has been made. The paper is organized as follows. Sec-
tion 2 briefly reviews the governing equations and physi-
cal schemes adopted by WAM; Then, the OpenACC imple-

mentation of the model and optimization strategies are de-
tailed in Sect. 3. Performance analysis through a global high-
resolution wave hindcast is made in Sect. 4. A brief summary
is presented in Sect. 5.

2 Wave model WAM

The ocean wave model WAM is a third-generation wave
model that describes the evolution of the wave spectrum by
solving the wave energy transport equation. In this study,
WAM Cycle 6 (hereinafter referred to as WAM6) is adopted.
WAM6 is one of the outcomes of the MyWave project funded
by the European Union (EU), which brings together several
major operational centers in Europe to develop a unified Eu-
ropean system for wave forecasting based on the updated
wave physics (Baordo et al., 2020). Generally, the third-
generation wave models are based on the following wave ac-
tion balance equation in spherical coordinates (Eq. 1):
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The left-hand side of Eq. (1) accounts for spatial and intra-
spectrum propagation of spectral wave energy along two-
dimensional (2D) geographic space (φ for latitude and λ

for longitude), angular frequency (ω) and direction (θ ), re-
spectively. The five terms on the right-hand side of Eq. (1)
are source terms, which represent the physics of wind input
(Sin), dissipation due to whitecapping (Sds), nonlinear wave–
wave interaction (Snl), bottom friction (Sbot), and depth-
induced wave breaking (Sbrk). Two sets of wave physics pa-
rameterizations, which are based on the works of Janssen
(1989, 1991) and Ardhuin et al. (2010), are available in
WAM6. A first-order upwind flux scheme is used for ad-
vection terms, and the source terms are integrated using a
semi-implicit integration scheme. For the full description
of the governing equation, parameterization and numerical
schemes, one can refer to ECMWF (2023), Günther et al.
(1992), and Behrens and Janssen (2013).

The flow diagram of the WAM6 model is illustrated in
Fig. 1. The WAM6 model has a pre-processing program
(PREPROC), which generates the computing grids with two
alternative options. The default option is to produce a re-
duced Gaussian grid. In this case, the number of grid points
along the latitude reduces poleward with east–west grid spac-
ing comparable for all latitudes. This approach not only ben-
efits numerical stability required by the Courant–Friedrichs–
Lewy (CFL) condition, but also improves model efficiency
by considerably reducing the cell number. The forward inte-
gration of the model at each grid point is implemented within
the main program, CHIEF, which in turn considers wave
propagation, source term integration, and post-processing
of wave spectra for a variety of wave parameters. These
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processed fields comprise parameters to describe the mean
sea state, major wind sea, and swell wave components, as
well as freak waves. Other parameters also include radia-
tion stresses, Stokes drifting velocities, and maximum wave
height (ECMWF, 2023). Wave spectra and wave parameters
can then be written into the formatted or NetCDF files at
specified intervals, and this is achieved by the PRINT pro-
gram.

When running in parallel, the WAM6 model splits the
global computation domain into rectangular sub-domains of
equal size. Only sea points are retained. The Message Pass-
ing Interface (MPI) is adopted to exchange wave spectra
of the overlapping halos between connecting sub-domains.
WAM6 is able to run on a HPC cluster with up to thousands
of processors with acceptable speedup.

3 Porting WAM6 to a GPU

Before porting a complex code package to GPU, the devel-
opers should consider whether the core algorithm is suitable
for the GPU (applicability), whether the programming ef-
fort is acceptable (programmability), whether the ported code
can fit the rapidly evolving and diverse hardware (portabil-
ity), and whether it can scale efficiently to multiple devices
(scalability). CUDA and OpenACC are two commonly used
GPU programming tools. CUDA can access all features of
the GPU hardware to enable more optimization. A number
of studies on GPU-accelerated hydrodynamic models have
been reported to use CUDA C or CUDA Fortran as coding
languages (Xu et al., 2015; de la Asunción and Castro, 2017;
Qin et al., 2019; Yuan et al., 2020). Substantial efforts have
to be done to encapsulate the computing code with CUDA
kernels. However, a lesson learned by us is that using CUDA
to rewrite a code package which is under community devel-
opment is not always a smart choice. OpenACC is a parallel
programming model which provides a collection of instruc-
tive directives to offload computing code to GPUs and other
multi-core CPUs. Using OpenACC greatly shortens the de-
velopment time, reduces the learning curve of a non-GPU
programmer, and supports multiple hardware architectures.
Therefore, we adopted OpenACC as the coding tool.

To fully accelerate the WAM6 model and improve perfor-
mance, the best practice is to offload all computing-intensive
code to GPU devices and maximize data locality by keeping
necessary data resident on GPU. The spectral wave model
is memory-consuming due to the existence of 4D prognostic
variable N (Eq. 1). For example, for a global 1/10° wave
model consisting of 36 directions and 35 frequencies, the
variable of spectral wave energy is as large as 36 Gigabytes
(GB). All coding strategies should comply with the facts that
GPU memory is limited and data transfer between the host
and device is expensive. As shown in Fig. 1, the overall strat-
egy in this study is to run the entire CHIEF program on GPUs
without any data transfer between CPU and GPU memories.

For multiple-GPU programming, the CUDA-aware Open-
MPI is used to conduct inter-GPU communication.

3.1 Data hierarchy

Unlike its predecessor, WAM6 is now modernized by the
FORTRAN 90 standard. All subroutines are organized as
groups and then encapsulated as modules in accordance with
their purposes. As the spatial and intra-spectrum resolutions
increase, the memory usage for global wave modeling shows
exponential growth. Hence, careful design of the data struc-
ture and exclusion of unnecessary variables on the GPU,
which require a panorama of the entire WAM6 model as well
as a thorough analysis of individual variables, are important.

As illustrated in Fig. 2, a three-level data hierarchy is es-
tablished, with each level having a different lifetime and
scope. The prognostic and state variables are constantly mod-
ified during the program runtime and declared as global vari-
ables using the 〈acc declare〉 directive with the create clause.
The module-level variables are private to the module where
they are declared. They have the same lifetime of the resid-
ing module and are also defined on the GPU using the 〈acc
declare〉 directive. For the global and module-level variables,
the FORTRAN allocate statement allocates the variables to
both host and device memories simultaneously. The Ope-
nACC uses the 〈acc data〉 directive to create local variables
that are only accessible locally inside a subroutine. They are
allocated and freed within the 〈acc data〉 region.

3.2 Optimization strategies

OpenACC implementation can literally be as simple as in-
serting directives before specific code sections to engage the
GPUs. However, to fully utilize the GPU resource, optimiza-
tions such as code refactoring or even algorithm replacing,
which require a wealth of knowledge of both GPU architec-
ture and code package itself, are necessary. Before introduc-
ing the optimizing strategies, some knowledge about WAM6,
especially that related to GPU computing, is reiterated here.

First of all, WAM6 is computing-intensive, so GPU ac-
celerating is certainly promising. A global 1/10° high-
resolution wave modeling (corresponding to nearly 3 million
grid points) with 35 frequencies and 36 directions means that
approximately 4 billion equations have to be solved in a sin-
gle time step. In WAM6, a mapping from the 2D spherical
grid to a 1D array is performed. Thus, the computation of
wave physics is mainly composed of a series of three-level
nested loops iterating each grid, frequency and direction. It-
eration on grid points is placed in the innermost loop for
vectorization where appropriate. Nevertheless, as explained
later, better performance sometimes requires a loop on grid
points placed on the outermost level, leaving two other loop
levels to execute serially.

Secondly, WAM6 can be memory- and input/output (I/O)-
bound as it contains a dozen of 3D variables with overall
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Figure 1. Flow diagram of WAM6 for a regular wave modeling. WAM6 modeling is implemented with a three-step procedure, including
pre-processing (PREPROC), model integration (CHIEF), and output (PRINT). The shaded box denotes the computing-intensive modules
that are ported to the GPU.

Figure 2. The three-level data hierarchy of WAM6-GPU v1.0.

size amounting to hundreds of Gigabytes. Some optimiz-
ing strategies, such as loop collapse, contain a tradeoff be-
tween performance and memory occupancy. Besides, pre-
vious work (Ikuyajolu et al., 2023) only accelerates source
terms of the wave model, and post-processing of spectral
wave energy for a variety of wave parameters has not been
ported to GPUs. This leads to a mass device-to-host transfer
of the 3D wave spectra at each output time step. The con-
sequence is that the achieved speedup ratio is immediately
neutralized by the transfers.

Thirdly, the nonlinear wave–wave interaction (Snl) redis-
tributes energy over wave components with similar frequen-
cies and directions. Thus, parallelism along the dimensions
of frequency and direction cannot be performed. Optimiz-

ing strategies on Snl should be considered carefully. Spectral
separation of wind sea and swell also involves manipulation
between of wave components which cannot be vectorized ei-
ther.

Generally, we pursue a high GPU occupancy by loop re-
ordering, collapse, and refactoring. The key principles are to
tune how the loops are mapped to the GPU hardware and
allocate optimal workload and on-chip resources for each
CUDA core. We take full advantage of on-chip memories and
caches by evaluating the necessity of each global memory ac-
cess and whether it can be converted to on-chip access. We
completely eliminate device-host memory copies during the
runtime of the program by migrating the whole wave physics
and post-processing modules to the GPUs. It should be noted
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Figure 3. Optimizing strategies to improve performance in WAM6-GPU v1.0. In the model, the three-level nested loops are extremely
common and IJ, M , and K denote indexes of the grid cell, frequency, and direction.

that too much code refactoring may be detrimental to code
readability in terms of its physical concept. Based on the full
absorption of model physics, loop reordering and collapse
are the main strategies for better speedup and have not al-
tered the code structure in most cases. Heavy code refactor-
ing only occurs when computing the source term of nonlinear
wave interactions as well as in some MPI interface functions.
More specifically, some of the code optimization is presented
by a few examples as follows:

– Restructuring the complex loops. The wave physics of
WAM6 consists of complex loops with nested functions
and a number of private scalars or local variables. The
simplest implementation is to insert OpenACC direc-
tives before the outer loops to generate huge GPU ker-
nels and using 〈acc routine〉 to automatically parallelize
the nested functions. The implementation does work but
comes with poor performance generally. A GPU kernel
of appropriate size helps to achieve better performance.
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Figure 4. MPI scalability of WAM6 for a global 0.1° 1 d wave hind-
cast case (T1) on NMEFC’s HPC cluster with Intel Xeon E5-2680
v4 processors. The diagonal line denotes linear scalability. Both
speedup (left y axis) and corresponding execution time in seconds
(right y axis) are shown by open cycles.

When appropriate, we split complex loops into a series
of short and concise loops to increase parallelism and
GPU occupancy. For nested subroutines, a naive usage
of 〈acc routine〉 is not encouraged. A rule of thumb is to
make a loop-level (fine-grained) parallelism inside the
nested subroutines with a complex structure.

Nevertheless, splitting the outermost loop into pieces
sometimes leads to a dilemma. In WAM6, evaluation
of the spectral wave energy is a 3D computation. As
shown in Fig. 3a, local intermediate scalars or variables
have to be declared as 3D variables to store the tem-
porary information. It is commonplace in the subrou-
tine to compute the nonlinear wave–wave interaction,
Snl. Although splitting the loop can achieve vectoriza-
tion along all loop levels (right panel of Algorithm (a)
in Fig. 3), the space of GPU memory may be limited in
this case, not to mention the overhead for creating/free-
ing the memory each time. Thus, tradeoff between par-
allelism and global memory must be considered.

– Increasing parallelism by loop collapse. Except afore-
mentioned loop splitting, loop reordering is commonly
used to organize the nested loops. We ensure that the
3D global variables are being accessed consecutively
along the dimensions in an increasing manner. Ope-

nACC then collapses the nested loops into one dimen-
sion. For the nested loops without any dependency, we
place the grid-cell-based loop (IJ) to the innermost level,
which is immediately followed by the direction- (K)
and frequency-based (M) loops. Loop collapse is lim-
ited to tightly nested loops. As shown in Fig. 3b, for
loosely nested loops, some scalars are computed be-
tween the nested loops. If appropriate, these scalars are
placed into the innermost loop at the cost of computing
them redundantly. In this way, the loops are converted
to the tightly nested loops.

– Reducing global memory allocation and access. Global
memory allocation and access are expensive operations
on GPU, which may incur performance degradation.
One widely used strategy is to convert 2D or 3D local
variables in the nested loops to loop-private scalars if
appropriate. In the subroutine to evaluate Snl, there are
parameter arrays that store dozens of factors for spec-
tral components of the wave. As exhibited in Fig. 3c,
the best practice is to assign each value of the array to a
temporary scalar which is private to the loop rather than
to offload the array to the global memory of the device.
The latter would substantially increase global memory
access. Using too many private scalars inside one kernel
raises the concerns of a possible lower GPU occupancy
due to spills of registers. The fact is that OpenACC tries
to handle it properly by manipulating the physical re-
source (i.e., registers and L1/L2 cache) for these local
variables without degrading performance notably.

– Choosing longest dimension for reduction. Reduction
operations are ubiquitous in WAM6. A simple usage of
the 〈acc reduction〉 construct along the dimensions of
frequency or direction should be avoided. It requires a
parallel level of vector in OpenACC to do the reduction
at each grid point, leaving the majority of threads idle.
Instead, we should map each thread to a grid point and
instruct the thread to do the reduction in a serial way
(Fig. 3d). The approach can fully occupy the GPU re-
source. Using 〈acc reduction〉 for global reduction along
the longest dimension, IJ, is encouraged.

For multiple-GPU MPI communication, we fill the
sending and receiving buffers by GPU and using the
〈acc host_data〉 construct for device-to-device data ex-
change. This dramatically reduces MPI communication
time (Fig. 5).

4 Performance evaluation

4.1 Hardware and model configuration

WAM6-GPU v1.0 is tested on a GPU server with eight
NVIDIA A100 GPUs. The compilation environment is
NVIDIA HPC SDK version 22 and NetCDF v4.3. The
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Figure 5. Speedup ratios of WAM6-GPU v1.0 on two, four, and eight NVIDIA A100 cards over its original code on a 32-core node with
two Intel Xeon 6326 processors for a 1 d global 0.1° wave hindcast. The computing time of the CPU code on the NMEFC and BJSC’s HPC
clusters is also included. Speedup ratios are labeled over the bars. MPI communication time is denoted as solid triangles.

Figure 6. GPU runtime analysis within the integration (a) and post-processing (b) time steps for a global 0.1° wave hindcast case.

NVIDIA A100 consists of 6912 CUDA cores sealed on 108
streaming multiprocessors. These cores access 80 GB of de-
vice memory in a coalesced way. The GPU server is hosted
by two Intel Xeon 6236 CPUs with 32 (2× 16) physical
cores running at 2.9 GHz. In this study, the test case first runs
on these two CPUs with 32 cores fully occupied, and the cor-
responding execution time (measured in second) is chosen as

the baseline for speedup computation. Speedup ratio is de-
fined as a ratio of the baseline time over the execution time
of the same test case on GPUs.

Furthermore, two HPC clusters are used to test the MPI
scalability of WAM6. The National Marine Environmental
Forecasting Center of China’s (NMEFC’s) cluster has 120
active computing nodes, and each of them has dual Intel
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Xeon E5-2680 v4 CPUs with 28 cores. The Beijing Super
Cloud Computing Center’s (BJSC’s) cluster provides us with
a 32-node computing resource. Each node has dual AMD
EPYC 7452 CPUs with 64 cores. The hardware configura-
tions are listed in Table 1.

To evaluate the performance of WAM6-GPU v1.0, three
test cases (hereafter referred as to T1–T3) are configured to
conduct a global high-resolution wind hindcast. The model
configuration is summarized in Table 2. In T1, the global
model runs on a reduced Gaussian grid at a horizontal reso-
lution of 0.1° and the wave spectrum at each grid point is dis-
cretized with 24 directions and 25 frequencies. The modeling
area extends to a latitude of 89.9° in the Arctic and Antarctic
regions. The total number of grid points is 2 923 286. The
resolution of wave spectrum changes to 36 directions and
35 frequencies for T2. In T3, a regular grid is adopted and
the number of grid points increases to 4 271 075. According
to the CFL condition, the time step for propagation reduces
from 43 to 0.9 s. In short, the computing workload gets heav-
ier as the spectral resolution and grid points increase from T1
to T3. Generally, the regular grid adopted in T3 is not used
for practical global modeling.

The hourly ECMWF ERA5 reanalysis (Hersbach et al.,
2020) is used as atmospheric forcing with a spatial resolu-
tion of 0.25°. Output parameters are generated at an inter-
val of 3 h. WAM6-GPU v1.0 is configured as a stand-alone
model which does not consider sea ice–wave interaction and
current refraction. Two schemes for wave growth and dissi-
pation parameterization (Janssen, 1991; Ardhuin et al., 2010)
are used with integrating time step of 5 min. The scheme of
Ardhuin et al. (2010) is slightly more computing-intensive.
In the study, the performance metric is based on the average
computing time required for a 1 d global wave hindcast col-
lected from 30 d simulations (1–30 January 2021).

4.2 Speedup comparisons

First of all, MPI scalability of WAM6 is evaluated on
NMEFC’s HPC cluster using 84, 168, 336, 672, 1344, and
2688 cores, respectively. The T1 case is used. As shown
in Fig. 4, WAM6 exhibits perfect linear scaling up to 1344
cores. The drop in scalability becomes significant when the
T1 case is split into 2688 cores. In this case, a 1 d global wave
hindcast requires at least 72.0 s. The communication time for
the exchange of the overlapping halo cells among the neigh-
boring sub-domains (upper panel in Fig. 4) declines, and the
curve gradually flattens, as was expected.

In Fig. 5, the bar plot displays the execution time and
speedup ratios of WAM6-GPU v1.0 when allotted to a dif-
ferent hardware resource. The T1 case is used. The original
code is first placed on NMEFC’s GPU server with only 32
CPU cores fully used. The average wall time taken to run a
1 d forecast is 2393.2 s. Time necessary for model initializa-
tion is excluded. We then choose it as baseline to compute
speedup ratios, which are annotated in gray text in Fig. 5.

Figure 7. Pseudocode of optimizing experiments on the source term
describing nonlinear wave interaction (Snl). Algorithms in panels
(a)–(c) correspond to Exp1–3 separately.

Overall, when running on two GPUs, WAM6-GPU v1.0
can achieve a speedup of 10 over the dual-socket CPU node,
and a near-linear scaling can be observed when four and eight
GPUs are allocated. This means when the eight-card GPU
server is at full strength, the maximum speedup ratio can
achieve the value of 37, which greatly shortens the execu-
tion time of the 1 d global wave modeling to 65.2 s. As a
comparison, the T1 case has been tested on the NMEFC’s
and BJSC’s HPC clusters (Table 1). The execution times are
72.0 and 74.5 s separately when 2688 and 2048 cores are al-
located to each cluster, corresponding to speedup ratios of 33
and 32. The GPU-accelerated WAM6 model shows its supe-
riority over the original code with regard to computing effi-
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Table 1. Hardware configurations for performance evaluation of WAM6-GPU v1.0.

Hardware specifications

Resource CPU cores per node GPUs per node Available nodes CPU cores in total

NMEFC’s GPU server
32 8

1 32
Intel Xeon 6326 NVIDIA A100

NMEFC’s HPC cluster
28

0 120 3360
Intel Xeon 2680v4

BJSC’s HPC cluster
64

0 32 2048
AMD EPYC 7452

Table 2. Summary of the configuration for the global wave hindcast cases.

Configuration of WAM6

T1 T2 T3

Model grid 0.1°, 89.9° S–89.9° N

Grid type
Gaussian grid Gaussian grid Regular grid
2 923 286 grids 2 923 286 grids 4 271 075 grids

Bathymetry ETOPO2 interpolated to 0.1°

Wave spectrum
24 directions 36 directions 36 directions
25 frequencies 35 frequencies 35 frequencies

Source time step 5 min

Source schemes Janssen (1991) Janssen (1991) Ardhuin et al. (2010)

Wind forcing ECMWF ERA5, 0.25°, 1 h

Hindcast duration 1–30 January 2021

Sea ice concentration Sea ice masking is not implemented

Ocean current Current refraction is not considered

ciency. It should be noted that showcasing the performance
of GPU acceleration over CPU is somewhat difficult. The
reported speedup ratios vary in terms of the hardware and
workload.

For an operational 7 d wave forecast, the global model usu-
ally adopts a reduced Gaussian grid and spectral resolution of
36 directions and 35 frequencies, which is similar to the T2
case in the study. Therefore, the energy consumption (E) of
a 7 d global wind forecast using the T2 case is measured by
E = Pchip ·N ·T in terms of the chip’s thermal design power
(TDP). Pchip is the TDP value of the GPU/CPU chip, N is
the number of devices, and T is the computing time of the
model. For the NVIDIA A100 GPU and Intel Xeon 2680v4
CPU, the TDP values are 350 and 120 W, respectively. In the
NMEFC, the operational global wave model runs for 2.5 h on
NMEFC’s cluster (Table 1) with 560 cores. A global wave
forecast consumes 0.84 kWh on the eight-card GPU server
(Table 3) and approximately 12 kWh on NMEFC’s cluster.

Table 3. GPU memory and computing time required for a 7 d global
0.1° wave forecast on the GPU servera.

Model GPU memory Computing time
configuration [GB] [min]

T1b 102.1 7.6
T2 199.9 17.9
T3 312.8 49.2

a The specification of the GPU server is presented in Table 1.
b Model configurations are presented in Table 2.

That means at least 90 % of power could be saved if an eight-
card GPU server is used.

4.3 GPU profiling

The major processes of WAM6 and its GPU version are pro-
filed, and their performance is illustrated by timeline plots
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Figure 8. A series of output parameters generated by WAM6-GPU v1.0.

in Fig. 6. WAM6 runs with two CPUs with 32 cores, and its
GPU version runs with four GPUs. In the T1 case, the time
intervals for wave propagation, source term integration, and
wave parameter computation are 43 s, 5 min, and 3 h, respec-
tively. The profiling of wave propagation and source term in-
tegration in a 5 min period is presented in Fig. 6a.

At each integration time step, the model begins with the
MPI exchange of 3D spectral energy, which is followed by
the computation of propagation and source terms. Generally,
a complete model integration on CPUs takes 8.589 s, while
its GPU counterpart takes only 0.435 s on four A100 cards.
This corresponds to a speedup ratio of 20. In more detail, for
the original CPU version, wave propagation and wind input
(Sin) are 2 major computing-intensive processes, which con-
tribute 27.9 % and 38.0 % of the runtime, respectively. For
the GPU version, the most prominent feature is that the share
of nonlinear transfer (Snl) soars to 36.4 %. By adopting op-
timizing strategies introduced in Sect. 3.2, OpenACC imple-
mentation of wave propagation and Sin can take full advan-
tage of GPU resources. On the contrary, the computation of
Snl requires five layers of loops, and the dependency along
frequency and direction inhibits multi-level parallelism. The
original algorithm only allows parallelization on the IJ loop.
A naive implementation of OpenACC results in very poor
performance and substantially lower speedup ratio. Exten-
sive optimizing experiments on Snl have been made to reduce
its share from nearly 60 % to 36.4 %. Among these experi-
ments, three of them (Exp1–3) are summarized below, with

their time measurements shown in brackets. The pseudocode
is shown in Fig. 7.

1. Exp1. Placing the IJ loop to the innermost level (not
adopted; 0.214 s) leads to too much overhead for serially
launching thousands of kernels in a single time step.

2. Exp2. Placing the IJ loop to the outermost level and ac-
cessing global coefficient and index arrays directly (not
adopted; 0.252 s) leads to lower GPU occupancy and
higher GPU latency due to spilling of local memory,
and frequent access to these arrays within a kernel is
detrimental to performance.

3. Exp3. Placing the IJ loop between the M (frequency)
and K (direction) loops (adopted; 0.171 s for loop col-
lapse on IJ and K and 0.151 s for parallelism on IJ
and sequential execution on K) overcomes the short-
comings of the above experiments. Besides, two actual
tests have been conducted in Exp3. By reorganizing the
code substantially, we managed to collapse the IJ andK
loops at first. As the second test, we did not perform the
loop collapse and simply inserted 〈acc loop seq〉 before
the nested K loop. Surprisingly, the second test took
0.02 s less. Although loop collapse on IJ and K may
increase code parallelism, it seems that the reorganized
code leads to increased overhead.

Furthermore, in contrast with the common sense that MPI
exchange is a limiting factor for speedup, in this study, its
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GPU implementation exhibits a considerable speedup, with
its share reducing from 2.8 % to 1.5 %. The best practice is to
pack and decode the MPI buffers through GPU acceleration,
and transfer them using the 〈acc host_data〉 construct.

WAM6 has several post-processing modules to derive a
series of wave parameters from wave spectra at each out-
put time step (ECMWF, 2023). Some of the derived param-
eters serve as interface variables for coupling with atmo-
spheric, oceanic, and sea ice models (Breivik et al., 2015;
Roberts et al., 2018). It is found that even though these mod-
ules are only used at each output time step (normally 1–3 h),
the device-to-host transfer of the 3D spectral energy is so
expensive that the overall performance can be affected. Be-
sides, as shown in the timeline, the post-processing runs for
6.068 s on the CPU node. Considering the post-processing is
both computing-intensive and I/O-bound, these modules are
ported to the GPU in the study. The profiling of these mod-
ules is shown in Fig. 6b. The post-processing is categorized
into four types shown in the figure legend. GPU implemen-
tation exhibits acceptable acceleration with a speedup metric
of 12. As expected, the spectral separation takes the largest
share of the runtime (77.0 %) as it involves a succession of
frequency-dependent loops. Not much optimization has been
done at this time.

4.4 Comparison of CPU and GPU results

The numerical models running on CPUs and GPUs are sup-
posed to produce slightly different results due to multiple
factors. For example, the execution order of the arithmetic
operations are different on CPUs and GPUs for a global re-
duction. Besides, iterative algorithms lead to the accumula-
tion of the errors. Substantive difference is not allowed, and
ideally it should not grow rapidly for a long-term simulation.
The absolute difference (AD= CPU−GPU) and relative dif-
ference (RD= (CPU−GPU)/CPU) are used to measure the
difference between the CPU and GPU results. Both WAM6
and its GPU version run with single precision for a 1-month
period.

As many as 72 different wave parameters can be computed
by WAM6-GPU v1.0, and some of them are visualized in
Fig. 8. The field-mean AD and RD values for a 1 d period
are presented in Fig. 9 as gray cycles and open triangles, re-
spectively. Generally, GPU implementation is proven to be
a success, which is demonstrated by the well-controlled dif-
ferences. The mean AD values are well below 10−6, with
several outliers observed for some output parameters whose
values are several orders of magnitude larger than those of
others (i.e., radiation stress components and wave direction
in degrees). In this case, the RD metric is more appropri-
ate for comparison. Time series of mean relative differences
(RDs) from 1 to 30 January 2021 for significant wave height,
peak and mean wave period, and wave direction are shown
in Fig. 10. Two dashed lines marking the RD value of 10−6

Figure 9. Mean difference (cycles) and mean relative differences
(triangles) between WAM6 and WAM6-GPU v1.0 for major output
parameters for a 1 d global simulation. Both versions use single pre-
cision for computation. Outliers in mean difference can be observed
for parameters that are several orders of magnitude larger than oth-
ers.

are plotted. The differences between CPU and GPU results
do not show a growing trend for the whole simulation.

5 Conclusions

In recent years, giant HPC clusters have been replaced by
dense and green ones at an increasing pace. Moreover, pro-
gramming barriers to porting numerical models to GPUs are
now incredibly low with the aid of high-level programming
tools such as OpenACC. These progresses pave a fast lane
to energy-efficient computing for climate and Earth system
modeling. It is anticipated that the transition of ESMs from
CPU-based infrastructure to GPU-based computing devices
is inevitable.

In this study, WAM6, one of the most commonly used
spectral ocean wave models, has been ported to multiple
GPUs by OpenACC with considerable efforts of code re-
structuring and refactoring. To evaluate model performance,
a global wave hindcast case has been configured with a hor-
izontal resolution of 1/10° and intra-spectrum resolution of
25× 24 or 35× 36. It shows that when using an eight-card
GPU server (NVIDIA A100), a speedup of 37 over a fully
loaded CPU node can be achieved, which reduces the com-
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Figure 10. Time series of mean relative differences (RDs) between WAM6 and its GPU version from 1 to 30 January 2021 for significant
wave height (circles), peak wave period (stars), mean wave period (triangle), and wave direction (right-pointing triangles).

puting time of a 7 d global wave modeling from more than 2 h
to 7.6 min. We expect an even higher performance of WAM6-
GPU v1.0 on the latest NVIDIA H100 GPU. The study em-
phasizes that for a complicated model, GPU performance
may not be desirable if OpenACC directives are implemented
without substantial consideration of GPUs’ features and their
combination with code itself.

To move the study forward, the ongoing works include
adding a new finite-volume propagation scheme to support a
Voronoia unstructured grid, and incorporating sea ice–wave
interaction source term to WAM6’s physics. These works
will extend the application of the code to the polar areas and
nearshore.

Code and data availability. WAM6-GPU v1.0 described in this
paper can be found at https://doi.org/10.5281/zenodo.10453369
(Yuan, 2024a). The latest version is v1.2 with GPU support for
nesting cases, specific-site output, and some bug fixes. Version 1.2
can be accessed at https://doi.org/10.5281/zenodo.11069211 (Yuan,
2024b). Assistance can be provided through yuanye@nmefc.cn.
The original WAM6 source code is maintained at https://github.
com/mywave/WAM (last access: 5 January 2024). No data sets were
used in this article.
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