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Abstract. The Tracking Algorithm for Mesoscale Con-
vective Systems (TAMS) is a tracking, classifying, and
variable-assigning algorithm for mesoscale convective sys-
tems (MCSs). TAMS was initially developed to analyze
MCSs over Africa and their relation to African east-
erly waves using satellite-derived datasets. This paper de-
scribes TAMS, an open-source MCS tracking and classify-
ing Python-based package that can be used to study both ob-
served and simulated MCSs. Each step of the algorithm is
described with examples showing how to make use of vi-
sualization and post-processing tools within the package. A
unique and valuable feature of this MCS tracker is its sup-
port for unstructured grids in the MCS identification stage
and grid-independent tracking of MCSs, enabling application
across various native modeling grids and satellite-derived
products. A description of the available settings and helper
functions is also provided. Finally, we share some of the cur-
rent development goals for TAMS.

1 Introduction

Mesoscale convective systems (MCSs) are defined as large,
contiguous areas of precipitation, of around 100 km in scale,
produced by convective cloud systems (Houze, 2004). About
75 % of the annual global rainfall occurs in the tropics (Evans
and Shemo, 1996). Across the global tropics, MCSs are re-
sponsible for up to 90 % of rainfall in selected land regions
(Nesbitt et al., 2006). Due to their significant impact on the
global hydrological cycle and society, especially as these sys-

tems propagate over populated regions, a fundamental under-
standing of these systems and their impacts across weather
and climate scales is imperative for improving forecasting.

With observational and model data ever increasing and
readily available, the statistical and climatological analysis
of MCS data has been possible in large part due to objec-
tive tracking methods. Automated tracking algorithms be-
came more feasible with the advent of satellites in the 1980s.
These algorithms, which initially made use of infrared (IR)
or a combination of IR and visible images, enabled the de-
tection and tracking of MCSs globally (Williams and Houze,
1987; Velasco and Fritsch, 1987; Augustine and Howard,
1991; Laing and Fritsch, 1993; Machado et al., 1998; Mathon
and Laurent, 2001; Vila et al., 2008). Testing has been con-
ducted on brightness temperature (Tb) thresholds for feature
and object detection, which range from 253 K for the highest
Tb associated with convection to 213 K for very deep convec-
tion, to detect convective cloud areas (Maddox, 1980; Mapes
and Houze, 1993; Machado et al., 1998; Goyens et al., 2012).
The cloud areas or approximate cloud areas like polygons
or convex hull shapes that resemble the cloud area are then
used to track the systems in time. In the context of track-
ing, the overlapping technique, which is still widely used
today, relies on consecutive satellite image overlaps to es-
tablish time continuity (Williams and Houze, 1987; Evans
and Shemo, 1996; Mathon and Laurent, 2001). Since then,
other tracking methods have been developed, including those
based on the minimization of a cost function related to the
speed and direction of the MCS (Hodges, 1995), the assess-
ment of the magnitude of spatial correlation (Carvalho and
Jones, 2001), the consideration of the system’s propagation
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speed (Woodley et al., 1980), and the use of a projecting cen-
troid technique for forecasting the feature’s location in the
current or next time step (Johnson et al., 1998).

Radar data have also played a crucial role in facilitating
the nowcasting and forecasting of MCSs, enabling the de-
tection of storm cells using radar volume scan data. These
data are used to match storms across scans and forecast their
position, either based on the storm centroid or through cross-
correlation methods that utilize 2-D reflectivity data to calcu-
late motion vectors (Johnson et al., 1998; Dixon and Wiener,
1993). At present, we observe the use of automated methods
that leverage these techniques, detection methods, or a com-
bination thereof, along with other satellite-derived products
and methods. In the review that follows, our focus is on re-
cent MCS and storm-tracking algorithms that are currently
available as open-source code or packages, facilitating on-
going research on MCSs and promoting open and inclusive
research, in line with the strong encouragement from the in-
ternational scientific community.

The “Grab ’em, Tag ’em, Graph ’em” (GTG) algo-
rithm (Whitehall et al., 2015) (https://kwhitehall.github.
io/grab-tag-graph/, last access: 29 October 2023) identi-
fies and tracks cloud clusters using IR, the area-overlap
method, and graph algorithms. GTG is a Python-based
tracker, and it can be applied to remotely sensed datasets.
The Tracking and Object-Based Analysis of Clouds (to-
bac; Heikenfeld et al., 2019; Sokolowsky et al., 2024)
(https://github.com/tobac-project/tobac, last access: 29 Oc-
tober 2023) is a community-developed Python package with
three main modules: detection, segmentation, and linking.
In contrast to area overlap, tobac assigns a center point to a
track when it falls within a predicted radius of motion, which
is done using trackpy (http://soft-matter.github.io/trackpy,
last access: 7 August 2024). Unlike area-overlap algo-
rithms where the feature geographical area is treated
as the segmentation area and is not separated from
the identified feature, in tobac, the original identified
feature can be different from the segmentation area,
which is calculated with a watershed method. Similar
to tobac is the TempestExtremes (Ullrich et al., 2021,
https://github.com/ClimateGlobalChange/tempestextremes,
last access: 7 August 2024) algorithm, which is a flex-
ible tool box with which the user can track different
extreme events like tropical cyclones, extratropical cyclones,
and MCS-like features (Hsu et al., 2023). The Python
FLEXible object TRacKeR (PyFLEXTRKR; Feng et al.,
2023) (https://github.com/FlexTRKR/PyFLEXTRKR, last
access: 29 October 2023) uses both IR and surface pre-
cipitation to identify and track convective features using
the renowned area-overlap method. The PyFLEXTRKR
includes several multi-object identification algorithms
to track from cells to MCSs and can explicitly han-
dle merging and splitting. It also has a 2-D convective
cell advection estimate functionality specific for re-
flectivity data using preexisting Python packages. The

Multi-Object Analysis of Atmospheric Phenomenon
(MOAAP; Prein et al., 2021, 2023, https://github.com/
AndreasPrein/MOAAP, https://github.com/AndreasPrein/
AndreasPrein-MCS-tracker-intercomparison-SAAG, last
access: 30 October 2023) algorithm is a Python-based
MCS tracker that uses Tb to connect convective features
via preexisting image processing tools rather than using an
overlap threshold. MOAAP can also be used to track other
atmospheric features. Of the trackers reviewed, PyFLEX-
TRKR and tobac offer parallelization capability for at least
one step of the algorithm. Lastly, convective cell trackers
specifically for radar volume scans that are available as
open-source codes are the Thunderstorm Identification,
Tracking, Analysis, and Nowcasting (TITAN; Dixon and
Wiener, 1993) (https://github.com/NCAR/lrose-titan, last
access: 30 October 2023) and similarly TINT (Raut et al.,
2021) (https://github.com/openradar/TINT, last access:
30 October 2023).

Two tracking algorithms, Forecasting and Tracking the
evolution of Cloud Clusters (ForTraCC; Machado et al.,
1998) and the Tracking Of Organized Convection Algorithm
(TOOCAN; Fiolleau and Roca, 2013), are not publicly avail-
able. These trackers are reviewed here because their develop-
ment has provided and continues to provide publicly avail-
able data on MCSs over South America (ForTraCC; https:
//sigma.cptec.inpe.br/fortracc/, last access: 7 June 2024) and
the global tropics (TOOCAN; Fiolleau and Roca, 2024). For-
TraCC is currently employed operationally for nowcasting
at the Brazilian Center for Forecast and Climate Studies of
the National Institute of Spatial Research. It can utilize in-
put data from radar, precipitation, or outgoing longwave ra-
diation and employs an area-overlapping tracking approach.
TOOCAN identifies the most convective cores of the cloud
top, which are characterized by the lowest Tb. Using cluster-
ing methods, it associates these cloud clusters over time. This
approach enables the study of MCSs by decomposing them
into their numerous small-scale features, facilitating earlier
detection in their life cycle.

The original TAMS

In this paper, we will describe the new open-source
Python-based tracker known as the Tracking Algorithm
for Mesoscale Convective Systems (TAMS). However, be-
fore discussing the Python-based TAMS, we will review
the first version (“original TAMS”) which was written in
MATLAB®. TAMS was initially developed to track and ana-
lyze tropical MCSs over Africa associated with African east-
erly waves (Núñez Ocasio et al., 2020a, b). These MCSs are
directly associated with the formation of tropical cyclones
(TCs) in the Atlantic (Núñez Ocasio et al., 2020b; Rajas-
ree et al., 2023), the intensity of the West African monsoon
(Núñez Ocasio et al., 2021, 2024), and initiation by topog-
raphy (Hamilton et al., 2020, 2017), which all together add
layers of complexity to studying them. This first version of
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TAMS comprised four main steps: identification, tracking,
classification, and the assignment of precipitation. A cloud
element (CE) identified as a potential MCS candidate had
to meet specific criteria, including a Tb area of 235 K or
lower, with an area ≥ 4000 km2 of embedded 219 K Tb re-
gions (cold cores). The embedded cold core has to always
be identified during the MCS lifetime; otherwise, it is not
identified as an MCS. The tracking step involved a combina-
tion of the area-overlap technique and a modified version of
the centroid projection technique. In this modified approach,
with the longitudinal component of the CE centroid, the CE
was projected using a fixed climatological zonal propagation
speed, for which projected distance depended on the tempo-
ral resolution of the data. In Núñez Ocasio et al. (2020a),
the CEs were projected 2 h into the future. If CEs of the cur-
rent time sufficiently overlapped (i.e., 55 %) with CEs of the
next satellite image (and thus, forward linking), then the fu-
ture CE was flagged as a “kid” of the current satellite im-
age CE “parent”. The flagged “families” of CEs were then
grouped (the actual track) using a recursive graph-walking
function. The entire track of an MCS was then classified into
one MCS class following specific area, shape, and time cri-
teria (see Núñez Ocasio et al., 2020b, their Table 1). There
were four main classes defined in original TAMS comprising
two main group: organized and disorganized systems. The
four specific classes were Mesoscale Convective Complexes
(MCCs), Convective Cloud Clusters (CCCs), Disorganized
Long-Lived (DLL), and Disorganized Short-Lived (DSL).
The last step of original TAMS was the assignment of pre-
cipitation, which used IMERG data interpolated for compat-
ibility with the 4 km IR data. At the time, regridding from
higher-resolution precipitation estimates, such as IMERG,
rather than coarser TRMM 3B42 estimates, represented a
significant improvement in TAMS compared to other MCS
tracking algorithms.

The original TAMS allowed Núñez Ocasio et al. (2020a)
to analyze the morphology and climatology of MCSs in
Africa, a region with various spatial-scale and timescale at-
mospheric phenomena that interact (e.g., West African mon-
soon, African easterly waves – AEWs, African easterly jet
– AEJ, and Intertropical Convergence Zone – ITCZ), es-
pecially over the northern summer months. It was found
that a realistic representation of MCS propagation over
Africa is dependent on the AEJ, and realistic MCS tracks
are only attained when the tracking technique accounts for
the AEJ mean background flow through cloud projection
(Núñez Ocasio et al., 2020a). These results were important as
they showed that tracking technique differences can bias the
lifetimes of longer-lived convective systems that, over Africa
during the northern summer, tend to be coupled to AEWs.
The projection of cloud edges using a climatological MCS
propagation speed facilitated the area-overlap method by en-
hancing the probability of connecting CEs that belonged to
the same system. Additionally, this projection approach also
facilitated the handling of splits and mergers.

The original TAMS was also applied to a study that in-
vestigated MCSs coupled to AEWs. With a combination of
MCS tracks using original TAMS and AEW tracks (Bram-
mer et al., 2018), a wave-relative framework was developed
in order to study the complex interactions between MCSs and
AEWs. Núñez Ocasio et al. (2020b) found that there are sig-
nificant differences between the MCSs of AEWs that become
TCs and the MCSs of AEWs that do not undergo TC gene-
sis. MCSs of developing AEWs (those that become TCs) are
more likely to be of the squall line type over Africa and the
eastern Atlantic. These MCSs are more likely to move at the
same speed and be positioned at the wave vortex they are
coupled to.

The original TAMS was written in MATLAB, and it was
not an open-source code. Unlike some other trackers, it did
not use a preexisting package to track or link CEs detected;
rather, the code was written entirely from scratch using some
MATLAB image processing. The objective of this paper is to
introduce and describe the new TAMS Python-based open-
source project. The new TAMS retains the essence of orig-
inal TAMS while introducing new capabilities, configura-
tions, and settings to make it more user-friendly and flexible.
It also provides visualization and post-processing tools.

The following sections are organized as follows: Sect. 2
will provide an overall description of the new TAMS with
subsections that detail each of the algorithm’s steps and re-
lated utilities. Section 3 will focus on introducing additional
settings and helper functions as part of the software. Sec-
tion 4 will be a summary, including a subsection for the
caveats and development goals.

2 TAMS open-source Python package – overall
description

The new version of TAMS (hereon TAMS) is an open-source
MCS tracking and classifying Python-based package. A stan-
dard workflow using TAMS follows the same main four steps
as its predecessor: (1) identify, (2) track, (3) classify, and (4)
assign variable(s) (Fig. 1). But the steps can also, to some
extent, be run independently. TAMS now includes the ca-
pability to assign any desired variable or atmospheric field
of choice (not limited to precipitation as in original TAMS)
to each mesoscale convective system (MCS) for calculating
corresponding statistics of the variable within the cloud area.
This new variable assignment functionality, which will be
discussed in detail in the following sections, allows TAMS
to be customized to identify and track using additional cri-
teria specified by the user rather than solely relying on Tb-
dependent criteria. An example of this is the study by Prein
et al. (2024) for which TAMS’s identification criteria were
modified to follow the study’s identification criteria.

The TAMS documentation page (https://tams.readthedocs.
io/, last access: 7 August 2024) provides a set of instructions
for Conda/Mamba or pip installation methods. The package
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Figure 1. Schematic of the TAMS logo and the four main algorithm
steps.

includes a set of visualization, sample datasets, and post-
processing tools including functionalities that will be dis-
cussed in the following sections. One unique functionality
of TAMS is that, like original TAMS, it is grid-independent
for tracking, making it a valuable tool for validating simu-
lated MCSs against observed systems. TAMS is addition-
ally grid-independent for assigning variables and supports
unstructured-grid input in the identification stage. TAMS
provides optional parallelization for (1) CE identification and
(2) calculation of statistics of gridded data within MCS and
cold-core areas. The TAMS core dependencies are GeoPan-
das (den Bossche et al., 2023), Matplotlib (Hunter, 2007),
NumPy (Harris et al., 2020), pandas (Wes McKinney, 2010;
The pandas development team, 2023), scikit-image (van der
Walt et al., 2014), Shapely (Gillies et al., 2023), and xarray
(Hoyer and Hamman, 2017). The documentation examples
are provided as Jupyter Notebooks. The output format is a
GeoPandas GeoDataFrame, but this can be transformed into
a gridded mask representation, as done for the Prein et al.
(2024) tracker intercomparison project (code available in the
TAMS GitHub repository). Next, each step of the algorithm
will be discussed in detail.

2.1 Identification

The default TAMS identification step follows the approach
of the first version using contours of Tb or cloud-top temper-
ature (CTT) data (if using model data) to identify cloud re-
gions (i.e., CEs) of 235 K areas containing embedded 219 K
area(s) ≥ 4000 km2. The field used must have associated lat-
itude and longitude coordinate variables. Extremely small
219 K areas (≤ 10 km2) are discarded, as are 235 K areas
that do not meet the 4000 km2 threshold. These contour def-
initions are converted to Shapely polygons, with the convex
hull operation applied in order to smooth out the shapes and
reduce the number of points required to represent them (to
reduce memory requirements and speed up computations).
The tams.identify function returns a GeoDataFrame of
these shapes. This is the first step of the TAMS workflow, and
it can also be run within the tams.run function, which runs
all the steps of the workflow with one command (note that if
using tams.run, the input xarray DataArray should have
both cloud-top temperature and precipitation rate variables).
The user is able to modify the identification criteria through
the use of the variable-assigning functionality as was done
for Prein et al. (2024). This functionality will be described
in the next sections. The user does not need to provide time
step and grid spacing information to TAMS, but they should
be aware of it when considering the overlap threshold and the
addition of cloud projection for the tracking step discussed in
the next section.

Other parameters in this identification step include en-
abling parallelization (for input data with a time dimension),
the CTT threshold for the cloud boundary, and an additional
CTT threshold used to identify the deep convective areas
and embedded cold cores. Figure 2 is a visual example us-
ing the Meteosat Second Generation (MSG) geostationary
satellite (Schmetz et al., 2002), specifically the 10.8 µm spec-
tral band of the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) data on 16 September 2022. MCSs cou-
pled to an AEW that were active during research flight 7
of field campaign CPEX-CV (https://espo.nasa.gov/cpex-cv/
content/CPEX-CV, last access: 31 October 2023) were iden-
tified. The red crosses show the track of the AEW up to that
time using the AEW tracker by Lawton et al. (2022). The
TAMS package includes sample MSG satellite data that can
be loaded using API functions as either the satellite IR radi-
ance (channel 9) or derived Tb. The user can compute the Tb
by using an API function that takes MSG SEVIRI IR satellite
radiance and channel number as input.

Grid-independent identification

TAMS includes sample data taken from a 15 km global-mesh
Model for Prediction Across Scales (MPAS) simulation from
8 September 2006 at 12:00 UTC to 13 September 2006 at
18:00 UTC initialized with the Integrated Forecast System
(IFS) (Núñez Ocasio and Rios-Berrios, 2023, 2022). This
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Figure 2. Identified MCSs using MSG data during research flight 7 of the CPEX-CV field campaign. CEs (convex-hull, warm-core 235 K
areas) are in blue and IR shaded. Blue dots represent the geographical centroid position. Red crosses are the track of the AEW. Time is in
UTC.

includes native unstructured-grid model output and output
regridded to a 0.25° lat–long grid using a first-order con-
servative method (Jones, 1999) via Climate Data Operators
(CDO; https://code.mpimet.mpg.de/projects/cdo, last access:
10 June 2024). To keep file sizes down, the versions included
in TAMS are spatial subsets of the original model outputs
and include only selected variables. The sample datasets can
be automatically downloaded then loaded as xarray objects
using API functions.

TAMS is able to identify CEs in both MPAS datasets
by contouring the cloud-top temperature (235 K by default).
For unstructured-grid data, this currently uses Matplotlib’s
tricontourf function. In this case, by default, the Delau-
nay triangulation of the lat–long coordinates is used. Note
that this is only an approximation of the true MPAS grid,
which is mostly made up of hexagons, but we expect this
effect to be insignificant for our high-resolution example.
MPAS grids can be decomposed into triangles (e.g., six
per hexagon) and the resulting triangulation can be used
instead if desired (https://mpas-dev.github.io/MPAS-Tools/
stable/visualization.html#mpas-mesh-to-triangles, last ac-
cess: 7 August 2024) for a faithful representation but
with increased contouring compute time. We refer to the
identification as grid-independent because we can support
unstructured-grid data in addition to structured-grid data with
1-D or 2-D lat–long coordinates.

Figure 3 shows a comparison of MPAS unstructured-grid
identified CEs compared to those identified from the MPAS
regridded data. The native output is the most faithful to the
true model state. Regridding is often done from a higher to
a lower spatial resolution, and, depending on the techniques
used, CEs may become connected. For example, the CE near
5° N, 105° E in Fig. 3b is separate from the larger CE in the
identification using the native MPAS data but not in that us-
ing the regridded data.

2.2 Tracking

By default, the track of an MCS is obtained by linking CEs
at the current time to CEs at the previous time (backward
linking) based on maximum CE polygon overlap. Since the
polygons are defined by a set of coordinates (not, e.g., by in-
teger masks on a grid), the tracking can be considered grid-
independent. A CE at time ti has one “parent” at ti−1, but
multiple CEs can have the same parent (e.g., splitting). Op-
tionally, you can choose to have only the largest CE continue
a given track as done in Evans and Shemo (1996). Forward
linking is also available, and other linking methods are in de-
velopment.

Overlap thresholds are based on normalized area (0–1),
so it is important to consider which area to use when nor-
malizing the overlap area. Núñez Ocasio et al. (2020a) used
the minimum area between the two CEs being compared.
In this version of TAMS, by default, the area of the CE at
the current time when linking is used, but TAMS provides
other options: the minimum CE area, maximum CE area,
the average, the current CE, or the CE at the other time.
As in the first version, there is a setting to project the CE
in the x direction before computing overlap, which proves
useful when MCSs are propagating in an environment with
prevalent zonal background flow, especially when hourly or
higher-time-resolution data are not available (Núñez Ocasio
et al., 2020a; Feng et al., 2023). The user could estimate what
value to use based on a climatology of wind data, but we
leave it to the user’s discretion to decide on the specific value
to choose. Accounting for background flow by projecting the
CE before calculating overlap ensures that MCSs that move
fast are being tracked. For example, over Africa, the African
easterly jet accounts for a large part of the MCS propagation
speed. Thus, depending on the resolution being used the user
may want to add a projection of −10 m s−1 (Núñez Ocasio
et al., 2020a). The track of an MCS is then defined as the
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Figure 3. CEs identified on 8 September 2006 at 22:00 UTC (10 h in) for the sample MPAS datasets. (a) Contours of the native MPAS output
and associated CE polygons. (b) CEs derived from native (solid lines) MPAS output and regridded (dashed lines) MPAS output.

record of all CEs linked. It is important to note that, for a
given MCS, there may be more than one CE at a given time.
To define a single pointwise track in this case, we use the
centroid of the combined “multi-polygon” at each time.

Figure 4 shows MCSs identified and tracked through time
(darker shades represent later times) from the sample MSG
satellite data using a TAMS API function to plot the tracks.
How different setting combinations can be used to link and
subsequently alter the track of an MCS is shown in Table 1
for the MCS in the red box in Fig. 4. In order to capture
the full track of an MCS that evolved from a larger area to
a smaller area as in the example, projection and overlap nor-
malization settings should be carefully selected. Only the two
cases with u projection −15 m s−1 and average or minimum
overlap normalization continue this track (cases 3 and 4 in
Table 1).

A variable that can be analyzed strictly based on the in-
formation from the CE and MCS shapes is the area of the
systems. Figure 5 shows how the area of simulated MCSs
in MPAS is sensitive to threshold temperature selection for
identification and to projection speed for tracking. The area is
more sensitivity to temperature tuning than projection speed,
since there is little noticeable change between the distribu-
tions within a certain column. For example, the most likely
area range is around 105 km2 (consistent with Feng et al.,
2023, their Table 1) for all cases in the first column. However,
higher projection speed results in a larger number of MCSs
in all temperate threshold cases, suggesting that less linking

Table 1. Example using different tracking options for an observed
MCS case.

Case u proj Linking Overlap norm Continued?
[m s−1]

0 0 backward average no
1 0 forward minimum no
2 0 forward maximum no
3 −15 backward average yes
4 −15 forward minimum yes
5 −15 forward maximum no

is occurring. Warmer temperature thresholds compared to the
defaults (rightmost column) lead to increased system counts
and a smoother distribution covering a broader area range. A
warmer threshold leads to mergers in the contouring but also
provides more new shapes (in this case the latter wins out).
On the other hand, much cooler temperature thresholds (left
column) pick up about half as many systems, with a distribu-
tion that favors larger areas. In this case, the cold-core area
criterion is more restrictive.

Another way in which the area of MCSs can be analyzed
is by comparing it with other MCS characteristics such as
duration. Figure 6 shows duration versus area 2-D kernel
density estimates (KDEs) for simulated MCSs from MPAS
sample data. In this example we see that the systems with
the longest duration are not necessarily the largest. Here, ex-
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Figure 4. MCS tracks in time (darker shades represent later times) from sample MSG satellite data.

Figure 5. Maximum area kernel density estimates (KDEs) for simulated MCSs from MPAS sample data interpolated to a latitude–longitude
grid. Rows represent results using the same projection speed for tracking, while columns represent different temperature thresholds for
identification. The data are for the period of 8 September 2006 at 12:00 UTC to 13 September 2006 at 18:00 UTC.

cept for some outliers, the systems with the longest duration
are of low–moderate area, while the largest systems are of
low–moderate duration. Moreover, there are different rela-
tionships between area and duration between different core
thresholds (e.g., the slope is steeper for the colder cases).

2.3 Classification

The TAMS software allows the user to classify the entire life-
time of an MCS into one class based on the area, shape, and
time criteria described in Table 2. There are four main classes
defined in TAMS within two main groups: organized and dis-
organized systems. The four specific classes are Mesoscale

Convective Complexes (MCCs), Convective Cloud Clusters
(CCCs), Disorganized Long-Lived (DLL), and Disorganized
Short-Lived (DSL). These criteria mostly follow those of the
first version in Núñez Ocasio et al. (2020a) with the dis-
tinction that DSLs are classified as anything with a duration
shorter than 6 h (rather than 3 h or less). Note that these crite-
ria need not be met for consecutive times but for at least 6 h
within the lifetime of the system. Recall that all TAMS CEs
meet the cold-core criterion.

In order for each MCS to be classified, the user can input
the GeoDataFrame obtained from running tams.track
into the tams.classify function. The result will be a
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Figure 6. Duration versus maximum area 2-D kernel density estimates (KDEs) for simulated MCSs from MPAS sample data interpolated to
a latitude–longitude grid. Rows represent results using the same projection speed for tracking, while columns represent different temperature
thresholds for identification. The data are for the period of 8 September 2006 at 12:00 UTC to 13 September 2006 at 18:00 UTC.

Table 2. Criteria to categorize the four classes of MCSs.

Organized systems Disorganized systems

Mesoscale Convective Complex (MCC) Disorganized Long-Lived (DLL)

Size: < 219 K region has area ≥ 25000 km2 Temperature: < 219 K
< 235 K region has area ≥ 50000 km2 Duration: is sustained for ≥ 6 h
Duration: size definitions are met for ≥ 6 h No size or shape criterion

Shape: ε =
√

1− b2

a2 ≤ 0.7

Convective Cloud Cluster (CCC) Disorganized Short-Lived (DSL)

Size: < 219 K region has area ≥ 25000 km2 Temperature: < 219 K
Duration: size definitions are met for ≥ 6 h Duration: is sustained for ≤ 6 h
Shape: no shape criterion No size or shape criterion

GeoDataFrame with an additional categorical MCS class col-
umn added to the input frame. This GeoDataFrame retains
information associated with each CE, and it allows for an-
alyzing the number of CEs versus the number of MCSs by
category, as shown in Fig. 7.

Over western Africa during the Fig. 7 example period, the
majority of the convection is classified as a DSL. This preva-
lence of DSLs is notable, as a significant portion of the con-
vection in this region belongs to this category (Fig. 7a and b).

Disorganized convective systems are known to be the most
frequent type of convective system in the tropics (Rossow
et al., 2013; Tan et al., 2013; Semunegus et al., 2017;
Núñez Ocasio et al., 2020a). Furthermore, the number of or-
ganized MCSs (i.e., MCCs and CCCs) is greatly influenced
by the ITCZ, West African monsoon, and AEWs, particularly
during the northern summer months (Berry and Thorncroft,
2005; Núñez Ocasio et al., 2020b, 2021; Núñez Ocasio and
Rios-Berrios, 2023).
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Figure 7. Example statistics for the observed number of CEs (a)
and MCSs (b), as well as the duration of MCSs by category (c)
during 4 through 30 September 2022, the period of the CPEX-CV
field campaign, over a western African domain.

As expected, the number of CEs is much greater than the
count of MCSs. (An MCS only gets counted once for its life-
time, while CE counts include counts at each time in the pe-
riod.) Organized systems (MCCs and CCCs) were less com-
mon, with their count below 100. Note that MCCs are defined
following Maddox (1980), who defined an MCC as a distinct
intense organized and circular convective system (thus the
eccentricity criterion). CCCs, which include squall-line-type
convection (and thus those that are too elliptically shaped or
elongated to be MCCs), were the second-most prominent cat-
egory during this time. The number of DSL MCSs is com-
parable to the number of DSL CEs due to the shorter MCS
durations. Duration box plots, as shown in Fig. 7c, can help
the user discern differences in the duration of the systems
across categories. Although CCCs and MCSs share the same
time criterion, it is evident that over September 2022, MCCs,
based on the median, lasted longer than CCCs.

Figure 8 displays MCS area distributions from the CPEX-
CV field campaign, categorized by their respective types.
During this period, disorganized systems (DSLs and DLLs)
were generally smaller than organized systems (MCCs and
CCCs), with MCCs, as expected, having the largest median
area.

2.4 Variable assignment

Another unique functionality of TAMS, in addition to iden-
tifying and tracking systems using CE polygons and be-
ing grid-independent, is its ability to assign any variable of
choice to CE or MCS shapes and compute related statistics
(e.g., mean and standard deviation) on the data within us-
ing a TAMS API function. The statistics are computed over
the entire MCS but users can also apply the tooling to com-
pute statistics over the CEs. If tams.run is used instead of
running each step separately, the statistics will also include
the mean and standard deviation of the cold-core tempera-

Figure 8. Rain-cloud plots of MCS area (note the log scale) by cat-
egory for the same period and domain as in Fig. 7.

Figure 9. Visualization of the variable assignment of precipitation
within a CE selected from Fig. 3b.

ture and mean precipitation rates. This allows users to assess
the evolution, characteristics, and nature of the systems un-
der study using different atmospheric variables. This func-
tion is not limited to a specific data type, spatial resolution,
or a specific grid, as demonstrated in the previous sections.
Having the same temporal resolution or at least data that in-
clude the same times allows the user to match variables to
each MCS across various datasets. The geospatial selection
process treats the input data as points; only latitude and longi-
tude coordinates are needed, and these need not be the same
as those of the data used for CE identification. A visual exam-
ple of how the variable assignment works is shown in Fig. 9,
which demonstrates that the geospatial selection also works
for unstructured-grid data.

One common example is assigning precipitation to each
MCS from satellite-derived products like IMERG, as shown
in Fig. 10a for the example period of observed MCSs. The
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Figure 10. Rain-cloud plots of MCS area-mean rain rates (a) and
MCS minimum Tb (b) by category for the same period as in Fig. 7.

statistics include each of the time steps of the MCSs (the CEs
of an MCS are combined before creating the plot). DSLs,
which had the greatest number of counts, were the rainiest
type of MCSs. However, the precipitation rate median of
CCCs and MCCs was slightly above that of DSLs at about
3 mm h−1.

Through this function, the user can also extract the mini-
mum Tb as a diagnostic for convection intensity. In Fig. 10b,
the most intense and coldest cloud tops were observed in
MCCs during the example period. If the user or researcher is
analyzing model data that provide a full array of 2-D and 3-D
variables at each grid cell, they are not limited to just cloud-
top temperature or precipitation. With this functionality, they
can assign many other variables and compute relevant statis-
tics.

As another example, Fig. 11 shows 2-D distributions of
simulated precipitation rate versus minimum Tb across dif-
ferent setting options. For this particular subset of data, there
is no distinct relationship between minimum Tb and average
precipitation rates. Most of the differences across the setting
options are due to sensitivity to the change in temperature
threshold for identification than to the selected projection
speed as discussed in Sect. 2.2. The sample simulated pre-
cipitation rate dataset can be loaded with an API function.

3 Additional tools and helper functions

3.1 Eccentricity calculation

A quantity that can provide information about the struc-
ture of the system is eccentricity (Evans and Shemo, 1996;
Núñez Ocasio et al., 2020a). A TAMS API function can
be used to calculate the first eccentricity (ε =

√
1− b2/a2)

of the least-squares best-fit ellipse to the coordinates of the
polygon’s exterior. If the first eccentricity is ≤ 0.7, the sys-
tem is considered more circular (a circle has ε = 0). This is
used in the default MCS classification.

Figure 12 displays the evolution of eccentricity over time,
along with other relevant variables, for an observed MCS
identified and tracked during research flight 8 of the CPEX-
CV field campaign on 20 September 2022. This system per-
sisted for 4 h, and TAMS classified it as a DLL. Initially, the
system exhibited a more elongated shape, reaching its pre-
cipitation rate peak 1 h after initiation. As time progressed,
the system gradually expanded and became more circular. By
the time of dissipation, it had evolved into a large and nearly
circular system, indicative of a dissipating anvil.

3.2 Estimating cloud-top temperature from simulated
OLR

TAMS also includes code to estimate the cloud-top temper-
ature from simulated top-of-the-atmosphere outgoing long-
wave radiation (OLR) following the Stefan–Boltzmann law.
This is used within the function that was used to load sim-
ulations nearing near-real-time application for the PRECIP
field campaign. The Yang and Slingo (2001) method, which
puts observed infrared brightness temperature and that de-
rived from model OLR on a more equal footing, has also
been implemented, and others are planned. It is important to
note that these methods really give infrared brightness tem-
perature, which is related to but not the same as the cloud-top
temperature.

3.3 Post-processing and visualization

Additional examples featuring the sample data and visualiza-
tions can be found within the documentation (https://tams.
readthedocs.io/, last access: 7 August 2024) like the plotting
of spatial maps including the convex hull outlines of CEs as
in Fig. 4. Example applications can be found in the example
directory of the GitHub repository. Post-processing and code
for Figs. 4, 5, 6, and 11 which show the different tracking
and identification options, as well as the use of the example
dataset loader functions, can be found in the documentation
under examples. These examples also show the statistics that
can be derived quickly via high-level functions. Similarly, the
code for Fig. 3, demonstrating tracking on unstructured-grid
data, is published in the documentation.
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Figure 11. 2-D precipitation rate versus minimum Tb kernel density estimates (KDEs) for simulated MCSs from MPAS sample data inter-
polated to a latitude–longitude grid. Rows represent results using the same projection speeds for tracking, while columns represent different
temperature thresholds for identification. The data are for the period of 8 September 2006 at 12:00 UTC to 13 September 2006 at 18:00 UTC,
as in Fig. 5.

4 Summary

We have introduced and described TAMS, an open-source
MCS tracking and classifying Python-based package avail-
able through GitHub that can be used to study both observed
and simulated MCSs. In addition to describing each of the
core steps of the algorithm – (1) identify, (2) track, (3) clas-
sify, and (4) assign variable(s) – we have introduced visual-
ization and post-processing tools within the package to fa-
cilitate the analysis of MCSs for users. What distinguishes
TAMS from other tracking packages is its specific design
for tracking MCSs. However, the identification and tracking
components are flexible and could easily be applied to vari-
ables other than cloud-top temperature for different tracking
situations. The identification of MCSs is grid-independent,
and the user can assign any desired variable to compute
statistics on it within the MCS area over time. Current set-
tings and helper functions enable various ways to calculate
overlap and account for background flow. The user can select
the preferred threshold temperature for the larger convective
area to be detected and tracked, as well as the threshold for
the corresponding cold cores. Options to select the desired
linking method (backward or forward, keep largest, etc.) are
also available. Through the sample data available, we have

shown that TAMS works with satellite and model data, as
well as with unstructured-grid native MPAS data.

4.1 Applications

Recently, TAMS was applied as an MCS forecast-
ing tool using MPAS near-real-time forecast in re-
cent PRECIP (http://precip.org/, last access: 12 Decem-
ber 2023) and CPEX-CV (https://ghrc.nsstc.nasa.gov/home/
field-campaigns/cpex-cv, last access: 12 December 2023)
field campaigns. In addition, TAMS is one of six
MCS tracking algorithms participating in a multi-MCS-
tracking intercomparison study (Prein et al., 2024), which
is part of the NSF NCAR South America Affinity
Group (SAAG; Dominguez et al., 2023) (https://ral.ucar.
edu/projects/south-america-affinity-group-saag, last access:
12 December 2023) to study MCSs over South Amer-
ica. The specific TAMS SAAG application is located un-
der examples/mosa in the GitHub repository. PyFLEX-
TRKR, MOAPP, ForTraCC, tobac, and TOOCAN are also
involved in this study.

TAMS is being used internationally for MCS detec-
tion and tracking. Currently, TAMS is part of a second
multi-MCS-tracking intercomparison study that is making
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Figure 12. Time series of the observed MCS during research flight
8 of the CPEX-CV field campaign fr precipitation rate (blue line)
and area (green line) (a), as well as eccentricity (yellow line) and
minimum Tb (orange line) (b).

use of high-resolution global simulations from DYA-
MOND (https://www.esiwace.eu/the-project/past-phases/
dyamond-initiative, last access: 12 December 2023) to
analyze MCSs globally. We hope TAMS can serve the
scientific and research community worldwide, facilitating
the study of observed and simulated MCSs. We very much
welcome contributors to the code.

4.2 Caveats

There are a couple of caveats associated with the software
that are worth noting. The use of a convex hull to define CEs
introduces some systematic bias towards larger areas. This
could potentially lead to an artificial increase in the calcu-
lated system’s propagation speed relative to the geographical
centroid. More generally, however, computing overlap with
convex hull shapes allows for a larger likelihood of link-
ing compared to more strict contour shapes. Additionally,
for users interested in analyzing a convective system from
its very early initiation stages as a convective cell, the TAMS
identification criterion of requiring an embedded 219 K core
can sometimes inhibit the detection of these early system
stages. However, it is important to mention that users have
the flexibility to alter the criteria used in the software’s set-
tings.

4.3 Development goals

Our development goals encompass the incorporation of ad-
ditional settings into our system. These new settings include,
but are not limited to, the following.

1. Include other methods for computing CTT from Tb.

2. Implement a projection option based on trajectory his-
tory.

3. Implement the original TAMS linking method for com-
parison.

4. Implement a graph-based linking method with pruning
for better handling of (and recording of) both merging
and splitting.

5. In CE identification, make the application of the con-
vex hull operation optional, and support other shape-
simplification options such as a buffer.

6. Combine an AEW tracker (Lawton et al., 2022) with
TAMS, as detailed in the study by Núñez Ocasio et al.
(2020b).

7. Extract the code for reducing the CE dataframe to
the MCS dataframe and the reduction from the MCS
dataframe to the MCS stats dataframe so that it can be
used in custom workflows outside of tams.run

8. Add more documentation examples, including testing of
generated idealized cases.

Code and data availability. The TAMS open-source code de-
scribed in this work is publicly available via the following GitHub
repository: https://github.com/knubez/TAMS (last access: 28 Jan-
uary 2024). TAMS can be installed using pip or Conda/Mamba.
Jupyter Notebooks and sample MSG and MPAS data can be found
on the TAMS documentation page: https://tams.readthedocs.io/en/
latest/ (last access: 8 August 2024). The version of the code used in
this paper is available at https://doi.org/10.5281/zenodo.12555815
(Núñez Ocasio and Moon, 2024). MSG satellite data for figures re-
lated to CPEX-CV can be downloaded via EUMETSAT with a user
account: https://eoportal.eumetsat.int (last access: 7 August 2024).
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