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Abstract. The ocean carbon sink plays a critical role in
climate, absorbing anthropogenic carbon from the atmo-
sphere and mitigating climate change. The sink shows sig-
nificant variability on decadal timescales, but estimates from
models and observations disagree with one another, rais-
ing uncertainty over the magnitude of the sink, its variabil-
ity, and its driving mechanisms. There is a need to recon-
cile observation-based estimates of air–sea CO2 fluxes with
those of the changing ocean carbon inventory in order to
improve our understanding of the sink, and doing so re-
quires knowledge of how carbon is transported within the
interior by the ocean circulation. Here we employ a recently
developed optimal transformation method (OTM) that uses
water-mass theory to relate interior changes in tracer distri-
butions to transports and mixing and boundary forcings, and
we extend its application to include carbon using synthetic
data. We validate the method using model outputs from a
biogeochemical state estimate, and we test its ability to re-
cover boundary carbon fluxes and interior transports consis-
tent with changes in heat, salt, and carbon. Our results show
that the OTM effectively reconciles boundary carbon fluxes
with interior carbon distributions when given a range of prior
fluxes. The OTM shows considerable skill in its reconstruc-
tions, reducing root-mean-squared errors from biased priors
between model “truth” and reconstructed boundary carbon
fluxes by up to 71 %, with the bias of the reconstructions con-
sistently ≤ 0.06 molCm−2 yr−1 globally. Inter-basin trans-
ports of carbon also compare well with the model truth, with

residuals < 0.25 PgCyr−1 for reconstructions produced us-
ing a range of priors. The OTM has significant potential for
application to reconcile observational estimates of air–sea
CO2 fluxes with the interior accumulation of anthropogenic
carbon.

1 Introduction

The ocean is an important sink for anthropogenic carbon
(Canth), absorbing 2.9± 0.4 PgCyr−1 in the most recent
decade, which represents 26 % of total emissions (Friedling-
stein et al., 2023). The ocean carbon sink plays a role in
mitigating atmospheric warming but at the cost of acidify-
ing the ocean, which negatively impacts the ocean’s ecosys-
tem (Doney et al., 2009). Earth system models are sensitive
to ocean carbon uptake (Arora et al., 2020), and understand-
ing the mechanisms that govern its trends and variability is
therefore crucial to the accurate projection of both future cli-
mate change and its impacts. Estimates of the ocean carbon
sink from global ocean biogeochemical models (GOBMs)
and surface ocean pCO2-based data products show that the
carbon sink has been increasing in line with increases in
atmospheric CO2 but with significant variability (Hauck et
al., 2020; DeVries et al., 2023; Terhaar et al., 2024). The
data products, which are based on the application of gap-
filling methods to surface ocean pCO2 observations com-
bined with a gas transfer parameterisation, have also sug-
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gested greater decadal variability and a steeper rate of in-
crease in the sink since the turn of the 21st century than
GOBMs, and this inconsistency poses a challenge for at-
tempts to characterise the sink (Rödenbeck et al., 2015). Ac-
cording to the Global Carbon Budget (Friedlingstein et al.,
2023, Table 6), the discrepancy between GOBMs and data
products reached 0.6 PgCyr−1 in 2022, or a fifth of the con-
temporary sink. Furthermore, while estimates of the sink
from GOBMs are fairly consistent globally, differences are
much larger regionally (Fay and McKinley, 2021), pointing
to deficiencies in the models’ representations of underlying
mechanisms.

Variability in the ocean carbon sink has been linked to
changes in the physical ocean circulation (DeVries et al.,
2017; Caínzos et al., 2022b). Ocean circulation and mixing
can impact the sink both directly (by physically transporting
dissolved inorganic carbon (DIC) between the surface and
deep ocean; Bopp et al., 2015) and indirectly (by influencing
changes in surface temperature, salinity, and alkalinity that
control surface pCO2; Halloran et al., 2015). The total sink
thus results from a combination of Canth uptake driven by
rising atmospheric CO2 concentrations and variable fluxes
of both Canth and natural carbon (Cnat) driven by the redis-
tribution of carbon and other tracers in the interior by the
circulation.

A complete understanding of the ocean carbon sink can-
not be attained without reconciling estimates of the air–
sea flux with estimates of the changing inventory, includ-
ing how carbon is redistributed in the interior. The rate of
change in the global inventory of Canth has been estimated
at 2.6± 0.3 PgCyr−1 for the period 1994–2007 by Gru-
ber et al. (2019) and 2.9± 0.3 PgCyr−1 for 1994–2004 and
2.7± 0.3 PgCyr−1 for 2004–2014 by Müller et al. (2023),
with the latter estimate indicating a reduction in the ocean’s
carbon uptake efficiency in the more recent decade in the
context of the continuing rise in atmospheric CO2. The in-
ventory change estimate has also been shown to be consistent
with the global air–sea flux once corrections for a preindus-
trial riverine outgassing and a skin temperature effect on sur-
face pCO2 are taken into account (Watson et al., 2020). How-
ever, a comprehensive examination of the consistency be-
tween estimates of the air–sea flux and the interior inventory
changes at the level of ocean basins has so far only been pos-
sible through the use of data-assimilating ocean biogeochem-
ical models such as the ECCO-Darwin state estimate (Car-
roll et al., 2020, 2022). Such models are extremely useful in
providing a mechanistic understanding of the ocean carbon
sink, but they are constrained by their resolution and param-
eterisation of subgrid-scale processes. Another approach has
used Green’s functions (Haine and Hall, 2002) to describe
the transport of Canth from the surface to the interior (Khati-
wala et al., 2009), but this methodology has the important
caveat of assuming an ocean circulation in a steady state.

In this paper, we present a novel method of estimating air–
sea CO2 fluxes that are consistent with changes in the ocean’s

carbon inventory and with interior transports of carbon. The
method, termed the optimal transformation method (OTM),
uses a water-mass coordinate system to determine the rela-
tive roles of ocean circulation, boundary fluxes, and interior
mixing in changes in the ocean’s interior tracer distributions.
The OTM was recently tested using outputs from a historical
numerical climate model simulation and was able to recover
boundary fluxes of heat and fresh water that were closer to
the “true” model fluxes when biased fluxes were used as pri-
ors (Zika and Sohail, 2023). We extend the OTM’s appli-
cation to carbon and conduct a validation using model out-
puts from the ECCO-Darwin biogeochemical state estimate.
OTM is an inverse method with a number of advantages over
alternate approaches, enabled by its adoption of a water-mass
framework that simplifies the ocean circulation with minimal
loss of information. Firstly, the inverse approach can diag-
nose a physical tracer circulation that is consistent with ob-
servations and is not required to be in a steady state, and it
can determine the transports and mixing of a tracer such as
carbon by that circulation. This feature is particularly useful
for the carbon sink problem, in which the non-steady-state
circulation is known to play an important role in the variabil-
ity (Gruber et al., 2023). Secondly, the water-mass frame-
work allows transports and mixing consistent with boundary
forcing and interior changes to be diagnosed exactly, with no
need to impose a uniform vertical diffusion coefficient, as has
been done with previous inverse modelling involving carbon
(Caínzos et al., 2022a). Finally, the method is computation-
ally efficient when compared to data-assimilating numerical
models, while it retains sufficient spatial resolution to facil-
itate the analysis of mechanistic drivers of carbon sink vari-
ability. Once validated, the next phase of development will
be to apply the OTM’s extension to carbon to observations to
produce a globally consistent estimate of ocean carbon up-
take, transports, and mixing.

The remaining sections of this paper are organised as fol-
lows. In Sect. 2, an overview of the theoretical framework
of the OTM is provided, including its extension to carbon.
Section 3 presents the results of the validation of our method
using model outputs from ECCO-Darwin, including compar-
isons of boundary carbon fluxes and transports of heat, fresh
water, and carbon with the model “truth”. Section 4 discusses
the limitations of the OTM and potential challenges in its fu-
ture application to observations and draws conclusions.

2 Methods

2.1 Water-mass framework

Water-mass methods work on the principle that the properties
of a water mass, for example its heat, salt, or carbon content,
can fundamentally only be altered by either tracer sources
and sinks or interior mixing (Groeskamp et al., 2019). For a
conservative tracer, sources and sinks are limited to boundary
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fluxes, usually at the sea surface. Walin (1982) first proposed
a framework relating temperature changes in the ocean inte-
rior to boundary heat fluxes and mixing; water-mass theory
has subsequently been built upon and applied many times to
studying the ocean circulation (e.g. Speer, 1993; Nurser et
al., 1999; Zika et al., 2012; Groeskamp et al., 2014; Hierony-
mus et al., 2014; Pemberton et al., 2015; Grist et al., 2016;
Evans et al., 2017; Mackay et al., 2018; Zika et al., 2021;
Sohail et al., 2021).

Recently, Zika and Sohail (2023) combined aspects of a
Green’s function approach with water-mass theory to create
the optimal transformation method. Here we briefly describe
the method; for full details, the reader is referred to Zika
and Sohail (2023). First, we define a set of 64 discrete water
masses for the global ocean using the binary space partition-
ing (BSP) method of Sohail et al. (2023), splitting the upper
2000 m of the ocean into equal volumes defined between up-
per and lower bounds of temperature (T ) and salinity (S) on
an unstructured grid. The upper and lower T and S bounds
define the water masses used for our analysis. We then fur-
ther split the ocean geographically into nine basins (giving a
total of 576 water masses globally) and compute the volume
of each water mass in each basin, this time for the full ocean
depth, as well as their mass-weighted mean T and S (Fig. 1).
The geographical region occupied by a water mass at a given
point in time is defined by a three-dimensional mask�(x, t).
We also calculate the boundary fluxes, Q, of heat and fresh
water into each water mass, which are integrated over the
outcrop area of that water mass (defined by �(x,y,0, t)), at
each point in time (Eqs. 9 and 10). All of these quantities
are calculated as monthly means using model outputs from
ECCO-Darwin (see Sect. 2.3).

We then seek to relate changes in the tracer distributions
from an “early” time period (with tracer concentrations C0,i
in N water masses with masses m0,i) to a “late” time pe-
riod (with tracer concentrations C1,j in N water masses with
masses m1,j ) to boundary fluxes and interior transports and
mixing. Effectively, the method minimises the misfit between
an initial tracer distribution (C0) and a later tracer distribu-
tion (C1), taking into account the boundary fluxes Qprior and
the effect of a transport matrix g. We minimise a cost func-
tion which aims to find a g with elements gij that is consis-
tent with the boundary fluxes and interior changes in tracer
distributions:

[Cost function] =

N∑
j=1

∥∥∥∥∥wj
(

N∑
i=1

m0,igij

(
C0,i +Q

prior
ij

)
−m1,jC1,j

)∥∥∥∥∥
2

. (1)

The transport matrix represents the proportion of each early
water mass i that becomes part of each late water mass j ,
and Qprior

ij contains prior estimates of the boundary fluxes of
each tracer that occur between the early and late time periods.
When combined with the volumes and mean tracer concen-
trations computed in the BSP binning process (see above and

Fig. 1), g allows us to determine the transports and mixing
of tracers both between basins and between individual wa-
ter masses within each basin. In Eq. (1), g acts on the early
tracer distribution that has been modified by the prior bound-
ary fluxes. The weights, wj , are chosen as

wj =
1
Aj

[
1

std(T )
,

1
std(S)

]
, (2)

where Aj represents the water-mass outcrop areas:

Aj =
1

t1− t0

t1∫
t0

∫ ∫
�(x,y,0, t)dxdydt, (3)

and t0 and t1 are the midpoints of the early and late time pe-
riods, respectively. The standard deviations of T and S are
the standard deviations of the time-dependent BSP-binned
water-mass mean T and S values. The weights effectively
minimise the residual per unit outcrop area of each water
mass by more strongly penalising water masses with a small
outcrop in the cost function, and they normalise the con-
tributions to the residual from different tracers. In order to
avoid infinite weights where the outcrop area of a water
mass is zero, the minimum value of a modified Aj is set to
min(Aj [Aj > 0]), i.e. the smallest non-zero water-mass out-
crop area. The minimisation of the cost function is subject to
the following constraints:

0≤ gij ≤ 1; (4)

m1,j =

N∑
i=1

m0,igij ; (5)

m0,i =

N∑
j=1

m1,jgij ; (6)

gij = 0 if �i and �j are not in the same or adjacent basins. (7)

Equation (4) above ensures that the transport matrix rep-
resents a fraction of the initial water-mass volumes. Equa-
tions (5) and (6) impose the conservation of mass for the sum
of all the water masses. Equation (7) limits the geographi-
cal range of water-mass interactions, excluding the possibil-
ity of unrealistic tracer transport. We solve the optimisation
problem for gij with the Python cvxpy package, using the
“MOSEK” solver with default settings.

2.2 Extension to carbon

In the above, we outlined our method in the context of its ap-
plication to two conservative tracers: temperature and salin-
ity. In order to extend its application to studying the ocean
carbon sink, we use the tracer C∗, first proposed by Gruber
et al. (1996) and defined as

C∗ = DIC−RC:PPO4− 0.5(ALK+RN:PPO4), (8)
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Figure 1. Water-mass definitions from the binary space partitioning (BSP) of ECCO-Darwin (early-period time average for 1995–2005).
For each of nine ocean basins, the edges of the boxes show the global definitions of each water mass in temperature–salinity space, and the
colours show the volume of water occupied by that water mass in that basin. The white dots show the volume-weighted mean temperature
and salinity of each water mass for each basin. The inset at the top left of each subplot shows the geographical basin definition.

where DIC, PO4, and ALK are the dissolved inorganic car-
bon concentration, phosphate concentration, and alkalinity,
respectively, and RC:P and RN:P are the C : P and N : P sto-
ichiometric ratios, respectively. C∗ is quasi-conservative in
the ocean. In a model with fixed stoichiometric ratios such as
ECCO-Darwin, it should be exactly conservative. As such,
within the context of this study, C∗ has the same property
as T and S: within a water mass, it can only be modified
by either boundary fluxes or mixing. We use the fixed ra-
tios from ECCO-Darwin of RC:P = 120 and RN:P = 16. Fig-
ure 2 shows the changes in C∗ in T –S space between an
early period, taken as the time mean of the ECCO-Darwin
tracer distributions from 1995–2005, and a late period, taken
as the time mean of the tracer distributions from 2005–2015.
The differences in the distributions of T , S, and C∗ between
these two periods and the boundary fluxes of those three trac-
ers form the basis for the application of the OTM in this
study. Note that it is the transition between the state of the

ocean in the early period and its state in the later one that we
use to infer the carbon uptake and transport. In this case, the
OTM solution could be regarded as representing an average
for the time period between the midpoint of 1995–2005 and
the midpoint of 2005–2015 (i.e. for the change from 2000 to
2010). In setting up our inverse problem (Eq. 1), we use the
same water masses, defined in T –S coordinates, as plotted on
Fig. 1, with the mass-weighted mean C∗ in each water mass
incorporated as additional elements of C.

We test two distinct implementations of the incorporation
of carbon into the OTM. In the first implementation, there is
no prior estimate of the boundary carbon flux, and the optimi-
sation to minimise the cost function in Eq. (1) is carried out
by inputting (i) the concentrations of T and S for the two time
periods and (ii) the boundary fluxes Qprior for heat and fresh
water, which are calculated from the ECCO-Darwin surface
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Figure 2. Changes in the amount of the conservative tracer C∗ (see
Sect. 2.2) per unit temperature and salinity in ECCO-Darwin from
the early averaging period (1995–2005) to the late averaging period
(2005–2015). Red indicates an increase in carbon in that region of
T –S space; blue indicates a decrease.

forcing as follows:

Q
prior
i,T =

1
ρ0Cpm0,i(t1− t0)

×

∫ t1

t0

∫ ∫
�i(x,y,0, t)qT (x,y, t)dxdydt

(9)

Q
prior
i,S =

1
ρ0m0,i(t1− t0)

∫ t1

t0

∫ ∫
�i(x,y,0, t)

× (qS(x,y, t)− S0qFW(x,y, t)+ qSP(x,y, t))dxdydt.
(10)

Here, ρ0 is a reference density, 1029 kgm−3; Cp is the heat
capacity of seawater, 4000 Jkg−1 K−1; qT is the surface heat
flux in Wm−2; qS is the surface salt flux in gm−2 s−1; S0
is a reference salinity, 35 gkg−1; qFW is the surface fresh-
water flux in kgm−2 s−1; and qSP is the depth-summed salt
tendency due to the salt plume flux from sea ice formation
in gm−2 s−1. In this case, the transport matrix g represents
transports that are consistent with the changing T and S dis-
tributions and the surface heat and salt- or freshwater bound-
ary fluxes. We impose constraints on the transport matrix g
for the volume transport through the Bering Strait, which
is set to 1.1 Sv northwards (1Sv= 106 m3 s−1), and the In-
donesian throughflow, which is set to a net transport of 15 Sv
westwards, based on volume transports from ECCO-Darwin.
Having obtained the transport matrix g, we then estimate the
boundary carbon flux from the residual between the final C∗

distribution, C1, and the initial C∗ distribution, C0, modified
by the transport g:

Q
adjust
j = C1,j −

1
m1,j

N∑
i=1

m0,igijC0,i . (11)

Note that for obtaining the C∗ adjustment, we use the BSP-
binned mean carbon concentrations for C in Eq. (11); we
can equally obtain the adjustments in T and S, but these mis-
matches are small since we have used the exact boundary
forcings for heat and fresh water as priors.

In the second implementation, we include a prior estimate
of the boundary carbon flux (which we modify with estimates
of the uncertainty; see Sect. 2.3) and include all three tracers
(T , S, and C∗) in the minimisation of Eq. (1). In this case,
the weights are

wj =
1
Aj

[
1

std(T )
,

1
std(S)

,
1

std(C∗)

]
, (12)

and the unmodified carbon flux is

Q
prior
i,C∗ =

1
m0,i(t1− t0)

×

∫ t1

t0

∫ ∫
�i(x,y,0, t)qCO2(x,y, t)

−�i(x,y,D,t)qsed(x,y, t)dxdydt,

(13)

where qCO2 is the air–sea CO2 flux, D is the water depth at
(x,y), and qsed is the sediment flux of C∗ due to falling par-
ticulate matter, which, in ECCO-Darwin, is removed from
the model when particulate matter hits the sea floor. The
mask �i is applied such that qCO2 acts at the surface and
qsed acts at the sea floor. The sediment flux is calculated as

qsed = POCwPOC−RC:PPOPwPOP−
RN:P

2
POPwPOP, (14)

where POC and POP are the particulate organic carbon and
particulate organic phosphorus concentrations, respectively,
in the bottom wet grid cell of the model; wPOC = wPOP =

10 md−1 are the sinking rates for particulate organic carbon
and particulate organic phosphorus, respectively; and RC:P
and RN:P are stoichiometric ratios as in Eq. (8). For this im-
plementation, the OTM seeks a transport matrix g that is con-
sistent with the prior fluxes and interior changes in T , S, and
C∗, minimising the adjustment for all three tracers as diag-
nosed from Eq. (11).

2.3 Validation with numerical-model output

The ECCO-Darwin model (Carroll et al., 2020) is an ocean
biogeochemical model based on the ECCO state estimate
(Forget et al., 2015) that is coupled online to the MIT Dar-
win ecosystem model (Dutkiewicz et al., 2015). ECCO uses
an adjoint of the MIT General Circulation Model (MITgcm)
to assimilate all available physical observations into an in-
ternally consistent tracer-conserving estimate of the physi-
cal ocean state that matches well with the observational data
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while obeying the model’s dynamical equations. Meanwhile,
the Darwin component is optimised using a Green’s func-
tion approach to obtain the best fit to biogeochemical obser-
vations. ECCO-Darwin is run from 1992–2017, and we use
monthly mean outputs from January 1995–December 2015
for validating our optimal transformation method. The model
has 50 vertical levels and uses the ECCO LLC270 horizontal
grid, which has 13 tiles of 270× 270 grid cells each, and a
horizontal grid spacing of between 1/3° at the Equator and
∼ 18 km at high latitudes (Carroll et al., 2020).

An important feature of ECCO-Darwin that makes it a
good choice for this study is that the budgets of heat, fresh
water, and C∗ are closed over the time period covered by the
model outputs we are using. Confirming that these budgets
close globally provides a good check that the principle un-
derpinning the OTM – that only boundary fluxes or interior
mixing can change water-mass properties for conservative
tracers – will hold. The heat, fresh water, and carbon budgets
computed from the BSP-binned values that we input into the
OTM are shown in Fig. A1. There are small offsets in the heat
and freshwater budgets because we have used monthly mean
fields, which introduces a temporal error. In the carbon bud-
get, there is a budget residual of around 3 % that accumulates
over the second half of the time period. This residual is most
likely due to slight differences between our calculation of the
sediment flux of C∗, which is not a model variable but which
we calculate from Eq. (8), and the loss of C∗ to the model’s
bottom boundary. In any case, the residual is smaller than we
might hope to achieve when applying our method to observa-
tions in a future study. This residual places a lower limit on
the residual that we can expect from our OTM optimisations.

In order to assess the ability of OTM to obtain a consis-
tent estimate of the uptake, transports, and mixing of carbon
from imperfect information, we test five cases with different
priors for the boundary carbon flux. The first case uses no
prior, as already outlined in Sect. 2.2. Case 2 uses the ECCO-
Darwin model fluxes binned into water-mass space (Eq. 13),
which is as close to the model “truth” as can be achieved
with this method (see Fig. 5). For cases 3–5, we construct a
2D field of uncertainties in the air–sea CO2 flux based on an
ensemble of observational estimates compiled by Fay et al.
(2021), which combines six different observationally based
pCO2 data products with five different wind products via
a gas transfer parameterisation to produce 30 different air–
sea CO2 flux estimates. We calculate an observational uncer-
tainty as the standard deviation of the time mean of these 30
estimates at every grid point, and we use that as the basis for
uncertainties in our CO2 flux priors. The gridded uncertain-
ties are shown in Fig. A2. For cases 3 and 4, we add a nega-
tive and a positive bias with a magnitude of 2× the observa-
tional uncertainties (i.e. 2σ or the 95 % confidence interval)
to the ECCO-Darwin air–sea CO2 flux at each grid point be-
fore computing the BSP-binnedQprior

i,C∗ using Eq. (13), giving
us lower and upper bounds (Fig. 4g and j). For case 5, a bias

of 2× the observational uncertainty but with the same sign
as the ECCO-Darwin flux is applied, meaning that fluxes are
biased in the direction of the prior flux (either into or out of
the ocean; Fig. 4m).

2.4 Remapping into geographical coordinates

The information contained in the priors and raw OTM solu-
tions is organised according to the 576 water masses defined
in the BSP binning process. To aid interpretation, we map the
solutions for the carbon fluxes and their priors back into geo-
graphical coordinates using a time average over the early pe-
riod (1995–2005) of the mask used for the BSP binning, such
that q(x,y,z) is the carbon flux in Cartesian coordinates:

q(x,y,z)prior
=

N∑
i=1

1
(t1− t0)

Q
prior
i �i(x,y,z) (15)

q(x,y,z)mix
=

N∑
j=1

1
(t1− t0)

Qmix
j �i(x,y,z) (16)

q(x,y,z)adjust
=

N∑
j=1

1
(t1− t0)

Q
adjust
j �i(x,y,z), (17)

where

Qmix
j =

1
m1,j

[∑N

i=1
m0,igij

(
C0,i +Q

prior
i

)]
−C0,i=j −Q

prior
i=j

(18)

is the effect of transports and mixing on each tracer. The
depth-integrated carbon flux at each grid point is calculated
as

q(x,y)=
∑
z

[
qprior(x,y,z)+ qadjust(x,y,z)

]
, (19)

i.e. the sum over all depths of the prior plus the adjustment
for the carbon fluxes. Note that Eq. (19) calculates the depth
integral of the carbon flux that has been remapped from
water-mass space using three-dimensional masks (Eqs. 15
and 17) and which results from a combination of the air–
sea flux and the sediment flux. This depth-integrated carbon
flux is not the same as the air–sea flux acting on the sur-
face water-mass outcrops; the three-dimensional remapping
is performed to ensure that our remapped fields include all
sources and sinks of C∗ since not all water masses with an
associated sediment flux have a surface outcrop. Our aim is
to assess the ability of the OTM to reconstruct the ECCO-
Darwin boundary fluxes for a closed carbon budget.
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3 Results

3.1 Carbon sink

The skill of the OTM is assessed for five different cases with
different priors and cost functions as described in Sect. 2.3.
For case 1, where the OTM is given no prior carbon flux
and the cost function is minimised by only considering the
changes in the T and S distributions and their associated
boundary fluxes, the agreement between the OTM solution
and the ECCO-Darwin model truth is generally good when
integrated over each basin (Fig. 3a). The exceptions are in
the polar North Atlantic, where the OTM overestimates the
uptake, and in the North Pacific, where it is underestimated.
When remapped into geographical coordinates, it is more ob-
vious where the OTM has struggled to converge towards the
model truth with limited information (Fig. 4a and b). The
RMSE between the model truth and the prior or solution re-
duces from 0.89 to 0.76 molCm−2 yr−1, and the bias reduces
from −0.36 to 0.07 molCm−2 yr−1.

For case 2, where the OTM is given an ideal prior carbon
flux based on the model truth and the cost function is min-
imised for T , S, andC∗, the basin-integrated solution is close
to the model truth for all basins (Fig. 3b). For the remapped
fluxes (Fig. 4d and e), there is a small region in the Sea of
Japan where the OTM has drifted slightly away from the
model truth, but the solution matches the model very closely
across the rest of the ocean. The RMSE between the model
truth and the prior or solution increases slightly from 0.00 to
0.04 molCm−2 yr−1, and the bias increases fractionally from
0.00 to −0.01 molCm−2 yr−1.

For cases 3 and 4, where the prior carbon fluxes repre-
sent the 95th percentile lower and upper bounds, respec-
tively, based on an observational uncertainty estimate, the
adjustment away from the priors towards the model truth
in the basin-integrated OTM solutions is striking (Fig. 3c
and d). Examining the remapped fluxes for case 3, the
bias is reduced across most of the ocean, with small neg-
ative biases remaining in the Southern Ocean and west-
ern subpolar North Atlantic and positive biases remain-
ing in the subtropical North Atlantic and the Sea of Japan
(Fig. 4h). The RMSE reduces by almost two-thirds from
0.59 to 0.22 molC m−2 yr−1, and the bias nearly disappears,
going from −0.41 to −0.02 molCm−2 yr−1. Case 4 shows
the greatest improvement from prior to solution, with the
RMSE reducing from 0.59 to 0.18 molCm−2 yr−1 and the
bias from 0.41 to 0.02 molCm−2 yr−1. Similar to case 3,
there are patches of bias in the solution in the North Atlantic
and the Sea of Japan.

Case 5 tests the limits of the method’s capability: basin-
integrated fluxes are close to the model truth and tend to
be moving away from the prior and towards the truth in the
basins with larger fluxes and, especially, globally (Fig. 3e).
However, in the equatorial Pacific, the basin-integrated solu-
tion is further from the truth than the prior, and the remapped

fluxes do not show an obvious improvement from prior to
solution (Fig. 4m and n). The RMSE reduces slightly from
0.33 to 0.29 molCm−2 yr−1, and the bias reduces from 0.12
to 0.05 molCm−2 yr−1.

The remapped OTM solutions from cases 2–5 are very
similar to each other across most of the ocean (Fig. 4f, i, l,
and o) and to the remapped model truth, shown on Fig. 5b.
The latter gives a visual representation of the best theoreti-
cal solution that can be obtained with this method when bin-
ning each of nine basins into 64 water masses using the BSP
binning process and then remapping back into geographical
coordinates. The original model fluxes are shown in Fig. 5a
for comparison. The case 1 solution (Fig. 4c) is broadly sim-
ilar to the model truth in terms of the main regions of uptake
and outgassing, indicating that T and S constraints alone pro-
vide a good first guess for the redistribution of carbon as a
means of estimating the boundary carbon fluxes when com-
bined with the interior changes in C∗. This is then improved
by the addition of the prior boundary carbon flux and the in-
clusion of carbon in the cost function (Eq. 1) in cases 2–5.

3.2 Meridional tracer transports

We next assess our OTM solutions with respect to merid-
ional transports of heat, fresh water, and carbon at the bound-
aries between our nine ocean basins. These are obtained
for the OTM solutions by combining the transport matrix g
with the time means over the early period of the water-mass
mean tracer values calculated during the BSP binning pro-
cess, i.e. T 0, S0, and C∗0, which are also modified by their
prior boundary fluxes:

[Heat transport]OTM
=

Cpρ0
∑N

i=1
m0,i

(
T0,i +Q

prior
i,T

)
gij δij

(20)

[Freshwater transport]OTM
=

−ρ0

S0

∑N

i=1
m0,i

(
S0,i +Q

prior
i,S

)
gij δij

(21)

[Carbon transport]OTM
=∑N

i=1
m0,i

(
C∗0,i +Q

prior
i,C∗

)
gij δi,j ,

(22)

where δij = 1 if the water mass i is upstream of the bound-
ary between two basins and j is downstream, δij =−1 if
j is upstream and i is downstream, and δij = 0 for uncon-
nected basins. ECCO-Darwin provides comparable merid-
ional transports from the residual between the latitude-
integrated air–sea fluxes and interior changes:
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Figure 3. Basin-integrated carbon fluxes (positive into the ocean) from five cases with different priors. Blue bars show the prior fluxes,
orange bars show the OTM solutions, and green bars show the ECCO-Darwin model truth. Note that in panel (d), the prior global flux is
4.5 PgCyr−1; the y axis is cut off for ease of comparison with the other cases.

[Heat transport]E-D(y′)=

1
t1− t0

t1∫
t0

y′∫
y=0

∫
qT (x,y, t)dxdydt

−
Cpρ0
t1− t0

∫ y′∫
y=0

∫
[T (x,y,z, t1)− T (x,y,z, t0)]dxdydz (23)

[Freshwater transport]E-D(y′)=
−ρ0

S0(t1− t0)

×

t1∫
t0

y′∫
y=0

∫ [
qS(x,y, t)−

S0
ρ0
qFW(x,y, t)+ qSP(x,y, t)

]
dxdydt

+
ρ0

S0(t1− t0)

×

∫ y′∫
y=0

∫
[S(x,y,z, t1)− S(x,y,z, t0)]dxdydz

(24)

[Carbon transport]E-D(y′)=

1
t1− t0

t1∫
t0

y′∫
y=0

∫ [
qCO2(x,y, t)− qsed(x,y, t)

]
dxdydt

−
1

t1− t0

×

∫ y′∫
y=0

∫ [
C∗(x,y,z, t1)−C

∗(x,y,z, t0)
]

dxdydz. (25)

The volume integrations in Eqs. (23)–(25) are applied glob-
ally and then separately for the Atlantic and Indo-Pacific us-
ing a mask. For the Atlantic and Indo-Pacific comparisons,
the OTM values calculated from Eqs. (20)–(22) have the
northward transport of heat, fresh water, or carbon that flows
through the Bering Strait subtracted from them. This correc-
tion is necessary because the Atlantic mask includes the Arc-
tic Ocean, whereas the Indo-Pacific mask excludes it, which
means that the integrations implicitly assume that all of the
residual between the boundary fluxes and interior changes re-
sults in meridional transports that flow through the Atlantic,
when in reality the transports are split between the two.
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Figure 4. OTM solutions from five cases with different carbon flux priors, remapped into geographical space. The left column (a, d, g, j, m)
shows the carbon flux difference between the prior and the ECCO-Darwin model truth, the middle column (b, e, h, k, n) shows the difference
between the OTM solution and the model truth, and the right column (c, f, i, l, o) shows the OTM solution. The top row (a–c) shows the
solution for case 1 with no carbon flux prior; the second row (d–f) shows case 2, where a prior based on the model truth was used; rows 3
(g–i) and 4 (j–l) show cases 3 and 4, where the prior fluxes included a bias of 2 times an a-priori uncertainty calculated at each grid point;
and the bottom row (m–o) shows case 5, where double the a-priori uncertainty was applied as a bias with the same sign as the prior flux (see
Sect. 2.3). Red and blue indicate either positive and negative biases compared to the model truth, respectively (a, b, d, e, g, h, j, k, m, n), or
fluxes into and out of the ocean, respectively (c, f, i, l, o).

A comparison between the meridional transports of heat,
fresh water, and carbon obtained from the OTM solution for
case 2 and ECCO-Darwin is shown in Fig. 6. For this exper-
iment, the OTM transports are very close to the model truth
for all three tracers at almost all latitudes where we can make
comparisons at inter-basin boundaries, both globally and sep-
arately for the Atlantic and Indo-Pacific. There is a residual
of ∼ 0.2 Sv for freshwater transport at 10° N in the Indo-
Pacific, which can be regarded as a much smaller error in
the latitude at which transport zero-crossing occurs, since the

green line passes over the position of the green dot just to the
south of it. The heat and freshwater transports from the OTM
solutions for cases 1, 3, 4, and 5, which are not plotted, are
nearly identical to those for case 2 in Fig. 6; however, there
is some variation in the solutions for carbon (Fig. 7). The
discrepancies between OTM and ECCO-Darwin are fairly
small for cases 3 and 4, but for case 1, although the trans-
ports match well globally at 10° N and 35° S, the southward
transport in the Atlantic is significantly overestimated and
the Indo-Pacific transports are offset northwards by a simi-
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Figure 5. Boundary carbon fluxes (air–sea CO2 flux− sediment flux) for the ECCO-Darwin 1995–2015 time mean (a) and the BSP-binned
fluxes remapped back into geographical coordinates (b). Note that (b) is the ECCO Darwin flux against which the prior and solution are
compared in Fig. 4; it is also the prior for case 2.

lar amount. This mismatch indicates that the OTM is unable
to recover the correct transports of carbon solely from in-
formation about the changes in temperature and salinity and
associated boundary fluxes of heat and salt or fresh water,
and it shows that the additional information provided by the
a priori CO2 flux estimates in cases 2–5 is needed. Nonethe-
less, the reasonable agreement between the basin-integrated
OTM carbon fluxes and the model truth for case 1 in Fig. 3a
is encouraging since it suggests that, even with limited infor-
mation, the OTM gets the divergences in carbon transports
approximately correct. For case 5, slightly too much south-
ward transport in the Northern Hemisphere in both the At-
lantic and Indo-Pacific causes the global mismatch at 10° N
to be worst for this experiment. At 35° S, the Indo-Pacific
and global northward transports are similarly overestimated
by the OTM. Overall, the spread in the estimates of merid-
ional tracer transports across cases 2–5 is < 0.30 PgCyr−1,
and the mismatch between the OTM solutions and the model
truth is < 0.25 PgC yr−1.

3.3 Basin carbon budgets

The net inter-basin carbon transports from the OTM solu-
tion for case 2 are shown in Fig. 8, along with the bound-
ary carbon fluxes (air–sea flux− sediment flux). The over-
all picture is of a convergence of meridional carbon trans-
ports and accompanying surface outgassing between 10° N
and 10° S and a divergence of transports and accompanying
surface uptake at higher latitudes. A large counter-clockwise
circulation of carbon between the Southern Ocean, the South
Pacific, and the Indian Ocean is likely an instance where a de-
parture of the OTM solution from reality is not evident from
the zonally integrated comparisons in Fig. 6; we will discuss
this further in Sect. 4.1. Integrating the transport divergences,
boundary fluxes, and interior changes allows us to construct
a carbon budget for each basin (Fig. 9 and Table A1). The
largest changes occur in the polar North Atlantic, equato-
rial Pacific, North Pacific, and Southern Ocean. In the polar
North Atlantic, an uptake of 0.52 PgCyr−1 is balanced by a
roughly even split between a net transport of−0.29 PgCyr−1

out of the basin and an increase in the basin’s inventory

of 0.24 PgCyr−1. In the equatorial Pacific, a transport of
0.70 PgCyr−1 into the basin is balanced by an outgassing
of −0.55 PgCyr−1 and a small increase in the basin’s in-
ventory of 0.15 PgCyr−1. In the North Pacific, roughly the
reverse happens, with an uptake of 0.76 PgCyr−1 balanced
by a transport out of the basin of −0.51 PgCyr−1 and an in-
ventory increase of 0.25 PgCyr−1. Finally, in the Southern
Ocean, an uptake of 1.14 PgCyr−1 goes mainly into an in-
ventory increase of 0.79 PgCyr−1, with a smaller transport
of −0.36 PgCyr−1 occurring out of the basin. Globally, the
budget is closed, with an uptake of 1.88 PgCyr−1 balanced
by an equal increase in inventory.

3.4 Interior remapping of OTM solutions

So far, we have examined the OTM solutions in terms of
a depth-integrated view of exchanges between basins and
boundary forcings. We next analyse the three-dimensional
remapped fields from Eqs. (15)–(17) to explore the contri-
bution of boundary fluxes versus that of transports and mix-
ing to changes in the ocean interior. Zonal mean sections
of these components and their sum, which (by construction)
equals the inventory change, for the Atlantic and Pacific are
shown for the top 1500 m in Fig. 10 and for the full ocean
depth in Fig. A3. Note that remapping the components us-
ing the 3D mask �i(x,y,z) means that the carbon changes
are averaged over the full geographical extent of each water
mass in the ocean interior, which implies the assumption that
each water mass is homogeneous, i.e. that they have been
well mixed over the 10-year timescale under consideration.
At high northern latitudes in the Atlantic, boundary fluxes
cause an invasion of carbon into water masses that pene-
trate to greater depths moving equatorwards, with the max-
imum occurring around 40° N (Fig. 10a). A similar pattern
appears in the South Atlantic, with additional penetration to
∼ 500 m depth occurring near Antarctica. Meanwhile, out-
gassing water masses in the lower latitudes are confined to
the top ∼ 200 m. In the Pacific, patterns are similar, but there
is greater penetration to depth in the Southern Hemisphere,
and the outgassing layer reaches deeper but over a narrower
range of latitudes (Fig. 10b). Transports and mixing move
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Figure 6. Zonally integrated meridional transports of (a) heat, (b) fresh water, and (c) carbon from ECCO-Darwin at all latitudes (lines)
and their equivalents from the OTM solution for case 2 at the latitudes of the inter-basin boundaries (point markers). The globally integrated
transports are shown in blue (solid lines and dots), the transports integrated over the Indian and Pacific oceans are shown in green (dashed–
dotted lines and pluses), and the transports integrated over the Atlantic Ocean are shown in red (dashed lines and crosses).

Figure 7. Zonally integrated meridional transports of carbon from ECCO-Darwin at all latitudes (lines) and their equivalents from OTM
solutions for cases 1–5 at the latitudes of the inter-basin boundaries (point markers). The globally integrated transports are shown in blue
(solid lines and dots), the transports integrated over the Indian and Pacific oceans are shown in green (dash–dotted lines and pluses), and the
transports integrated over the Atlantic Ocean are shown in red (dashed lines and crosses).

carbon away from high latitudes, where the atmosphere pro-
vides a carbon source, and towards shallower waters at low
latitudes in both the Atlantic and Pacific, where the atmo-
sphere provides a carbon sink; hence, transports and mix-
ing oppose the effect of the surface flux (Fig. 10c and d).
In the Atlantic, low-latitude transports and mixing move car-

bon away from the region just below the surface, dominating
the interior change and causing a net loss of carbon between
∼ 40° N and ∼ 30° S and at ∼ 150–700 m depth (Fig. 10c
and e). In the Pacific, transport dominates in the subtropi-
cal cells, causing a net loss of carbon between ∼ 30° S and
∼ 40° N and . 500 m depth; this signal may be due to wind-
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Figure 8. Inter-basin net transports of carbon (black arrows) and the
boundary carbon flux (background colours; positive into the ocean)
for the OTM solution for case 2. Transports are in PgCyr−1.

Figure 9. Carbon budget in each basin for the OTM solution for
case 2. Blue bars show the net carbon transports, orange bars show
the carbon flux (positive into the ocean), and green bars show the
inventory change.

driven subduction of carbon from the mixed layer. In the At-
lantic, transports and mixing between ∼ 750–2000 m depth
cause net accumulation in the equatorial and northern subpo-
lar regions (Fig. A3c and e). In the deeper waters, transports
and mixing lead to a reduction in carbon concentrations be-
tween∼ 40° N and∼ 30° S below∼ 3000 m depth (Fig. A3c
and e); this signal is likely an imprint of the Atlantic Merid-
ional Overturning Circulation, which upwells in the Southern
Ocean before returning northwards and supplies carbon from
the deep ocean that is later outgassed at lower latitudes.

4 Discussion

4.1 Limitations of the optimal transformation method

The optimal transformation method may be used to diag-
nose the interior transports and mixing of carbon consistent
with boundary fluxes and interior changes and to recover im-
proved (i.e. closer to the truth) boundary fluxes from biased
priors when this method is applied to model data and perfect
information is available. When the given information is lim-
ited to changes in temperature and salinity distributions and
their boundary forcings, the OTM obtains a transport matrix
that is broadly consistent with changes in carbon and can be
used to obtain a reasonable basin-integrated carbon uptake.
However, inter-basin meridional carbon transports from the
OTM are inconsistent with the model truth when using this
setup, indicating that more information is needed for a real-
istic solution. With the addition of prior information about
the distribution of boundary carbon fluxes, the OTM shows
considerable skill in recovering carbon fluxes that are closer
to the model truth than the prior while also diagnosing inter-
basin carbon transports that are consistent with the model.
We now discuss some limitations of this method and the
caveats and considerations that are relevant to its future ap-
plication to observations.

A fundamental limitation of the OTM stems from its use of
a water-mass coordinate system, from which it also derives
its utility. The use of this system necessitates some loss of in-
formation compared with, for example, the state estimation
product we have used for its validation. Through the BSP
binning process, we average tracer concentrations and their
boundary fluxes over water masses, and the method there-
fore does not resolve either tracer or flux gradients within a
water mass. The effect of the latter is illustrated in Fig. 5,
where we compare the unaltered ECCO-Darwin boundary
carbon fluxes with the result of binning the fluxes in water-
mass space and then remapping them back into geographical
coordinates using a mask (Eqs. 15, 17, and 19). There are dif-
ferences; for example, off the west coast of North America,
ECCO-Darwin has outgassing (Fig. 5a) and the remapped
fluxes show uptake (Fig. 5b); a similar situation occurs off
the west coast of the southern tip of South America and in
the northern Indian Ocean. Figure 5b is the closest we can
get to the true model fluxes with this configuration (with
the caveat, noted in Sect. 2.4, that we have remapped sur-
face fluxes into three-dimensional water masses). Note that
a closer match to the “true” field may be achieved by com-
bining the remapped term q(x,y,z)adjust with the true flux
prior on the original model grid; therefore, here we present
a worst-case scenario where the detail for the flux prior is
not assumed to be well known. In this validation, we di-
vided each of nine basins into 64 water masses chosen as a
compromise between spatial resolution and required comput-
ing resources. In water-mass coordinates, OTM is extremely
computationally cheap by comparison with data-assimilation

Geosci. Model Dev., 17, 5987–6005, 2024 https://doi.org/10.5194/gmd-17-5987-2024



N. Mackay et al.: An optimal transformation method applied to diagnose the ocean carbon budget 5999

Figure 10. Zonally averaged interior carbon concentration changes from the OTM solution for case 2 in the Atlantic (left column: a, c,
e) and the Pacific (right column: b, d, f) for the top 1500 m of the ocean. The top row (a, b) shows the impact of carbon fluxes (either
air–sea or sediment fluxes) in or out of the ocean on the carbon concentrations; the middle row (c, d) shows the impact of transports and
mixing; and the bottom row (e, f) shows the interior changes, which are the sum of the first two rows. Positive values represent increases in
carbon concentration between our early (1995–2005) and late (2005–2015) averaging periods due to each component, and negative values
are decreases over that time.

or Green’s function approaches, with solutions to the opti-
misation problem obtained within a few seconds. However,
the remapping back into geographical coordinates to aid the
interpretation of the results is more intensive, requiring the
storage of large files containing the mask �(x, t), and this
places limits on the number of water masses that it is feasible
to define.

In general, beyond the mass conservation constraints in
Eqs. (5) and (6), mass transports are unconstrained in the
OTM; instead, it is the conservation of tracers that provides
the main constraint on the solutions. This tracer constraint
means that solutions may be obtained that are consistent
with changes in temperature, salinity, and carbon but that are
physically unrealistic in other ways. For example, if the OTM
needs to cool down a particular region through a flux of cold
water, the method can achieve that through either a small flux
of very cold water or a larger flux of moderately cold water
into that region. Or, similarly, OTM can achieve a required
increase in carbon concentration through either a small flux
of extremely carbon-rich water or a larger flux of less carbon-
rich water. A possible impact of the lack of mass transport
constraints is seen in the large counter-clockwise circulation
of carbon between the Southern Ocean, South Pacific, and

Indian Ocean in Fig. 8. These transports do not seem con-
sistent with, for example, a westward transport of Canth of
0.05 PgCyr−1 due to the Indonesian Throughflow (ITF), as
reported by Mikaloff Fletcher et al. (2006), or an eastward
transport of Cnat of 0.1 PgCyr−1 due to the ITF, as reported
by Mikaloff Fletcher et al. (2007). We have diagnosed the
transport of C∗, which contains both Canth and a portion of
Cnat; nonetheless, the OTM transports do not appear to be
reconcilable with the ITF estimates. In a future application,
it may prove necessary to impose additional constraints on
inter-basin mass transports; for example, in the case of the
South Pacific or the Indian Ocean, it could be beneficial to
further split the Southern Ocean in a manner that allows the
imposition of an Antarctic Circumpolar Current. Another av-
enue would be to impose some quasi-vertical structure on the
inter-basin mass transports, which could be done in temper-
ature coordinates, salinity coordinates, or both.

We have placed subjective constraints on the connectivity
between our nine basins such that all water masses in neigh-
bouring basins are able to mix with one another and water
masses from basins that are not neighbours cannot mix. This
constraint might be too permissive in some places (for exam-
ple, it allows water masses from the equatorial North Pacific
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to mix with those in the subtropical North Atlantic) or too
strict in others (for example, it forbids water masses from
the equatorial Atlantic that might be carried northwards in
the western boundary current from mixing with those in the
polar North Atlantic). The fidelity of such constraints is also
dependent on the timescale under consideration, which in our
case was the decade between the early and late averaging pe-
riods but could be shorter or longer.

Two further assumptions that have been subjectively im-
posed concern the boundary forcings. The first is that we
have used exact heat and freshwater forcings from ECCO-
Darwin, thereby implicitly assuming that these are known.
Zika and Sohail (2023) explored the OTM’s ability to re-
cover boundary forcings of heat and fresh water from biased
priors, and our focus was on the uptake, the transport and
mixing, and the storage of carbon. However, when applying
this technique to observations, there will be uncertainties in
both the boundary forcings and the interior changes for all
three tracers, and these errors will need to be considered. The
boundary fluxes for heat and fresh water could be explored
using multiple products such as the ERA5 reanalysis (global
coverage from 1940 to present; Hersbach et al., 2020) and
the JRA55 reanalysis (global coverage from 1958 to present;
Kobayashi et al., 2015), and those for CO2 could be explored
with the compilation of data products from Fay and McKin-
ley (2021) that were used to assess the flux uncertainty in
Sect. 2.3. The second assumption relates to the order of ac-
tion of boundary fluxes versus interior transports and mixing.
In a forward model such as ECCO-Darwin, time steps are
discrete but comparatively short, such that boundary fluxes
and interior transports and mixing occur effectively simul-
taneously, as they do in the real ocean. In the OTM frame-
work, we have to make a choice about whether to apply the
boundary forcing first and then calculate the transports and
mixing required for the tracers to reach their late distribu-
tions, whether to perform these steps in the opposite order,
or whether to use some combination of these two approaches.
In this study, we experimented with the first two possibilities
for carbon, with the setups for our cases 2–5 adopting the
former (fluxes then mixing) and case 1 adopting the latter
(mixing then fluxes), and we found that the former produced
the best results.

4.2 Future application

One more component is necessary for the future applica-
tion of the OTM to observations for the purpose of studying
ocean carbon that we are yet to discuss: the inventory change.
The temperature and salinity in the ocean are comparatively
well observed, and their time evolutions in the ocean inte-
rior have been mapped in a gridded product with monthly
global fields spanning 1900 to present, based on a combi-
nation of shipboard and Argo float observations, in the Met
Office EN4 objective analysis (Good et al., 2013). By con-
trast, the ocean’s interior carbon concentrations are consider-

ably more sparsely sampled, with re-occupations of oceano-
graphic sections collecting carbonate system variables usu-
ally taking place around once per decade (Gruber et al.,
2023). Recently, products based on the first efforts to recon-
struct the time history of ocean interior carbon have emerged.
These include a neural-network technique similar to that em-
ployed by Landschützer et al. (2013) to map surface pCO2,
which in this case was applied to DIC from the GLODAP
database (Olsen et al., 2019) to produce the MOBO-DIC cli-
matology (Keppler et al., 2020) and its time-varying succes-
sor (Keppler et al., 2023). Another approach, which also used
machine learning, by Zemskova et al. (2022) extrapolated
from satellite data by combining it with numerical model
output. Unfortunately, these two estimates are limited, re-
spectively, to the top 1500 m of the ocean and the Southern
Ocean. MOBO-DIC could form the basis for an application
of the OTM, but it would be necessary to somehow extend
it to full depth. A third technique developed by Turner et
al. (2023) has been demonstrated as being capable of recon-
structing ocean interior carbon by ensemble optimal inter-
polation using only the relationships between carbon, tem-
perature, salinity, and atmospheric CO2 from models, but no
product applying this method to observations has become
available yet. The method does, nonetheless, demonstrate the
plausibility of accurately reconstructing interior carbon from
relationships to the better-observed temperature and salinity
fields, consistent with the findings from our case 1 experi-
ment. We are developing our own global, full-depth, time-
evolving reconstructions of DIC and C∗ in the ocean from
1990 to present, which we hope to combine with the OTM in
future work. The reconstructions use deep neural networks
trained on GLODAP DIC, total alkalinity, and nutrient data,
with predictors of temperature and salinity from EN4, loca-
tion, depth, and atmospheric CO2 concentration.

5 Conclusion

We have presented the application of a novel optimal trans-
formation method (OTM) to diagnose the uptake, transport,
and storage of carbon in the global ocean. The method
utilises a balance between boundary forcings and interior
transports and mixing in water-mass space for conservative
tracers, and we have validated it using outputs from the
ECCO-Darwin biogeochemical state estimate. When given
prior estimates of the boundary forcing for carbon with bi-
ases based on reasonable observational uncertainties, the
OTM was able to recover the true carbon forcing and also
to diagnose interior transports and the mixing of heat, fresh
water, and carbon that were consistent with the model truth.
When applied to observational reconstructions of changes in
ocean carbon, the OTM has the potential to reconcile changes
in the interior anthropogenic carbon inventory with air–sea
CO2 fluxes through the action of physical transports and mix-
ing.
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Appendix A

Figure A1. Budgets of ocean heat content (OHC; a), fresh water (b), and carbon (c) resulting from the BSP binning of ECCO-Darwin outputs
for input to the OTM. The sum of the boundary forcings is shown in blue, and the interior changes inferred from changes in T , S, and C∗ are
shown in red.

Figure A2. Observational uncertainties added to the carbon flux priors as described in Sect. 2.3.

Table A1. Carbon budget for the OTM solution for case 2, as plotted in Fig. 9. Values are in PgCyr−1.

Transport Flux Inventory change

Polar N. Atlantic −0.29 0.52 0.24
Subtropical N. Atlantic 0.05 0.00 0.05
Eq. Atlantic 0.11 −0.09 0.02
S. Atlantic 0.13 0.00 0.13
Indian 0.14 0.09 0.23
S. Pacific 0.03 −0.02 0.01
Eq. Pacific 0.70 −0.55 0.15
N. Pacific −0.51 0.76 0.25
Southern Ocean −0.36 1.14 0.79

Total 0.00 1.88 1.88
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Figure A3. Full-depth zonally averaged interior carbon concentration changes from the OTM solution for case 2 in the Atlantic (left column:
a, c, e) and the Pacific (right column: b, d, f). The top row (a, b) shows the impact of carbon fluxes (either air–sea or sediment fluxes) in or
out of the ocean; the middle row (c, d) shows the impact of transports and mixing on the carbon concentrations; and the bottom row (e, f)
shows the interior changes, which are the sum of the first two rows. Positive values represent increases in carbon concentrations between our
early (1995–2005) and late (2005–2015) averaging periods due to each component, and negative values represent decreases over that time.

Code and data availability. The ECCO-Darwin model data used
for the validation of the optimal transformation method are avail-
able for download from https://data.nas.nasa.gov/ecco/eccodata/
llc_270/ecco_darwin_v5/output/monthly/ (last access: 30 July
2024, Carroll et al., 2020). The code used for producing and
plotting the results presented here is available on Zenodo via
the DOI https://doi.org/10.5281/zenodo.10782587 (Mackay, 2024).
The CO2 flux prior uncertainties described in Sect. 2.3 were con-
structed using the SeaFlux dataset, which is available on Zenodo via
the DOI https://doi.org/10.5281/zenodo.5482547 (Gregor and Fay,
2021).
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