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Abstract. Reflecting recent advances in our understanding
of soil organic carbon (SOC) turnover and persistence, a
new generation of models increasingly makes the distinc-
tion between the more labile soil particulate organic matter
(POM) and the more persistent mineral-associated organic
matter (MAOM). Unlike the typically poorly defined concep-
tual pools of traditional SOC models, the POM and MAOM
soil fractions can be directly measured for their carbon con-
tent and isotopic composition, allowing for fraction-specific
data assimilation. However, the new-generation model pre-
dictions of POM and MAOM dynamics have not yet been
validated with fraction-specific carbon and 14C observations.
In this study, we evaluate five influential and actively devel-
oped new-generation models (CORPSE, MEND, Millennial,
MIMICS, SOMic) with fraction-specific and bulk soil 14C
measurements of 77 mineral topsoil profiles in the Interna-
tional Soil Radiocarbon Database (ISRaD). We find that all
five models consistently overestimate the 14C content (114C)
of POM by 69 ‰ on average, and two out of the five mod-
els also strongly overestimate the 114C of MAOM by more
than 80 ‰ on average, indicating that the models generally
overestimate the turnover rates of SOC and do not adequately
represent the long-term stabilization of carbon in soils. These
results call for more widespread usage of fraction-specific
carbon and 14C measurements for parameter calibration and
may even suggest that some new-generation models might
need to restructure or further subdivide their simulated car-
bon pools in order to accurately reproduce SOC dynamics.

1 Introduction

The terrestrial carbon reservoir sequesters an estimated 29 %
of anthropogenic CO2 emissions each year (Friedlingstein
et al., 2022), significantly reducing the accumulation rate
of CO2 in the atmosphere and thus slowing down climate
change. However, the future role of the terrestrial carbon
reservoir as a net CO2 sink is uncertain, as Earth System
Models (ESMs) produce a wide range of projections for
the net land–atmosphere carbon flux over the course of the
21st century, partly due to high uncertainties in the carbon–
climate feedback (Friedlingstein et al., 2014; Arora et al.,
2020). Moreover, a study by He et al. (2016) using the radio-
carbon (14C) isotope suggests that some of the most widely
used CMIP5 (Coupled Model Intercomparison Project Phase
5) ESMs may be systematically overestimating the future
land carbon sink, further casting doubt on the reliability of
future land sink predictions. All five ESMs tested in their
study strongly underestimated the 14C age of soil organic
carbon, which indicates an overestimation of the simulated
carbon cycling rates, particularly in the most stable soil car-
bon pools. After He et al. (2016) adjusted the soil carbon
cycling rates to fit the observed 14C data, the ESMs ended
up predicting 40± 27 % lower carbon sequestration by the
terrestrial sink in the 21st century than with their default pa-
rameters. This result puts into question the ability of current
ESMs to accurately model soil carbon dynamics and high-
lights the importance of validating model predictions with
14C data.
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Almost all ESMs rely on soil organic carbon (SOC) mod-
ules that are ultimately based either on the Century model
(Parton et al., 1987) (e.g., CESM2, Danabasoglu et al., 2020)
or the RothC model (Coleman and Jenkinson, 1996) (e.g.,
JULES, Clark et al., 2011). Even though Century and RothC
have been used for many decades to predict SOC dynamics
in various landscapes with moderate success (Leifeld, 2008;
Leifeld et al., 2008, 2009; Abramoff et al., 2022; Zhang et al.,
2020), both modeling frameworks were developed in the
1980s and thus reflect the comparatively limited understand-
ing of soil carbon cycling of that time. Indeed, the model de-
sign of RothC is inspired by the now obsolete humification
theory (Lehmann and Kleber, 2015; Schmidt et al., 2011),
and neither RothC nor Century explicitly simulate specific
processes of SOC cycling, such as physico-chemical protec-
tion of SOC or adsorption and desorption of dissolved or-
ganic carbon, because their mechanisms were previously not
understood well enough.

According to our current understanding, the most impor-
tant control on SOC stability is not so much the molecular
composition or “quality” of organic matter but rather its pro-
tection from microbial and abiotic decomposition through
occlusion in aggregates and mineral association (Kleber
et al., 2011; Dungait et al., 2012; Lehmann and Kleber, 2015;
Lavallee et al., 2020). When SOC gets enclosed into ag-
gregates or stabilized by interactions with reactive soil min-
eral surfaces of pedogenic oxides or phyllosilicates through
cation bridging, electrostatic interactions, or the formation of
inner- and outer-sphere complexes (Rasmussen et al., 2018a;
Rowley et al., 2018; Vogel et al., 2014; Kleber et al., 2015),
it becomes less accessible to decomposers and thus sig-
nificantly increases its persistence in soils (Basile-Doelsch
et al., 2020; Schrumpf et al., 2013; Doetterl et al., 2015).
A new generation of SOC models is now being developed
to incorporate the theory of SOC protection through occlu-
sion and interactions with soil minerals into our carbon cy-
cle predictions. A common feature of new-generation soil
models is their distinction between particulate organic mat-
ter (POM) and mineral-associated organic matter (MAOM).
The POM fraction largely consists of partially decomposed
litter fragments smaller than 2 mm (Lavallee et al., 2020;
Basile-Doelsch et al., 2020), which may be covered with a
thin mineral coating (Wagai et al., 2009). On the other hand,
the MAOM fraction contains organic matter chemically ad-
sorbed onto reactive mineral surfaces or stabilized by occlu-
sion or adsorption inside micro-aggregates formed around
sand, silt, or clay particles (Basile-Doelsch et al., 2020;
Lavallee et al., 2020). Unlike the carbon pools of RothC and
Century, the POM and MAOM fractions simulated by new-
generation models are designed to be “measurable”: they
can be operationally defined with experimental protocols by
which they can be separated from soil samples and then ana-
lyzed individually for their elemental and isotopic compo-
sition (von Lützow et al., 2007). This allows for a closer
look into the processes governing soil carbon stabilization

and for potentially much larger datasets for model calibration
and validation. However, the use of fraction-specific mea-
surements to validate models is still limited, even for new-
generation models (Zhang et al., 2021, Table S1 in the Sup-
plement).

The theory that protection and accessibility are the most
important controls on SOC stability is strongly supported
by 14C studies (Gaudinski et al., 2000; Schrumpf et al.,
2013, 2021), which could indicate that new-generation SOC
models might perform better with 14C than the traditional
SOC models integrated into ESMs. 14C is an effective car-
bon cycle tracer because it is chemically indistinguishable
from the other carbon isotopes and therefore participates in
the same carbon exchange mechanisms as the more abundant
12C and 13C isotopes. Over the past century, the atmospheric
14C levels have undergone dramatic changes, most notably
as a result of thermonuclear weapons tests in the 1950s
and 1960s, which have almost doubled the amount of atmo-
spheric 14CO2 in the Northern Hemisphere (see Fig. 2). As
this bomb-derived 14CO2 spreads into the terrestrial carbon
reservoirs through photosynthesis and into oceans through
air–sea gas exchanges (Graven et al., 2020), the level of en-
richment in bomb-derived 14C across different terrestrial and
oceanic carbon reservoirs helps to evaluate the speed and
magnitude of carbon exchanges with the atmosphere on an-
nual and decadal scales. However, for slower-cycling reser-
voirs such as deep soils or permafrost, the level of 14C deple-
tion due to radioactive decay (half-life of 5700± 30 years;
Roberts and Southon, 2007) helps to estimate the time scales
of carbon stabilization in those reservoirs on the order of
centuries and millennia. 14C is therefore a powerful tool for
studying the exchanges and storage of carbon from decadal
to millennial time scales. However, new-generation mod-
els do not generally implement 14C simulations, and only a
handful have systematically assimilated observed 14C data
(e.g., Tipping and Rowe, 2019; Braakhekke et al., 2014;
Ahrens et al., 2020).

In this study, we use 14C measurements of the organic
carbon in the mineral topsoil to evaluate the performance
of five new-generation SOC models: CORPSE (Sulman
et al., 2014), MEND-new (Wang et al., 2022), Millennial v2
(Abramoff et al., 2022), MIMICS-CN v1.0 (Kyker-Snowman
et al., 2020), and SOMic 1.0 (Woolf and Lehmann, 2019).
These models were chosen because they are open source, ac-
tively developed, and influential in the soil modeling com-
munity. Leveraging the measurability of their pools, we com-
pare the predictions of these models with 14C measurements
of POM and MAOM in addition to the total soil 14C. This
provides a detailed picture of the modeled SOC dynamics
and enables us to carry out an in-depth analysis of the perfor-
mances of the models.
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2 Methods

Throughout this paper, we report the 14C content of a given
carbon sample as 114C, which is the deviation of the sam-
ple’s 14C / 12C ratio from the “modern” standard, corre-
sponding to the pre-industrial atmospheric 14CO2 /

12CO2 ra-
tio (Trumbore et al., 2016).

2.1 Fraction-specific carbon and radiocarbon
measurements

We compare model predictions with three types of measured
data for the topsoil: (1) the total SOC stocks in the topsoil;
(2) the relative mass contributions of POM and MAOM to
the total SOC stocks; and (3) the 114C of POM, MAOM,
and bulk SOC.

For this study, we use the International Soil Radiocarbon
Database (ISRaD) (Lawrence et al., 2020) for carbon and
14C measurements of POM and MAOM obtained from soil
samples using a combination of density fractionation and
ultra-sonication. Density fractionation with ultra-sonication
is currently one of the most effective and commonly em-
ployed methods for isolating POM and MAOM (Golchin
et al., 1994; Griepentrog et al., 2015, 2014; Cerli et al., 2012;
von Lützow et al., 2007; Poeplau et al., 2018). This method
separates the soil into three “density fractions” – the free light
fraction, occluded light fraction, and heavy fraction – in a
three-step process:

1. Obtain the free light fraction from the soil sample by
density fractionation.

2. In the remaining sample, destroy loosely bound aggre-
gates with ultra-sonication, thus releasing the occluded
fraction.

3. Isolate the occluded light fraction from the relatively
denser heavy fraction by density fractionation.

The resulting free and occluded light fractions, jointly re-
ferred to as the “light fraction”, correspond approximately
to the POM, while the heavy fraction is a good proxy for
MAOM (Mikutta et al., 2019; Lavallee et al., 2020).

ISRaD provides carbon and 14C data for the bulk soil and
the free light, occluded light, and heavy fractions. We di-
rectly associate MAOM with the heavy fraction in ISRaD
and POM with the light fraction (i.e., the sum of the free and
occluded light fractions in ISRaD; see Appendix A1). When
the 114C of the bulk soil is not measured or reported in IS-
RaD, we calculate it with a weighted average of the 114C
of the light and heavy fractions (see Appendix A2). In this
study, we evaluate models only for the topsoil, which we
strictly define as at least the top 5 cm and at most the top
10 cm of the mineral soil (see Appendix A3 for more de-
tails). This way, we can ignore the effect of vertical mixing
of soil carbon, which plays a more important role in deeper
soil 14C dynamics (Koven et al., 2013; Chen et al., 2019;

Braakhekke et al., 2011, 2014), and instead focus more on
the effectiveness of the model designs in terms of their simu-
lated carbon pools and biochemical processes. Furthermore,
by choosing such a narrow depth interval, we can treat the
topsoil as a single homogeneous soil layer, which allows us
to also evaluate models which are not vertically resolved and
are only intended for topsoil simulations. The current version
of ISRaD (v 2.5.5.2023-09-20; International Soil Radiocar-
bon Database, 2023) contains complete 14C datasets of the
light- and heavy-density fractions in the topsoil of 77 soil
profiles spread across 39 sampling sites, covering forests,
shrubland, cultivated landscapes, and rangeland and grass-
land. See Appendix A3 for more information on the choice
of profiles and Appendix A4 for the derivation of the top-
soil carbon and 14C data from layer data. Almost all of the
sampling sites are in North America and Europe, and the
remaining sites are located in Hawaii and Puerto Rico (see
map in Fig. 1). The dataset does not contain any permafrost,
thermokarst, peatland, or wetland soils, and 75 of the 77 sam-
ples are from the period 1997–2015, with only one sample
from 1949 and one sample from 1978. As shown in Fig. 2,
most data points bear a positive 114C value, demonstrating
an enrichment in bomb-derived 14C in the topsoil. See Table
S4 in the Supplement for more details on the data and the
data sources for the 77 selected soil profiles.

2.2 Selection of new-generation models

We reviewed the literature to find new-generation models
whose pools are fully compatible with the POM–MAOM dis-
tinction and that are capable of running global simulations
(i.e., their parameter values depend on the environmental
conditions and are not just optimized for a few specific sites).
Table 1 gives an overview of the features and capabilities of
such new-generation models, almost all of which have been
developed starting in the 2010s. Many new-generation SOC
models also explicitly represent the microbial biomass as a
separate carbon pool, since microbes are the main drivers of
SOC turnover (Crowther et al., 2019; Basile-Doelsch et al.,
2020; Schimel, 2023). The newest version of the MEND
model simulates a variety of microbial exo-enzyme pools in
addition to its microbial biomass pools (Wang et al., 2022).
About half of the models listed in Table 1 already implement
14C simulations. However, none of them have systematically
assimilated fraction-specific 14C data, instead relying on 14C
data of bulk SOC or 14CO2 data from soil respiration.

For this 14C study, we chose to evaluate the following
models, as they are open source and still actively developed:

– Millennial v2 (with Michaelis–Menten kinetics),
(Abramoff et al., 2022),

– SOMic 1.0 (Woolf and Lehmann, 2019),

– MEND-new (with default equations) (Wang et al.,
2022),
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Figure 1. Map of selected topsoil sampling sites from ISRaD (Lawrence et al., 2020). Of the 39 sites, 37 are located in North America and
Europe, and the 2 remaining sites are in Hawaii and Puerto Rico. All sites have a complete 14C dataset for the bulk soil and density fractions
in the top 5 or 10 cm of the mineral soil. The map also shows two of the most important environmental controls on soil carbon persistence:
soil temperature (at 4 cm depth, averaged over the 1970–2010 period, at 1° horizontal resolution) from the CESM2 Large Ensemble product
(Rodgers et al., 2021) on the map background and clay content in the topsoil from ISRaD or SoilGrids (Poggio et al., 2021) for each sampling
site.

Table 1. Summary of features and capabilities of new-generation models. All of the listed models are compatible with the distinction between
POM and MAOM and are capable of running global simulations. The models selected for evaluation with 14C in this study are indicated
with an asterisk (∗). The first two columns are the year of the first publication and, if applicable, the year of the latest published revision of
each model at the time of writing. The “Open source”, “Implements 14C”, and “Explicitly models” columns are checkmarked if at least one
version of the model has open-source code, implements 14C simulations, or explicitly models a specified pool or feature, respectively. In the
“Vertical mixing” column, models with a downward arrow (↓) simulate any kind of downward transport or leaching for at least one of their
pools, often in dissolved form, and sometimes using an advection equation. Models featuring an up–down arrow (l) additionally implement
vertical mixing with a diffusion equation for at least one of their pools. DOM signifies dissolved organic matter.
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Notes

∗Millenniala 2018 2022 X X X ↓
∗SOMic 2019 X X X X ↓

∗MENDc 2013 2022 X X X X X 14C only in 2015
∗CORPSEd 2014 2020 X X
∗MIMICSe 2014 2021 X X X ↓l

14C and ↓l only in 2021
MINDf 2021 X X Only a subset can be run globallyp

AggModelg 2013 X Incubation model
JSMg 2020 (X) X X X ↓l Source code accessible upon request
COMISSIONi 2015 2020 X X X ↓l

14C introduced in v2.0
Tipping & Rowej 2019 X X ↓

MEMSk 2019 2021 X X ↓l l introduced in v2.0
SOMPROFl 2011 2014 X ↓l

14C introduced in 2014
CASTm 2013 ↓

Struc-Cn 2009
PROCAASo 2020 Incubation model

a Abramoff et al. (2018, 2022). b Woolf and Lehmann (2019). c Wang et al. (2013, 2015, 2022). d Sulman et al. (2014, 2017); Salazar et al.
(2018); Hicks Pries et al. (2018); Moore et al. (2020). e Wieder et al. (2014, 2015); Zhang et al. (2020); Kyker-Snowman et al. (2020); Wang et al.
(2021). f Fan et al. (2021). g Segoli et al. (2013). h Yu et al. (2020). i Ahrens et al. (2015, 2020). j Tipping and Rowe (2019). k Robertson et al.
(2019); Zhang et al. (2021). l Braakhekke et al. (2011, 2013, 2014). m Stamati et al. (2013). n Malamoud et al. (2009). o Liu et al. (2020). p Only
the microbial necromass pools of MIND were run globally; some of the parameters (e.g., Vmax,P and KM,P ) necessary to run the live microbial
biomass and plant-derived carbon pools do not have fitted values outside of four experimental test cases.
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Figure 2. Measured 114C data of the POM and MAOM den-
sity fractions and total soil organic carbon (bulk SOC) at the se-
lected topsoil profiles from ISRaD (Lawrence et al., 2020) over-
laid on the atmospheric114CO2 curve of the Northern Hemisphere
(Graven et al., 2017). All POM and MAOM fractions shown here
were produced using the method of density fractionation with ultra-
sonication. These ISRaD data were originally published in Baisden
et al. (2002), Berhe et al. (2012), Harden et al. (2002), Heckman
(2010), Heckman et al. (2018), Lybrand et al. (2017), Marín-Spiotta
et al. (2008), McFarlane et al. (2013), Meyer et al. (2012), Ras-
mussen et al. (2018b), and Schrumpf et al. (2013).

– CORPSE-fire-response (as implemented in Sulman,
2024a), (Sulman et al., 2014),

– MIMICS-CN v1.0 (Kyker-Snowman et al., 2020).

Figure 3 shows the general structure of the above models.
All the selected models have pools which can be associated
with the POM and MAOM fractions (see Appendix C for
details on how we associate the pools with each fraction),
and they all have at least one microbial biomass pool. We
generally chose to evaluate the most recent version of each
model. However, we found an error in the 14C implemen-
tation of the most recent version of MIMICS (Wang et al.,
2021) (see Appendix E2), and thus we chose to use the cou-
pled carbon–nitrogen version MIMICS-CN published 1 year
earlier in Kyker-Snowman et al. (2020). See Appendix B and
Figs. C1–C5 for more details on the exact versions and im-
plementations of each model. Appendix D explains how we
re-implemented the models to produce 14C predictions.

2.3 Model input data

For each measurement site, the models are run for the top-
soil with local environmental forcing data from 1850 to 2014.
The initial conditions in 1850 are found by spinning up the
models and looping over a “pre-industrial” year, where the
forcing data are averaged over the 1850–1879 period, until
the system reaches equilibrium, i.e., does not experience any
significant inter-annual variability. In practice, the carbon–
nitrogen component of the MEND model is spun up from
its default initial condition for 400 years and its 14C com-
ponent for 1000 years, the SOMic model is spun up for

Figure 3. General structure of the new-generation models cho-
sen for this study. The MIMICS and CORPSE models addition-
ally feature a CO2 flux leaving MAOM and POM, which de-
pends on the carbon use efficiency of the microbes. The SOMic
and CORPSE models do not allow any flux from the DOM, mi-
crobes, or MAOM back into the POM. More detailed diagrams
for the MEND, Millennial, SOMic, CORPSE, and MIMICS mod-
els are shown in Figs. C1–C5. Abbreviations: POM, particulate or-
ganic matter; MAOM, mineral-associated organic matter; DOM,
dissolved organic matter.

50 000 years, and the remaining three models are spun up
for 200 years from their pre-industrial steady-state solution.
More details on the spinup methods for each model are given
in Appendix B.

The selected models require a number of constant and
time-dependent forcing data to be run at each study site.
We assume that soil properties such as sand, clay, and silt
content; soil density; and land use are time-invariant since
pre-industrial times. Where these site-specific soil proper-
ties are not reported in ISRaD, they are taken from the
SoilGrids database (Poggio et al., 2021), accessed with the
soilgrids Python package v0.1.4 (Gan, 2023). The MIM-
ICS model also requires the lignin content of litter inputs,
which we set to be a constant value depending only on the
land use type. We assume that the lignin content is 25 %
for forest litter and 7 % for shrubland litter (Rahman et al.,
2013; Table 1). For grassland and cultivated landscapes, we
assume a lignin content of 9 % based on measurements of
grasses at the seeding stage (Armstrong et al., 1950; Table 1).
Weather-dependent and other dynamic environmental prop-
erties, such as soil temperature and 14C influx, are taken from
global model predictions with monthly time resolution. We
use the monthly averaged CESM2 Large Ensemble (CESM2-
LE) product (IBS Center for Climate Physics et al., 2021;
Rodgers et al., 2021) for vertically resolved soil tempera-
ture and moisture, above- and below-ground net primary pro-
duction (NPP), total gross primary productivity (GPP), lit-
terfall and litter heterotrophic respiration, and the carbon-
to-nitrogen ratio and 114C of total litter carbon from 1850
to 2014 with 1° spatial resolution. Since the below-ground
NPP from the CESM2-LE output is not vertically resolved,
we derive the topsoil portion of the below-ground NPP us-
ing the exponential function model from Xiao et al. (2023).
For nitrogen deposition rates, we use monthly data simulated
by the NCAR Chemistry–Climate Model Initiative (CCMI)
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on a 0.5° grid from 1860 to 2016 (Tian et al., 2018) down-
loaded from the ISIMIP Repository (ISIMIP, 2024; Rosen-
zweig et al., 2017). We extend these data back to 1850 by
setting the monthly nitrogen deposition rates for the 1850–
1860 period to be equal to the average monthly rates over the
1860–1870 period.

Since none of the selected soil models represent lateral
carbon transport or upward vertical mixing of soil carbon,
the simulated topsoil systems receive all of their carbon ex-
clusively from vegetation inputs. We can therefore estimate
the 114C of the carbon influx into the soil with the 114C of
litter from the CESM2-LE product. These litter 114C data
account for the pre-aging of carbon in vegetation (Herrera-
Ramírez et al., 2020; Solly et al., 2018) because the litter
carbon first passes through the vegetation pools in the land
module of CESM2 (CLM5; Lawrence et al., 2019). For Mil-
lennial, CORPSE, and MIMICS, we estimate the carbon in-
flux into the soil with the topsoil NPP, setting the slightly
negative NPP values in the CESM2-LE output to 0. In the
case of the MEND model, we use total GPP instead of NPP
as a model input, as prescribed by the developers of MEND
(Wang, 2024). SOMic is the only model to require the use of
litter inputs instead of NPP or GPP as a model input. Follow-
ing the example of the global simulations performed in the
original publication of SOMic (Woolf and Lehmann, 2019),
we estimate litter inputs as the annual average of litterfall mi-
nus litter heterotrophic respiration, setting litter inputs to 0 in
the rare instances where annual litterfall is less than annual
litter heterotrophic respiration. We derive the topsoil portion
of litter inputs assuming they have the same vertical distribu-
tion as NPP.

3 Results

We produced carbon and 14C predictions with the MEND,
Millennial, SOMic, CORPSE, and MIMICS models for the
77 selected soil profiles and compared them with the ob-
served carbon and 14C data from ISRaD. Our main perfor-
mance metrics are the root mean square error (RMSE) and
mean bias of the predictions with respect to the observational
datasets described in Sect. 2.1. Table 2 gives a summary of
the model performances. Detailed tables of the results and
plots of predictions against observations for each variable
and each model can be found in the Supplement (Tables S3
and S5 and Fig. S3). Note that the MEND model failed to
run on 9 of the 77 selected soil profiles due to some numeri-
cal instability and was unable to produce 14C data for 6 other
profiles. Note also that the SOC stocks are not available for
17 of the 77 selected profiles.

3.1 Carbon stocks and partitioning between pools

While the Millennial and CORPSE models tend to over-
estimate the topsoil SOC stocks of the selected soil pro-

files, MEND and MIMICS generally underestimate the SOC
stocks (Fig. 4a). The SOMic model, which is the only model
to estimate carbon inputs into soils with litter inputs instead
of primary productivity, produces the best predictions for
the topsoil SOC stocks, with a positive mean bias of only
0.3 kgCm−2 (+13 % relative to the observational mean) and
an RMSE of 1.9 kgCm−2.

With the exception of the MIMICS model, the new-
generation models generally fail to simulate the full range of
variability in the observations of SOC partitioning between
POM and MAOM (Fig. 4b–c). The Millennial model’s par-
titioning is nearly fixed around 8 % POM and 92 % MAOM
for all sites, never deviating more than 1.5 percentage points
from those values. The CORPSE and MIMICS models pro-
duce the best predictions of POM and MAOM contributions
to the total SOC stocks. They follow the one-to-one line of
model predictions versus observations much better than the
other models (see Figs. S3.2 and S3.4 in the Supplement),
and they both have an RMSE of around 20 percentage points
and a bias of around 10 points or less in magnitude (Table 2).
By comparison, the MEND, Millennial, and SOMic models
have an average RMSE of 36 points and an average absolute
bias of 27 points in their predictions of POM and MAOM
contributions (Table 2).

3.2 Performance with 14C

With the notable exception of MIMICS, the new-generation
models consistently overestimate the114C of bulk SOC, and
their 14C predictions do not capture the full variability of the
observations (Fig. 5a). This is reminiscent of the ESMs’ 14C
predictions from He et al. (2016), which also overestimate
the 114C of SOC and underestimate its variability but to a
different extent and over a larger depth interval (top 1 m in-
stead of the top 5 or 10 cm of the mineral soil). Our results
could therefore suggest that the new generation of soil mod-
els may be facing similar problems to those experienced by
the traditional SOC models incorporated into ESMs.

The pool-specific 14C results, shown in Fig. 5b–c, shed
a more critical light on the performance of MIMICS with
the 114C of bulk SOC. MIMICS overestimates the 114C of
POM by 80 ‰ and underestimates the 114C of MAOM by
around 40 ‰ on average, and these biases happen to cancel
out in such a way that MIMICS produces very good predic-
tions for the 114C of bulk SOC with an RMSE of just 80 ‰
and no bias – the best performance among the evaluated mod-
els (Table 2). All five models overestimate the114C of POM,
with an average positive bias of 69 ‰, and MEND and Mil-
lennial also strongly overestimate the 114C of MAOM by
more than 80 ‰. CORPSE is good at predicting the 114C of
MAOM with effectively no bias, but its POM 114C predic-
tions have the largest bias (+87 ‰) among all the models. On
average, the evaluated models have a positive bias between
37 ‰ and 69 ‰ and an RMSE of around 100 ‰ in their114C
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Table 2. Root mean square error (RMSE) and mean bias for each model with respect to each dataset. In the case of the MEND model, the
RMSE and bias were calculated based on results of n= 62 profiles for the 114C rows, n= 55 for the SOC stocks, and n= 68 for the rows
of POM and MAOM contributions. For all other models, n= 77 for all rows, except SOC stocks, where n= 60.

MEND Millennial SOMic CORPSE MIMICS Average

Bulk SOC 114C (‰)
RMSE 84 115 122 77 80 96
Bias +59 +69 +13 +43 0 +37

POM 114C (‰)
RMSE 94 119 105 119 129 113
Bias +50 +63 +64 +87 +80 +69

MAOM 114C (‰)
RMSE 103 117 116 61 74 94
Bias +83 +81 +18 +7 −39 +30

SOC stocks (kgCm−2)
RMSE 4.0 3.8 1.9 6.5 2.3 3.7
Bias −1.3 +2.7 +0.3 +4.1 −1.6 +0.9

POM contribution (%)
RMSE 35 40 34 24 17 30
Bias +22 −33 −26 +12 −2 −5

MAOM contribution (%)
RMSE 34 41 33 22 21 30
Bias −22 +35 +25 −10 −9 +4

Figure 4. Observed and modeled SOC stocks in the topsoil (top 5 or 10 cm of mineral soil) plotted on a log-transformed axis in panel (a) and
contributions of the POM and MAOM fractions to the topsoil SOC stocks in panels (b) and (c), respectively. Black diamonds are outliers. In
panel (a), n= 60 for the boxplot of observed data, n= 68 for MEND, and n= 77 for all other models. In panels (b) and (c), n= 77 for all
boxplots, except for MEND, where n= 68.

predictions for POM, MAOM, and bulk SOC (see Table 2 for
more details).

The models produce contrasting predictions for the evolu-
tion of soil 14C over the second half of the 20th century. In
Fig. 6, we can see in a representative example of the model
biases that the CORPSE, SOMic, and MIMICS models pro-
duce very distinct 14C dynamics for POM and MAOM, with
POM having a predicted 114C at least 200 ‰ higher than
MAOM in the 1980s. On the other hand, the 114C curves
of MAOM and POM predicted by the MEND and Millennial
models remain very close to each other throughout the post-
bomb period. This is because Millennial and MEND have
faster turnover rates than the other models, and their pools
rapidly exchange carbon between themselves, thus homoge-
nizing the 14C signal across their simulated soil fractions (see

Appendix F for more details on the turnover rates in Millen-
nial, which are particularly fast).

3.3 Role of environmental parameters

We further investigate how simulations depend on soil tem-
perature and clay content, as these are considered some of the
most important factors controlling SOC turnover and persis-
tence (Basile-Doelsch et al., 2020; Leifeld et al., 2009).

Higher soil temperatures enhance microbial activity and
generally increase the turnover rate of carbon in soils (Ger-
man et al., 2012; Leifeld et al., 2009; Sierra et al., 2015).
While the observed SOC stocks and POM and MAOM con-
tributions are not correlated with temperature (Fig. 7a–c), the
observed 114C data of POM, MAOM, and bulk SOC signif-
icantly increase with higher temperature (Fig. 7d–f). By con-
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Figure 5. Observed and modeled 114C of bulk SOC (a), POM (b), and MAOM (c) in the topsoil (top 5 or 10 cm of mineral soil). Black
diamonds are outliers. Note that some extreme outliers are outside of the plotting range. To have a uniform and consistent 14C dataset, we
excluded the 1949 and 1978 samples so that we end up with more compact data spanning only 18 years at the tail end of the bomb spike.
Therefore, n= 75 for all boxplots, except for MEND, where n= 60.

Figure 6. Observed and predicted 114C of POM, MAOM, and bulk SOC in the top 10 cm of the mineral soil of an abandoned alpine
grassland in the Stubai Valley, Austria. The observed 14C data from 2008 are published in Meyer et al. (2012), where the “observed POM”
and “observed MAOM” data come from light- and heavy-density fraction measurements, respectively. The atmospheric 114CO2 of the
Northern Hemisphere (Graven et al., 2017) is shown for reference. With SOMic, CORPSE, and MIMICS, the predicted 114C of POM is
distinct from the predicted 114C of MAOM. On the other hand, the POM and MAOM fractions in MEND and Millennial have very similar
114C throughout the bomb-spike period. Plots of the predicted and observed 114C of all the other profiles are provided in the Supplement
(Fig. S2).

trast, the114C predictions for POM, MAOM, and bulk SOC
are either uncorrelated or negatively correlated with soil tem-
perature. All of the selected models modify carbon decom-
position rates with a temperature-dependent scaling factor
(Abramoff et al., 2022; Woolf and Lehmann, 2019; Kyker-
Snowman et al., 2020; Wang et al., 2022; Sulman et al.,
2014), but these results could indicate that they may need
to increase or change the effect of temperature on carbon
turnover rates.

In Fig. 8c, the clay content of the sampled topsoils seems
to be a decisive factor controlling the observed contribution
of MAOM carbon to the SOC stocks, with higher clay con-
tent correlating with higher MAOM contribution. This is also

true for the modeled MAOM contributions predicted by the
MIMICS and CORPSE models, which produce the most ac-
curate predictions of MAOM contribution (Table 2). How-
ever, MIMICS appears to struggle with correctly simulat-
ing the effects of increased clay content on overall SOC dy-
namics, as evidenced by the inaccurate relationships of SOC
stocks and 114C with clay (see Fig. 8a and d–f). It appears
that MIMICS correctly reproduces the evolution of MAOM
contribution with clay content by increasing the turnover
time of carbon in MAOM, which in turn lowers the 114C
of MAOM and increases SOC stocks, contrary to the obser-
vations.
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Figure 7. Relationships of observed and predicted carbon and 114C data with respect to mean annual temperature of the topsoil (averaged
over the 1970–2010 period). Circles are data points and lines are best linear fits through the points. The observed 114C data of bulk SOC,
POM, and MAOM have a strong positive relationship with temperature, while the predicted 114C data are more weakly and sometimes
negatively correlated with temperature. The linear fit line of CORPSE in panel (c) is completely covered by the linear fit line of MIMICS.
Note that some extreme outliers are outside of the plotting range and that we again excluded the 1949 and 1978 samples for these plots.
Separate plots for each individual model are provided in the Supplement (Figs. S1.2.32–36).

Figure 8. Relationship of observed and predicted carbon and 114C data with respect to clay content in the topsoil. Circles are data points
and lines are best linear fits through the points. CORPSE and MIMICS successfully reproduce the positive relationship between the topsoil
clay content and the observed MAOM contribution to the SOC stocks in panel (c). However, in panel (f), MIMICS has a strong negative
correlation of MAOM 114C with clay content, unlike the observations, which do not show a correlation. The linear fit line of CORPSE in
panel (f) overlaps with that of the observations. Note that some extreme outliers are outside of the plotting range and that we again excluded
the 1949 and 1978 samples for these plots. Separate plots for each individual model are provided in the Supplement (Figs. S1.2.26–30).
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It is important to note that the regression lines in the114C
plots in Figs. 7d–f and 8d–f could potentially be biased due to
the different sampling years of soil profiles with different en-
vironmental parameters. However, those biases most likely
do not affect our analysis of the results (see Appendix G,
and plots with “normalized” 114C data in Fig. S.1.1). The
Supplement also contains figures of the model biases and
absolute errors plotted against temperature and clay content
(Figs. S.1.2.1–24).

4 Discussion

The comparison of topsoil 14C measurements with predic-
tions by new-generation models reveals inaccuracies in the
modeled time scales of carbon turnover and persistence in
soils. Like the Earth System Models (ESMs) evaluated in He
et al. (2016), most new-generation models do not correctly
reproduce the 114C of bulk soil organic carbon (SOC) and
they, too, may therefore be unsuitable for studying the ef-
fectiveness of soils as a net atmospheric CO2 sink in the 21st
century. The model biases in the partitioning of SOC between
particulate organic matter (POM) and mineral-associated or-
ganic matter (MAOM) may also affect the accuracy of fu-
ture projections. POM and MAOM have been shown to have
different sensitivities to environmental variables such as tem-
perature and are thus expected to react differently to a chang-
ing climate (Georgiou et al., 2024; Heckman et al., 2022;
Hicks Pries et al., 2017; Kleber et al., 2011). Therefore, if
models do not correctly partition SOC into POM and MAOM
and misrepresent their 14C, they will probably produce inac-
curate predictions of SOC dynamics under climate change.

We identify three likely reasons why the new-generation
models generally underperform with 14C and discuss how
these problems could potentially be solved:

1. insufficient datasets for the calibration of carbon
turnover parameters

2. lack of a pool with very slow turnover to account for
highly persistent SOC components

3. pools which do not capture the full range of SOC
turnover rates.

The last point invites further research on the stability of the
different constituents of SOC and a discussion on the most
effective way to partition SOC into pools which are more
representative of the diversity of cycling rates and persistence
of carbon in soils.

4.1 Insufficient calibration datasets

Our 14C results suggest that the new-generation models
selected for this study overestimate some carbon turnover
rates. The most extreme case is Millennial v2, which gives
its micro-aggregate pool and mineral-adsorbed carbon pool

turnover times of just a few months (see Appendix F). On
the other hand, 14C-based studies find that the MAOM frac-
tion, which includes micro-aggregates and mineral-adsorbed
carbon, typically turns over on time scales of many decades
or centuries (Gaudinski et al., 2000; Schrumpf and Kaiser,
2015; Van der Voort et al., 2017; Baisden et al., 2002). The
overestimation of turnover rates may be due to inadequate
or insufficient data for the calibration of the turnover pa-
rameters of the models. Even though new-generation mod-
els can model measurable soil fractions such as POM and
MAOM, they do not usually assimilate fraction-specific car-
bon and 14C data, probably because such data are currently
very sparse. The only models in our evaluation to cali-
brate their parameters with fraction-specific carbon data are
CORPSE (with data from only two soil profiles, accord-
ing to Zhang et al., 2021; Table S1) and Millennial (as de-
scribed in Abramoff et al., 2022), and none of them as-
similated fraction-specific 14C data. Instead, new-generation
models primarily rely on less informative bulk soil data, as
well as some soil incubation results, for parameter optimiza-
tion. However, as the dataset of fraction-specific carbon and
14C measurements is growing larger, new-generation mod-
els should start to take full advantage of the measurability of
their pools and assimilate those highly informative data.

4.2 Lack of passive pool

Another explanation for the consistent overestimation of soil
114C by new-generation models is the inability of the mod-
els to account for the presence of highly persistent com-
pounds in the soil, which negatively offset the bulk114C. For
example, some soils with a history of wildfires may contain
a considerable fraction of pyrogenic carbon (Reisser et al.,
2016; González-Domínguez et al., 2019), which is composed
of highly durable aromatic compounds and can remain in
soils over thousands of years (Eckmeier et al., 2009; Hajdas
et al., 2007; Leifeld, 2008). Due to its longevity, pyrogenic
carbon is depleted in 14C as a result of radioactive decay,
bringing down the overall114C of both POM (Van der Voort
et al., 2017; Baisden et al., 2002) and MAOM (Soucémari-
anadin et al., 2019). In deeper soils, the 114C of SOC can
be even further depleted due to a larger proportion of pet-
rogenic carbon, which is devoid of 14C (Grant et al., 2023;
Van der Voort et al., 2019). Whereas the two major traditional
SOC models explicitly account for such extremely old com-
ponents with a “passive” pool (1000 year turnover time) in
the Century model (Parton et al., 1987) and an “inert organic
matter” pool (no turnover at all) in the RothC model (Cole-
man and Jenkinson, 1996), the new-generation models effec-
tively force virtually inert components to fit into their actively
cycling carbon pools. By adding slow-turnover pools to ac-
count for highly persistent compounds such as pyrogenic car-
bon, the new-generation models would be able to lower the
overall 114C of POM and MAOM and more accurately re-
produce the measured 14C data.
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4.3 Search for more representative pools

Finally, the underperformance of the models with respect to
14C may also be due to a choice of pools which are not truly
representative of the full spectrum of carbon turnover rates
in soils. Whereas traditional models simply define the num-
ber and turnover rates of their SOC pools such that they
can reproduce observed SOC dynamics while minimizing
their degrees of freedom, new-generation models addition-
ally need to make sure their pools are at once easily mea-
surable and representative of the various time scales of SOC
persistence. If a measurable fraction contains two or more
components with very different turnover rates, as is the case
for the POM and MAOM fractions (von Lützow et al., 2007;
Poeplau et al., 2018; Baisden et al., 2002), a model will
not be able to correctly reproduce the fraction’s 114C with
one single carbon pool because it assumes a homogeneous
turnover rate for the entire pool. Most new-generation mod-
els already address this problem by splitting the POM and
MAOM fractions into multiple smaller subpools with con-
trasting turnover rates. For example, the SOMic model distin-
guishes between soluble and insoluble POM and the MEND
model between oxidizable and hydrolyzable POM. Some
new-generation models subdivide the MAOM fraction into
micro-aggregates and mineral-adsorbed carbon (e.g., Millen-
nial model) or into an active layer of adsorbed DOC (dis-
solved organic carbon) and a more stable MAOM component
(e.g., MEND model). However, these subpools might still not
be homogeneous enough in their turnover rates for effective
14C simulations. Recent 14C studies determining the stability
of MAOM under the action of peroxide oxidation show that
it may be necessary to further split clay-sized MAOM into
two measurable subpools which are decomposable or resis-
tant to microbial exo-enzymes (Schrumpf et al., 2021; Ja-
gadamma et al., 2010; Poeplau et al., 2018). Within the POM
fraction, the occluded light fraction could serve as an easily
measurable proxy for the more persistent POM (Schrumpf
et al., 2013; Wagai et al., 2009), and measurements of the
pyrogenic carbon content (e.g., with hydrogen pyrolysis, as
in González-Domínguez et al., 2019) could give clues on the
size of the most persistent pool in the POM fraction. Finally,
“continuous” SOC fractionation methods such as ramped py-
rolysis oxidation (Stoner et al., 2023) could provide a much
higher resolution of the SOC turnover rate spectrum. How-
ever, the resulting measurable pools are more difficult to in-
terpret in terms of their role in the soil carbon cycle, and
their incorporation into mechanistic SOC models is there-
fore less straightforward. In order to correctly reproduce the
time scales of SOC persistence and turnover, new-generation
models may need a more detailed subdivision of the POM
and MAOM fractions into more representative subpools, thus
potentially increasing the number of simulated pools and de-
grees of freedom. However, as discussed in Sect. 4.1, such
an increase in model complexity must also be accompanied
with an expansion of the observational datasets, in particular

fraction-specific isotopic measurements, for effective model
calibration and validation.

4.4 Limitations of this study

The accuracy of our model evaluation is affected by several
factors. Although we took care to accurately match the mod-
eled pools to the measured fractions (see Appendix C), the
correspondences are imperfect and further complicated by
non-standardized definitions and density cut-offs for the light
and heavy fractions published on ISRaD. Nevertheless, this
does not change the overall overestimation of soil 114C by
most models. The use of forcing data from possibly inac-
curate CESM2-LE and CCMI outputs with low spatial res-
olution may also affect the accuracy of our model evalua-
tion. Furthermore, the 114C of the carbon inputs from the
CESM2-LE product could be inaccurate, especially in soils
with a thick organic layer, which pre-ages the carbon before
it enters the mineral soil. However, the consistency and mag-
nitude of the models’ overestimation of the topsoil 114C
with respect to observed data indicate that this overestima-
tion is evidently a real pattern among the studied models. Fi-
nally, it is also important to note that our study only produces
an incomplete picture of model performances on a global
scale, since most of the measured data points represent North
American and European forest ecosystems.

5 Summary

Despite their incorporation of the latest advances in soil sci-
ences, new-generation soil organic carbon (SOC) models still
seem to experience some of the same problems with predict-
ing 14C as the traditional SOC models. The new-generation
models’ consistent overestimation of the 114C in both par-
ticulate organic matter (POM) and mineral-associated or-
ganic matter (MAOM) and their inaccurate partitioning of
SOC between the POM and MAOM fractions suggest that
these models underestimate the time scales of carbon stor-
age in soils and might produce unreliable future predictions
under climate change. To improve their predictions, new-
generation models should take advantage of the measura-
bility of their pools and calibrate their parameters with the
rapidly growing dataset of fraction-specific carbon and 14C
measurements in addition to incubation and bulk soil data.
They may also have to reconsider their model design and
simulate carbon pools which better capture the full spec-
trum of carbon turnover rates present in the soils. In particu-
lar, the consideration of highly persistent SOC such as pyro-
genic carbon could significantly improve 14C predictions. As
more effective measurable pools are being discovered and
the dataset of fraction-specific 14C data is expanding, new-
generation soil models have the potential to eventually su-
persede the traditional SOC models employed by ESMs if
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they take full advantage of the measurability of their pools
and assimilate the available data.

Appendix A: ISRaD data selection and processing

A1 Derivation of LF data from fLF and oLF data

We calculate the 114C and carbon contribution of the light
fraction (LF) by combining the soil density fraction data of
the free light fraction (fLF) and the occluded light fraction
(oLF) from the International Soil Radiocarbon Database (IS-
RaD) (Lawrence et al., 2020). The fractional contribution of
LF to the total soil organic carbon (cLF) is calculated as the
sum of the fLF and oLF contributions (cfLF and coLF, respec-
tively), and the 114C of LF is derived with a weighted aver-
age of the 114C of fLF and oLF:

114CLF
=
cfLF
·114CfLF

+ coLF
·114CoLF

cLF , (A1)

where cLF
= cfLF

+ coLF.

A2 Derivation of bulk data from LF and HF data

If the 114C data for the bulk soil (114Cbulk) are not avail-
able, we derive them with a weighted average of114CLF and
114CHF, the 114C of the light fraction (LF) and heavy frac-
tion (HF), respectively:

114Cbulk
=
cLF
·114CLF

+ cHF
·114CHF

cLF+ cHF , (A2)

where cLF and cHF are the relative contributions of LF and
HF to the soil organic carbon stocks, respectively. Note that
the sum cLF

+cHF is generally very close to 1, but not neces-
sarily equal to 1, depending on the methods employed by the
data producers.

A3 Definition of topsoil and selection of profiles

We define the topsoil as at least the top 5 cm and at most
the top 10 cm of the mineral soil, i.e., the interval from 0 cm
to x cm depth such that 5≤ x ≤ 10. All profiles in this study
must have depth layers which fully span the topsoil without a
gap. We only use layers whose top boundary is less than 5 cm
deep and whose bottom boundary is less than 10 cm deep.
For example, if a profile has layers 0–5 cm and 5–10 cm, we
only use the 0–5 cm layer to represent the topsoil and discard
the data from the 5–10 cm layer.

Examples of profiles we would choose for this study:

– profile with layer 0–10 cm

– profile with layers 0–3 cm and 3–8 cm

– profile with layers 0–4 cm and 3–8 cm (overlapping is
allowed).

Examples of profiles that we would have to reject:

– profile with layer 0–15 cm (extends beyond 10 cm
depth)

– profile with topmost layer 1–8 cm (missing top 1 cm)

– profile whose top two layers are 0–3 cm and 4–8 cm
(gap between layers).

A4 Derivation of topsoil data from layer data

The carbon and 14C data for the topsoil are derived by inte-
grating over the layers comprising the topsoil. The total soil
organic carbon stocks in the topsoil (SOC) are found by sum-
ming the SOC` stocks in each layer `. If the SOC` data are
not reported, they are derived from the layer thickness h`,
soil bulk density ρ`, and carbon concentration C` in each
layer `:

SOC=
∑
`

SOC` =
∑
`

h`ρ`C` . (A3)

In order to find the 114C of bulk soil, light fraction (LF),
and heavy fraction (HF) in the topsoil (114Cbulk, 114CLF,
and 114CHF, respectively), as well as the LF and HF frac-
tional contributions to the total carbon stocks in the topsoil
(cLF and cHF, respectively), we take a weighted average over
the layers `:

114Cbulk
=

∑
`

SOC` ·114Cbulk
` /SOC, (A4)

114CLF
=

∑
`

SOC` · cLF
` ·1

14CLF
` /(SOC · cLF), (A5)

114CHF
=

∑
`

SOC` · cHF
` ·1

14CHF
` /(SOC · cHF), (A6)

cLF
=

∑
`

SOC` · cLF
` /SOC, (A7)

cHF
=

∑
`

SOC` · cHF
` /SOC. (A8)

If there are overlapping layers in the topsoil (e.g., a profile
with layers 0–2, 0–4, and 3–10 cm), we integrate over depth
while averaging overlapping layers in the intervals where
those layers overlap.

Appendix B: Further information on model versions
and implementations

The original source codes of all the selected model versions
are openly available. By having direct access to the code with
which the model developers produced their results, we can be
more confident that we test an implementation of the models
as intended by their respective authors.

Our final implementations of Millennial, CORPSE,
MIMICS, and the 14C component of MEND are
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available as Python modules in our GitHub reposi-
tory https://github.com/asb219/evaluate-SOC-models
(last access: 30 July 2024), published on Zenodo at
https://doi.org/10.5281/zenodo.11583791 (Brunmayr,
2024). For the carbon and nitrogen components of
MEND, we compile the Fortran source code from
https://doi.org/10.5281/zenodo.11065513 (Wang and
Brunmayr, 2024). Finally, we use the install_url
function of the devtools package in R (Wickham
et al., 2022) to install SOMic as an R package directly
from https://doi.org/10.5281/zenodo.11068749 (Woolf and
Brunmayr, 2023).

B1 MEND

We use the MEND-new version of the MEND model as de-
scribed in Wang et al. (2022). Our 14C re-implementation
is based on the code from commit 92323c7 of the
GitHub repository at https://github.com/wanggangsheng/
MEND (last access: 30 July 2024) (Zenodo publication:
Wang, 2024). We forked the repository from that commit to
https://github.com/asb219/MEND (last access: 30 July 2024)
so that we could adapt the model input and output to our
purposes. On our fork, the original version of MEND-new
is released under tag name “MEND-new”, and the version
we used to produce our results is released under tag name
“MEND-new-asb219” (Zenodo publication: Wang and Brun-
mayr, 2024). We use all the default model settings and the
optimized parameter values provided in the Fortran namelist
file MEND_namelist.nml in the repository. The pre-
industrial soil carbon and nitrogen stocks are found by ini-
tializing the model with the default initial state from the
file userio/inp/SOIL_ini.dat and spinning up the
non-isotopic carbon–nitrogen component of the model for
400 years with pre-industrial forcing data. The pre-industrial
soil 14C levels are then found by running the 14C component
of the model for another 1000 years, looping over the final
year of the carbon–nitrogen spinup. The final states of the
carbon–nitrogen and 14C spinups are then used for the ini-
tial condition of the final run of MEND over the 1850–2014
period. The model runs with hourly time steps and uses the
forward Euler integration method.

B2 Millennial

We use Millennial v2 with Michaelis–Menten kinetics as
described in Abramoff et al. (2022). We re-implemented
the model with 14C in Python based on the original R code
in the repository https://github.com/rabramoff/Millennial
(last access: 30 July 2024) released under the tag “v2”,
commit e95bca9 (Zenodo publication: Abramoff and
Xu, 2022). We used the model equations from the file
R/models/derivs_V2_MM.R in the repository and ran
the model with the fitted parameter values from the file
Fortran/MillennialV2/simulationv2/

soilpara_in_fit.txt in the repository. The
initial condition for both carbon and 14C stocks
is found by first solving for a pre-industrial
steady state (similarly to the model tutorial
R/simulation/model_tutorial.Rmd in the
repository) and then running the model from steady state
for 200 years using time-varying pre-industrial forcing data
featuring a seasonal cycle. The final state of that spinup
is then used as the initial condition for the final run of the
model over the 1850–2014 period. The model runs with
daily time steps, and although the model tutorial uses the
4th order Runge–Kutta integration method, we integrate the
equations simply with the forward Euler method, which is
stable and precise enough with daily time steps.

B3 SOMic

We use version 1.0 of the SOMic model as described
in (Woolf and Lehmann, 2019). The original code is re-
leased under version “SOMic v 1.00” (commit be34e56) in
the GitHub repository https://github.com/domwoolf/somic1
(last access: 30 July 2024) (Zenodo publication: Woolf,
2024). However, we had to fork the repository from commit
be34e56 to https://github.com/asb219/somic1 (last access:
30 July 2024) in order to fix a minor issue in the 14C im-
plementation (see Appendix E1 for the reason) and to allow
for distinct 14C values in the initial condition of each pool
(previously, all pools were always initialized with the same
14C value). To produce our results, we used the version re-
leased under the tag “v1.1-asb219” in our fork (Zenodo pub-
lication: Woolf and Brunmayr, 2023). The model is spun up
for 50 000 years to get the initial carbon and 14C stocks. The
model runs with monthly time steps and uses the forward
Euler integration method.

B4 CORPSE

The CORPSE model was originally described in Sul-
man et al. (2014). There are currently six publicly
available versions of CORPSE owned by GitHub user
https://github.com/bsulman (last access: 30 July 2024).
Since we are mostly interested in carbon dynamics, the
lead developer Benjamin Sulman recommended we use
the most up-to-date carbon-only implementation in https:
//github.com/bsulman/CORPSE-fire-response (last access:
30 July 2024) (commit 19ee2c7 released as version v1.0;
Zenodo publication: Sulman, 2024a). We re-implemented
CORPSE with 14C based on the equations in the file
CORPSE_array.py and using the parameter values from
the file Whitman_sims.py in that repository. However,
the equation for the clay-related rate-modifying factor is
taken from the file code/CORPSE_integrate.py in
repository https://github.com/bsulman/CORPSE-N (last ac-
cess: 30 July 2024) (commit 4a689ef released as version
v1.0; Zenodo publication: Sulman, 2024b), since the model
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seems to be working more reliably with that version of the
equation. As in Millennial, the initial condition is found by
solving for a pre-industrial steady state and spinning up for
200 years from that steady state. If the solver is unable to
find a steady state, the model is spun up for 10 000 years.
The steady-state solution was found for all the profiles in this
study. The model runs with daily time steps and uses the for-
ward Euler integration method.

B5 MIMICS

We use MIMICS-CN v1.0 as published in Kyker-Snowman
et al. (2020) because the latest version of MIMICS (Wang
et al., 2021; Wang, 2020) did not correctly implement 14C
(see Appendix E2). The original R code of MIMICS-CN
v1.0 is available at https://doi.org/10.5281/zenodo.3534562
(Kyker-Snowman, 2019). It already implements stable iso-
tope tracers but no radioactive isotopes such as 14C, so we
re-implemented the model with 14C in Python. As for Mil-
lennial and CORPSE, we spin up for 200 years from the
pre-industrial steady-state solution. If no steady state can be
found, we spin up for 10 000 years. The steady-state solution
was found for all the profiles in this study. The model runs
with hourly time steps and uses the forward Euler integration
method.

Appendix C: Correspondences between pools and soil
fractions

This section explains how we associate the simulated pools
of each model with either the POM fraction (particulate or-
ganic matter, corresponding to the light fraction resulting
from density fractionation) or the MAOM fraction (mineral-
associated organic matter, corresponding to the heavy frac-
tion resulting from density fractionation). We assume that
the POM fraction is composed of fragmented and partially
processed plant litter which is not stabilized in the soil ma-
trix through mineral association. We assume that the MAOM
fraction is composed of soil organic carbon which is enclosed
in stable aggregates or strongly adsorbed to minerals. Since
the live microbial biomass and dissolved organic carbon gen-
erally represent a small fraction of soil organic carbon, we
can neglect them and assume they belong to neither POM
nor MAOM.

See Table C1 for a summary of the correspondences be-
tween the modeled pools and the POM and MAOM fractions.

C1 MEND

List of organic carbon pools in the MEND-new model by
Wang et al. (2022) (model diagram in Fig. C1):

– POMO and POMH (particulate organic matter decom-
posed by oxidative and hydrolytic enzymes, respec-
tively);

– MOM (mineral-associated organic matter);

– QOM: “active layer of MOM” which can exchange
carbon with DOM through adsorption and desorption
(Wang et al., 2022);

– DOM (dissolved organic matter);

– MBA and MBD (active and dormant microbial biomass,
respectively);

– EPO, EPH, EM, nosZ, norB, nirS, nirK, narG, napA,
amoA, nxrA/B, nifH: various microbial exo-enzymes.

Note that the “Above-ground biomass”, “Root biomass”, and
“Litter” boxes in the MEND model diagram in Fig. C1 are
not explicitly modeled as pools and therefore do not feature
in the above list of organic carbon pools.

We assume that the POM fraction is composed of the
POMO and POMH pools and that the MAOM fraction is
composed of the MOM and QOM pools. The DOM, MBA,
MBD, and exo-enzyme pools belong to neither fraction.

C2 Millennial

List of organic carbon pools in Millennial v2 by Abramoff
et al. (2022) (model diagram in Fig. C2):

– POM (particulate organic matter);

– Aggregate C: “stable microaggregates which remain af-
ter dispersion in the larger particle size fraction (> 50–
60 µm)” (Abramoff et al., 2022) – thus this corresponds
to the coarse heavy fraction;

– MAOM (mineral-associated organic matter): consists of
organic matter associated with minerals through sorp-
tion (Abramoff et al., 2022);

– Microbial biomass: live microbial biomass;

– LMWC (low-molecular-weight carbon): “LMWC could
be analogous to dissolved organic C (DOC) if there is
enough moisture in the soil matrix, and if we do not
consider DOC molecules that are too large to be taken
up by microbes” (Abramoff et al., 2022).

We assume that the MAOM fraction is the sum of the Ag-
gregate C and MAOM pools and that the POM fraction is
entirely composed of the POM pool. The microbial biomass
and LMWC pools belong to neither fraction.

C3 SOMic

List of organic carbon pools in SOMic 1.0 by Woolf and
Lehmann (2019) (model diagram in Fig. C3):

– SPM and IPM (soluble and insoluble plant matter, re-
spectively);
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Table C1. Correspondences between simulated carbon pools and the POM fraction, MAOM fraction, or other carbon fractions. See Appendix
Sects. C1–C5 for more information.

Model POM fraction MAOM fraction Other soil organic carbon pools Litter pools

MEND POMO, POMH MOM, QOM
DOM, MBA, MBD, EPO, EPH, EM, nosZ, norB,
nirS & nirK, narG & napA, amoA & nxrA/B, nifH

Millennial POM MAOM, Aggregate C LMWC, Microbial biomass

SOMic SPM, IPM MAC DOC, MB

CORPSE SPCu, CPCu SPCp, CPCp, MNp MNu, LMB

MIMICS SOMc SOMp SOMa, MICr, MICK LITm, LITs

Figure C1. MEND-new model diagram. Source: Wang et al. (2022). Reuse permission received with Copyright Clearance Center license
number 5691380194276.

– MAC (mineral-associated carbon): “mineral-sorbed or
-occluded SOC” (Woolf and Lehmann, 2019);

– DOC (dissolved organic carbon);

– MB (microbial biomass).

We assume that the MAOM fraction is composed of the
MAC pool and the POM fraction is composed of the SPM
and IPM pools. The DOC and MB pools belong to neither
fraction.

C4 CORPSE

List of organic carbon pools in the CORPSE-fire-response
version (Sulman, 2024a) of the CORPSE model, first pub-
lished in Sulman et al. (2014) and last updated in Moore et al.
(2020) (model diagram in Fig. C4):

– SPCu, CPCu, and MNu (unprotected simple plant car-
bon, unprotected complex plant carbon, and unprotected
microbe necromass, respectively);

– SPCp, CPCp, and MNp (protected simple plant carbon,
protected complex plant carbon, and protected microbe
necromass): “protected organic matter is inaccessible to
microbial decomposition through chemical sorption to
mineral surfaces or occlusion within microaggregates”
(Moore et al., 2020);

– LMB (live microbial biomass).

We associate the MAOM fraction with the SPCp, CPCp,
and MNp pools, since they represent mineral-adsorbed and
micro-aggregated carbon (Moore et al., 2020). We associate
the POM fraction with the SPCu and CPCu pools, but not the
microbial MNu pool, because POM is mostly composed of
unprotected plant-derived carbon. The MNu and LMB pools
belong to neither fraction.

C5 MIMICS

List of organic carbon pools in MIMICS-CN v1.0 by Kyker-
Snowman et al. (2020) (model diagram in Fig. C5):
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Figure C2. Millennial v2 diagram. Source: Abramoff et al. (2022). License: CC BY.

Figure C3. SOMic 1.0 diagram. Source: Woolf and Lehmann
(2019). License: CC BY.

Figure C4. CORPSE diagram. Source: Moore et al. (2020). Reuse
permission received with Copyright Clearance Center license num-
ber 5691370621010.

– LITm and LITs (metabolic and structural litter, respec-
tively): litter pools which are not considered part of soil
organic matter;

– SOMp (physicochemically protected soil organic mat-
ter): “is primarily composed of microbial products that
are adsorbed onto mineral surfaces” and is “analogous
to heavy fraction or MAOM pools” (Kyker-Snowman
et al., 2020);

– SOMc (chemically recalcitrant soil organic matter):
“consists of decomposed or partially decomposed lit-
ter” and is “analogous to light fraction or POM pools”
(Kyker-Snowman et al., 2020);

– SOMa (available soil organic matter): “the only SOM
pool that is available for microbial decomposition; it
contains a mixture of fresh microbial residues, prod-
ucts that are desorbed from the SOMp pool (e.g., Jilling
et al., 2018), as well as depolymerized organic matter
from the SOMc pool” (Kyker-Snowman et al., 2020).
This pool is usually small and we associate it with nei-
ther POM nor MAOM;

– MICr and MICK (“low-efficiency, r-strategist” mi-
crobes and “higher-efficiency, K-strategist” microbes,
respectively) (Kyker-Snowman et al., 2020): live micro-
bial biomass pools.

According to Kyker-Snowman et al. (2020), the SOMc
pool corresponds to the POM fraction and the SOMp pool
corresponds to the MAOM fraction. The SOMa, MICr, and
MICK pools belong to neither fraction.

Appendix D: Radiocarbon predictions with non-isotopic
models

Among the new-generation models selected for this study,
SOMic, MIMICS, and MEND have already implemented
14C. However, the most recent and only open-source ver-
sion of MEND does not include 14C, and SOMic and MIM-
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Figure C5. MIMICS-CN v1.0 diagram. Source: Kyker-Snowman
et al. (2020). License: CC BY.

ICS incorrectly implemented their 14C simulations (see Ap-
pendix E). Nevertheless, we can still produce 14C predictions
with non-isotopic models by individually tracking the carbon
fluxes at every time step and attaching a 14C signal to each
flux. Since none of the models define an internal structure
for their pools, we will assume by default that the pools are
well-mixed, which means that the114C of a pool’s outflux is
equal to the pool’s 114C. This assumption is common prac-
tice for 14C modeling in soils (Sierra et al., 2017).

We run all of the selected models using the forward Euler
method to advance from one time step to the next. The mod-
els either implicitly or explicitly produce the internal flux
matrix 8i at each time step i, where 8ijk ≥ 0 is the flux of
carbon from pool k into pool j (with j 6= k) and 8ijj ≤ 0 is
the total outflux of carbon out of pool j at time step i. They
also define the external influx vector I i such that I ij ≥ 0 is the
influx of carbon entering the modeled system through pool j
at time step i. Matrix 8 contains all the fluxes between the
pools and out of the system, and vector I contains all the
influxes of carbon from outside the system into the modeled
pools. We can therefore find the carbon stocksCi+1

j of pool j
at time step i+1 based on the 8i , I i , and Ci of the previous
time step i:

Ci+1
j = Cij + I

i
j +

∑
k

8ijk , (D1)

where the summation of internal fluxes 8ijk is performed
over all donor pools k to get the total internal carbon flux
into pool j (when k 6= j ), subtracted by the flux out of pool
j (when k = j ).

Assuming the pools are well-mixed, we can now produce
14C predictions by tagging each flux8jk with the 14C signal
of pool k. We measure the 14C signal in terms of the unitless
“absolute Fraction Modern” (FMabs) as defined in Trumbore
et al. (2016), such that FMabs = 1+ (114C/1000‰). The
FMabs is proportional to the 14C / 12C ratio normalized to a
δ13C of −25 ‰ (Trumbore et al., 2016) and is thus propor-
tional to the normalized ratio of 14C to total carbon (14C/C),
considering the negligible abundance of 14C compared to 12C
and 13C. Therefore, if we know F ij , the FMabs of pool j at

time step i, we can find F i+1
j at time step i+ 1 with the fol-

lowing equation (provided all the pools and the influx have
comparable δ13C signatures):

F i+1
j Ci+1

j = (1− λ)F ijC
i
j + I

i
jF

i
influx+

∑
k

8ijkF
i
k , (D2)

where Ci+1
j is given by Eq. (D1), λ is the radioactive decay

rate of 14C in units of inverse time step size, and F iinflux is the
FMabs of the external carbon influx at time step i given by
the forcing data. We can then recover the 114C at each time
step i and for each pool j with (F ij − 1)× 1000 ‰.

Appendix E: Incorrect or inaccurate 14C
implementations

E1 SOMic

The original implementation (available on Zenodo: Woolf,
2024) of the SOMic model (Woolf and Lehmann, 2019) does
not produce accurate 14C predictions. Instead of working
with the more typical 114C or absolute Fraction Modern
(FMabs) units, this implementation tracks the 14C age, which
we summarily define as Age=− log(FMabs)λ

−1, where λ
is the radioactive decay rate of 14C. This causes complica-
tions when updating the 14C ages of the pools at each time
step and when computing the total 14C age of the soil from
the 14C ages of the individual pools. Indeed, to find the com-
bined age AgeA+B of pools A and B, the implementation of
SOMic takes a weighted average over the ages, which is not
entirely accurate:

AgeA+B =
CAAgeA+CBAgeB

CA+CB
, (E1)

where Agei and Ci are the 14C age and the carbon stocks, re-
spectively, of pool i. This weighted average formula is used
to integrate the 14C ages of carbon fluxes into the pools at
each time step in lines 154–160 and to compute the 14C age
of the total soil in line 210 of file src/SOMIC.cpp (avail-
able on Zenodo: Woolf, 2024).

In order to prove that Eq. (E1) is inaccurate, let us derive
how to correctly add the 14C ages of pools A and B. Let 14Ci
denote the 14C stocks and Ci the total carbon stocks of pool
i. Then, by conservation of mass, we have

14CA+B =
14CA+

14CB and CA+B = CA+CB

⇒

14CA+B

CA+B
=

14CA+
14CB

CA+CB
. (E2)

Since the FMabs is proportional to the 14C/C ratio (assuming
pools A and B have similar δ13C signatures), the above is
equivalent to

FA+B =
CAFA+CBFB

CA+CB
, (E3)
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Figure E1. Comparison of 114C predicted by SOMic with the
more and less accurate 14C implementations. For this example sim-
ulation, SOMic was run with forcing data corresponding to the top
5 cm of the mineral soil of the Bugac grassland site in Hungary sam-
pled in 2004 (Schrumpf et al., 2013). The atmospheric 114CO2 of
the Northern Hemisphere (Graven et al., 2017) is plotted for refer-
ence. The plotted model output data are available in the Supplement
(Table S2).

where Fi and Ci are the FMabs and carbon stocks, respec-
tively, of pool i. It follows that the combined 14C age of pools
A and B is given by

AgeA+B =−λ
−1

· log

(
CA exp

(
−λ ·AgeA

)
+CB exp

(
−λ ·AgeB

)
CA+CB

)
. (E4)

Note that Eq. (E1) is the first non-zero term of the above
result’s Taylor expansion around AgeA = 0, AgeB = 0. This
means that Eq. (E1) works well for ages that are close to 0,
i.e., when the 114C is close to 0. However, it fails to accu-
rately predict the propagation of the bomb spike into the soil
ecosystem in the latter half of the 20th century, as shown in
Fig. E1. While the error induced by the incorrect implemen-
tation exceeds 20 ‰ for the bulk soil 114C in the 1970s, the
average error in the 2000s and 2010s is only around 10 ‰,
which is relatively minor.

E2 MIMICS

The only MIMICS version already implemented with 14C is
published in Wang et al. (2021), and the source code is avail-
able at https://data.csiro.au/collection/csiro:47942v1 (last ac-
cess: 30 July 2024) (Wang, 2020). However, this 14C imple-
mentation is incorrect (see Fig. E2).

The time evolution of the carbon stocks in MIM-
ICS is given by function f (C, t), which depends on

Figure E2. 114C output of MIMICS (Wang et al., 2021) with in-
correct isotopic implementation. The model was run with the de-
fault parameters and forcing data published with the original source
code (Wang, 2020). Our only modification to the source code was
to output the pools’ 14C and 12C stocks for each year. The atmo-
spheric 114CO2 of the Northern Hemisphere (Graven et al., 2017)
is plotted for reference. MIMICS pool names: LITm, metabolic lit-
ter; LITs, structural litter; MICr , r-strategist microbes; MICK , K-
strategist microbes; SOMp, physically protected soil organic matter;
SOMc, chemically protected soil organic matter; SOMa , active soil
organic matter. The plotted model output data are available in the
Supplement (Table S1).

the carbon stocks vector C and time t . Function f is
implemented as subroutine modelx in the source file
vsoilmic05f_ms25.f90. We can write function f in
terms of internal carbon transfer matrix A and carbon influx
vector I :

dC/dt = f (C, t)= A(C, t)C+ I (t) , (E5)

where matrix A(C, t) is a function of carbon stocks C and
time t and vector I (t) is time-dependent.

Then, following the same procedure which yielded
Eq. (D2), we can derive the equation governing the evolu-
tion of the 14C stocks (14C):

d14C/dt =−λ14C+A(C, t)14C+ 14I (t) , (E6)

where λ is the radioactive decay rate of 14C and 14I is the
external influx of 14C.

However, in the 14C implementation of MIMICS, the evo-
lution of the 14C stocks is predicted with

d14C/dt =−λ14C+f (14C, t)

=−λ14C+A(14C, t)14C+ 14I (t) . (E7)

The above equation is incorrect because, for this model,
A(14C, t) 6= A(C, t) when the pools have114C 6= 0 ‰. This
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is especially problematic during the bomb-spike period,
where 14C undergoes big changes while C remains sta-
ble, causing A(14C, t) to deviate significantly from A(C, t).
The incorrect implementation causes a strong attenuation of
the 114C curves of the metabolic and structural litter pools
(Fig. E2), which should more closely follow the atmospheric
curve, considering the fast turnover rates of the litter pools.
Another noticeable effect of the incorrect implementation, as
seen in Fig. E2, is that the SOMp pool (corresponding to the
MAOM fraction) incorporated much more bomb-derived 14C
than the SOMc pool (corresponding to the POM fraction) in
the 1970s, which is highly improbable.

Appendix F: Turnover times in the Millennial model

In Millennial v2 (Abramoff et al., 2022), the POM, MAOM,
and Aggregate C pools exchange carbon with each other on
the scale of a few months. The aggregate formation rate of
the POM pool is between 0.012 and 0.026 d−1 (kpa in Ta-
ble A1 of Abramoff et al., 2022), which translates to an av-
erage aggregation time of 1–3 months. However, the opti-
mized rate of aggregate formation for the MAOM pool is be-
tween 0.0038 and 0.0052 d−1 (kma in Table A1 of Abramoff
et al., 2022), giving MAOM an average aggregation time of
6–8 months. The Aggregate C pool has a breakdown rate of
around 0.02 d−1 (kb in Table A1 of Abramoff et al., 2022),
and thus aggregates have a turnover time of just 50 d. POM
and MAOM exchange their carbon rapidly with the Aggre-
gate C pool, which then redistributes the carbon back to the
POM and MAOM pools in less than 2 months on average.
This means that, under the assumption of well-mixed pools,
the 14C signals of the POM, MAOM, and Aggregate C pools
get homogenized within a couple years.

Appendix G: Effect of sampling year on relationships
between 14C and environmental parameters

The results and analysis in Sect. 3.3 on the dependency
of observed and predicted 114C on environmental param-
eters could potentially be biased due to the different sam-
pling years of soil profiles with different environmental pa-
rameters. While there is no strong relationship between soil
temperature and the sampling year (Fig. S1.4), it turns out
that most of the profiles with higher clay content (> 20 %)
were sampled before 2005 and those with lower clay content
(< 20 %) were sampled after 2005 (Fig. S1.3). Even though
the data shown in Fig. 8 only span a period of 18 years
(1997–2015), the rapid changes in atmospheric 114CO2 in
the post-bomb period could mean that the regression lines of
114C against clay in panels (d)–(f) are biased. We can at-
tempt to remove this bias by “normalizing” the 114C data
to the year 2000. The predicted 114C data are normalized
simply by selecting the model output for 1 July 2000. The
normalized 114C predictions for all models, profiles, and

soil fractions are reported in Table S5. Normalizing the ob-
served 114C data, however, is highly problematic, espe-
cially in the context of this paper, because it requires the
use of a simplistic soil carbon model. Following the nor-
malization method used in Shi et al. (2020) and Heckman
et al. (2022), we fit a steady-state linear one-pool model to
the observed 114C data and then predict the 114C in the
year 2000 with the fitted model. Table S5 in the Supple-
ment lists the normalized 114C from the observed data, as
well as the turnover rate of the one-pool model fitted with
scipy.optimize.minimize in Python and whether
optimization terminated successfully, for each soil fraction
and each profile. We then remade Figs. 7 and 8 with all the
114C data normalized to the year 2000 (see Figs. S.1.1.31
and S.1.1.25, respectively). Although normalization slightly
shifted some of the 114C data, the slopes of the regression
lines through the 114C data essentially remained the same.
Therefore, our analysis and interpretation of the results pre-
sented in Sect. 3.3 are likely not affected by the different
sampling years.

Code and data availability. The source code to download the
input data, run the models, and reproduce all the results
presented in this paper and the supplementary material is
available from our GitHub repository https://github.com/asb219/
evaluate-SOC-models (last access: 30 July 2024), published on
Zenodo at https://doi.org/10.5281/zenodo.10575139 (Brunmayr,
2024).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-5961-2024-supplement.
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